
TECHNISCHE UNIVERSITEIT DELFT

MASTER OF SCIENCE THESIS IN COMPUTER SCIENCE

Constraint Propagation in
Program Synthesis

Ć

Bart SWINKELS
Supervisors:
Dr. Sebastijan DUMAN ČI Tilman
HINNERICHS

21st June 2024

Constraint Propagation in Program Synthesis

Master’s Thesis in Computer Science

Algorithmics group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Bart Swinkels

21st June 2024

Author
Bart Swinkels

Title
Constraint Propagation in Program Synthesis

MSc presentation
4th July 2024

Graduation Committee
Dr. E. Demirović (chair) Delft University of Technology
Dr. S. Dumančić Delft University of Technology
Dr. C. Poulsen Delft University of Technology
Dr. S. Verwer Delft University of Technology

Abstract

Program synthesis is often seen as the holy grail of computer science. A user only
needs to provide program specifications and a computer will automatically gen-
erate the desired program. This often involves searching for the desired program
in the program space, which is like searching for a needle in a haystack. Luckily,
there is room for improvement here. Many programs in the program space are re-
dundant and should never be considered. To filter out these redundant programs,
we propagated grammar constraints during search using a novel built-in constraint
solver. Only programs that satisfy these constraints will be considered as candid-
ates for synthesis. To measure the effectiveness of the solver, we have enumerated
several program spaces with and without constraints. Although the amount of fil-
tering largely depends on the concrete grammar and constraints, the results show
that constraints can often eliminate 99% of the program space. Accounting for the
overhead of propagation, this comes down to a 50-fold improvement in runtime.

iv

Preface

This thesis is the final step in obtaining my Master of Science degree in Computer
Science at Delft University of Technology. After earning my bachelor’s degree in
Mathematics, I realized that what I enjoyed the most were courses related to cod-
ing. I love implementing ideas and bringing them to life through code. To pursue
this passion, I applied for the computer science program and searched for a thesis
project with a large engineering component.

My supervisors, Sebastijan Dumančić and Tilman Hinnerichs, had an open project
in their program synthesis framework Herb.jl. They entrusted me with their
codebase and gave me total freedom to implement my ideas. They also organized
“hackathons”, in which all Herb developers collaborated to work on Herb. These
events were a fun way to learn the framework and meet the other developers (and
eat pizza too!). Working on this framework has been a valuable experience, as this
was the first large project I have ever worked on. Besides helping me with coding,
I would like to thank my supervisors for their feedback, ideas, and patience during
our (sometimes unusually long) meetings.

I also want to take this opportunity to express my gratitude to my friends and
parents for supporting me outside of the thesis. In particular, I want to thank my
roommates for distracting me with games, movies, and most importantly, good
talks. Additionally, I want to thank my friends Sid and Thomas, whom I met
through computer science, for joining me on campus when my motivation was
low. And since with this thesis, I am concluding my time as a student, I would also
like to take this moment to thank my friends from the bachelor’s program, Max
and Fos, for all the good times we had throughout our studies.

I am very grateful to have met you all!

Bart Swinkels

Delft, The Netherlands
21st June 2024

v

vi

Contents

1 Introduction 1

2 Background Knowledge 4
2.1 Program Synthesis . 4

2.1.1 Intent Specification . 4
2.1.2 Program Space . 6
2.1.3 Search . 7

2.2 Constraint Programming . 9
2.2.1 Specification . 9
2.2.2 Solving . 9

3 Related work 12
3.1 Popper . 13
3.2 Sketch . 14
3.3 Neo . 15

4 Problem definition 16
4.1 Search Nodes . 17
4.2 Backtracking . 19
4.3 Grammar Constraints . 20
4.4 First-Order Constraints . 21

5 Methods 22
5.1 Overview . 22
5.2 Data Structures . 24

5.2.1 Uniform Holes . 24
5.2.2 Grammar Constraints and Local Constraints 25
5.2.3 States . 25

5.3 Generic Solver . 26
5.3.1 Constraint Propagation 27
5.3.2 Tree manipulations . 28
5.3.3 State Management . 28

5.4 Uniform Solver . 29
5.4.1 Depth-first search . 30

vii

5.4.2 State Management . 31
5.5 Top-Down Iterator . 32
5.6 Constraints . 34

5.6.1 Forbidden . 36
5.6.2 Ordered . 37
5.6.3 Contains and Unique . 40
5.6.4 Contains Sub-tree . 40
5.6.5 Forbidden Sequence . 42

6 Evaluation 45
6.1 Setup . 45

6.1.1 Robot Grammar . 45
6.1.2 Arithmetic Grammar . 47
6.1.3 Symbolic Grammar . 48
6.1.4 List Grammar . 49

6.2 Reducing the Program Space . 50
6.3 First-order Constraints . 53
6.4 Ablation Study . 54
6.5 Bottlenecks . 57

7 Conclusions and Future Work 59
7.1 Conclusions . 59
7.2 Future Work . 59

7.2.1 Example-based constraint generation 59
7.2.2 More First-Order Constraints 60
7.2.3 Full DFS Solver . 60
7.2.4 Contributions to Herb.jl 61

A Encodings 64
A.1 Logic program system of the robots grammar 64

B Herb Code Snippets 65
B.1 Pattern match . 65
B.2 Symbolic Grammar Constraints 69

C Exact Results 71
C.1 Robot Grammar . 71
C.2 Arithmetic Grammar . 72
C.3 Symbolic Grammar . 72
C.4 List Grammar . 73

viii

Chapter 1

Introduction

We are living in a technology-driven world, where the demand for software ap-
plications is higher than ever before. However, the ability to program remains a
specialized skill possessed by a limited number of individuals. This creates a gap
between the growing need for software solutions and the available workforce cap-
able of fulfilling these demands. In response to this challenge, program synthesis
emerges as a promising approach to bridge this gap. It allows developers to create
programs without the need to write them manually. A program synthesizer only
needs a description of the intended program behavior and will then automatically
synthesize the desired program.

Compilers have been around for decades and can be seen as the first form of a pro-
gram synthesizer. Expressing programs in modern programming languages allows
developers to quickly construct programs without having to worry about low-level
implementation details. Program synthesis takes this process to the next level by
allowing users to describe intent in non-imperative ways. For example, by provid-
ing specifications, input-output examples, or even natural language [11].

A popular approach to program synthesis is the Programming by Example (PBE)
paradigm [7, 8]. In this approach, the synthesizer aims to find a program that satis-
fies a set of user-provided input-output (IO) examples. The synthesizer also needs
to be provided with a Context Free Grammar (CFG) [1] that holds the syntax of the
target language of the program. Then, programs of a given language are enumer-
ated and tested on the IO examples until one is found that satisfies all the examples.

The main challenge of program synthesis is the enormous amount of possible
programs to consider [8]. Luckily, there is room for improvement here. Many
programs are syntactically correct according to the grammar, but semantically re-
dundant. We can save a lot of time by filtering these redundant programs out of
the enumeration. For this purpose, we will introduce a notion of constraints to
program synthesizers.

1

As a running example, consider a simple environment where a robot can move
around a grid and can grab and drop balls. An IO example is defined as the state of
the environment before and after executing the program, like in Figures 1.1a and
1.1b. The program space consists of all possible paths the robot can take and can
be drastically reduced by imposing constraints on the grammar. For example, a
constraint could ensure the robot never takes detours. Such a constraint will pre-
vent programs like the one depicted in Figure 1.1c from ever being considered.

(a) Input (b) Output (c) Candidate Program

Figure 1.1: Figure (a) and (b) form an IO example for the robot environment.
Figure (c) illustrates a valid, yet semantically redundant, candidate program. The
red parts of the program represent an unnecessary detour.

Other program synthesizers, like POPPER [3], offload the propagation of con-
straints to an external solver. Such synthesizers use an iterative framework where
a generator proposes a candidate program, a tester checks the program against ex-
amples, and the constraint mechanism generates new constraints to guide the search
in the next iterations. In particular, the generation and constraining of programs can
be performed by established constraint solvers, such as Satisfiability (SAT) and
Constraint Programming (CP) solvers [6], by utilizing the well-researched search
mechanisms included in these solvers. Existing solvers, however, were not created
for program synthesis. The encoding of a grammar and semantics of the language
would become very large and complex, making this approach sub-optimal for solv-
ing.

A new program synthesis framework Herb.jl[9], is under development at the
Delft University of Technology. It aims to propagate the constraints of a grammar
within the framework itself, instead of offloading it to an external SAT solver. The
advantage of a native solver inside the synthesizer is that it can (1) exploit the tree-
shaped nature of a grammar and (2) deal with new decision variables during search.

The main contribution of this thesis will be a tailor-made constraint solver for
Herb.jl that leverages well-tested practices used in CP solvers. The related
research question is:

2

Which propagation techniques from the constraint programming paradigm
can be leveraged to propagate constraints in program synthesis prob-
lems effectively?

This project serves as a solid baseline for a program synthesis constraint solver that
other developers can easily extend and optimize.

3

Chapter 2

Background Knowledge

In this chapter, we will look more closely at what program synthesis is and how
it can be implemented. Then, we will review constraint programming (CP), a
paradigm for solving combinatorial problems. In the remainder of the thesis, we
will combine these two fields by implementing constrained program synthesis.

2.1 Program Synthesis

Program synthesis is the task of constructing a program in a target language, ac-
cording to a provided description of the program’s desired behavior. [8, 7]. The
main contribution of this thesis is to implement a constraint solver for the program
synthesis framework Herb.jl[9], so we will look at program synthesis through
the scope of this related work. Like many program synthesizers [8], Herb can be
sub-divided into three components (See Figure 2.1):

1. Intent specification. What should the program be able to do?

2. Program space. What kind of programs can syntactically be constructed?

3. Search strategy. How to traverse program space?

In the upcoming three sub-sections, we will go over each of these components in
more detail and use the Robot Environment as a running example.

Example 1 (Robot Environment). States in the robot environment are defined
by an n×n grid, the coordinates of a ball, the coordinates of a robot, and a boolean
to indicate if the robot is currently holding the ball. An IO example defines the state
of the environment before and after the execution of a program. Programs in the
environment can be constructed using the CFG in Figure 2.3.

2.1.1 Intent Specification

To synthesize a program, it is crucial to specify what the target program intends to
do. One way to achieve this is to provide input-output (IO) examples that should

4

Figure 2.1: Programming by Example (PBE). Programs in the program space are
tested against the intended behavior and then a satisfying program is returned.

be satisfied by the target program. This is often referred to as Programming by
Example (PBE).

Programming by Demonstration (PBD) [4] is an extended version of PBE. In this
form of intent specification, IO examples are extended with an arbitrary number of
intermediate states. These intermediate states provide additional information and
can help the synthesizer to find a valid solution earlier and/or break symmetries.
Such an extended IO example is called a trace. Figure 2.2 depicts an example of a
trace in the robot environment. As of now, PBD and traces are not yet supported in
Herb, but it would be a great extension.

(a) Input (b) IS 1 (c) IS 2 (d) IS 3 (e) IS 4 (f) Output

Figure 2.2: A trace, an IO example extended with intermediate states (IS).

5

2.1.2 Program Space

The synthesizer needs to generate a program in a target language. To realize this,
languages are described using a Context Free Grammar (CFG) [1]. A CFG consists
of the following 4 elements:

• Terminal symbols. A terminal symbol is a piece of code that is interpretable
in the target language. (e.g. state = initialState; or move- Right(state);).
Such pieces of code may also contain non-terminal symbols that need to be
recursively expanded into terminal symbols. For example if(C) T else T
expects that symbols C, T and T will be replaced with some terminal sym-
bols.

• Non-terminal symbols. Non-terminal symbols represent a hole in a program
that could be filled using any of the corresponding production rules. In the
grammar depicted in Figure 2.3, the non-terminal T represents any tail of
code and can be expanded using either a return statement (rule 2) or an op-
erator (rule 3).

• Production rules. A production rule transforms a non-terminal symbol into a
terminal symbol, along with an ordered sequence of non-terminal symbols as
children. In Figure 2.3, rule 3 transforms the non-terminal T into a statement
terminal with two non-terminal children O and T . Note that there can exist
multiple production rules that transform the same non-terminal symbol. In
section 2.1.3, we will see how a Herb decides which production rule to use.

• Starting symbol. The non-terminal symbol that is used to create any valid
program in the target language.

All the programs that can be constructed using a CFG form the program space. The
main issue of program synthesis is that program spaces are exponentially large.
Searching this space for a program is therefore a very time-consuming and often
practically impossible task.

Fortunately, it is possible to reduce the size of the program space by imposing
constraints on the grammar, making it a Context Sensitive Grammar (CSG). We
wish to add constraints to the grammar that reduce the program space, without re-
moving the target program. Most of these constraints aim to break symmetries in
the grammar. That is, remove equivalent alternatives of partial programs from the
program space. For example, consider the following 3 programs:

1. moveLeft(state);
2. moveLeft(state); moveRight(state); moveLeft(state);

3. if(C) moveLeft(state); else moveLeft(state);

They are semantically equivalent programs, but they are all part of the program
space. We are only interested in the shortest variant of these equivalent programs:

6

1 : S := state = initialState; T

2 : T := returnState(state);

3 : T := O; T

4 : O := moveLeft(state)

5 : O := moveRight(state)

6 : O := moveUp(state)

7 : O := moveDown(state)

8 : O := grab(state)

9 : O := drop(state)

10 : O := if(C) T else T

12 : C := atLeft(state)

13 : C := atRight(state)

14 : C := atTop(state)

15 : C := atBottom(state)

16 : C := notAtLeft(state)

17 : C := notAtRight(state)

18 : C := notAtTop(state)

19 : C := notAtBottom(state)

Figure 2.3: Production rules of a CFG for the robot environment. This grammar
contains 4 non-terminal symbols: S for start, T for tail, O for operation and C
for condition. All the other symbols are terminals and are valid syntax for the
interpreter. The starting symbol is S.

moveLeft(state);. Therefore we can impose constraints that forbid the other
patterns from arising anywhere in the program space. This has two advantages:
(1) we reduce the size of the program space and (2) we will find a more concise
program.

Herb can be used to automatically detect symmetries in a grammar [5]. This is done
by first adding a special kind of terminal called a pattern variable to the grammar.
Then, a number of subprograms is generated. These subprograms are compared
by repeatedly assigning different values to pattern variables. Two subprograms are
considered to be part of the same equivalent class if they produce the same output
on all assignments. After grouping the subprograms into equivalence classes, one
representative program will be selected to remain in the program space. For each
of the other programs of the equivalence class, a constraint is generated to prevent
the pattern from arising anywhere in the program space.

