
Continual Learning for Embodied Agents: Methods, Evaluation and Practical Use
a Systematic Literature Review

Andrei Dascalu1

Supervisor(s): Chirag Raman1, Ojas Shirekar1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Andrei Dascalu
Final project course: CSE3000 Research Project
Thesis committee: Chirag Raman, Ojas Shirekar, Willem-Paul Brinkman

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Continual learning (CL) enables intelligent systems
to continually acquire, adapt, and apply knowledge,
representing a dynamic paradigm in AI. For em-
bodied agents—interacting with their environment
physically and cognitively—CL enhances adapt-
ability and reduces training costs significantly. In
this literature review, we contribute by focusing on
the application of CL in such agents, showcasing
the approaches, means of evaluation and practical
uses of this cognitive framework in real-world sce-
narios. We conclude that while CL holds promise
for embodied agents, there exists a notable gap be-
tween the theoretical evaluation of CL and the com-
plex real-world scenarios these agents operate in.

1 Introduction
In the field of artificial intelligence, continual and lifelong
learning is a paradigm that refers to an agent’s capacity to
learn continuously, accumulate the knowledge learned in the
past, and use or adapt it to help future learning and problem
solving [1]. Unlike traditional static methods of training, con-
tinual learning (CL) is facilitated by incremental training over
an infinite stream of data [2]. This approach avoids periodic
full retraining to accommodate new tasks or fresh data, po-
tentially reducing computational and energy demands [3].

The CL paradigm is rooted in the principles of cognitive
psychology, mirroring the human ability to sequentially learn
new concepts [4]. Recent studies suggest that continual learn-
ing in humans is facilitated by a mix of synaptic plasticity and
consolidation [5]. Synaptic or structural plasticity is a funda-
mental mechanism in the brain that involves the strengthen-
ing or weakening of synapses, which allows the brain to learn
and adapt to new information [5], [6]. Consolidation, on the
other hand, represents the brain’s attempt to stabilize a mem-
ory over time, which helps to establish long-term memory by
maintaining synaptic stability [5], [7].

In the context of continual learning, embodied agents rep-
resent entities that interact with and perceive their environ-
ment in a human-like manner, utilizing both physical and
cognitive capabilities. Embodied agents, which can be either
physical robots or virtual agents, integrate sensory input to
navigate and perform tasks within their environments. Virtual
agents, like their physical counterparts, engage with their en-
vironments through simulated sensory and motor processes.

Unlike humans, agents employing continual learning are
subject to forgetting how to solve past tasks entirely after
learning new tasks. This phenomenon is known as catas-
trophic forgetting (CF) [8]. This issue stems from the delicate
balance between learning plasticity and memory stability [9],
akin to the principles of synaptic plasticity and consolidation
that form the basis of human memory. Excessive learning
plasticity can result in rapid adaptation but may lead to a loss
of information about past tasks. Conversely, excessive mem-
ory stability may help the agent retain past knowledge, at the
cost of making the agent rigid and less adaptable to new tasks,
as it becomes resistant to changing its learned parameters.

There have been successful attempts to tackle the issue of
CF through multiple defined methods [10], [11], [12]. While

previous studies provide a solid theoretical overview of such
frameworks and methods ([4], [9]), the challenge lies in effec-
tively incorporating these findings into practical applications.
Hence, it is crucial to explore the extent to which these learn-
ing methods have been applied in practice.
Motivation The motivation for this research stems from
the need to overcome the limitations of current AI systems,
which, despite their impressive results, rely on static models
that require restarting the training process whenever new data
emerges [4]. In an ideal scenario, we should aim for models
that are capable of dynamically learning, motivated by inter-
nal factors rather than solely by external rewards. Further-
more, deriving insights from human intelligence is not only
essential for advancing AI from both conceptual and practi-
cal perspectives, but it also opens the possibility of creating
agents that can plan, adapt, and act effectively in various envi-
ronments, not just recognize patterns. This approach bridges
the gap between AI and cognitive science, deepening our un-
derstanding of how human intelligence works and paving the
way for more adaptable and intelligent agents.
Contribution The aim of this systematic review is to provide
an overview of the advancements made in the topic of CL,
with a focus on the practical applications in embodied agents.
Through this review, we will not only present the frameworks
commonly adopted in CL, but also pave the way to future
advancements by giving concrete examples of what has been
achieved so far in practice, and whether practical usages of
CL methods match their theoretical expectations.

The main research question that this study focuses on is
”How has continual and lifelong learning been incorporated
into embodied agents, mirroring the human capacity to incre-
mentally acquire new knowledge?”. In addition to the main
question, three sub-questions were devised to support the ex-
ploration and understanding of the research topic:

• Q1 What methods and algorithms facilitate continual
and lifelong learning in embodied agents, and what are
their advantages, drawbacks and cognitive inspiration?

• Q2 How is the performance of systems that are capable
of lifelong learning evaluated?

• Q3 How has continual and lifelong learning been inte-
grated into embodied agents in practice?

2 Method
A systematic literature review was conducted in accor-
dance to the PRISMA1 reporting guideline. PRISMA is an
evidence-based set of 27 items designed to help authors trans-
parently report why the systematic review was conducted,
what methods were used, and what has been found. This
reporting guideline was employed in an effort to ensure the
reproducibility and transparency in this paper. The subse-
quent sections will be structured as follows: Section 2.1 gives
an overview of how the literature search was carried out and
which databases were selected. Section 2.2 showcases the se-
lection criteria based on which the filtering was performed.
Section 2.3 describes the literature screening process and the
final selection of papers.

1PRISMA: Preferred Reporting Items for Systematic Reviews
and Meta-Analyses. Available at: http://www.prisma-statement.org/
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2.1 Selection Criteria
In order to assess the eligibility of the identified articles from
the initial literature search, the following exclusion and inclu-
sion criteria were established:

Inclusion Criteria:
• Study published after 2015
• Journal article/conference proceeding written in English
• Study focuses on the integration of CL in embodied

agents
• Study contains details on method used for achieving CL
Exclusion Criteria:
• Full-text study is not available
• Article not written in English
• Study not directly relevant to continual and lifelong

learning in the context of embodied agents

2.2 Literature search
To conduct the literature search, three databases were taken
into consideration: IEEE Xplore 2, Scopus 3 and Web of
Science 4. IEEE Xplore is a research database that focuses
on computer science and technology related articles and pro-
ceedings, and was selected for its potential to contain papers
relevant to the topics of interest. Scopus, a comprehensive
multidisciplinary database, was selected to ensure a broad
spectrum of findings, not confined solely to computer science,
but also incorporating insights from cognitive science. Web
of Science, another multidisciplinary database, was selected
to complement the search, providing coverage for papers that
may not have been included otherwise.

