
 
 

Delft University of Technology

The Grand 4R Four-Bar Based Inherently Balanced Linkage Architecture for synthesis of
shaking force balanced and gravity force balanced mechanisms

van der Wijk, Volkert

DOI
10.1016/j.mechmachtheory.2020.103815
Publication date
2020
Document Version
Final published version
Published in
Mechanism and Machine Theory

Citation (APA)
van der Wijk, V. (2020). The Grand 4R Four-Bar Based Inherently Balanced Linkage Architecture for
synthesis of shaking force balanced and gravity force balanced mechanisms. Mechanism and Machine
Theory, 150, Article 103815. https://doi.org/10.1016/j.mechmachtheory.2020.103815

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.mechmachtheory.2020.103815
https://doi.org/10.1016/j.mechmachtheory.2020.103815


Mechanism and Machine Theory 150 (2020) 103815 

Contents lists available at ScienceDirect 

Mechanism and Machine Theory 

journal homepage: www.elsevier.com/locate/mechmachtheory 

Research paper 

The Grand 4R Four-Bar Based Inherently Balanced Linkage 

Architecture for synthesis of shaking force balanced and 

gravity force balanced mechanisms 

Volkert van der Wijk 

Mechatronic System Design, Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials 

Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, the Netherlands 

a r t i c l e i n f o 

Article history: 

Received 6 October 2019 

Revised 19 January 2020 

Accepted 27 January 2020 

Keywords: 

Shaking force balance 

Gravity balance 

Inherent balance 

Principal vectors 

Four-bar deployable linkage 

Center of mass 

a b s t r a c t 

Considering balancing as starting point in the design of mechanisms and manipulators is 

known as inherent balancing. Inherently balanced linkage architectures then form the ba- 

sis from which balanced mechanism solutions are synthesized, needing no countermasses 

contrary to balancing of given mechanisms. In this paper a new and advanced inherently 

balanced linkage architecture with the 4R four-bar linkage as a basis is presented, the 

Grand 4R Four-Bar Based Inherently Balanced Linkage Architecture . With 24 links it is 26 

times overconstrained yet movable with stationary center of mass. It is shown that all the- 

ories for tracing the center of mass of a four-bar linkage are found inside. It is shown also 

how from this architecture a variety of new normally constrained 2-DoF balanced linkages 

are derived by removing a selection of links. This is done for the situations that all links 

are mass symmetric, for which 32 solutions are presented, and that all links have a gen- 

eral mass distribution. As an example, the balance conditions for the TWIN-4B, a solution 

of two similar 4R four-bar linkages, one inside the other, are derived and it is shown how 

this solution can be transformed into a spatial inherently balanced double Bennett linkage. 

© 2020 The Author. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

1. Introduction 

Balanced devices are used in a variety of applications. Shaking force balance together with shaking moment balance,

when mechanisms move without resultant reaction forces and reaction moments at the base eliminating base vibrations, is

found in high speed robot manipulators [1–4] , among others for low settling time [5] , dynamic decoupling, and improved

stability [6] . It is also known for reducing noise in machinery [7] and for increasing ergonomic comfort in hand tools [8] .

Gravity force balance, when gravity does not influence the motion of the mechanism, is applied in robotic manipulators for

example to lower actuator torques [9,10] , to increase payload capacity [11] , and to improve the calibration accuracy [12] .

For large deployable structures such as in kinetic architecture gravity force balance is important for stability, safety, and low

actuation power [13] . 

Although shaking force balance is about dynamic (inertial) forces and gravity force balance is about forces within a

static force field for which they are two completely different phenomena, they share the same design solutions. Namely, a
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Fig. 1. (a) Principal vectors a 1 , a 21 , a 23 , and a 3 describe the motion of the link CoMs with respect to the common CoM in S through principal points P i ; 

(b) Closed principal vector linkage where the principal vectors have been transformed into rigid links with revolute pairs and mass (both drawn to scale). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shaking force balanced mechanism is gravity force balanced as well. The reverse however is not true, gravity force balanced

mechanisms are not shaking force balanced in the direction perpendicular to the gravity force and they are also not shaking

force balanced if elements other than (counter-)masses are used such as springs [14] . Since this paper considers balance

solutions with solely masses, force balance is used to represent both shaking force balance and gravity force balance. 