2.1.3 Search

Once the intent specification and program space are known, the next step is to find
a program that satisfies the specification. The search component of Herb uses a
top-down enumeration of all the programs (see Algorithm 1). For each candidate
program provided by the enumerator, the evaluator checks if the program satisfies

7

the input-output examples. If it does, it is deemed a solution, otherwise, it is ig-
nored. We will now look into the enumeration of the candidate problems.

Herb starts the enumeration by taking the starting symbol of the grammar as the
root node of the program tree. Nodes corresponding to non-terminal symbols are
called holes. This name indicates that it is not a concrete part of the program yet,
and needs to be expanded using a corresponding production rule. Any program
tree with one or more holes, is called a partial program and needs to be repeatedly
expanded until there are no holes left, making it a complete program. When ex-
panding a partial tree, a hole is selected using a heuristic. Then the hole is expanded
with a valid production rule from the grammar. When a hole has n valid produc-
tion rules, n copies of the program tree will be made, and for each of the copies,
the hole will be filled using a different production rule, making it a concrete rule
node. Then, the copies are stored in a priority queue of programs that need to be
considered in future iterations. A simple, yet effective, priority function could be
the size of the program, as we ideally wish to find smaller programs before larger
programs. This is called a breadth-first search (BFS).

Algorithm 1 Program Enumerator: Enumerates program trees by iteratively filling
holes with rule nodes.

root← RuleNode(starting symbol))
pq← PriorityQueue(root)
while len(pq) > 0 and !stopping criteria met() do

tree← pq.pop()
if tree.complete then

yield tree
end if
hole← hole heuristic(tree)
rules← derivation heuristic(hole.domain)
for rule ∈ rules do

new tree = fill hole(tree, hole, rule)
propagate constraints(new tree)
pq.enqueue(new tree, priority function(new tree))

end for
end while

As mentioned before, a grammar can have a set of constraints attached to it. These
constraints are propagated whenever a new node is added to a tree, as can be seen in
Algorithm 1. Propagators can check if a tree is consistent with the constraints and
potentially remove impossible rules from the domains of holes. In the upcoming
section (Section 2.2), we will review constraint propagation in constraint program-
ming. Then, we will apply these techniques to implement constraint propagation
in program synthesis in Chapters 4 and 5.

8

2.2 Constraint Programming

Constraint Programming (CP) is the practice of formulating and solving Constraint
Satisfaction Problems (CSP) [16, 10, 12]. The objective of a CSP is to find an
assignment for a given set of variables that satisfy a given set of constraints. Con-
straint programming has a wide amount of applications such as timetabling, re-
source allocation [13] and vehicle routing [14]. In the upcoming sections, we will
review constraint programming techniques, so we can re-apply them for the pur-
pose of program synthesis.

2.2.1 Specification

A Constraint Satisfaction Problem consists of three components: a set of decision
variables X , their respective initial domains D, and any number of constraints C.

A decision variable x ∈ X is a variable that can take values in its correspond-
ing domain D(x) ∈ D. Whenever there is only 1 value a variable can take, that is
|D(x)| = 1, we say a variable is fixed. A CSP is considered solved if all variables
are fixed.

A constraint c ∈ C can restrict the initial domains of variables. For example,
we may include a constraint c = (x > y) to enforce that x must always be larger
than y.

X ={x, y, z}
D ={D(x), D(y), D(z)} = {{1, 5, 7}, {2, 3, 5}, {−1, 1, 3, 5}}
C ={x ≥ y, z = x− y}

(2.1)

Equation 2.1 is an example of a CSP formulation with 3 decision variables and
2 constraints. Since this is a small example, we can solve it upon inspection and
find a solution: (x, y, z) = (5, 2, 3). Note that in this case, the solution is not
unique and one may also find the second solution: (x, y, z) = (7, 2, 5). Both are
equally valid. If the user wishes to eliminate a solution, the problem should be
more strictly constrained. Alternatively, the problem could also be extended to an
optimization problem by adding a objective function f(X) [10]. In that case, only
the solution that, WLOG, minimizes the objective function will be returned.

2.2.2 Solving

Solving a given CSP is split up into two main components:

1. Propagation. Check for constraint violations and filter out impossible values
from domains.

9

2. Branching. When no filtering can be done, split the problem into multiple
sub-problems with smaller domains such that any solution of the original
problem can be found in the union of the sub-problems.

Propagation

We will now review how constraint propagation is implemented in Mini-CP [10],
an uncluttered CP solver for education purposes. Propagation is responsible for re-
moving impossible values from domains according to the constraints. This process
will continue until the constraints are unable to further reduce any of the domains.
This is called a fixed point: continuing propagation has no effect. The fix-point al-
gorithm 2 propagates a queue of scheduled constraints. 1. The queue only contains
constraints that can possibly make any deductions. That is, we skip constraints that
are known to be currently unable to shrink any domains. Note that the queue may
increase in size during a propagate method, as some constraints that were unable
to make deductions, may be able to do so after another propagator made some de-
ductions before it.

Algorithm 2 Fix-point
Q← PriorityQueue(constraints)
while len(Q) > 0 do

propagate(Q.dequeue())
end while

Constraints have post and propagation methods.

Post. The post method is executed whenever the constraint is first imposed upon
the problem. This is where the initial propagation of a constraint takes place and
where constraints usually add themselves to notify lists of their corresponding vari-
ables. This is implemented using the observer design pattern. For example, the
”x ≥ y” constraint c will add itself to the onBoundChange notify list of both
the x and y variables. Then, whenever the bounds of the domain of either x or y
change, c will be scheduled for propagation.

Propagate. The propagate method tries to shrink the domains of its related de-
cision variables using a constraint-specific filtering algorithm. For example, the
”x ≥ y” constraint may update the domains of x and y like so:
D(x) := {x ≥ max(D(y)) | x ∈ D(x)}.
D(y) := {y < min(D(x)) | x ∈ D(y)}.
This update can trigger the scheduling of other constraints. For example, if the

1Ordering the constraints by impact using a heuristic can significantly boost the performance of
a solver [16]

10

bounds of D(x) changed, constraints in the onBoundChange notify list of x will
be added to the queue.

Branching

After executing the fix-point algorithm, we may not have found a solution yet.
That is, there exists some variable x ∈ X with |D(x)| ≥ 2, and none of the con-
straint propagators can further reduce the size domain. In that case, we subdivide
the problem into two or more sub-problems such that all solutions of the original
problem can be found in the union of the solutions of the sub-problems. In other
words, no solution is lost by splitting up the problem.

Figure 2.4 demonstrates how a solver may find a solution for the CSP from Equa-
tion 2.1. In state 2.4a, the fix-point algorithm is executed with the initial con-
straints. x ≥ y allows the removal of 1 from the domain of x. No further de-
ductions can be made, so the problem must be divided into sub-problems. In this
case, the simple first-fail branching scheme is used [10]. For the left branch, a new
constraint is posted that fixes the value of the variable with the smallest domain.
For the right branch, the negated constraint is posted, assuring that no solution is
lost. In Figure 2.4b, the solver decides to search the left branch first and adds the
corresponding branching constraint to the list of constraints. This triggers the fix-
point algorithm and after execution, a solution has been found (Figure 2.4c). Now
the solver can backtrack to the root node to potentially discover more solutions.

(a) Fix-point in the root. (b) Branching. (c) Fix-point in the left child.

Figure 2.4: Solving the CSP from Equation 2.1 using a first-fail branching scheme.

After repeated application of the branching scheme, a tree structure appears. The
nodes of this search tree are called states. Exploring new states in the search tree
is typically done using a depth-first traversal. This search strategy is very memory
efficient since only a single state needs to be maintained at a time [10]. Whenever
a state is deemed solved or infeasible, we can backtrack through the parent states
and impose an alternative branching constraint. Backtracking is done by keeping
track of all changes between a parent state and its child and then reverting those
changes.

11

Chapter 3

Related work

Surprisingly, there is no related work that combines program synthesis with a built-
in constraint solver. However, there are program synthesizers that deduce con-
straints based on IO examples to aid the search. In this chapter, we will explore
three of such systems.

1. Popper [3], an Inductive Logic Programming (ILP) based program synthes-
izer that leverages positive and negative examples to more general constraints.

2. Sketch [15], a SAT-based program synthesizer that generates constraints dur-
ing search using Counter-Example Guided Inductive Synthesis (CEGIS).

3. Neo [6], a SMT-based program synthesizer that generates constraints during
search using Conflict-Driven Clause Learning (CDCL).

Table 3.1 provides a quick overview of the differences between Popper, Sketch,
Neo and Herb with respect to the type of constraints of each synthesizer. All re-
lated works offload constraint solving to external SAT or SMT solvers. This thesis
presents a native constraint solver for Herb that can directly propagate constraints
within the framework itself, without encoding the problem into SAT formulas.

Popper Sketch Neo Herb
Learns constraints from failures yes yes yes no
Supports an initial partial program no yes yes yes
Language bias (arity constraints) yes yes yes yes
Can fill holes with any valid expression yes no yes yes
Context-sensitive grammar constraints no no yes yes
Has a native constraint solver no no no yes

Table 3.1: Comparing constraints in four program synthesizers.

12

3.1 Popper

Popper [3] is a program synthesizer for logic programs [2]. Like many synthes-
izers, popper can be sub-divided into three components:

1. The program intent is given in the form of logical predicates that should
either be true or false. These predicates are called positive and negative
examples respectively.

2. The program space is defined using Background Knowledge (BK) and a syn-
tactic bias.

3. The search is implemented as an inductive loop of generation, testing, and
constraining 3.1.

In the test phase, hypotheses might be rejected by one of the examples. These fail-
ures will then be converted to a set of constraints that prevent similar hypotheses
from being generated in future iterations. Then, in the next generate phase, the
newly discovered constraints are passed to a SAT solver to generate new hypo-
theses.

Figure 3.1: The generate, test, and constrain loop of Popper [3].

While Popper is great at synthesizing logic programs, it is much harder to effect-
ively synthesize other kinds of programs, such as programs defined by a grammar.
In that case, the grammar first needs to be encoded as a logic program system. To
compare Herb and Popper, we will consider a logic program system encoding (See
Appendix A.1) of the robot grammar from Figure 2.3. Popper can synthesize the
hard-coded path depicted in Figure 3.2.

To synthesize the path in Figure 3.2, Popper was given the target positive example,
along with a set of negative examples to prevent other paths and guide the search.
In addition to the 2 negative examples from Figure 3.2a, Popper was given 100

13

1

2 pos(f(w(2,5),w(5,1))).
3 neg(f(w(1,5),w(4,1))).
4 neg(f(w(2,5),w(2,4))).
5

6 f(V0,V1):-
7 move_right(V0,V2),
8 move_right(V2,V3),
9 move_down(V3,V4),

10 move_down(V4,V5),
11 move_down(V5,V6),
12 move_down(V6,V7),
13 move_right(V7,V1).
14

(a) Positive and negative examples and a
logic program solution. (b) Visual representation of the solution.

Figure 3.2: Popper’s solution for a problem in the robot environment. The target
path is from (2, 5) to (5, 1).

more negative examples. During the search, Popper created 623 constraints that
prevent these negative examples from arising. However, these constraints only for-
bid particular hard-coded paths and do not exploit any higher-level semantics of the
robot grammar. In fact, these constraints actually slow down the search procedure,
as they need to be converted to SAT clauses without giving any strong inference.
In Chapter 6, we will see how Herb’s grammar constraints can filter out redundant
problems for this environment more efficiently.

3.2 Sketch

Program synthesis by sketching [15] allows users to input a partial program with
holes, called a sketch, to guide the synthesis. An example of such a sketch for the
running robot example can be found in Figure 3.3. Sketches drastically reduce the
program space, as candidate programs are restricted to derive from the provided
sketch. Herb also supports synthesizing from partial programs, as we will see in
Chapter 5.

Just like Popper, program synthesis by sketching is guided by failing examples.
The core algorithm used in this search is called Counterexample Guided Inductive
Synthesis (CEGIS) [8]. CEGIS uses a validation procedure that can automatically
generate edge cases to test a set of candidate programs. Failing tests can be fur-
ther reduced to a minimum observation set that captures the edge cases with the
smallest possible inputs. This observation set is then converted to SAT clauses to
constrain the program space of the next iteration of candidate programs. This cycle
continues until the validation procedure is unable to generate a failing example.

14

1 void main(RobotState state){
2 repeat (??) {
3 state = {| move_down | move_up |}(state);
4 }
5 repeat (??) {
6 state = {| move_left | move_right |}(state);
7 }
8 return state;
9 }

10

Figure 3.3: A sketch for a simple hard-coded path for the robot environment. The
synthesizer will replace the questions marks with integer values and the regular
expressions enclosed in brackets with one of the provided choices.

The counter examples and the provided sketch are the only types of constraints in
program synthesis by sketching. It is not possible to constrain the grammar itself
nor to fill holes with more complicated expressions other than just integers or the
provided regular expression. This means that the synthesizer is highly dependent
on the sketch provided by the user.

3.3 Neo

Neo [6] is a program synthesizer with a setup similar to Herb. Candidate pro-
gram trees are generated according to a provided grammar and should satisfy the
provided IO examples. Additionally, each production rule can be provided with
semantic specifications to restrict the context in which that rule can be used. These
specifications are passed to and propagated by an external SMT solver. Unfortu-
nately, this requires the specifications to be encoded as grounded constraints. In
Section 5.6, we will see that constraints presented in this thesis support first-order
logic and can be used to forbid a larger class of programs.

Similar to Popper and Sketch, Neo also learns from failed IO examples by identi-
fying and generalizing the root cause of the conflict. These constraints are encoded
as SMT formulas and are used by the external solver to find a valid assignment of
nodes to production rules.

15

Chapter 4

Problem definition

In this thesis, we are going to extend program enumeration with constraints. Recall
from Chapter 2 that program enumeration is always with respect to a grammar.
This chapter demonstrates the challenges of constrained program enumeration with
the simple arithmetic grammar, defined in Example 2.

Example 2 (Arithmetic Grammar). A simple integer arithmetic grammar with
5 production rules (see Figure 4.1a). Programs are Abstract Syntax Trees (AST)
and represent a simple unary function that takes an input value x. Figure 4.1b is an
example of an AST derived from the grammar.

1 : Int := 1

2 : Int := x

3 : Int := − Int

4 : Int := Int + Int

5 : Int := Int× Int

(a) A simple arithmetic grammar

×

+

1 1

×

×

x x

x

(b) An AST representing 2x3

Figure 4.1: A simple arithmetic grammar and an example of a complete program.

A CFG can be extended with constraints, making it a Context Sensitive Gram-
mar (CSG). These constraints can eliminate some of the programs a grammar can
produce by forbidding specific substructures in the program. In Section 4.3, we
will go over some concrete examples of constraints.