A search string structure has been devised in order to query
the three databases. The string is composed of multiple
phrases related to the main research question, each phrase be-
ing devised into multiple related terms. These phrases were
concatenated using the AND operator, with the related terms
being concatenated with the OR operator inside the phrase.
The search string that was used across the three databases can
be found in Figure 1.

(”life-long learning” OR ”lifelong learning” OR
”continual learning” OR ”incremental learning” OR
”sequential learning”) AND (environment OR ”3D
environment*” OR ”virtual environment*”) AND

(agent* OR multi-agent OR ”multi agent” OR
”intelligent agent*” OR ”autonomous agent*” OR

”embodied agent*” OR robot) AND NOT (education)

Figure 1: Search string used in database search

The search string was adjusted to use the ”NOT” opera-
tor instead of the ”AND NOT” operator for Web of Science
due to syntax differences. The search was limited to papers
and articles published after and including 2015. Addition-
ally, Scopus results were restricted to the field of ’Computer
Science’, and the search was carried out within ”Abstract,
Title, and Keywords”. The full search was performed on

2Available at: https://ieeexplore.ieee.org
3Available at: https://www.scopus.com
4Available at: https://www.webofscience.com/wos/

6/5/2024. Results were recorded in Zotero, and duplicates
were removed.

Additionally, Google Scholar was used to acquire litera-
ture with a focus on cognitive sciences. This decision was
made due to the emphasis of the search query on the com-
putational aspects of continual learning, rather than on the
cognitive background of the framework.

2.3 Literature selection

Literature selection was performed according to the PRISMA
guideline, and encompassed three stages. The first
stage is identification, where relevant articles and papers
were recorded using the query across the aforementioned
databases, and the results were filtered for duplicates. The
second step is screening, where the remaining articles were
first screened based on the selection criteria. The resulting ar-
ticles were sought for retrieval, and then assessed for eligibil-
ity based on the full-text content, namely the abstract, intro-
duction and conclusion. The included step represents the final
number of papers included in the literature review, account-
ing for the 24 papers resulting from the database search, along
with 25 records identified through citation chaining, and 5 pa-
pers using Google Scholar. Figure 2 illustrates the process,
along with the number of records included in each step.

Figure 2: PRISMA flow diagram

3 Results
This chapter will discuss the results for each of the proposed
research sub-questions addressed in Section 1. Section 3.1
will explain the different approaches to achieving continual
learning, along with advantages, disadvantages and charac-
teristics. Section 3.2 will elaborate on the current methods of
performance evaluation of CL systems. Finally, Section 3.3
will offer examples of how CL is employed in practice.
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3.1 Q1 - Methods and approaches for CL
Van de Ven et al. [13] categorize continual learning into three
main scenarios based on how training data batches are di-
vided and task identities are handled during testing. In Task-
IL, models are aware of task identities during testing, mak-
ing it the least challenging scenario. Domain-IL does not
provide task identity during testing but focuses on solving
each task with varying input distributions, resembling adap-
tive agent scenarios. Class-IL requires models to both solve
tasks and infer task identities, reflecting challenges in learn-
ing new classes incrementally with limited information.

In navigating these scenarios, an important aspect of con-
tinual learning is the ability to leverage knowledge across
tasks. Forward transfer is the ”ability to transfer knowledge
from past tasks to improve the learning and efficiency of fu-
ture (related) tasks”, as defined by Wickramasinghe [14, p. 4].
Conversely, backward transfer refers to the ”ability to trans-
fer knowledge from future tasks to past (related) tasks to en-
hance their performance” [14, p. 4]. Effective continual learn-
ing methods aim to maximize positive forward transfer while
ensuring that positive backward transfer is also achieved.

Traditionally, continual learning approaches have been
split into three main categories [4], [15]. These categories
are: (i) Replay methods, (ii) Regularization methods, and
(iii) Parameter isolation methods. Whilst other studies
such as that of Wang et al. [9] introduce the notion of
optimization-based and representation-based approaches,
these two categories will not be considered for this literature
survey. The reason for excluding them lies in their relatively
less common usage in the broader literature on CL.

The commonality between the three mentioned approaches
lies in their shared goal of mitigating CF. However, there
are still fundamental differences, with each approach offering
unique advantages/disadvantages in varying scenarios. These
aspects, along with the cognitive inspiration from each which
will be described in the following sections. Note that we
will only detail upon on the most fundamental and signifi-
cant works within the three primary approaches. A summary
of the findings can be found in Table 1.

(i) Replay-based approach
Among the surveyed studies, twelve papers discuss a method
that resembles replay-based approaches [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [15], [26]. This type
of approach involves the storage and consequent replay of
past data samples during training to prevent forgetting. The
core idea involves retaining a representative subset of prior
tasks within a compact memory buffer, which is subsequently
used during training alongside new tasks. The main sce-
nario for the application of this approach is task-incremental
learning (Task-IL) [15], although certain proposals were also
made to target class-incremental learning (Class-IL) [16],
[21]. Replay-based approaches can be sub-categorized into
rehearsal and generative methods.

Rehearsal methods such as iCaRL (Incremental Classifier
and Representation Learning) [16] construct an augmented
training set with stored exemplars and current examples. Dur-
ing training, the network outputs for previous classes are
stored. The loss function combines classification loss for new

classes and distillation loss, minimizing forgetting by repro-
ducing previous class scores while adapting to new data. An-
other method, GEM [17], uses an episodic memory to store
a subset of examples from each task. It enforces constraints
that prevent increasing the loss on past tasks by projecting
gradient updates to ensure positive backward transfer upon
learning new tasks. A-GEM [18] enhances GEM by ensuring
the average loss over all past tasks does not increase, using a
single constraint, making it more computationally efficient.