The motivation of this work originated from research on the shaking force balancing of multi-degree-of-freedom (multi-

DoF) mechanisms and manipulators. It was observed that common balance methods and approaches for 1-DoF linkages

[15,16] lead, because of the required counter-masses and counterrotations, to a significant addition of mass, inertia, and

complexity when applied to multi-DoF linkages [17–22] and also to significant elastodynamic problems [23] . The better bal-

ance solutions showed some advantageous kinematic or geometric properties. Supported by the idea that the kinematics of

multi-DoF manipulators is very flexible - to perform a specific task numerous kinematic solutions of a multi-DoF (parallel)

manipulator can be found - this led to the inherent dynamic balance approach where the properties of balance form the ba-

sis and are the starting point in the design of balanced mechanisms, which is contrary to the common approach of aiming at

finding a balance solution for a given mechanism design [13] . The balance properties are composed in, so-called, inherently

balanced linkage architectures: movable compositions of links which solely include the kinematic and geometric relations

for balance. From these linkage architectures then, as a next step, design solutions for an intended task can be derived in a

variety of ways by possibly altering anything - for example by eliminating, relocating, and resizing links, introducing gears

or sliders - and as long as the relations for balance are maintained all results remain inherently balanced. 

The method of principal vectors [24] was found fundamental in expressing the properties for balance and for creating

the inherently balanced linkages. First open-chain principal vector linkages were developed, showing a strong relation to

pantograph linkages and their properties of similarity [25] . Promising results were obtained by synthesis of a 2-DoF dynam-

ically balanced grasper and the DUAL-V high speed 3-DoF dynamically balanced manipulator [3] and also by new designs of

large balanced structures such as a movable bridge and a deployable roof structure [13] . Subsequently, various closed-chain

principal vector linkages [26] and specific multi-loop linkage architectures based on old graphical methods for tracing the

common center of mass (CoM) of linkages were developed [13,27] . Investigating these latter linkage architectures led to

the awareness that all of them should be part of a single extensive linkage architecture, a Grand Inherently Balanced Link-

age Architecture. The preliminary results for the Grand 4R Four-Bar Based Inherently Balanced Linkage Architecture were

presented in [28] . 

The goal of this paper is to present the complete Grand Inherently Balanced Linkage Architecture based on the 4R four-

bar linkage and to show in detail how it leads to a variety of inherently balanced mechanism solutions. First the Grand

Architecture is shown and explained for mass symmetric links, i.e. links with their CoM on the line through the joints. Sub-

sequently it is shown how a variety of inherently balanced mechanism solutions can be derived from the Grand Architecture

and how the known theories for tracing the common CoM of a four-bar linkage are related. Then the Grand Architecture

is generalized for mass asymmetric links and it is shown how the inherently balanced mechanism solutions from the gen-

eralized architecture differ from the solutions from the Grand Architecture with mass symmetric links. For one inherently

balanced mechanism solution, named the TWIN-4B linkage, it is explained how the balance conditions can be derived. At

the end an example of a spatial inherently balanced linkage solution is given by transforming the TWIN-4B into a spa-

tial inherently balanced double Bennett linkage. The Appendix presents 32 2-DoF inherently balanced mechanism solutions

obtained from the Grand Architecture for mass symmetric links, together with their balance conditions. 

2. Composition of the Grand 4R Four-bar Based Inherently Balanced Linkage Architecture 

The motions of the CoMs of moving mechanism elements with respect to their common CoM can be described with

vectors of constant magnitude known as the principal vectors [13,24] . For instance, the motion of the link masses of four

elements in a closed chain can be described with respect to their common CoM with the four principal vectors a 1 , a 21 , a 23 ,

and a 3 [13,26] . This is illustrated in Fig. 1 a where four links with lengths l i form a planar linkage with revolute pairs in

joints A 0 , A 1 , A 2 , and A 3 . Each link here has a mass m i and is mass symmetric with respect to the line through its joints,

which means that the link CoM S i is located along the line through the joints. The four principal vectors describe a special

invariant link point P in three of the four links, named the principal points, with which they form three parallelograms.
i 
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Fig. 2. Linkage architecture based on the combination of the four different principal vector sets. 8 links come together with revolute pairs in S and they 

can also be merged into the four single links B 1 SB 6 , B 2 SB 5 , B 3 SB 8 , and B 4 SB 7 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The principal points can be described with respect to the common CoM of all four links, which is in S , with the principal

vectors as: 