Constrained program enumeration in program synthesis can almost be formulated
as a CSP. The decision variables in program synthesis are called holes. Holes are
nodes in a partial program tree that do not have a fixed value, but a domain of val-

16

ues. The domain of a hole contains the possible production rules that a hole can
take. Whenever the domain of a hole contains exactly 1 value, a hole is considered
filled. Filled holes will be referred to as rule nodes.

×

{1, x, −, +, ×} +

{1, x, −, +, ×} x

(a) An AST for ??× (?? + x)

×

{1, x, −, +, ×} +

×

{1, x, −, +, ×} {1, x, −, +, ×}

x

(b) An AST for ??× ((??×??) + x)

Figure 4.2: Two partial program trees. Holes in the tree are represented by a red
box. The right tree (b) can be derived from the left tree (a) by filling in the bottom
hole with an ”×”. Note that the derived tree contains more decision variables than
the original tree.

The major difference with a CSP is that new decision variables can appear dur-
ing search. Figure 4.2 demonstrates how filling a hole adds two new holes to the
set of decision variables. In a CSP, the amount of decision variables must be fixed
before solving. This is why program enumeration cannot be formulated as a CSP
and why we are developing a new constraint solver.

4.1 Search Nodes

Just like the search procedure in CP, constrained program enumeration consists
of two components: (1) propagation and (2) branching. First, the constraints are
propagated until no further deductions can be made. Then, the remaining partial
program is split up into multiple smaller programs1. By repeatedly branching pro-
grams into smaller programs, a search tree2 is constructed.

The leaves of a search tree correspond to all possible complete programs that de-
rive from the grammar3. It is possible to check each complete program and discard
any that do not satisfy the constraints. However, it would be better to discard any

1With smaller, we mean that the number of remaining solutions is less than or equal to the number
of solutions deriving from the original partial program. Note that the smaller program might be larger
in terms of rule nodes/holes.

2It is important to differentiate between a search tree and a program tree. The nodes of a program
tree are rule nodes and holes, while the nodes of a search tree are program trees.

3In most grammars, this search tree grows infinitely larger. So we usually prune the search tree
by setting a maximum program depth and/or size.

17

partial program that do not satisfy the constraints. By propagating constraints in
the inner search nodes, we can prevent entire branches of the search tree from ever
existing. This has the potential to exponentially reduce the number of future search
nodes to consider (See Figure 4.3).

Figure 4.3: Constraint propagation spotted an inconsistency in any inner search
node. This prevented an entire branch of the search tree from ever existing.

The number of nodes in the search tree is a good measure of the inference strength
of constraint propagation. This is why this thesis aims to reduce the number of
search nodes. The related research question is:

How can the number of nodes in the search tree be reduced?

It is clear that constraint propagation is most effective when done as high as pos-
sible in the search tree. This means that we should use a branching scheme that
allows constraints to make deductions as early as possible.

The fact that new holes can appear during search can hinder constraints in making
any deductions. For example, consider the Contains(x) constraint. This constraint
enforces that an x should appear somewhere in the program tree. If there is only
one hole left with an x and no x is in the program tree yet, this one can filled with
an x. Unfortunately, new holes can appear during search, so this constraint typ-
ically has to stay dormant for a very long time before it can make any deduction.
Figure 4.4a illustrates a partial program where no deductions can be made because
the structure of the tree is unknown yet. Even though there is only a single hole
with an x, the constraint cannot make any deductions. This is because new holes
with an x could appear underneath the hole with non-terminal rules + and×. Only
much later in the search (Figure 4.4b), a deduction can be made.

Just like the ”contains” constraint, many constraints can only make deductions
if the structure of the program tree is known. This is why we should consider a
branching scheme that fixes the shape of the program tree as early as possible.

18

×

+

1 {1, x}

{+, ×}

(a) No deduction can be made at this point.

×

+

1 {1, x}

+

1 1

(b) The x can be fixed.

Figure 4.4: Two partial programs under the ”Contains(x)” constraint. In scenario
(a) no deductions can be made as the x can appear in the left hole or underneath
the right hole. In scenario (b), the hole with the x can be fixed as this is the only
remaining place where an x can appear.

4.2 Backtracking

Existing CP solvers can be very memory efficient, as the structure of the problem
is known before the search. This means that traversing the search tree can be im-
plemented in a depth-first manner with backtracking.

· · ·

· · · · · ·

· · ·

· · · · · ·

#1 #3 #2 #4

Figure 4.5: A search tree for the arithmetic grammar. The leaves correspond to
candidate programs and should be considered in increasing order of program size.

19

In program synthesis, however, a depth-first search may never halt, as filling a
hole can cause the creation of more holes. Furthermore, we have a natural bias
towards the smallest satisfying program, so we want to consider candidate pro-
grams in increasing order of size. This means we cannot traverse the search tree in
a depth-first manner (see Figure 4.5). Instead, we have to maintain multiple par-
tial programs and switch back and forth. One of the challenges of this thesis is to
switch between these different tree shapes in a memory-efficient manner.

How to use memory-efficient backtracking techniques while still con-
sidering candidate programs in increasing order of size?

4.3 Grammar Constraints

In CP, constraints are defined with respect to a known set of decision variables.
But in program synthesis, constraints are defined with respect to the grammar and
not with respect to specific hole instances. Consider the partial program tree il-
lustrated in Figure 4.6. Suppose we are propagating a constraint that forbids the
sub-expression 1 × x. A tree manipulation has just occurred: a hole on the bot-
tom left has just been filled with the value 1. This manipulation should trigger
constraint propagation. The constraint should react to the tree manipulation and
propagate locally around the location where the tree manipulation occurred.

×

+

×

1 {1, x, −, +, ×}

x

+

{1, x, −, +, ×} {1, x, −, +, ×}

Figure 4.6: A partial program tree with a forbidden sub-tree constraint: 1 × x. A
hole left has just been filled with a ’1’. A propagator for this constraint should
automatically detect that ’x’ can be removed from the bottom hole.

When a tree manipulation occurs, it would be very inefficient to propagate the
forbidden constraint on the entire tree. Instead, the constraint should only be con-
sidered on local parts of the tree that are potentially affected. We only want to
propagate constraints when needed and where needed. This means that they should
somehow relate to actual hole instances and react to tree manipulations accord-
ingly. The question we aim to answer is:

How can grammar constraints be propagated efficiently?

20

4.4 First-Order Constraints

Other constrained program synthesizers only make use of grounded constraints. A
grounded constraint is defined for a particular assignment of values. To illustrate
this, let’s consider the forbidden constraint. A forbidden constraint forbids a given
sub-tree from appearing anywhere in the program tree. Suppose we set up two
constraints to forbid two sub-trees: Forbid(1 × x) and Forbid(x × x). These are
called grounded constraints, as they each forbid a particular sub-tree.

To improve the inference strength, we can combine multiple grounded constraints
into a single first-order constraint. A first-order constraint is defined over a set of
values, instead of a particular assignment. In our example, we would can define
a single forbidden constraint over 2 values: Forbid({1, x} × x). The question we
aim to answer is:

How can grounded constraints be combined into first-order constraints?

In Section 5.6, we will define the constraint types and explain how a template tree
can be used to define a whole class of constraints at once.

21

Chapter 5

Methods

This thesis aims to implement a constraint solver for the program synthesis frame-
work Herb.jl. This chapter begins with a general overview of the components
needed to synthesize a program using this framework. The other sections of this
chapter will explain each of the components related to constraint propagation in
more detail. Finally, we will look at some concrete implementations of constraints
in Section 5.6.

5.1 Overview

In program synthesis, a program iterator is responsible for iterating programs un-
til the target program has been found. Different kinds of program iterators exist,
each using a different search strategy. This chapter introduces a generic constraint
solver that shrinks the program space by propagating constraints and is independ-
ent of the search strategy. As an optimization, a uniform solver is introduced to
exploit a depth-first search once the shape of the tree is known.

To illustrate how these two constraint solvers work together, we will consider a top-
down program enumeration as the search strategy. This approach uses the generic
solver to enumerate different program shapes and the uniform solver to enumerate
concrete programs from each shape.

Figure 5.1 presents a high-level overview of the constrained program synthesis
this chapter aims to implement. To synthesize a program, the user has to define
the program space using a grammar, constraints on the grammar, and optionally a
sketch to give the synthesizer a jump start. These inputs are passed to a program
iterator that yields valid candidate programs.

The top-down iterator uses a data structure called uniform holes to shape the form
of the tree (See Section 5.2). Then, the generic solver reacts to changes made to
each tree and propagates the constraints accordingly (See Section 5.3). If a program

22

tree does not violate the constraints, any remaining holes will also be partitioned
into uniform holes using the same procedure.

If a program tree does not contain any non-uniform holes anymore, it is considered
a uniform tree and is sent to a uniform solver (See Section 5.4). This solver enu-
merates candidate programs that derive from the uniform tree and satisfy the con-
straints. Finally, each candidate program is tested against the intent specification
until the target program is found.

Figure 5.1: Overview of constrained program synthesis using a top-down iterator.
Orange boxes represent uniform holes. Red boxes represent non-uniform holes.

23

5.2 Data Structures

To implement the program synthesizer outlined in Figure 5.1, we need to define
the necessary data structures.

5.2.1 Uniform Holes

So far, we have only seen two types of nodes in a program tree: holes and rule
nodes. In this section, we will introduce a third node type: the uniform hole. A
uniform hole has a domain of rules of the same child types. Since the child types
are known, we can already instantiate the children, without knowing the concrete
rule of the parent hole. The reason why we introduce this data structure is find the
shape the program tree as early as possible.

For example, in the arithmetic grammar, rules + and × have the same child types.
Therefore, a hole with a domain consisting of only these two rules can be conver-
ted to a uniform hole. This means we don’t have to wait for the hole to be filled
with either a + or × before we instantiate the children. Instead, we will eagerly
instantiate the two child holes, without knowing the concrete rule of the parent.

· · · · · ·

(a) Without uniform holes.

×

+

1 {1, x}

{+, ×}

1 1

(b) With uniform holes.

Figure 5.2: Two partial programs under the ”Contains(x)” constraint. In the root
state of scenario (a), the hole with the x cannot be fixed, as an x might also appear
underneath the right hole. After branching, the hole with the x needs to be fixed
in multiple partial programs. In scenario (b), the hole with the x can be fixed and
only 1 partial program is needed to represent the class of programs.

24

During search, rules are removed from domains. As soon as the domain of a hole
becomes uniform, that hole will immediately be converted to a uniform hole and
its children will be instantiated. This allows us to fix the structure of tree in a very
early stage of the search and allows propagators to make stronger deductions.

The introduction of uniform holes answers the research question from Section 4.1.
By expanding the tree to its definite structure in an early stage of the search, propag-
ators can make deductions high up in the search tree. Figure 5.2 compares the
propagation of a ”Contains(x)” constraint with and without uniform holes. Without
uniform holes, the hole with the + and × needs to be expanded before the propag-
ator can deduce anything. Uniform holes ensure that deductions can be made high
up in the search tree, instead of making a similar deduction multiple times.

5.2.2 Grammar Constraints and Local Constraints

In Herb, we differentiate between two types of constraints: grammar constraints
and local constraints.

Grammar Constraint. In Section 4.3, we already touched upon the definition
of a grammar constraint. Recall that a grammar constraint is a kind of constraint
that is imposed upon the grammar itself and does not refer to any specific hole
instances. Such constraints are hard to propagate as they apply to all possible loc-
ations in the tree.

Local Constraint. Local constraints are rooted versions of grammar constraints.
Each local constraint holds a path field that points to a location in the tree where
this constraint applies.

In Section 5.3.1, we will see that the generic constraint solver is responsible for
posting and propagating local constraints during search by consulting the gram-
mar constraints. On the other hand, the uniform solver is only concerned with the
propagation of local constraints, as no new holes can appear at that point.

5.2.3 States

The upcoming two sections about constraint solvers will both have a notion of a
state. A state is a node in the search tree. It holds a partial program and any active
local constraints that apply to it.

The generic solver will have many states stored in memory, while the uniform
solver manipulates a single state and uses a backtracking mechanism to explore
other branches of the search tree.

25

5.3 Generic Solver

Just like in Mini-CP [10], we will let a solver object take the central role in the
search procedure and maintain a valid state. The solver is responsible for propagat-
ing constraints, applying tree manipulations, and managing states. In this chapter,
we will define a generic solver that can be used by any program iterator.

Constraint Propagation. The primary task of the solver is to maintain a valid
state. After each tree manipulation, the solver will choose which constraints to
schedule for propagation to ensure that the state satisfies all constraints. The con-
straints that need to be propagated depend on both the location of the hole and the
type of constraint. On each tree manipulation, we will only schedule constraints
that can potentially make any deductions. This is managed by the constraint-
specific shouldschedule function.

Tree manipulations. A tree manipulation is any event that shrinks the domain
of a hole. In Section 2.1.3, we have considered top-down enumeration for program
synthesis. But bottom-up enumeration, stochastic search, and genetic search are
also viable search strategies. To be able to propagate constraints regardless of the
type of search that is being used, we will make sure that all tree manipulations are
made through the solver. Therefore, all search strategies should manipulate the
current state using a combination of primitive tree manipulations:

• remove!(solver, path, rule). Remove a rule from the domain of
a hole at the given path. If the remaining rules in the domain of the hole have
the same child types, this hole will be converted to a uniform hole and thus
its children will be instantiated.

• remove_all_but!(solver, path, rules). Remove all rules from
the domain of the hole at the given path, except for the specified remaining
rules. If possible, the hole will be converted to a uniform hole.

• substitute!(solver, path, new_node). Substitute an existing
node at the given path with a new node.

The solver is responsible for propagating relevant constraints after each of these
tree manipulations.

State Management. To further decouple the solver from the search strategy, we
will use a generic way of dealing with states. The generic solver allows program
iterators to save, load, and delete states to implement custom search strategies. To
ensure absolute state independence, saving a state involves deep-copying the par-
tial program, which is a very expensive operation. In Section 5.4, we will see how
the uniform solver exploits a depth first search to overcome this issue.

26

5.3.1 Constraint Propagation

Recall from Section 5.2.2 that we differentiate between grammar and local con-
straints. As grammar constraints are hard to propagate, a design decision was
made to not implement a propagate method for a grammar constraint. In-
stead, each grammar constraint implements an on_new_node function that gets
called whenever a new node (usually a hole) appears in the program tree. The con-
straint will then post a local variant of the grammar constraint that is responsible
for propagating the constraint at that particular location.

To illustrate how grammar constraints are split up into local constraints, consider
the grammar constraint ”Forbidden(1 × a)” represented as a tree in Figure 5.3a.
This constraint is responsible for preventing the forbidden tree from appearing any-
where in the program tree.