Generative methods, also known as pseudo-rehearsal, fo-
cus on using generative models to produce representative data
samples to be used during rehearsal. The DGR framework
[19] involves training a ”scholar”, which is composed of two
components. The first component is a generator, which is a
deep generative model that recreates realistic samples from
past tasks. The second component is a solver, which is a
task-solving model trained on a mix of current task data and
replayed data from the generator. Other proposals such as
FearNet [20] go a step further in taking inspiration from cog-
nitive science. FearNet is comprised of three brain-inspired
modules: recent memory, long-term storage, and a decision-
making subsystem. FearNet’s architecture includes neural
networks inspired by hippocampal complex (HC) and me-
dial prefrontal cortex (mPFC), with a basolateral amygdala
(BLA) subsystem determining which memory to use. It ad-
dresses CF by consolidating recent memories into long-term
storage via pseudorehearsal, enabling the network to revisit
past memories without storing previous training examples.

The benefits of replay-based approaches revolve around
their capacity to mitigate CF. According to Bagus et al.,
replay-based methods outperform other methods under var-
ious constraints, with small and fixed memory and computa-
tion overhead [27]. They scale well across many tasks and
are universal, meaning they can be applied in almost any sce-
nario without changes. Additionally, replay-based methods
are simple to implement and explain, using old sub-task sam-
ples during new sub-tasks to prevent forgetting, similar to
joint training over all seen sub-tasks.

However, drawbacks include a memory overhead due to
the need for storing past data samples. While generative re-
play addresses this issue, they may introduce complexity [4]
and the risk of generating unrealistic samples. Storing sam-
ples directly, as is the case with rehearsal methods, rather than
using generative models, can lead to privacy concerns [27].
Moreover, replay approaches are prone to overfitting. This
can come as a result of either insufficient diversity per class
when sampling from memory [28], or from using unrealistic
examples that do not capture the true data distribution [27].

The cognitive inspiration behind replay methods stems
from the concept of hippocampal learning. Specifically, the
human brain uses mechanisms of replay during sleep to re-
inforce and consolidate memories. The hippocampal system
records experiences as they occur throughout the day and sub-
sequently replays these stored memories back to the neocor-
tex overnight [29]. According to Rasch et al., during sleep,
particularly during the slow-wave sleep phase, the hippocam-
pus reactivates recent experiences, which are then replayed to
the neocortex [30]. This replay process is believed to facil-
itate the transfer of memories from short-term to long-term
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storage, thereby helping to prevent forgetting and integrate
new learning with existing knowledge. Kemker and Kanan
clearly draw inspiration from the hippocampal learning pro-
cess in FearNet [20], with consolidation taking place during
”sleep phases”. During these sleep phases, generated repre-
sentative samples are replayed in conjunction with recent data
to reinforce previous learning and facilitate the integration of
new information into the existing knowledge base.

(ii) Regularization approach
Six of the surveyed papers include a method that resembles
regularization approaches [12], [31], [11], [32], [33], [34].
Regularization-based approaches impose constraints on net-
work parameters to balance the retention of old knowledge
while acquiring new information. Regularization strategies
work by introducing additional terms to the loss function,
which guide the optimization process to preserve important
aspects of previously learned tasks. The main scenario for
this approach is Task-IL [12]. Other methods focus on the
Class-IL scenario [32]. Regularization approaches can be
sub-categorized into weight-regularization and knowledge-
distillation methods.

Weight-regularization methods operate by minimizing the
amount of changes/drift of relevant weights related to past
tasks. One such example is Elastic Weight Consolidation
(EWC) [12]. In this framework, Kirkpatrick et al. ad-
dress the challenge of retaining old knowledge by selectively
constraining important weights from undergoing significant
changes. Here, the Fisher Information Matrix is used to as-
sess the sensitivity of each parameter to changes in data like-
lihood. Parameters with higher Fisher information values are
more important for previously learned tasks. EWC introduces
a quadratic penalty term to the loss function, constraining
parameters from deviating significantly from their values on
previous tasks. R-EWC (Rotated EWC) [31] improves EWC
by rotating the parameter space to align with the principal
axes of the Fisher Information Matrix, making the diagonal
approximation more accurate. This reduces the loss of im-
portant correlations between parameters. Similarly to EWC,
Aljundi et al. introduce MAS (Memory Aware Synapses)
[11], calculating the importance of each network parameter
based on how much it affects the output. It then uses this
importance to add a regularization term to the loss function,
penalizing changes to crucial parameters during task learning.

Knowledge-distillation methods work by transferring
knowledge from a ”teacher” model to a ”student” model. This
is achieved by training the student model to mimic the outputs
(often the soft probabilities) of the teacher model. In Learning
without Forgetting (LwF) [32], the Knowledge Distillation
Loss is used to align the outputs of the current model with
the recorded outputs of the old tasks. This modified cross-
entropy loss ensures that the new model’s predictions on old
tasks remain close to the original network’s predictions.

The benefits of regularization methods lie in their space
efficiency. As seen with EWC, the method does not need
to store past data samples and does not expand the network.
Moreover, these methods ensure positive forward and back-
ward transfer, and often outperform other methods [14].

The drawbacks of regularization methods stem from the

balance they must maintain between retaining old knowledge
and learning new information. High regularization strength
can make the network rigid, hindering adaptation to new
tasks. Conversely, low regularization strength may cause the
network to undergo too much change, leading to forgetting
of previously learned tasks. Wickramasinghe et al. point out
that regularization methods rely on knowing the task identity
at inference time, which limits their applicability in scenarios
where this information is unavailable or uncertain [14].

The cognitive inspiration for this method is synaptic plas-
ticity. This process refers to the ability of synapses, the
connections between neurons, to change their strength in
response to activity [35]. Synaptic plasticity can be di-
vided into two main forms, namely long-term potentiation
(LTP), which strengthens synapses through high-frequency
stimulation, and long-term depression (LTD), which weak-
ens them via low-frequency stimulation, decreasing synap-
tic efficiency. This concept is mirrored in CL frameworks
such as EWC [12], where critical synaptic weights are con-
served, akin to how LTP stabilizes important synapses. This
prevents drastic changes to essential weights, maintaining
learned knowledge while accommodating new information,
similar to the balance achieved by LTP and LTD.