Now let’s assume we jump-start the search with the sketch in Figure 5.3b. This
means that all nodes in this tree are new, so the on_new_node function of the
grammar constraint posts a local constraint at each of the nodes in the tree. In the
figure, each * represents a local variant of the forbidden constraint at a particular
node. During the fix point algorithm, all newly posted constraints are propagated
at their respective location. Figure 5.3c represents the state after propagation. 3
out of the 5 local constraints are now satisfied and deleted. The other 2 constraints
cannot deduce anything at this point and remain active. This means that if a tree
manipulation occurs at or below their path, they are scheduled for (re-)propagation.

×

1 a

(a) Forbidden Tree.
VarNode a matches
any sub-tree.

{+, ×}

{1, x, −} {+, ×}

1 {1, +, ×}

*

* *

* *

(b) Local constraints are posted

{+, ×}

{1, x, −} +

1 {1, +, ×}

*

*

(c) After propagation

Figure 5.3: Forbidden constraint (a) is imposed on tree (b) by posting a local con-
straint (*) at each location. After propagating, one hole was filled. Only 2 of the
local constraints remain active. The other 3 constraints are satisfied and deleted.

Splitting up grammar constraints into local constraints has 2 main advantages:

1. Grammar constraints can be partially deactivated. By deactivating satisfied
local constraints, we prevent checking these satisfied parts of a grammar
constraint over and over again.

27

2. We can reduce the frequency of unnecessary propagation. On each tree ma-
nipulation, we can carefully choose for each active local constraint to either
schedule it for propagation or ignore it. For example, in Figure 5.3c, if a
tree manipulation happens on the leftmost hole, we will only schedule the
local constraint at the root, as that is the only local constraint that might
be affected by this manipulation. We don’t have to check active constraints
related to other branches in the program tree.

5.3.2 Tree manipulations

A primitive tree manipulation is any domain-decreasing event on the domain of a
hole. For example, remove removes a rule from a domain of a hole. When a ma-
nipulation occurs, the solver propagates constraints in three steps: simplify, notify,
and fix point.

Simplify. First, the solver attempts to convert a non-uniform hole to a uniform
hole. If this is possible, this will trigger the creation of new nodes, which will also
trigger the respective on_new_node functions of all grammar constraints to post
new constraints.

Notify. This function notifies all active local constraints that a manipulation oc-
curred at a particular location. Local constraints that are affected by this manipu-
lation are scheduled for propagation.

Fix point. The fix-point algorithm (Algorithm 2) propagates all scheduled con-
straints sorted by a heuristic for impactfulness1. Of course, propagate functions
can also invoke more tree manipulations, potentially setting off a recursive chain
reaction of tree manipulations2.

5.3.3 State Management

In the context of the generic solver, a state is defined as a 3-tuple. It holds:

1. A partial program.

2. Active local constraints. These constraints might become violated later in
the search and need to be re-propagated in the future.

3. Feasibility flag. Indicates if the program still satisfies the constraints. If
a local constraint detects an inconsistency, this flag is set to false and any
further propagation will be canceled.

1Strong inference and a fast propagate function contribute to a high priority.
2Even though the fix-point algorithm is part of a tree manipulation, it will not be nested and

ignored when an outer fix-point algorithm is already in process.

28

Each state can be seen as its own propagation problem. The active local constraints
are active for the current state and their activation is independent of any other solver
state.

By design, the generic solver should work with any kind of search strategy. Since
the search strategy is unknown to the solver, it cannot partially reuse components
among different states. When a state is saved, the partial tree of the state is deep-
copied to ensure absolute state independence. This is a major bottleneck and can
be improved by exploiting the search strategy. In Section 5.4, we will see how a
depth-first search can be exploited to improve state management.

To be as flexible as possible, the generic solver supports three generic functions
for state management: new_state, save_state, and load_state. It is up
to the search strategy to store the saved states somewhere and load them when
needed. During the search, the iterator is also responsible for checking if the state
is still feasible. When an inconsistency is found, the iterator is responsible for
loading a saved state. In Section 5.5 we will see how the top-down search strategy
uses the generic solver to implement top-down program enumeration.

5.4 Uniform Solver

The uniform solver is a constraint solver for uniform trees. Uniform trees are trees
with a fixed shape. That is, no new holes can appear in such trees. As an input,
the solver takes a uniform tree and a list of active constraints. As an output, it is
expected to yield valid candidate programs (See Figure 5.4).

{+, ×}

{1, x} x

(a) Input: a uniform tree (and constraints)

+

1 x

+

x x

×

x x

(b) Output: multiple candidate programs

Figure 5.4: Simple example of an input and output for the uniform solver. It uses
the arithmetic grammar with a ”Forbidden(1× x)” constraint.

Just like the generic solver, the uniform solver is responsible for propagating con-
straints, applying tree manipulations, and managing states. Constraint propagation
and tree manipulations are handled similarly in both solvers, so we will refrain
from repeating the details. One noteworthy difference is that since no new holes
can appear in the uniform solver, the grammar constraints do not have to post new
local constraints on new nodes during search. The uniform solver is only concerned
with propagating existing local constraints.

29

The most substantial difference between the solvers is in their state management.
In particular, the uniform solver will exploit the fact that no new holes can appear
by doing a depth-first search. We don’t have to enumerate the candidate programs
in order of size anymore, since the size of the program is always the same. There-
fore, we can implement this solver in a depth-first manner. This means that there
is no need to deep-copy states anymore and we can instead use a memory-efficient
backtracking mechanism. The upcoming sections will focus on how this can be
implemented.

5.4.1 Depth-first search

A depth-first search (Algorithm 3) is at the core of the uniform solver. In the base
case, if there are no holes in the tree, we can yield the complete tree. If the tree has
unfilled holes, we pick a hole from the tree using a heuristic and save the current
state of the solver. Then we fill in the hole using a rule from its domain, which trig-
gers the fix point algorithm. If the program is still valid after this tree manipulation,
we recursively continue the DFS. Finally, we restore the solver state by reverting
all changes made since the saved state and consider the next way to fill the hole.
This process continues until all ways to fill the hole have been considered.

Algorithm 3 Depth-first search for the uniform solver with backtracking.
function dfs(solver)
hole← hole heuristic(solver.tree)
if !hole then

yield solver.tree
solver.restore()

else
for rule ∈ hole.domain do

solver.save state()
solver.fill(hole, rule)
if solver.isfeasible() then

dfs(solver)
end if
solver.restore()

end for
end if
end function

The greatest improvement of this approach, compared to the generic solver, is that
saving the state can be handled by tracking changes instead of copying. In Section
5.4.2, we will see exactly how we can track different kinds of changes.

30

5.4.2 State Management

State management for the uniform solver is handled by tracking changes since a
saved state and reverting these changes to restore the saved state. Before con-
cerning ourselves with tracking any change, we will simplify the setting and first
implement stateful integers.

Stateful Integer. A stateful integer is an integer that can be saved and restored.
Each stateful integer holds a reference to a constraint manager that keeps track of
the changes to all stateful integers. When the value of a stateful integer is updated
to a different value and no backup of this integer was made since the last saved
state, a backup entry of this integer and its previous value will be made and stored
in the state manager. On a restore call of the constraint manager, all backup entries
made since the saved state will be popped and applied to revert all changes.

(a) Initial domain. (b) Domain after removing rules 1 and 3.

Figure 5.5: A stateful domain before and after the removal of rules 1 and 3

Stateful Domains. The purpose of the constraint manager is to revert any changes
made to the solver state, including domain manipulations. We can achieve this by
implementing a stateful domain using a stateful integer. A possible data structure
for this is a state sparse set [10]. This data structure uses an array for the rules in
the domain, an array of indices that point to rules, and the size of the domain (See
5.5a). When a rule is removed from the domain, the removed rule is swapped with
the rule at the end of the rules array. Additionally, the array of indices is updated
accordingly such that: rules[indices[i]]=i still holds. Lastly, the size of
the domain is decreased by one. Figure 5.5b illustrates a domain after removing
two rules. The key property of this data structure is that it is possible to retrieve
the rules of the domain by looking at the size of the domain. Furthermore, we can
revert to the previous state of the domain, just by reverting the size of the domain.
This means that this domain becomes stateful if the size of the domain is imple-
mented with a stateful integer. To have this stateful property, it must be assumed
that no domain manipulation can increase the size of the domain. This assumption
is justified since constraint propagation can never increase the size of a domain.

31

5.5 Top-Down Iterator

The purpose of the top-down iterator is to enumerate all possible programs that can
be constructed with a given grammar up to a certain maximum size and/or max-
imum depth. Furthermore, if the grammar is equipped with grammar constraints,
all the enumerated programs should satisfy these constraints.

The top-down iterator uses the generic solver to enumerate programs in increasing
order of size. This is achieved by managing solver states using a priority queue,
with a breadth-first priority function. Once a solver state contains a uniform tree,
enumerating the programs deriving from that uniform tree is delegated to a uniform
solver.

We will now look at the pseudo-code of the top-down iterator in a bit more de-
tail (See Algorithm 4). The top-down iterator begins by constructing a hole cor-
responding to the starting symbol 3. Next, the generic solver performs the initial
propagation, so we need to verify feasibility. If the initial state is feasible, it is
added to a priority queue, and enumeration begins. Then we repeatedly pop items
from the priority queue. An item from the priority queue could either be a solver
state (I) or a uniform solver (II).

Case I) We pop a solver state from the priority queue. In this case, we will load it
into the generic solver. Then we will find a non-uniform hole to branch on using a
hole heuristic. If there is no such hole, we are dealing with a uniform tree, so a new
uniform solver can be created for this tree. This uniform solver is put back into the
queue for later consideration. For now, let’s assume the hole heuristic did find a
non-uniform hole. This hole will be partitioned into uniform domains, that is, the
domain is grouped by child types. For example, the domain {1, x, −. +, ×} will
be partitioned into {1, x}, {−} and {+,×}. Then for each domain in this partition,
we duplicate the solver state and shrink the domain of the target hole accordingly.
The generic solver will automatically propagate all relevant constraints for this tree
manipulation. After the tree manipulation is completed, the iterator needs to check
if the solver is still in a feasible state. If it is, we can enqueue this partial tree for
further expansion.

Case II) We pop a uniform solver from the priority queue. In this case, we can
get one complete program from the uniform solver and re-enqueue it for later con-
sideration. Alternatively, the iterator could yield all the solutions from the uniform
solver first, but this means it will yield all solutions of a single shape consecutively.
The design decision to put solvers back into the priority queue was made to allow
priority functions to potentially alternate between different shapes of trees.

3Alternatively, a sketch can provided to jump-start the search. But by default, we will start from
the starting symbol of the grammar.

32

Algorithm 4 Top Down Iterator: yields all programs of a constrained grammar.
root← RuleNode(starting symbol))
solver← GenericSolver(grammar, root, max size, max depth)
if !solver.isfeasible() then

return
end if
pq← PriorityQueue(solver.get state())
while len(pq) > 0 do

state← pq.dequeue()
if state isa SolverState then

solver.load state(state)
hole← hole heuristic(solver.get tree())
if !hole then

uniform solver← UniformSolver(grammar, solver.get tree())
pq.enqueue(uniform solver, priority function(...))

else
for uniform domain ∈ partition(hole.domain) do

state← solver.save state()
solver.remove all but!(hole, uniform domain)
if solver.isfeasible() then

pq.enqueue(solver.get state(), priority function(...))
end if
load state(solver, state)

end for
end if

else if state isa UniformSolver then
complete tree← next solution(state)
if complete tree then

pq.enqueue(state, priority function(...))
yield complete tree

end if
end if

end while

Recall the research question from Section 4.2: How to use memory-efficient back-
tracking techniques while still considering candidate programs in increasing order
of size?. The top-down iterator solves this issue by doing a BFS to find the dif-
ferent shapes of programs in order of size and then locally doing a DFS to find
the complete programs for each shape. It is clear that a BFS is not very memory
efficient, as it requires coping states to assure state independence. But a DFS can
be exploited to be more efficient because a solver then only has to maintain a single
state and use a backtracking mechanism. In other words, there is no more need to
copy over states anymore.

33

5.6 Constraints

Library of Constraints. This thesis serves as a framework that can be used to
propagate any kind of grammar constraint. Other developers are encouraged to
add more constraints for specific purposes. A couple of constraints have been im-
plemented for this thesis and will be discussed in the upcoming subsections:

Forbidden(tree). Ensures the program tree does not contain the specified
tree as a sub-tree. The tree may also contain variable symbols. For example,
Forbidden(a × 1) contains a variable a that can match anything. This constraint
will forbid any multiplication with 1 (e.g. (x+ 1)× 1).

Ordered(tree). Ensures that if the program tree contains the specified tree,
the variable symbols in the tree are in lexicographical order. This constraint aims
to reduce the program space by breaking commutative properties. For example,
Ordered(a× b) ensures that only x× (1 + 1) is a valid program, and (1 + 1)× x
is not.

Contains(rule). Ensures the specified production rule appears somewhere
in the program tree. A possible use-case of this constraint is to enforce that the
input parameters of a program are contained in the program.

Unique(rule). Ensures the specified production rule appears at most once in
the program tree. A possible use-case of this constraint is to ensure a particular
function call occurs at most once.

ContainsSubtree(tree). Ensures a sub-tree matching the specified tem-
plate tree appears somewhere in the program tree. This is a more general version
of the regular Contains constraint.

ForbiddenSequence(sequence). Ensures the specified sequence of rules
does not appear in some vertical path in the program tree. In Section 5.6.5, we will
see a concrete use-case of this constraint.

Template Trees. Some of the constraints are defined with a template tree.
Such trees can consist of two special types of nodes: DomainRuleNodes and
VarNodes. These node types can be used to express an entire class of trees us-
ing a single template. This allows us bundle grounded constraints into first-order
constraints, which reduces the amount of constraints and increases the inference
strength of propagators. Pattern matching (See Appendix B.1) is a core func-
tionality of propagators. It compares two nodes and returns a flag that indicates
whether they match. This procedure can pairwise compare the following four types
of nodes:

34

RuleNode. This node holds a single rule that should be exactly matched. The
children of a RuleNode should also be exactly matched.

DomainRuleNode. This node holds a domain of rules and matches to any 1
of the nodes in its domain. The children of a DomainRuleNode should also be
exactly matched.

VarNode. This node holds a variable name. The first match will bind the sub-
tree to this name. Any subsequent matches of VarNodes of the same name should
exactly match this binding. Note that bindings can also include Holes, Domain-
RuleNode, and nested VarNodes.

Hole. Holes are the only node type that may only appear in the program tree
and not in a template tree. Nevertheless, pattern matching supports hole-hole com-
parisons as they can appear when a VarNode is bound to a hole. During pattern
matching, we keep track of all holes that need to be filled in a specific way to com-
plete the match. In case of a forbidden constraint, if only 1 such hole exists, it can
prevent a match by eliminating the possibility of filling that hole in that way.

API for Propagators. We have already seen how grammar constraints are split
into local constraints, so in this chapter, we are only concerned with the propaga-
tion of local constraints. Propagators can use the following solver functions to
make deductions:

set_infeasible!(solver). If a propagator detects an inconsistency, the
solver should be notified and cancel any other scheduled propagators.

deactivate!(solver, constraint). If a constraint is satisfied, it should
deactivate itself to prevent re-propagation. In the generic solver, this is handled by
removing it from the set of active constraints. In the uniform solver, this is handled
by toggling off a stateful boolean.

post!(solver, constraint). A constraint is allowed to post new local
constraints. This might be helpful if a constraint can be reduced to a smaller con-
straint. In that case, a constraint will deactivate itself and then post a smaller con-
straint that captures the problematic part of the constraint.

remove!(solver, path, rule). A constraint can remove rules from any
hole’s domain. This tree manipulation removes the specified rule from the hole
located at the provided path. Besides the primitive ’remove’ tree manipulation,
propagators can also use similar tree manipulations: remove_all_but!,
remove_all_above! and remove_all_below!.

35

5.6.1 Forbidden

The forbidden constraint can be used to forbid syntactically valid, yet semantically
redundant sub-programs from the grammar. For example, the arithmetic grammar
(Example 2) has a rule ”Int → −Int”. A forbidden constraint could be used to
prevent−(−(a)) from appearing anywhere in the program tree. We do not lose the
target program by eliminating such sub-programs, because−(−(a)) is represented
by a in another program.

Algorithm 5 Propagation of a local forbidden constraint.
node← get node at location(solver, constraint.path)
match← pattern match(node, constraint.tree)
if match isa HardFail then

deactivate!(solver, constraint)
else if match isa Success then

set infeasible!(solver, constraint)
else if match isa SuccessWhenHoleAssignedTo then

remove!(solver, match.hole, match.rule)
deactivate!(solver, constraint)

end if

Figure 5.6: Propagation of a LocalForbidden constraint at path [2, 1]. The con-
straint contains two VarNodes, represented by a blue diamond, holding variable a.
In this example, the pattern match returned ”SuccessWhenHoleAssignedTo”.

A local forbidden constraint has two components: a path and a forbidden template
tree. Algorithm 5 describes how a local forbidden constraint is propagated. It
uses the pattern match function to match the forbidden tree with the node located at
the path. If the match fails, the constraint is already satisfied and can be deactivated.
If the match is successful, the forbidden tree is present in the program, so the

36

state must be set to infeasible. If a match can be prevented by removing a rule
from a hole, the constraint does so and then deactivates itself. In Figure 5.6, a
local forbidden constraint will remove rule 1 from the bottom right hole. After
propagation, this specific local forbidden constraint is always satisfied and can be
deactivated. It is also possible that multiple holes are involved and no deduction
can be made. In that case, the constraint remains active and will be re-propagated
whenever one of the holes involved is updated.

5.6.2 Ordered

The ordered constraint ensures that if the program tree contains the specified tem-
plate tree, the matched VarNodes in the tree are in lexicographical order. This
constraint is particularly useful for breaking commutative properties. For example,
in the arithmetic grammar, an ordered constraint can be used to ensure that only
one of a × b and b × a is valid. Since they are semantically equivalent, we won’t
lose the target program by eliminating either one the two programs. The ordering
we use is not important, as long as it is consistent throughout the search. We will
use an ascending ordering in the rule index and tie break in a depth-first manner in
case of equality.

Algorithm 6 Propagation of a local ordered constraint.
node← get node at location(solver, constraint.path)
vars← Dict()
match← pattern match(node, constraint.tree, vars)
if match isa Fail then

deactivate!(solver, constraint)
else if match isa Success then

should deactivate← true
n← length(constraint.order)
for name1, name2 ∈ zip(constraint.order[1:n-1], constraint.order[2:n]) do

result← make less than or equal!(solver, vars[name1], vars[name2])
if result isa HardFail then

set infeasible!(solver)
else if result isa SoftFail then

should deactivate← false
end if

end for
if should deactivate then

deactivate!(solver, constraint)
end if

end if

37

A local ordered constraint has three components: a path, a template tree, and
a required order of VarNodes. Algorithm 6 describes how a local ordered con-
straint is propagated. First, the template tree is matched with the node located
at the path. This binds all VarNodes to node instances in the tree. Then the
make_less_than_or_equal! tree manipulation attempts to enforce the or-
dering upon the bound nodes. The goal is to make rule a node less than or equal
rule node b. During this process, impossible rules will be removed from holes.
After the deductions have been made, a result flag is returned that describes the
current state of the ≤ inequality, There are three possible results:

• Success. a ≤ b is guaranteed under all possible assignments of the holes
involved. This means that the constraint is always satisfied and can be deac-
tivated.

• Hard Fail. a > b is guaranteed under all possible assignments of the holes
involved. In this case, the constraint is violated, so the solver state must be
set to infeasible.

• Soft Fail. In this case, a ≤ b and a > b are still possible depending on
how the holes involved are filled. We cannot make a deduction at this point,
and the constraint needs to be re-propagated if one of the holes involved is
updated.

Making node a less than or equal to node b is done by comparing the rule indices
of the nodes. Only when the nodes are equal, the tie is broken by comparing the
children in a depth-first matter. Figure 5.7 holds four examples scenarios of the
propagation of a LocalOrdered constraint.

In scenario (i), we can remove rule 5 to eliminate the possibility that a > b. Then,
since the roots of a and b are equal, we break the tie by comparing the children in a
depth-first manner. The left child of b is fixed to rule 1, this means we can remove
all rules higher than 1 from the left child of a. This, again, leads to a tie, so we will
continue by comparing the right children. Similarly, the right child of b is fixed to
value 2, so we can remove all rules higher than 2 from the right child of a. Now ≤
is assured, so we will return a ”Success” result.

In scenario (ii), a = 4 and b = {4, 5}, so a ≤ b always holds. However, if b gets
assigned to 4, we need to break the tie by comparing the children. Let’s assume this
is needed and compare the children. We compare two holes: {3, 4, 5} ≤ {1, 2}.
This inequality never holds for any assignment of the two holes. This is considered
a hard fail. However, we can prevent the hard fail by assuring that tie break is
never needed by removing the 4 from hole b. Now the ≤ inequality always holds,
regardless of the rules of the children. We can return a ”Success” result to indicate
that the constraint can be deactivated.

38

Figure 5.7: Four scenarios of the propagation of a LocalOrdered constraint. In
each scenario, VarNodes a and b are matched to sub-trees. Then ’≤’ is enforced
by comparing rule indices of the nodes. In the case of equality, the tie is broken
by comparing the children in a depth-first manner. In the last 2 cases, ≤ cannot
be guaranteed and the propagator needs to be reconsidered. This is called a ”Soft
Fail”.

In scenario (iii), a = 4 and b = {4, 5}, so a ≤ b always holds. However, if b gets
assigned to 4, we need to break the tie by comparing the children. Let’s assume this
is needed and compare the children. We compare two holes: {1, 2} ≤ {2, 3, 4}.
Again, this inequality always holds, but if both holes are assigned to a 2, we would
need to tie break. Let’s assume this is needed and compare the right children:
2 > 1. This is a hard fail, so we conclude that tie-breaking is not allowed. So
either b needs to be set to 4, or the left children need to be set to 2. Since both are
valid options, we have to return a ”Soft Fail” and re-propagate later.

39

In scenario (iv), a = {3, 4, 5} ≤ {1, 2, 3} = b. The lowest rule in a is 3, so
we must remove all rules lower than 3 from b. Similarly, the highest rule of b is 3,
so we must remove all rules higher than 3 from a. After removing these rules, the
children of a and b can be instantiated. This example uses the arithmetic grammar
of Figure 4.1, where rule 3 corresponds to a negation, so we instantiate only one
child under rule 3. Since a = b, we need to tie break. We cannot make any further
deductions here and therefore return a ”Soft Fail”.

5.6.3 Contains and Unique

The contains constraint can be used to enforce that a certain grammar rule has to
appear somewhere in the program tree. For example, in the arithmetic grammar
(Example 2), a user might want to enforce that an x (the input symbol) has to ap-
pear in the program. Otherwise, the program will be a constant value.

Another use-case for the contains constraint is when a complex constraint can sim-
plify itself into a contains constraint by deactivating and replacing itself with one
or more contains constraints. Such a complex constraint does not exist yet, but
could easily be added to the framework.

The unique constraint is very similar to the contains constraint, but enforces unique-
ness instead of existence of a rule. It can be used to enforce that a certain grammar
rule cannot appear more than once. In the robot environment (Example 1), this
can be used to enforce that a ’grab’ operation appears at most once in the entire
program.

5.6.4 Contains Sub-tree

The ’contains sub-tree’ constraint is a more general version of the ’contains’ con-
straint. It enforces that a provided template tree appears in the program tree at least
once, instead of being restricted to a single rule index.

Only a single local constraint will be posted (at the root). This local constraint
enforces that the provided template tree appears somewhere at or below the root.
Propagating this constraint is very expensive, as it requires pattern matching all
nodes in the program tree with the template. To improve the efficiency of the
propagation, we will keep track of all nodes that can potentially match the tem-
plate. These nodes are called candidates. On re-propagation, we only need to
update the list of candidates. If a candidate matches the template, the constraint
is satisfied and deactivated. If a candidate fails to match the template, it will be
removed as a candidate. Finally, if there is only a single candidate remaining, it
will be enforced to equal the template. Then, the constraint can be deactivated.

40

Algorithm 7 describes how a local ’contains sub-tree’ constraint is propagated.
It can be assumed that the constraint has the following fields:

• tree, the to be matched template tree

• candidates, an initial list of nodes in the current partial program tree that
potentially match the template tree. This list is created on initial propagation.

• indices, a state sparse set of indices pointing to candidates that are still
candidates.

Algorithm 7 Re-propagation of a ’contains sub-tree’ constraint.
for i ∈ constraint.indices do

candidate← constraint.candidates[i]
match← pattern match(candidate, constraint.tree)
if match isa HardFail then

remove!(constraint.indices, i)
else if match isa Success then

deactivate!(solver, constraint)
end if

end for
n← length(constraint.indices)
if n == 0 then

set infeasible!(solver, constraint)
else if n == 1 then

i← minimum(constraint.indices)
candidate← constraint.candidates[i]
result← make equal!(solver, candidate, constraint.tree)
if result isa HardFail then

set infeasible!(solver, constraint)
else if result isa Success then

deactivate!(solver, constraint)
end if

end if

Since this constraint is stateful, it is not possible to propagate this constraint in the
generic solver. It would be possible to propagate a non-stateful version of this con-
straint, but it will likely be very inefficient because of two reasons: (1) candidates
are not tracked, so all nodes in the tree need to be checked in each propagate call,
and (2), non-uniform holes can almost always expand into the template tree, so
no actual deductions can be made until all the holes are uniform. This is why the
design decision was made to only enforce this constraint in uniform trees.

41

Figure 5.8 contains a small example of the propagation of ContainsSubtree.
In this scenario, the constraint initially has two candidates. Then, on re-propagation,
one of these candidates becomes invalid and the remaining candidate is enforced
to equal the template tree.

Figure 5.8: Propagation of a LocalContainsSubtree constraint at the root (path =
[]). In the initial propagation, all 7 nodes were pattern-matched against the tem-
plate tree 5(a, a). Only two of the nodes potentially match the template and are
considered ’candidates’ (represented with a *). After another constraint updated a
domain, the candidate at the root no longer matched the template and was removed
as a candidate. Since only 1 candidate remains, it is enforced to match the tem-
plate. The constraint is now satisfied and deactivated.

5.6.5 Forbidden Sequence

The forbidden sequence constraint forbids a sequence of rules from the root to any
path in the tree. When specifying a forbidden sequence, all sequences that contain
the forbidden sequence as a sub-sequence are also forbidden (e.g. the forbidden
sequence [1, 2, 3] also forbids the sequence [1, 2, 1, 2, 4, 2, 3]).

To propagate the forbidden sequence constraint, a local constraint is posted at each
path in the tree. The local constraint assumes that the sequence will end at exactly
its path and makes the smallest possible match from this path back to the root.
If a match was found, and only a single hole is involved, the rule that completes
the forbidden sequence will be removed from its domain. Then, the constraint is
immediately re-propagated and tries to find the next match. If no match was found,

42

the constraint is satisfied and can be deactivated. In Figure 5.9, only one match ex-
isted and was prevented. If multiple holes exist in a match, the constraint soft-fails
and will be re-propagated if any domain on the path is updated.

Figure 5.9: Propagation of a LocalForbiddenSequence constraint at path [1,1,2,1].

The forbidden sequence constraint can also be equipped with an ignore_if list
of rules. If any of the rules in that list is encountered within the sequence, the
constraint is ignored. This is particularly useful for the robot environment (Ex-
ample 1), as the constraints we will define for it should only be applied when the
robot does not grab or drop a ball in between. The following forbidden sequence
constraints will be used to constrain the robot environment:

• Shortest path constraints (Figure 5.10a). We can ensure the robot takes the
shortest path:
- ForbiddenSequence([left, right], ignore if = [drop, grab]);
- ForbiddenSequence([right, left], ignore if = [drop, grab]);
- ForbiddenSequence([up, down], ignore if = [drop, grab]);
- ForbiddenSequence([down, up], ignore if = [drop, grab]);

• Symmetry breaking constraints (Figure 5.10b). We can break symmetries in
the grammar by taking horizontal steps before vertical steps:
- ForbiddenSequence([down, right], ignore if = [drop, grab]);
- ForbiddenSequence([down, left], ignore if = [drop, grab]);
- ForbiddenSequence([up, right], ignore if = [drop, grab]);
- ForbiddenSequence([up, left], ignore if = [drop, grab]);

43

(a) Shortest path constraint. (b) Symmetry breaking constraint.

Figure 5.10: Two violations of ForbiddenSequence constraints in the Robot Envir-
onment (Example 1).

44

Chapter 6

Evaluation

In this chapter, we will evaluate the proposed methods from Chapter 5 by answer-
ing the following questions:

1. How much of the program space needs to be pruned to justify the overhead
of constraint propagation?

2. Does combining multiple grounded constraints into a single first-order con-
straint improve the performance of the search?

3. How much do the Generic- and UniformSolver solver components
contribute to the overall search procedure?

4. What are the bottlenecks in the proposed methods?

6.1 Setup

All the experiments have been executed on an Intel i7-10750H CPU @ 2.60GHz
with 16 GB of RAM. The results were collected using Herb.jl v0.3.01, with
the exception of the HerbSearch2 and HerbConstraints3 repositories. They
were set to their respective dev branches as of May 2024.