(iii) Parameter isolation approach
Among the surveyed studies, eight papers discuss a method
that resembles parameter isolation approaches [36], [37],
[38], [39], [40], [41], [42], [10]. Parameter isolation ap-
proaches function by assigning distinct sets of parameters
to different tasks, ensuring no overlap in parameter usage
across tasks. The main scenario for this type of approach
is Task-IL [42]. These approaches can either function by
adding parameters dynamically as new tasks are encountered
(growing the network), or by restricting the network architec-
ture and utilizing subsets of available parameters for different
tasks. Thus, we make distinction between two sub-categories,
namely dynamic-architecture and fixed-architecture methods.

Dynamic-architecture methods work by incrementally
adding new parameters to the neural network as new tasks
are introduced. This ensures sufficient capacity to learn and
retain new information. Wang et al. [37] describe a frame-
work where new layers or units are added to the existing net-
work structure, enhancing its depth or width and thereby im-
proving its ability to transfer knowledge and perform well on
novel tasks with limited data. Yoon et al. propose the DEN
framework [38], which involves selectively retraining rele-
vant neurons to adapt to new tasks, expanding the network by
adding new neurons when the existing capacity is insufficient,
and duplicating neurons to prevent semantic drift. It utilizes
group sparsity regularization to decide the number of new
neurons required and timestamped inference to manage pa-
rameters across different learning stages. Another dynamic-
architecture framework is ”learn-to-grow” [39]. It builds
upon a base model, iteratively adding task-specific parame-
ters while allowing reuse of prior knowledge. The framework
incorporates elastic penalties for parameter reuse. It’s imple-
mentation includes two components: neural structure opti-
mization using differentiable architecture search, and param-
eter learning/fine-tuning. The optimization process selects
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between reusing, adapting, or creating new layers which pre-
vents exponential growth in model size. Progressive networks
[40] extend the dynamic architecture approach, by adding a
new neural network column for each task. When a new task is
introduced, a new column is added with randomly initialized
parameters. Each layer in the new column receives inputs
from both its previous layer and the corresponding layers of
all previously trained columns via lateral connections.

Fixed-architecture methods do not modify the actual struc-
ture of the network, but instead use a predetermined network
architecture and focus on optimizing the parameters within
this fixed structure. Fernando et al. propose PathNet, a frame-
work that facilitates continual learning by evolving modu-
lar pathways within a deep neural network [41]. It consists
of layers, each containing modules (neural networks) whose
outputs are summed before passing to the next layer. During
training, pathways are randomly initialized and evolved us-
ing tournament selection or parallel evaluation. Once a task
is learned, optimal pathways are fixed while other parame-
ters are reinitialized for subsequent tasks. Similar to Path-
Net, PackNet [42] freezes older pathways while reusing older
neurons for new tasks. It uses network pruning to create free
parameters for new tasks without increasing network capac-
ity. A standard network is trained for a primary task and then
pruned. New tasks are added sequentially, using existing and
new parameters, with iterative pruning to remove a fixed per-
centage of weights from each layer. In contrast, HAT (Hard
Attention to the Task) [10] prevents forgetting by using task-
specific attention mechanisms to conditionally activate neu-
rons, preserving pathways crucial for each task.

The benefits of parameter-isolation approaches include
minimizing interference between tasks, thereby preserving
previously learned knowledge and preventing catastrophic
forgetting. Moreover, methods that involve dynamic archi-
tectures grow the network in response to new tasks, and allow
for increased model capacity over time without the need for
re-training or freezing of parameters. This approach guaran-
tees maximal stability by fixing parameter subsets of previous
tasks, thus preventing stability decay [4].

The drawbacks include of this approach are related to scal-
ability. In the case of dynamic architectures, the connection
of new models to all previous ones may result in quadratic pa-
rameter growth concerning the number of tasks, posing scal-
ability concerns [43]. Additionally, dynamic architectures
pose an expansion feasibility issue. If given enough computa-
tional resources, dynamic architectures could in theory fully
mitigate the issue of catastrophic forgetting [14]. However,
such assumptions are highly unrealistic under practical sce-
narios. Whilst fixed-architecture methods tackle the growth
issue, the explicit allocation of network capacity per task rep-
resents a limitation in the total number of possible tasks [4].

The cognitive inspiration for parameter-isolation methods
stems from selective learning and brain modularity. Studies
on selective attention suggest that the brain prioritizes pro-
cessing of salient stimuli while suppressing irrelevant infor-
mation [44]. This concept serves as a potential inspiration for
parameter isolation, which prioritizes the preservation of pa-
rameters crucial for previously learned tasks while minimiz-
ing future interference. Similar to how parameter isolation

methods assign subsets of parameters per task during learn-
ing, the human biological brain also utilizes modular archi-
tectures to manage cognitive functions. Such modular orga-
nization is present early in brain development, which persists
and evolves through adulthood [45]. As Kelkar and Medaglia
note, ”cognitive competences such as choosing one’s food
habits, spatial navigation, seeing, and face recognition are
supported by the modules” [45, p. 7]. This closely relates to
how different tasks use distinct subsets of network parameters
to prioritize task-relevant information in such approaches.

3.2 Q2 - Performance evaluation of CL
The evaluation of CL methods primarily focuses on assess-
ing how well these methods can learn new tasks sequentially
without forgetting previously learned tasks. Studies have ex-
plored evaluation strategies and datasets to measure the ef-
fectiveness of CL approaches, with thirty-three papers dis-
cussing the proposed model’s evaluation. Table 2 contains an
overview of the methods, task settings and evaluation metrics
that these studies employed.

(i) Task Settings in Continual Learning Evaluation
Findings reveal that continual learning evaluations are con-
ducted under several task settings, which dictate the approach
to training and benchmarking. For instance, Incremental
learning settings involve models being trained on new tasks
or classes sequentially while attempting to retain previously
learned knowledge. This involves adapting to new data distri-
butions without forgetting previous tasks. For example, Kim
et al. [46] employ rotated MNIST, where digits in the MNIST
dataset are rotated by certain angles. Similarly, iCarl [16] is
evaluated on iCIFAR-100 and iILSVRC benchmarks, demon-
strating the model’s ability to incrementally learn new classes
while retaining old ones.