The experiments will be executed on 4 different grammars, each with their own
production rules and constraints. Two of the grammars will be based on the run-
ning examples of this thesis, but slightly modified to better utilize the constraints.

6.1.1 Robot Grammar

The robot grammar describes programs in the Robot Environment (Example 1).
This environment consists of an n × n grid, a robot and a ball. A state describes

1https://github.com/Herb-AI/Herb.jl/releases/tag/v0.3.0
2https://github.com/Herb-AI/HerbSearch.jl/commit/a43eb05963ba4825b271ea45d7117a899c9efd65
3https://github.com/Herb-AI/HerbConstraints.jl/commit/c91af15a251f25a452d0a655bf40b23a4a1cf500

45

the position of the robot and the ball. The task is to learn to transform the initial
state to the final state by moving the robot and letting it grab and drop the ball.

We will simplify the earlier defined robot grammar (Example 2.3) by omitting
conditional statements, as the environment is too simple for them to be needed.
Furthermore, to use the forbidden sequence constraint, we will consider a variant
of the grammar where operations lie on a vertical path in the program tree (See
Figure 6.1). This modification is made solely for convenience. Alternatively, the
semantics of ForbiddenSequence could be changed to consider a sequence of
(terminal) nodes in left sub-trees instead of on a vertical path.

(a) Original AST (b) Simplified AST

Figure 6.1: Comparing semantically equivalent ASTs for the robot environment.
(a) and (b) derive from the grammars in Figures 2.3 and 6.2 respectively.

In the upcoming experiments, we will use the robot grammar as defined in Figure
6.2, equipped with the grammar constraints in Figure 6.3. To replicate the results,
add each constraint using addconstraint!(grammar, constraint).

1 grammar = @csgrammar begin
2 Sequence = (moveRight(); Sequence)
3 Sequence = (moveDown(); Sequence)
4 Sequence = (moveLeft(); Sequence)
5 Sequence = (moveUp(); Sequence)
6 Sequence = (drop(); Sequence)
7 Sequence = (grab(); Sequence)
8 Sequence = return
9 end

10

Figure 6.2: A simplified grammar for the robot environment in Herb.jl.

46

1 # the robot can drop and grab at most once
2 Unique(r_drop)
3 Unique(r_grab)
4

5 # shortest path constraints
6 ForbiddenSequence([r_left, r_right], ignore_if = [r_drop, r_grab])
7 ForbiddenSequence([r_right, r_left], ignore_if = [r_drop, r_grab])
8 ForbiddenSequence([r_up, r_down], ignore_if = [r_drop, r_grab])
9 ForbiddenSequence([r_down, r_up], ignore_if = [r_drop, r_grab])

10

11 # symmetry breaking constraints
12 ForbiddenSequence([r_down, r_right], ignore_if = [r_drop, r_grab])
13 ForbiddenSequence([r_down, r_left], ignore_if = [r_drop, r_grab])
14 ForbiddenSequence([r_up, r_right], ignore_if = [r_drop, r_grab])
15 ForbiddenSequence([r_up, r_left], ignore_if = [r_drop, r_grab])
16

Figure 6.3: 10 constraints on the robot grammar defined in Figure 6.2

6.1.2 Arithmetic Grammar

The arithmetic grammar (Example 2) can be used to synthesize simple arithmetic
expressions with an input symbol x. For example, given IO examples 1 → 2 and
5→ 6, the synthesizer will return x+ 1 as the target program.

We will slightly modify the earlier defined grammar to exactly match the gram-
mar of the previous master thesis on constraints in Herb [5] (See Figure 6.4). This
variant of the grammar includes 10 terminal rules for constants, instead of 1.

1 grammar = @csgrammar begin
2 Int = Int + Int
3 Int = Int * Int
4 Int = Int - Int
5 Int = |(0:9)
6 Int = x
7 end
8

Figure 6.4: An arithmetic grammar in Herb.jl, borrowed from [5].

The constraints for the arithmetic grammar (See Figure 6.5) all break semantic
symmetries in integer arithmetic. They forbid trivial cases like adding 0, and mul-
tiplying by 1. The ordered constraints will be used to break the commutativity of +
and ×. This is not an exhaustive list of symmetry breaking constraints, and could
be extended to break more symmetries.

47

1 Forbidden(RuleNode(times, [VarNode(:a), RuleNode(zero)]))
2 Forbidden(RuleNode(minus, [VarNode(:a), VarNode(:a)]))
3 Forbidden(RuleNode(minus, [VarNode(:a), RuleNode(zero)]))
4 Forbidden(RuleNode(plus, [VarNode(:a), RuleNode(zero)]))
5 Forbidden(RuleNode(times, [VarNode(:a), RuleNode(one)]))
6 Forbidden(RuleNode(minus, [
7 RuleNode(times, [VarNode(:a), RuleNode(two)])
8 VarNode(:a)
9]))

10 Forbidden(RuleNode(plus, [VarNode(:a), VarNode(:a)]))
11 Forbidden(RuleNode(minus, [
12 RuleNode(times, [VarNode(:a), RuleNode(three)])
13 VarNode(:a)
14]))
15 Forbidden(RuleNode(plus, [RuleNode(zero), VarNode(:a)]))
16 Forbidden(RuleNode(times, [RuleNode(zero), VarNode(:a)]))
17 Forbidden(RuleNode(times, [RuleNode(one), VarNode(:a)]))
18 Ordered(RuleNode(plus, [VarNode(:a), VarNode(:b)]), [:a, :b])
19 Ordered(RuleNode(times, [VarNode(:a), VarNode(:b)]), [:a, :b])

Figure 6.5: 13 constraints on the arithmetic grammar defined in Figure 6.4

6.1.3 Symbolic Grammar

The symbolic grammar (see Figure 6.6), and its 21 constraints (see Appendix B.2)
have no semantics and exists solely to push the constraint solver to its limits.

Semantic grammars can be constrained to prune a large amount of the program
space, but a significant amount of it remains valid. In traditional CP, often only
a few, if any at all, solutions exist. In such cases, most time is spent in finding
even a single solution. To mimic this setting and push constraint propagation to its
limit, we will consider the highly constrained symbolic grammar, in which only a
handful of programs satisfy the constraints.

1 grammar = @csgrammar begin
2 S = t1 #terminals # rule 1
3 S = t2 # rule 2
4 S = t3 # rule 3
5 S = u1(S) #unary functions # rule 4
6 S = u2(S) # rule 5
7 S = u3(S) # rule 6
8 S = b1(S, S) #binary functions # rule 7
9 S = b2(S, S) # rule 8

10 S = b3(S, S) # rule 9
11 S = unique # rule 10
12 end

Figure 6.6: A symbolic grammar without any semantics.

48

6.1.4 List Grammar

The list grammar (see Figure 6.7) is a semantic grammar that can be used for list
manipulations. It supports basic list operations and can be used to construct a pro-
gram that takes two input integers x and y and returns a list.

To illustrate program synthesis using this grammar, consider the following two
IO examples:
(x = 0, y = 1)→ [1, 3].
(x = 5, y = 4)→ [3, 9].

The intended behaviour of the program is to return a sorted list of the sum of the
input values and the constant 3. Our program synthesizer is successfully able to
find a satisfying program:
sort!(push!(push!([], sum(push!(push!([], y), x))), 3))

The constraints for the list grammar (See Figure 6.8) eliminate semantically re-
dundant programs. For example, by forbidding sorting a list twice in a row. We
also define a domain rule node representing all unary functions. Two of the con-
straints use this node to forbid unary functions on an empty list (line 14) and a
singleton list (line 15) respectively. The constraint on line 17 aims to forbid revers-
ing a constant list. For example, reverse!(push!(push!([],2),x))))
can be forbidden, as it is already represented by push!(push!([],x),2).

Just like for the arithmetic grammar, the provided list of constraints is not exhaust-
ive, and could be further extended. However, they do prune enough of the program
space to evaluate the performance of constraint propagation in the upcoming sec-
tions.

1 grammar = @csgrammar begin
2 List = []
3 List = push!(List, Int)
4 List = reverse!(List)
5 List = sort!(List)
6 List = append!(List, List)
7 Int = maximum(List)
8 Int = minimum(List)
9 Int = sum(List)

10 Int = prod(List)
11 Int = |(1:3)
12 Int = x
13 Int = y
14 end
15

Figure 6.7: A grammar with basic list operations in Herb.jl.

49

1 A = VarNode(:a)
2 B = VarNode(:b)
3 V = VarNode(:v)
4 unaryfunction(node::AbstractRuleNode) = DomainRuleNode(grammar,
5 [_reverse, _sort, _max, _min, _sum, _prod], [node])
6

7 Forbidden(reverse(reverse(A)))
8 Forbidden(sort(reverse(A)))
9 Forbidden(sort(sort(A)))

10 Forbidden(sort(append(A, reverse(B))))
11 Forbidden(sort(append(A, sort(B))))
12 Forbidden(sort(push(sort(A), V)))
13

14 Forbidden(unaryfunction(empty))
15 Forbidden(unaryfunction(push(empty, V)))
16

17 ForbiddenSequence([_reverse, _empty], ignore_if=[_sort, _append])
18 ForbiddenSequence([_append, _empty], ignore_if=[_reverse, _sort])
19

Figure 6.8: 10 constraints on the list grammar defined in Figure 6.7

6.2 Reducing the Program Space

In this section, we will using the top-down iterator to enumerate all programs of the
previously defined grammars, up to a certain maximum program size. To measure
the correctness and effectiveness of the constraint propagation, we will compare
three variations of enumeration.

1. Plain Enumeration (+checking). Enumerates all programs, ignoring the
constraints. Then, retrospectively checks the constraints and eliminates all
programs that violate any constraint.

2. Plain Enumeration. Enumerates all programs, ignoring the constraints.

3. Constrained Enumeration. Enumerates all programs that satisfy the con-
straints using the proposed constraint solvers.

For all experiments, the programs obtained from methods 1 and 3 are exactly the
same. This means constraint propagation does not eliminate valid programs, nor
keep any invalid programs. Although this is not a hard proof of correctness, it does
increase the confidence that the propagators are implemented correctly and work-
ing as intended.

In Figure 6.9, we compare the program space with and without constraints by di-
viding the amount of valid programs by the total amount of programs. We see that
the constraints significantly reduce the program space4. With a maximum of 11

4The symbolic grammar is omitted from this graph, since its smallest valid program has 12 nodes.

50

nodes, the imposed constraints can already eliminate roughly 99% of the total pro-
gram space (The exact results can be found in Appendix C).

Figure 6.9: The remaining portion of the program space after applying the con-
straints, represented by the ratio of valid/total programs

Figure 6.10 compares the runtime of the three types of enumeration. We observe
that the runtime of plain enumeration without retrospectively checking the con-
straint is strictly higher than that of plain enumeration alone. This is because the
verification process adds time on top of the enumeration.

Propagating the constraints during search outperforms the plain enumeration. This
is an expected result, as only a small fraction of the program space needs to be enu-
merated in a constrained search. The ratio plot reveals that for all four grammars
the constrained search performs significantly better as the program space grows
larger, but the exact improvement highly depends on the grammar.

An interesting observation is that the plain enumeration outperforms constrained
enumeration for small program spaces. In these cases, the reduced program space
does not justify the overhead of propagating constraints.

We conclude that when a relatively large portion5 of the program space can be
eliminated, constraint propagation outweighs its overhead.

5Roughly speaking, 75% or more. This depends on many other factors, such as the grammar and
the type and amount of constraints.

51

Figure 6.10: Runtime of program enumeration with and without constraints. The
ratio plot illustrates the difference in runtime between two approaches: checking
constraints after enumeration and propagating constraints during enumeration.

52

6.3 First-order Constraints

In Section 5.6, we have seen two kinds of first-order rule nodes that can be used to
forbid a class of sub-trees: DomainRuleNode and VarNode. In the following
experiment, we will measure the effectiveness of the domain rule nodes using the
Symbolic Grammar (6.1.3) with a new constraint:

Forbidden(DomainRuleNode({7, 8, 9}),[
DomainRuleNode({1, 2, 3, 10}),
DomainRuleNode({1, 2, 3, 10})

]

This constraint eliminates all trees that contain any of the 3 · 4 · 4 = 48 forbid-
den sub-trees. Alternatively, we can break down this first-order constraint into 48
grounded constraints, each forbidding a particular sub-tree.

We will run the constrained program enumeration of the Symbolic Grammar max-
imum of 8 AST nodes, and vary the amount of constraints we use. In each run, we
will use 1 first-order constraint, and 1 grounded constraint for each missing case.
For example, suppose we remove one of the rules from the first-order constraint:

Forbidden(DomainRuleNode({7, 8}),[
DomainRuleNode({1, 2, 3, 10}),
DomainRuleNode({1, 2, 3, 10})

]

Then 16 grounded constraints must be constructed to cover the missing cases. Note
that the amount of valid programs remains the same. The difference lies in the
amount of propagators and inference strength. Regardless of which combination
of constraints is used, we will always enumerate 1.358.656 out of the 2.355.328
total programs.

In Figure 6.11, we see a positive correlation between the number of constraints and
propagate calls. This is unsurprising, as having more constraints, also means
having more propagators. The fact that this also increases the runtime, means a
higher quantity of grounded propagators is more computationally expensive than a
lower quantity of first-order propagators.

We also see a positive correlation between the number of constraints and search
nodes. This can be explained by inference strength. When a first-order constraint is
split up into grounded constraints, they can no longer exploit constraint interaction.
For example: forbid({7, 8}) is able to deduce that domain {7, 8} is inconsistent.
But forbid(7) and forbid(8) separately cannot make any deductions, and require
the search node to branch before they can spot the same inconsistency.

53

Figure 6.11: Enumerating programs of the Symbolic Grammar using different
combinations of first-order and grounded forbidden constraints. The plots depict
runtime, propagate calls and search nodes respectively.

We conclude that bundling grounded constraints into a first-order constraint does
increase the performance of the search.

6.4 Ablation Study

So far, all experiments have been executed with the top-down iterator that uses both
the Generic- and UniformSolver. The generic solver is used to propagate
constraints on non-uniform trees, which has the potential to eliminate an entire
search branch of uniform trees. It also uses memory-intensive state management
to ensure programs are enumerated in increasing order of size. The uniform solver
has efficient state management but is restricted to solving uniform trees and a DFS.

54

Figure 6.12: An ablation study. Comparing the runtime of the overall search pro-
cedure using both or only 1 of the 2 built-in solvers.

In this section, we will conduct an ablation study. Instead of just using the pro-
posed hybrid method, we will also measure the performance of the search using
only one of the implemented solvers. More precisely, we will compare the follow-
ing three methods:

1. Hybrid method: The generic solver is used to enumerate uniform trees, and
uniform solvers are used to enumerate all complete programs of each uni-
form tree, as described in Algorithm 4.

2. UniformSolver only: We ignore constraints in the GenericSolver,
and only start propagating constraints once a uniform tree is reached.

3. GenericSolver only: We never dispatch to the UniformSolver. Even
uniform trees will be expanded by the GenericSolver.

55

Figure 6.12 holds the result of the ablation study. We see that the hybrid method
always outperforms using only the generic solver. In both the hybrid and generic
solver methods, the number of uniform trees is exactly the same. In other words,
the results indicate that solving a uniform tree with the uniform solver, optimized
for solving uniform trees, outperforms the generic solver.

For the symbolic grammar, only using the uniform solver outperforms the hy-
brid method (see Figure 6.12). This indicates that the overhead of propagating
constraints in the generic solver does not outweigh the gained inference. This sus-
picion is confirmed by the follow-up experiment in Figure 6.13a. We see that the
generic solver (orange line) only eliminates a negligible small amount of uniform
trees, which means the inference is weak. For this particular grammar, using the
generic solver is not worth its overhead.

On the contrary, for the list grammar (see Figure 6.12), the hybrid method out-
performs only using the uniform solver. This indicates that the generic solver has
strong inference for this grammar. Again, this suspicion is confirmed by the follow-
up experiment in Figure 6.13b. We see that the generic solver (orange line) elim-
inates a significant portion of uniform trees. A reduced number of uniform trees
means that less uniform solvers have to be instantiated. Hence, the hybrid method
will outperform only using the uniform solver.

(a) Symbolic Grammar (b) List Grammar

Figure 6.13: Comparing the total number of uniform trees with and without the
generic solver.

56

6.5 Bottlenecks

In this section, we will look at the bottlenecks in the proposed methods to aid de-
velopers in optimizing the solvers. To find the bottlenecks, we will use Julia’s
built-in profiler tool to measure the activity distribution. We can make several ob-
servations from the results in Figure 6.14.

Figure 6.14: The activity distribution of the generic- and uniform solver in the
top-down iterator for several grammars. For the Symbolic- and List grammars,
an additional experiment without constraint propagation in the generic solver is
included (labeled ’Uniform’). The activity was measured using a profiler tool and
grouped into high-level categories.

For the Robot- and Arithmetic grammars, we see that a significant amount of time
is spent in scheduling constraints, almost as much as propagation itself. This is
because propagators are scheduled unnecessarily often. For the robot grammar, a
total of 2.315.425 propagators were scheduled, but only 16% of them were able to
make any kind of deduction6.

For the Symbolic grammar, the issue is even more pronounced. We see that more
time is spent scheduling than propagating. This indicates that many constraints are
scheduled, but unable to make any deductions. And indeed, the follow-up experi-
ment in Figure 6.15 shows that in the generic solver only 52 deductions were made.
This is an expected result, as the generic solver deals with non-uniform trees, and

6A propagator makes a deduction iff it prunes 1 or more rules from 1 or more domains.

57

most constraints can only make deductions if the tree’s structure is known. In the
ablation study (See Figure 6.12), we have seen that if we refrain from propagating
constraints in the generic solver, we can improve the total runtime by a rough factor
of 3. However, a more sustainable approach would be to limit the conditions for
constraint scheduling, thereby reducing the number of unnecessary propagators.

Constraint Propagation Deduction Satisfied

G
en

er
ic

So
lv

er

Contains 329210 24 5
ContainsSubtree 0 0 0
Forbidden 801961 0 221893
ForbiddenSequence 342677 28 42651
Ordered 538524 0 103054
Unique 109727 0 0
All 2122099 52 367603

U
ni

fo
rm

So
lv

er

Contains 30208 339 133
ContainsSubtree 22099 15269 14
Forbidden 131145 5 106106
ForbiddenSequence 202483 1258 46555
Ordered 74252 1 46326
Unique 1469 822 188
All 461656 17694 199322

Figure 6.15: Statistics for constraint propagation in the enumeration of the Sym-
bolic Grammar with the maximum program size set to 12.

For the List Grammar, we also see a high amount of scheduling in the generic
solver. However, unlike for the Symbolic Grammar, the constraints in the gen-
eric solver can make enough deductions to overcome the overhead of propagation.
This is reflected by the relative increase in state management activity in the gen-
eric solver (See Figure 6.14, right orange bar). If we refrain from propagating
constraints, we increase the number of search nodes, and state management (deep-
copying) becomes the bottleneck of the overall search procedure.

58

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis introduced constraint propagation in program synthesis using a hybrid
method of two solvers. The generic solver can be used to enumerate tree shapes
in increasing order of size. The uniform solver is restricted to one shape but has
memory-efficient backtracking techniques inspired by MiniCP [10]. The ablation
study revealed that employing the hybrid method yields a notable enhancement
compared to solely relying on the generic solver.

We have compared the implemented constrained program enumeration against
plain program enumeration. The results show that constraint propagation signi-
ficantly outperforms retrospectively checking the constraints. Although it must be
noted that the effectiveness highly depends on the grammar and its constraints.

Furthermore, we have seen that combining grounded constraints into a single first-
order constraint can further reduce the number of search nodes. This is an expected
result as a combined constraint is able to make deductions based on the interaction
of the grounded constraints and therefore has stronger inference.

7.2 Future Work

7.2.1 Example-based constraint generation

In Chapter 6, we have seen that for semantic grammars we can prune a large
amount of programs of the program space. However, a large amount (> 1%) of
candidate programs remains to be evaluated. Automatically discovering new con-
straints based on the specification of the problem at hand, has the potential to prune
a significantly larger amount of the program space.

In Chapter 3, we have seen three related works that learn new constraints based

59

on failed IO examples. In this thesis, we have only considered constraining the
grammar itself. We did not take into account the problem that is to be solved. A
constraint extractor could take the IO examples of the problem and generate gram-
mar constraints for the specific problem instance. Or, like in the related works,
generate new constraints based on failed IO examples during search.

7.2.2 More First-Order Constraints

For the forbidden constraint, we added a DomainRuleNode to allow users to
forbid an entire class of program trees, instead of having to define multiple similar
constraints. For example,
RuleNode(4, VarNode(:a), VarNode(:a)) and
RuleNode(5, VarNode(:a), VarNode(:a))

can be represented using a single constraint:
DomainRuleNode({4, 5}, VarNode(:a), VarNode(:a))

This principle can be applied to other kinds of constraints too. For example, the
Contains(1), Contains(2) and Contains(3) constraints could be com-
bined to a single constraint that enforces that all three rules are contained in the
tree. Such a first-order constraint can have stronger inference and reach an infeas-
ible state earlier than three individual constraints.

7.2.3 Full DFS Solver

In this thesis, I presented a trade-off between a BFS and DFS that allows problems
to be enumerated in order of size, while being memory-efficient once a uniform
tree has been reached. In some cases, however, enumeration in order of program
size is not important. For example, the stochastic search strategy uses a top-down
iterator as a sub-process to sample a new tree. In that case, only a single solution
is requested of the top-down iterator, so a DFS would suffice.

In such cases, a full DFS would be more memory-efficient than the presented hy-
brid method. To achieve this, we can create a new solver that is very similar to
Herb’s UniformSolver, but without the restriction of solving for non-uniform trees.
Additionally, since no trees will be deep-copied, a handful of other optimizations
can be made for the new solver. The following ideas can be used to implement this
in Herb.

Only use a single hole type for the entire search. Right now, program iterat-
ing works with 3 node types. Hole, UniformHole, and RuleNode. Each of
these types adds a restriction upon the previous type. As soon as a domain satis-
fies the next restriction, the object will be replaced with a new object type of that
new restriction. This approach has two issues. (1) Replacing the object in the tree
requires an O(n) traversal to the node location in the tree. (2) References to the

60

replaced object are invalidated, requiring references to the replaced object to be
replaced with the new object too.
Instead, the new solver should only use a single hole type. Trait functions can be
used to check if that hole’s domain is uniform or is filled with a single rule.

Notify lists. Since the holes are never replaced nor copied, each hole can have
an on_domain_change notify list of constraints. Whenever a domain change
happens on that hole, all constraints in that list will be scheduled for propagation.
During the post method and on a soft-fail, a constraint can add itself to notify lists
of related holes.
In the current implementation, re-propagation is based on the path of the tree ma-
nipulation and not on hole instances. I have attempted to re-propagate using notify
lists, but since states of the generic solver get deep-copied on each tree manipu-
lation, the notify lists had to be deep-copied too. This was not worth the reduced
number of propagations.

Use a StateStack to store the children of nodes. In addition to revertible do-
mains, newly appeared nodes should also be uninstantiated on backtrack. This can
be achieved using a state stack. A StateStack is a strictly increasing immut-
able list. Users can only push items on the state stack. Backtracking is done by
decreasing the size of the stack to the original size.

Constraints can make use of stateful properties. In the current implementa-
tion, constraints are shared among different solver states. The generic solver re-
quires absolute independence between states, so a design decision was made for
constraints to be stateless. In a new solver, there will only be a single active state,
so stateful constraints are a valid option again. When a constraint is propagated,
certain properties can be cached and reused during re-propagation. For example,
the matches of a VarNode will be the same.

7.2.4 Contributions to Herb.jl

This thesis serves as a basic framework for constraint propagation in Herb.jl and
is by no means a fully optimized project. In Section 6.5, we have seen the bot-
tlenecks of the implementation, such as constraint scheduling and state manage-
ment. Implementation-level details on how to improve the presented methods can
be found on the GitHub page of Herb1. As Herb is an open-source project, readers
are warmly invited to address one of these issues, implement new types of con-
straints, or simply experiment with the framework.

1https://github.com/Herb-AI

61

Bibliography

[1] Noam Chomsky. Three models for the description of language. IRE Trans.
Inf. Theory, 2:113–124, 1956.

[2] Andrew Cropper and Sebastijan Dumančić. Inductive logic programming at
30: A new introduction. Journal of Artificial Intelligence Research, 74:765–
850, 2022.

[3] Andrew Cropper and Rolf Morel. Learning programs by learning from fail-
ures. CoRR, abs/2005.02259, 2020.

[4] Allen Cypher, editor. Watch What I Do – Programming by Demonstration.
MIT Press, Cambridge, MA, USA, 1993.

[5] Jaap de Jong. Speeding up program synthesis using specification discovery.
Master’s thesis, Delft University of Technology, 07 2023.

[6] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program synthesis
using conflict-driven learning. SIGPLAN Not., 53(4):420–435, jun 2018.

[7] Sumit Gulwani. Automating string processing in spreadsheets using input-
output examples. In Proceedings of the 38th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’11, pages 317–
330. ACM, 2011.

[8] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis.
Foundations and Trends in Programming Languages, 4(1-2):1–119, 2017.

[9] Herb-AI. Herb.jl: A Julia framework for program synthesis. https://
github.com/Herb-AI/Herb.jl, 2023.

[10] L. Michel, P. Schaus, and P. Van Hentenryck. Minicp: a lightweight
solver for constraint programming. Mathematical Programming Computa-
tion, 13(1):133–184, 2021.

[11] OpenAI. Gpt-4. https://openai.com/product/gpt-4, 2023. Vis-
ited on 23/05/2023.

62

https://github.com/Herb-AI/Herb.jl
https://github.com/Herb-AI/Herb.jl
https://openai.com/product/gpt-4

[12] Laurent Perron. Search procedures and parallelism in constraint program-
ming. In Joxan Jaffar, editor, Principles and Practice of Constraint Program-
ming – CP’99, pages 346–360, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg.

[13] Alexander Schiendorfer. Constraint programming for hierarchical resource
allocation. pages 57–68, 01 2014.

[14] Paul Shaw. Using constraint programming and local search methods to solve
vehicle routing problems. In Michael Maher and Jean-Francois Puget, ed-
itors, Principles and Practice of Constraint Programming — CP98, pages
417–431, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[15] Armando Solar-Lezama. Program synthesis by sketching. PhD thesis, Mas-
sachusetts Institute of Technology, 2008.

[16] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. The
MIT Press, Cambridge, 1989.

63

Appendix A

Encodings

A.1 Logic program system of the robots grammar

1 head_pred(f,2).
2 body_pred(at_top,1).
3 body_pred(at_bottom,1).
4 body_pred(at_left,1).
5 body_pred(at_right,1).
6 body_pred(move_left,2).
7 body_pred(move_right,2).
8 body_pred(move_up,2).
9 body_pred(move_down,2).

10

11 direction(f,(in,out)).
12 direction(move_left,(in,out)).
13 direction(move_right,(in,out)).
14 direction(move_up,(in,out)).
15 direction(move_down,(in,out)).
16 direction(at_top,(in,)).
17 direction(at_bottom,(in,)).
18 direction(at_left,(in,)).
19 direction(at_right,(in,)).

1 size(10).
2

3 at_left(w(1,_)).
4

5 at_bottom(w(_,1)).
6

7 at_top(w(_,Y)):-
8 size(Y).
9 at_right(w(X,_)):-

10 size(X).
11

12 move_right(w(X1,Y),w(X2,Y)):-
13 size(Size),
14 X1 #< Size,
15 X2 #= X1 + 1.
16

17 move_left(w(X1,Y),w(X2,Y)):-
18 X1 #> 1,
19 X2 #= X1 - 1.
20

21 move_up(w(X,Y1),w(X,Y2)):-
22 size(Size),
23 Y1 #< Size,
24 Y2 #= Y1 + 1.
25

26 move_down(w(X,Y1),w(X,Y2)):-
27 Y1 #> 1,
28 Y2 #= Y1 - 1.