Supervised learning involves training models on labeled
datasets, typically in a batch fashion, without considering se-
quential learning. However, in the context of continual learn-
ing, supervised learning can be used as a baseline for com-
paring against incremental learning methods. For instance,
CBCL-PR [21] uses CIFAR-100 in a supervised setting to
evaluate class-incremental learning performance. Another
example is FearNet [20], which compares several supervised
methods on CIFAR-100 and CUB-200 datasets.

Reinforcement learning focuses on training agents to inter-
act with an environment to achieve a goal, maximizing cu-
mulative rewards. In continual learning, RL tasks typically
involve learning sequentially over multiple episodes or tasks
while retaining knowledge from previous experiences. Rusu
et al. [40] evaluated CL in RL tasks such as synthetic Pong
variants and Atari games, demonstrating the ability of pro-
gressive networks to adapt to new games while retaining per-
formance on previously learned games. Similarly, EWC [12]
was tested on Atari 2600 games, showing how it helps in re-
taining learned policies.

Online adaptation entails the updating of agent/system be-
havior in response to new data or changes in the environ-
ment. This scenario is particularly relevant in real-world
robotics, where robots must adapt to dynamic contexts. For
example, Tannenberg et al. [22] discuss the adaptation of
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Table 1: Comparative summary of continual learning approaches: benefits, drawbacks, and cognitive inspirations

Sub-category Benefits Drawbacks Reference Cognitive
Inspiration

R
ep

la
y Rehearsal

• Mitigation of CF
• Simple implementation
• Universal applicability

• Memory overhead
• Privacy concerns
• Prone to overfitting

[15], [16],
[17], [18],
[23], [26] Hippocampal

learning
Generative

• Mitigation of CF
• Less memory overhead

• Complexity introduced by generative
models
• Risk of generating unrealistic samples

[19], [20],
[21], [22],
[24], [25]

R
eg

ul
ar

iz
at

io
n Weight-

regularization

• Space efficiency
• Positive forward and
backward transfer
• Outperforms other methods
in some scenarios

• Balance required for regularization
strength
• Requires task identity at inference

[12], [31],
[11], [33],
[1]

Synaptic
Plasticity

Knowledge-
distillation

• Space efficiency
• Positive forward and
backward transfer

• Balance required for regularization
strength
• Task identity required at inference

[32]

Pa
ra

m
et

er
is

ol
at

io
n

Dynamic-
architecture

• Minimized interference
between tasks
• Network capacity adaptation
• Positive forward transfer

• Scalability concerns with parameter
growth
• Feasibility issues with network
expansion

[37], [38],
[39], [40]

Selective
learning
&
Brain
Modularity

Fixed-
architecture

• Minimized interference
between tasks
• No network growth
• Maximal stability

• Explicit allocation of network
capacity per task
• Not suitable for long task sequences

[41], [42],
[10], [36]

a KUKA LWR arm to new obstacles using online learning,
successfully transferring from simulation to real-world set-
tings. Wang et al. [33] evaluate a motion planner trained
with reinforcement learning, demonstrating a robot’s ability
to navigate changing target positions and avoid obstacles in
real time. Similarly, Liu et al. [47] test LLfN on a Clearpath
Jackal robot, focusing on dynamic adaptation.

(ii) Metrics for Continual Learning Evaluation
Among the most commonly employed metrics cited in sur-
veyed papers is accuracy — the proportion of correct pre-
dictions made by the model on a given dataset ([46], [17],
[18], [39], [19], [21] [24], [16], [20], [12], [31], [32], [11],
[37], [38], [41], [10], [48]). Additionally, forgetting is fre-
quently assessed ([21], [23], [17], [16], [19], [20], [12], [31],
[10], [25]), which depicts the degree to which learning new
tasks negatively impacts the model’s performance on previ-
ously learned tasks. Transfer is another commonly used met-
ric ([23], [17], [40], [41]), indicating the model’s capacity to
apply knowledge from one task to improve performance on
another. This can either be in the form of forward transfer
(building on previous knowledge) or backward transfer (in-
terference with previous learning). Appendix A contains a
full list of the metrics, including additional context-specific
metrics, along with their definitions and sources.

3.3 Q3 - Practical uses of CL
In this section, we will introduce a categorization of practical
uses of CL in the context of embodied agents. Here, we make
the distinction between (i) embodied physical agents, which
operate in the real world with tangible interactions, and (ii)

embodied virtual agents, which exist within digital or simu-
lated environments. For each scenario, we will provide spe-
cific examples of CL being employed in practice.
(i) Embodied Physical Agents
Embodied physical agents, such as robots, autonomous ve-
hicles, and drones, interact with their surroundings through
sensors and actuators. These agents require CL to adapt to dy-
namic and unpredictable environments, learn new tasks with-
out forgetting previous ones, and improve performance over
time based on continuous feedback. Nine papers [47], [51],
[25], [52], [21], [24], [48], [22], [23] discuss the adaptation
of CL methods inside embodied physical agents.

Lifelong navigation: This category involves a robot learn-
ing to navigate through multiple environments, using a fixed
global planner. Liu et al. [47] describe a robot learning to
navigate multiple environments using a policy which maps
sensor inputs to actions. In this scenario, GEM [17] is used
to prevent CF. In a similar vein, Dhakan et al. validate their
modular continuous learning framework using a mobile robot
in a dynamic environment [51]. The robot autonomously dis-
covers and learns maintenance goals, such as navigating to
specific locations. Using a goal discovery module, the robot
identifies and clusters potential goals. A goal management
module prioritizes these goals, while a learning module em-
ploys reinforcement learning to achieve them. Traoré et al.
[25] explore CL in a real-life reinforcement learning scenario
with a mobile robot. The robot is tasked with sequentially
learning two navigation tasks: Target Reaching (TR) and Tar-
get Circling (TC). To achieve this, the robot employs distil-
lation - combining knowledge from individual task policies
into a single flexible policy capable of solving both tasks.
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Table 2: Evaluation methods, task settings, and metrics commonly employed in continual learning research.