64

Appendix B

Herb Code Snippets

B.1 Pattern match

1 """
2 abstract type PatternMatchResult end
3

4 print("Hello")
5 A result of the `pattern_match` function. Can be one of 4 cases:
6 - `PatternMatchSuccess`
7 - `PatternMatchSuccessWhenHoleAssignedTo`
8 - `PatternMatchHardFail`
9 - `PatternMatchSoftFail`

10 """
11 abstract type PatternMatchResult end
12

13 """
14 The pattern is exactly matched and does not involve any holes at

all
15 """
16 struct PatternMatchSuccess <: PatternMatchResult end
17

18 """
19 The pattern can be matched when the `hole` is filled with any of

the given `ind`(s).
20 """
21 struct PatternMatchSuccessWhenHoleAssignedTo <: PatternMatchResult
22 hole::AbstractHole
23 ind::Union{Int, Vector{Int}}
24 end
25

26 """
27 The pattern is not matched and can never be matched by filling in

holes
28 """
29 struct PatternMatchHardFail <: PatternMatchResult end
30

31 """
32 The pattern can still be matched in a non-trivial way. Includes

65

two cases:
33 - multiple holes are involved. this result stores a reference to

one of them
34 - a single hole is involved, but needs to be filled with a node of

size >= 2
35 """
36 struct PatternMatchSoftFail <: PatternMatchResult
37 hole::AbstractHole
38 end
39

40 """
41 Recursively tries to match `AbstractRuleNode` `rn` with `

AbstractRuleNode` `mn`.
42 Returns a `PatternMatchResult` that describes if the pattern was

matched.
43 """
44 function pattern_match(rn::AbstractRuleNode, mn::AbstractRuleNode)

::PatternMatchResult
45 pattern_match(rn, mn, Dict{Symbol, AbstractRuleNode}())
46 end
47

48 """
49 Generic fallback function for commutativity. Swaps arguments 1 and

2, then dispatches to a more specific signature.
50 If this gets stuck in an infinite loop, the implementation of an

AbstractRuleNode type pair is missing.
51 """
52 function pattern_match(mn::AbstractRuleNode, rn::AbstractRuleNode,

vars::Dict{Symbol, AbstractRuleNode})
53 pattern_match(rn, mn, vars)
54 end
55

56 """
57 Pairwise tries to match two ordered lists of AbstractRuleNodes.
58 Typically, this function is used to pattern match the children two

AbstractRuleNodes.
59 """
60 function pattern_match(rns::Vector{AbstractRuleNode}, mns::Vector{

AbstractRuleNode}, vars::Dict{Symbol, AbstractRuleNode})::
PatternMatchResult

61 @assert length(rns) == length(mns) "Unable to pattern match
rulenodes with different arities"

62 match_result = PatternMatchSuccess()
63 for child_match_result in map(tup -> pattern_match(tup[2][1],

tup[2][2], vars), enumerate(zip(rns, mns)))
64 @match child_match_result begin
65 ::PatternMatchHardFail => return child_match_result;
66 ::PatternMatchSoftFail => (match_result =

child_match_result); #continue searching for a hardfail
67 ::PatternMatchSuccess => (); #continue searching for a

hardfail
68 ::PatternMatchSuccessWhenHoleAssignedTo => begin
69 if !(match_result isa PatternMatchSuccess)
70 return PatternMatchSoftFail(child_match_result

66

.hole)
71 end
72 match_result = child_match_result;
73 end
74 end
75 end
76 return match_result
77 end
78

79 """
80 Comparing any `AbstractRuleNode` with a named `VarNode`
81 """
82 function pattern_match(rn::AbstractRuleNode, var::VarNode, vars::

Dict{Symbol, AbstractRuleNode})::PatternMatchResult
83 if var.name in keys(vars)
84 return pattern_match(rn, vars[var.name])
85 end
86 vars[var.name] = rn
87 return PatternMatchSuccess()
88 end
89

90 """
91 Comparing any `AbstractRuleNode1 with a `DomainRuleNode`
92 """
93 function pattern_match(node::AbstractRuleNode, domainrulenode::

DomainRuleNode, vars::Dict{Symbol, AbstractRuleNode})::
PatternMatchResult

94 if isfilled(node)
95 #(RuleNode, DomainRuleNode)
96 if !domainrulenode.domain[get_rule(node)]
97 return PatternMatchHardFail()
98 end
99 return pattern_match(get_children(node), get_children(

domainrulenode), vars)
100 else
101 #(AbstractHole, DomainRuleNode)
102 if are_disjoint(node.domain, domainrulenode.domain)
103 return PatternMatchHardFail()
104 end
105 if length(get_children(domainrulenode)) != length(

get_children(node))
106 return PatternMatchSoftFail(node)
107 end
108 children_match_result = pattern_match(get_children(node),

get_children(domainrulenode), vars)
109 @match children_match_result begin
110 ::PatternMatchHardFail => return children_match_result

;
111 ::PatternMatchSoftFail => return children_match_result

;
112 ::PatternMatchSuccess => begin
113 if is_subdomain(node.domain, domainrulenode.domain

)
114 return children_match_result

67

115 end
116 intersection = get_intersection(node.domain,

domainrulenode.domain)
117 if length(intersection) == 1
118 return PatternMatchSuccessWhenHoleAssignedTo(

node, intersection[1]) #exactly this value
119 end
120 return PatternMatchSuccessWhenHoleAssignedTo(node,

intersection) #one of multiple values
121 end
122 ::PatternMatchSuccessWhenHoleAssignedTo => begin
123 if is_subdomain(node.domain, domainrulenode.domain

)
124 return children_match_result
125 end
126 return PatternMatchSoftFail(children_match_result.

hole)
127 end
128 end
129 end
130 end
131

132 """
133 Comparing any pair of `Rulenode` and/or `AbstractHole`.
134 It is important to note that some `AbstractHole`s are already

filled and should be treated as `RuleNode`.
135 This is why this function is dispatched on `(isfilled(h1),

isfilled(h2))`.
136 The '(RuleNode, AbstractHole)' case could still include two nodes

of type `AbstractHole`, but one of them should be treated as a
rulenode.

137 """
138 function pattern_match(h1::Union{RuleNode, AbstractHole}, h2::

Union{RuleNode, AbstractHole}, vars::Dict{Symbol,
AbstractRuleNode})::PatternMatchResult

139 @match (isfilled(h1), isfilled(h2)) begin
140 #(RuleNode, RuleNode)
141 (true, true) => begin
142 if get_rule(h1) != get_rule(h2)
143 return PatternMatchHardFail()
144 end
145 return pattern_match(get_children(h1), get_children(h2

), vars)
146 end
147

148 #(RuleNode, AbstractHole)
149 (true, false) => begin
150 if !h2.domain[get_rule(h1)]
151 return PatternMatchHardFail()
152 end
153 if isuniform(h2)
154 children_match_result = pattern_match(get_children

(h1), get_children(h2), vars)
155 @match children_match_result begin

68

156 ::PatternMatchHardFail => return
children_match_result;

157 ::PatternMatchSoftFail => return
children_match_result;

158 ::PatternMatchSuccess => return
PatternMatchSuccessWhenHoleAssignedTo(h2, get_rule(h1));

159 ::PatternMatchSuccessWhenHoleAssignedTo =>
return PatternMatchSoftFail(children_match_result.hole);

160 end
161 end
162 if !h2.domain[get_rule(h1)]
163 return PatternMatchHardFail()
164 end
165 if isempty(h1.children)
166 return PatternMatchSuccessWhenHoleAssignedTo(h2,

get_rule(h1))
167 end
168 return PatternMatchSoftFail(h2)
169 end
170

171 #(AbstractHole, RuleNode)
172 (false, true) => pattern_match(h2, h1, vars)
173

174 #(AbstractHole, AbstractHole)
175 (false, false) => begin
176 if are_disjoint(h1.domain, h2.domain)
177 return PatternMatchHardFail()
178 end
179 if isuniform(h1) && isuniform(h2)
180 children_match_result = pattern_match(get_children

(h1), get_children(h2), vars)
181 @match children_match_result begin
182 ::PatternMatchHardFail => return

children_match_result;
183 ::PatternMatchSoftFail => return

children_match_result;
184 ::PatternMatchSuccess => return

PatternMatchSoftFail(h1);
185 ::PatternMatchSuccessWhenHoleAssignedTo =>

return PatternMatchSoftFail(children_match_result.hole);
186 end
187 end
188 return PatternMatchSoftFail(isuniform(h1) ? h2 : h1)
189 end
190 end
191 end

B.2 Symbolic Grammar Constraints

1 _t1,_t2,_t3,_u1,_u2,_u3,_b1,_b2,_b3,_unique = 1,2,3,4,5,6,7,8,9,10
2

3 a = VarNode(:a)
4 b = VarNode(:b)

69

5 c = VarNode(:c)
6

7 t1 = RuleNode(_t1)
8 t2 = RuleNode(_t2)
9 t3 = RuleNode(_t3)

10

11 u1(c1) = RuleNode(_u1, [c1])
12 u2(c1) = RuleNode(_u2, [c1])
13 u3(c1) = RuleNode(_u3, [c1])
14

15 b1(c1, c2) = RuleNode(_b1, [c1, c2])
16 b2(c1, c2) = RuleNode(_b2, [c1, c2])
17 b3(c1, c2) = RuleNode(_b3, [c1, c2])
18

19 unique = RuleNode(10)
20

21 constraints = Vector{AbstractGrammarConstraint}()
22

23 # contains constraints
24 push!(constraints, Contains(_t1))
25 push!(constraints, Contains(_t2))
26 push!(constraints, Contains(_t3))
27

28 # contains subtree constraints
29 push!(constraints, ContainsSubtree(b3(unique, a)))
30 push!(constraints, ContainsSubtree(b3(a, u1(a))))
31 push!(constraints, ContainsSubtree(b2(a, u1(b))))
32 push!(constraints, ContainsSubtree(b1(u2(b), a)))
33

34 # unique constraint
35 push!(constraints, Unique(_unique))
36

37 # forbidden sequence constraints
38 push!(constraints, ForbiddenSequence([_b1, _b2, _t2]))
39 push!(constraints, ForbiddenSequence([_b1, _b3, _t2]))
40 push!(constraints, ForbiddenSequence([_u1, _t1]))
41 push!(constraints, ForbiddenSequence([_u2, _t1]))
42 push!(constraints, ForbiddenSequence([_u3, _t3]))
43

44 # forbidden constraints
45 push!(constraints, Forbidden(b1(a, a)))
46 push!(constraints, Forbidden(b2(a, a)))
47 push!(constraints, Forbidden(b2(a, b1(b, b))))
48 push!(constraints, Forbidden(b2(u1(a), b)))
49 push!(constraints, Forbidden(u1(u2(u3(a)))))
50

51 # ordered constraints
52 push!(constraints, Ordered(b1(a, b), [:a, :b]))
53 push!(constraints, Ordered(b1(b1(a, b), u1(c)), [:a, :b, :c]))
54 push!(constraints, Ordered(b1(u1(c), b1(a, b)), [:a, :b, :c]))

70

Appendix C

Exact Results

C.1 Robot Grammar

Without Constraints With Constraints
Size Program Space Runtime (s) Program Space Runtime (s)

1 1 0.000 1 0.000
2 7 0.000 7 0.000
3 43 0.000 33 0.001
4 259 0.000 133 0.002
5 1 555 0.002 469 0.006
6 9 331 0.017 1 457 0.022
7 55 987 0.093 4 025 0.071
8 335 923 0.548 9 997 0.202
9 2 015 539 3.270 22 605 0.538

10 12 093 235 23.848 47 129 1.306
11 72 559 411 141.965 91 665 2.855
12 435 356 467 844.853 168 021 6.010
13 2 612 138 803 (*) 292 741 12.288
14 15 672 832 819 (*) 488 257 23.258
15 94 036 996 915 (*) 784 169 40.322
16 564 221 981 491 (*) 1 218 653 69.516
17 3 385 331 888 947 (*) 1 839 997 116.150
18 20 311 991 333 683 (*) 2 708 265 182.691
19 121 871 948 002 099 (*) 3 897 089 292.376
20 731 231 688 012 595 (*) 5 495 589 447.164
21 4 387 390 128 075 571 (*) 7 610 421 681.843

(*) Instead of actual enumeration, the theoretical number of programs was cal-
culated with

∑n−1
k=0 6

k.

71

C.2 Arithmetic Grammar

Without Constraints With Constraints
Size Program Space Runtime (s) Program Space Runtime (s)

1 11 0.000 11 0.000
2 11 0.000 11 0.000
3 374 0.000 201 0.001
4 374 0.000 201 0.001
5 24 332 0.039 7 798 0.018
6 24 332 0.039 7 798 0.018
7 2 000 867 3.190 383 688 0.814
8 2 000 867 3.852 383 688 0.819
9 184 632 701 361.538 21 192 628 43.842

10 184 632 701 357.280 21 192 628 45.778
11 18 265 184 267 35048.885 1 254 647 849 2592.975

C.3 Symbolic Grammar

Without Constraints With Constraints
Size Program Space Runtime (s) Program Space Runtime (s)

1, 4 0.000 0 0.000
2, 16 0.000 0 0.000
3, 100 0.000 0 0.001
4 640 0.001 0 0.002
5 4 708 0.010 0 0.007
6 35 920 0.072 0 0.020
7 287 236 0.550 0 0.056
8 2 355 328 4.469 0 0.146
9 19 763 524 43.766 0 0.406

10 168 628 240 377.454 0 1.143
11 1 459 357 732 3213.797 0 3.011
12 - - 11 8.752
13 - - 108 24.491
14 - - 2597 71.632
15 - - 27667 210.122
16 - - 345428 653.034

72

C.4 List Grammar

Without Constraints With Constraints
Size Program Space Runtime (s) Program Space Runtime (s)

1 1 0.000 1 0.000
2 3 0.000 1 0.000
3 13 0.000 6 0.001
4 51 0.001 6 0.001
5 217 0.002 31 0.003
6 951 0.010 56 0.008
7 4 297 0.036 206 0.018
8 19 887 0.124 556 0.041
9 93 757 0.513 1 656 0.092

10 448 875 2.172 5 381 0.216
11 2 176 261 8.963 16 006 0.580
12 10 663 563 37.675 53 631 1.159
13 52 724 209 150.302 166 881 2.681
14 262 718 895 771.796 548 256 6.346
15 1 317 979 105 3629.086 1 779 631 15.498
16 - - 5 817 631 36.277
17 - - 19 329 756 89.897
18 - - 63 692 256 250.183
19 - - 213 391 631 652.133

73

	Introduction
	Background Knowledge
	Program Synthesis
	Intent Specification
	Program Space
	Search

	Constraint Programming
	Specification
	Solving

	Related work
	Popper
	Sketch
	Neo

	Problem definition
	Search Nodes
	Backtracking
	Grammar Constraints
	First-Order Constraints

	Methods
	Overview
	Data Structures
	Uniform Holes
	Grammar Constraints and Local Constraints
	States

	Generic Solver
	Constraint Propagation
	Tree manipulations
	State Management

	Uniform Solver
	Depth-first search
	State Management

	Top-Down Iterator
	Constraints
	Forbidden
	Ordered
	Contains and Unique
	Contains Sub-tree
	Forbidden Sequence

	Evaluation
	Setup
	Robot Grammar
	Arithmetic Grammar
	Symbolic Grammar
	List Grammar

	Reducing the Program Space
	First-order Constraints
	Ablation Study
	Bottlenecks

	Conclusions and Future Work
	Conclusions
	Future Work
	Example-based constraint generation
	More First-Order Constraints
	Full DFS Solver
	Contributions to Herb.jl

	Encodings
	Logic program system of the robots grammar

	Herb Code Snippets
	Pattern match
	Symbolic Grammar Constraints

	Exact Results
	Robot Grammar
	Arithmetic Grammar
	Symbolic Grammar
	List Grammar