Evaluation Method (Examples) Studies Task Setting Evaluation Metrics
Standard Image Classification Datasets
(MNIST, CIFAR-100, CIFAR-10,
FashionMNIST, NotMNIST, CORe-50)

[46], [17], [19], [12],
[31], [39], [41], [10],
[21], [20], [18], [38]

Incremental,
Supervised learning

Accuracy, Forgetting,
Transfer

Large-scale and Complex Image Datasets
(ImageNet, Places365, iILSVRC, AudioSet,
YouTube-8M, Caltech-101, CUB-200, Flowers,
Stanford Cars, Stanford-40 Actions)

[16], [17], [32], [42],
[24]

Incremental Accuracy, Forgetting,
Transfer

Synthetic Datasets
(Permuted MNIST, Rotated MNIST)

[46], [17], [18], [12],
[39], [41]

Incremental Accuracy, Forgetting,
Transfer

Domain-Specific Datasets
(Street View House Number (SVHN), MIT
indoor scene, AWA (Animals with Attributes),
TrafficSigns, SUN-397)

[19], [41], [10], [20],
[11], [37], [18], [38]

Incremental Accuracy, Forgetting

Reinforcement Learning
(Atari games, 3D maze tasks)

[40], [12], [41] Reinforcement
learning

Average score per episode,
Task performance

Robotic and Real-World
(Pepper robot, KUKA LWR arm simulation,
Musculoskeletal system simulation, Drone
object recognition)

[24], [22], [49], [23],
[34], [50], [47], [51],
[25], [52], [21], [48],
[36], [33]

Incremental, Online
adaptation

Accuracy, Forgetting, Task
performance, Task
completion, Adaptation

Thrun et al. [52] also describe an experiment using a HERO-
2000 robot for autonomous navigation and mapping, using
a CL model grounded in explanation-based neural network
learning. The robot is equipped with sonar sensors, a laser
rangefinder, and a video camera to gather environmental data
and update its internal map while navigating.

Object classification: For classifying objects, the CBCL-
PR framework [21] is applied in a scenario where a robot
learns to classify household objects continuously with min-
imal labeled examples from humans. Ayub et al. [24] also
implement CL on a humanoid Pepper robot [53] for house-
hold object classification, using Few-Shot Continual Active
Learning (FoCAL). FoCAL integrates active learning and CL
techniques, selecting informative samples based on predic-
tion uncertainty (entropy). Another study by Ayub et al. [48]
explores human teaching patterns with a CL robot for object
recognition. Users labeled objects via a GUI, and the robot
stored these images for training. During testing, the robot
used its CL model to predict and point to objects correctly.

Robotic Limb Adaptation: In a study by Tannenberg et
al. [22], a robotic arm is tasked with dynamically adapting its
motion planning in response to changing environmental con-
straints, utilizing a form of CL that integrates intrinsic moti-
vation signals to guide its online model adaptation process.
In a similar fashion, Powers et al. [23] showcase a kitchen
robot that learns tasks sequentially using limited demonstra-
tions. The kitchen robot was tasked with picking up bottles,
opening and closing a toaster oven, and adapting to varying
kitchen setups. To help with mitigating CF, the authors de-
scribe the use methods such as replay buffers and regulariza-
tion techniques, as discussed in Chapter 3.1.

(ii) Embodied Virtual Agents
Embodied virtual agents are digital entities operating within
virtual or simulated environments, interacting with users
and/or other virtual elements via graphical interfaces. Un-
like physical agents using sensors and actuators in the real
world, virtual agents exist solely in computer-generated set-
tings. Despite these differences, virtual agents play a role in
the Sim2real (simulation to reality) process. Sim2real lever-
ages virtual environments to train and develop agents for de-
ployment in real-world scenarios, offering advantages in cost,
safety, and scalability. Five papers [36], [34], [49], [33], [50]
discuss CL methods adapted for embodied virtual agents.

Simulated Robotic Task Learning: Say et al. propose
a proof of concept for a practical application of CL by im-
plementing a robotic arm in a simulated environment to au-
tonomously learn and switch between multiple tasks [36].
The model uses a novel task arbitration mechanism based on
Learning Progress (LP), allowing the agent to decide which
task to engage with next and when to transfer knowledge.
This approach enables the robot to learn interleaved and par-
tially, mimicking human developmental learning. The tasks
the robot had to perform involved predicting the effects of
pushing a soccer ball in various environments.

Analogously, Chen et al. [34] recently explored contin-
ual reinforcement learning with a simulated musculoskele-
tal system and redundant robotic arm. Their method uses
recurrent neural networks (RNNs) and shared hyperparam-
eters to facilitate sequential task learning. To prevent CF,
the authors employe a regularization-like method with projec-
tors and Orthogonal Weight Modification (OWM). Projectors
align new learning with previous knowledge, while OWM up-
dates weights without interfering with past learning. Using
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this approach, the robotic arm is able to learn and perform
tasks such as reaching and manipulating objects in different
ranges and gravity environments, without forgetting how to
perform previous actions. In a study by Rusu et al. [49],
progressive networks are employed to transfer learning from
simulation to real-world robotic tasks. The study involves
training simulated robotic arms in the MuJoCo physics simu-
lator and transferring the learned policies to physical robots,
such as the Jaco arm. The agents were tasked with performing
a reacher task, maneuvering towards visual targets in speci-
fied areas. Progressive networks were utilized to expand the
network architecture for each new task while preserving con-
nections to previously learned features.

Simulated Lifelong Navigation: Lifelong navigation has
been explored through virtual embodied agents, as exempli-
fied in the study by Wang et al. [33]. In this study, a vir-
tual agent uses EWC [12] to retain knowledge from previous
navigation tasks. The agent is first trained in a simple envi-
ronment, then progresses to more complex ones, with simu-
lations conducted in V-REP (Virtual Robot Experimentation
Platform). Continuous interaction with the environment in-
volved updating an actor and a critic network (responsible for
determining actions and evaluating their value, respectively),
with EWC adjustments ensuring important weights were pre-
served. Navigational lifelong techniques are also investigated
in drones. Brown et al. [50] explore Uncertainty Modu-
lated Learning (UML) [54] for lifelong learning in drones.
UML measures uncertainty, enabling adaptive behavior and
self-supervised learning. In AirSim simulations, drone agents
performed object recognition tasks, adapting based on uncer-
tainty signals to improve navigation and performance.

4 Discussion & Concluding Remarks
Discussion: In this study, we explored the application of the
continual learning cognitive framework in embodied agents
by addressing three key research sub-questions. These sub-
questions provided a broad overview of the approaches for
CL, the methods of performance evaluation of CL systems,
and practical examples of CL in real-world scenarios.

Firstly, Q1 results highlighted that the methods and means
for achieving CL in autonomous agents vary significantly.
The three main approaches — replay-based, regularization-
based, and parameter isolation methods — each offer dis-
tinct advantages and disadvantages, and their effectiveness is
context-dependant. Replay-based methods, inspired by the
human hippocampal system, utilize stored or generated sam-
ples from past tasks to mitigate forgetting. Regularization-
based methods, which draw from synaptic plasticity princi-
ples, impose constraints on network parameters to retain old
knowledge. Parameter isolation methods, based on the mod-
ularity of the brain, assign distinct parameter subsets to dif-
ferent tasks, either through dynamic or fixed architectures.

Moving forward, Q2 explored evaluating CL methods, cru-
cial for assessing their usability and efficacy. Evaluation cri-
teria vary across incremental learning, supervised learning,
reinforcement learning, and online adaptation settings. Of
particular interest in embodied agent contexts is the online
adaptation setting, where agents continuously adapt to real-
time changes, typical for autonomous systems. Each setting

employs specific metrics to gauge various aspects such as
accuracy, forgetting rates, and transfer capability, which are
among the most commonly highlighted in the findings.

Finally, Q3 findings showcased practical applications for
both physical and virtual embodied agents. The current field
of physical embodied agents mainly consists of navigation
and object classification tasks, being limited to simple sce-
narios such as indoor navigation, and various household ob-
ject classification settings. However, more complex agents
in the form of robotic limbs have been shown to employ CL
in order to adapt to dynamic environments in real time. De-
spite this, with only a limited number of studies to account
for such practical applications of physical agents, there re-
mains ample room for further development and exploration.
Embodied virtual agents share a similar trajectory, with lit-
erature largely being focused on small scale virtual naviga-
tion scenarios and simulated robotic tasks. Such scenarios do
however hold significant potential for Sim2real experiments,
where insights gained from simulated environments can be
tested and refined before being applied in real-world settings.

One crucial remark that we would like to acknowledge is
the apparent discrepancy between the evaluation and the prac-
tical applications for CL in embodied agents. While CL eval-
uation methods primarily focus on dataset benchmarks (see
Appendix B), the practical applications in embodied agents
often involve more complex and dynamic environments that
pose unique challenges not fully captured by traditional met-
rics. For instance, evaluations rely heavily on image classifi-
cation datasets like MNIST, CIFAR, and ImageNet, which are
essential and convenient for benchmarking, but do not capture
the full spectrum of real-world scenarios faced by embodied
agents. In contrast, embodied agents operate in unpredictable
environments where factors such as sensor noise, hardware
limitations and uncertainty play significant roles. This obser-
vation is also echoed by Lesort et al., who mention that while
CL is inherently born for robotics, ”most of CL approaches
are not robotics related and rather focus on experiments on
image processing or simulated environments” [43, p. 20].

While part of the studies make an effort to demonstrate the
potential uses for CL in practical scenarios, these are fewer in
number compared to those that primarily focus on standard-
ized dataset evaluation. This poses an issue as it limits our
understanding of how CL algorithms perform in real-world
conditions that embodied agents must navigate, potentially
hindering the development of robust, adaptable systems capa-
ble of handling the complexities of real-world environments.

Conclusion: While CL shows great potential for creating
adaptive and intelligent embodied agents, significant gaps re-
main between theoretical evaluations and practical applica-
tions. Current studies predominantly rely on standardized
datasets, failing to capture the complexities of the real world.
Future research should prioritize developing and testing CL
algorithms in dynamic and unpredictable settings to ensure
robustness and adaptability. Bridging this gap is essential
for advancing the practical deployment of CL in embodied
agents, ultimately leading to more capable and resilient au-
tonomous systems. Nonetheless, the field is rapidly evolving,
with promising advancements already demonstrating the po-
tential for transformative applications in practical scenarios.
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5 Responsible Research
To ensure that this paper adheres to commonly adopted stan-
dards of academic integrity, we have decided to follow the
principles recommended by the Netherlands Code of Con-
duct for Research Integrity [55]. The proposed principles are
honesty, scrupulousness transparency, independence and re-
sponsibility. In the following sections, we will present the
steps and measures taken to adhere to these principles.

5.1 Reproduciblity & Transparency
To ensure the reproducibility and transparency of this re-
search, we followed the PRISMA reporting guideline for sys-
tematic reviews. All methods for gathering and selecting the
papers were detailed in Chapter 2. Moreover, a diagram was
provided to illustrate the exact amount of papers included
at each step during the literature search process. The exact
query and specific search parameters and modifications were
additionally provided. All the papers utilized in the study
were cited and can be found in the References section. All the
findings were presented objectively within the Results section
of the paper, and no data that could potentially affect or skew
the results was withheld during this process. Furthermore,
our use of large language models (LLM’s) is made explicit in
Appendix C in order to account for how these models were
employed throughout the study and how they influenced the
research. This was done in an effort to adhere to the principle
of honesty.

We would also like to acknowledge and address our uti-
lization of Google Scholar as a search platform for literature
identification. The use of articles identified through Google
Scholar has been restricted to supporting or background in-
formation for Sections 3.1 and Chapter 1. This was done
in order to reduce confirmation bias, which represents a ten-
dency to seek and favor information that confirms one’s pre-
existing beliefs or hypotheses. Confirmation bias was addi-
tionally prevented by limiting the results to only the papers
identified through either the queried databases and citation
chaining. Scrupulousness was achieved by carefully evaluat-
ing papers at each step during the process. Stringent inclu-
sion/exclusion criteria were utilized, and papers were filtered
based on their relevancy to the topic. Each paper selected for
inclusion in the final study underwent analysis in full-text for-
mat, and was subjected to multiple reviews and examinations
when conducting the information extraction.

Furthermore, this study achieved independence, meaning
that the research was conducted without undue influence or
bias resulting from personal motives. Our affiliation with TU
Delft University implies a commitment to scholarly standards
and practices. As a student, the author conducted the re-
search as part of the CSE3000 Research Project course. Thus
the research was performed within an educational framework,
where the primary goal is learning and knowledge dissemina-
tion rather than serving any personal agenda or interest.

5.2 Limitations
Several limitations were encountered during the research.
Firstly, the study was conducted over a period of approx-
imately 9 weeks, which represents a relatively short time

frame for conducting a systematic literature review. As a con-
sequence, the author had to take certain measures to ensure
the feasibility, integrity and validity of the work. Firstly, the
papers were strictly filtered based on hard inclusion/exclusion
criteria to ensure that a manageable amount of papers would
be evaluated in the end, with the possibility of maintaining a
balanced workload. Moreover, studies were limited to only
the English language to align with the author’s proficiency
and ensure accurate interpretation and analysis. These mea-
sures do impose the risk some relevant studies may have been
inadvertently excluded from this review.

Secondly, the author of this study does not possess exten-
sive expertise in the field of continual learning and embod-
ied agents. As a third-year bachelor student pursuing stud-
ies in Computer Science and Engineering (CSE), the author’s
knowledge and experience are still developing, which may
have influenced the depth and breadth of the review.

Thirdly, due to time constraints and resource limitations,
the search was confined to a specific set of databases relevant
to the study, and did not include other potentially relevant
sources such as grey literature or unpublished studies. This
narrow scope may have resulted in the omission of certain
information or alternative perspectives on the topic.

Lastly, the methodologies/proposed frameworks of certain
papers were not detailed extensively in this paper due to word
limit constraints. For a comprehensive understanding, readers
are encouraged to refer to the following papers: [22], [24],
[25], [1], [36], [26]. These papers were included for the sake
of reproducibility and to ensure a robust foundation for future
investigations.
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A Evaluation Metrics for Continual Learning

Table 3: Metrics, definitions, and sources for evaluation of CL systems

Metric Definition Source
Accuracy &
Variations

Degree of correctness of the model’s predictions compared to the ground truth
labels. Commonly measured as the proportion of correct predictions made by
the model on the test partition of each dataset.

[46], [17], [18], [39],
[19], [21], [24], [16],
[20], [12], [31], [32],
[11], [37], [38], [41],
[10], [48]

Forgetting The extent to which learning new tasks negatively impacts performance on
previously learned tasks.

[21], [23], [17], [16],
[19], [20], [12], [31],
[10], [25]

Transfer The model’s ability to apply learned knowledge from one task to another.
Can either be Forward Transfer (FWT) - measurement in performance on fu-
ture tasks after knowledge learned from previous tasks, or Backward Transfer
(BWT) - measurement in performance on previously learned tasks after learn-
ing new tasks.

[23], [17], [40], [41]

Generalization The ability of a model to perform well on unseen data. [46]

Efficiency The computational resources and time required by the model to learn and per-
form tasks.

[38]

Capacity The model’s ability to accommodate new information without significant
degradation of performance on previous tasks.

[38]

Performance Change
Over Time

The variation in model performance as it learns new tasks over time. [38]

Model Size The memory footprint of the model, typically in terms of the number of param-
eters.

[39], [42]

Classification Error The proportion of incorrect predictions made by the model. [41]

Training Time The duration taken by the model to train on the dataset(s). [41]

Effect Prediction Er-
ror (Mean Absolute
Error, MAE)

The average magnitude of errors in predictions, without considering their di-
rection.

[36]

Normalized Mean
Reward

The average reward normalized over a set of tasks or episodes, reflecting over-
all task performance.

[25]

Traversal Time The average time taken for navigation from start to goal. [47]

Recovery Behaviors The number of instances where the robot engages in actions to recover from
navigation errors.

[47]

Collisions The number of times the robot impacts obstacles during navigation. [47]

Learning Efficiency The speed and stability with which the system learns new environments while
retaining knowledge of previous ones.

[47]
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B Distribution of evaluation methods

Figure 3: Distribution of evaluation methods used in CL research. Studies that include reinforcement learning evaluation: [40], [12], [41].
Studies that include practical adaptation/real world adaptation: [24], [22], [49], [23], [34], [50], [47], [51], [25], [52], [21], [48], [36], [33].
Studies that include dataset evaluation: [46], [17], [19], [12], [31], [39], [41], [10], [21], [20], [18], [38], [32], [42], [24], [16], [11], [37]
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C Use of Large Language Models
This research mainly utilized LLM’s (Large Language Models) as a means of synonym identification, word completion and
word removal. We used OpenAI’s GPT-3.5 5 model for this purpose. We utilized several prompts that follow a similar structure,
examples of which are provided below in Figures 4, 5, 6, 7, 8, and 9.

1. Synonym prompts

Replace the word ”following” so that there is less repetition: ”In the following section, we will analyze the methods available
for CL. Following this, in section 2.2, we will provide an overview of the ...”

Figure 4: Example of prompt for finding an appropriate word in a given sentence

Find a synonym for ”experiences” : ”The hippocampal system records experiences as they occur throughout the day and
subsequently replays these stored memories back to the neocortex overnight”

Figure 5: Example of prompt for finding synonyms for a certain word in a paragraph to avoid repetition

2. Word completion prompts

Please find a word for in this sentence: ”Lorem ipsum dolor, consectetur adipiscing...”

Figure 6: Example of prompt for finding an appropriate word in a given sentence

Find words for in this sentence: ”Lorem dolor , consectetur elit...”

Figure 7: Example of prompt for finding an appropriate word in a given sentence

3. Word removal prompts

”While generative replay addresses this issue, it may introduce unnecessary complexity and the risk of generating unrealistic
samples.”
Are there unnecessary words that can be removed?

Figure 8: Example of prompt for listing irrelevant/filler words in a given sentence

”While generative replay addresses this issue, it may introduce unnecessary complexity and the risk of generating unrealistic
samples.”
Remove filler words and please list the removed words.

Figure 9: Example of prompt for removing irrelevant/filler words in a given sentence

5For more information about the GPT-3.5 model, visit https://www.openai.com
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