P 1 = −a 21 e 
iθ2 + a 3 e 

iθ3 

P 2 = a 1 e 
iθ1 + a 3 e 

iθ3 

P 3 = a 1 e 
iθ1 + a 23 e 

iθ2 (1)

with the principal dimensions a 1 = ‖ a 1 ‖ , a 21 = ‖ a 21 ‖ , a 23 = ‖ a 23 ‖ , and a 3 = ‖ a 3 ‖ which are the distances between the

points P 1 and A 1 , P 2 and A 1 , P 2 and A 2 , and P 3 and A 2 , respectively, and are constants for any motion of the mechanism. The

distances between the points P 1 and S 1 , P 2 and S 2 , and P 3 and S 3 are named p 1 , p 2 , and p 3 , respectively. These equations are

linear combinations of the time dependent unit vector of each rotational DoF θ i . They hold for both the situation that link

4 is eliminated and the resulting open chain has three DoFs as well as for the depicted closed chain with two DoFs where

θ1 , θ2 , and θ3 have dependency. 

Because of their constant lengths, the principal vectors can be transformed into real rigid links as shown in Fig. 1 b.

These principal vector links have lengths a 1 , a 21 , a 23 , and a 3 and have revolute pairs in P 1 , P 2 , P 3 , B 1 , B 2 , and S . S here is the

common CoM of all 10 links and is an invariant link point in both links B 1 S and B 2 S . The complete linkage is force balanced

about S and when S is kept as a fixed point in the base then a force balanced linkage with two DoFs is obtained. 

The linkage in Fig. 1 b is referred to as a closed-chain principal vector linkage of which all the links are mass symmetric.

The masses of the principal vector links m 11 , m 12 , m 13 , m 31 , m 32 , and m 33 , have their CoM along the line through their joints

at a distance p 11 , p 12 , p 13 , p 31 , p 32 , and p 33 , respectively, from the joints as indicated by the arrows. The balance conditions

for which the common CoM is in joint S for all motions can be derived from the conditions of the general version where

the links have a generally located link CoM [13,26] as: 

m 1 p 1 = (m 2 + m 3 + m 4 + m 31 + m 32 ) a 1 − m 4 
e 4 
l 4 

l 1 + m 12 p 12 + m 13 p 13 

m 2 p 2 = 

(
m 1 + m 4 

e 4 
l 4 

)
a 21 −

(
m 3 + m 4 

(
1 − e 4 

l 4 

))
a 23 + m 11 p 11 − m 31 p 31 

m 3 p 3 = (m 1 + m 2 + m 4 + m 11 + m 12 ) a 3 − m 4 

(
1 − e 4 

l 4 

)
l 3 + m 32 p 32 + m 33 p 33 (2)

where a 21 and a 23 are related by l 2 as a 21 + a 23 = l 2 . In the Appendix the linkage of Fig. 1 b is shown as linkage solution

1 with an alternative notation of these balance conditions. To give a realistic image, Fig. 1 was drawn to scale for m 1 ,

m 2 , m 3 , and m 4 located halfway their links with values proportional to their link lengths ( 
m 1 
l 1 

= 

m 2 
l 2 

= 

m 3 
l 3 

= 

m 4 
l 4 

) with the

other masses equal to zero. If the mass of the other links is included then S shifts a little closer to link 2 for which the

parallelograms become slightly smaller. 

In Fig. 1 b only one of the four possible ways to construct principal vector links in a closed chain of four links is shown,

which can be seen as that the parallelograms are centered about link 2. It is also possible to construct the parallelograms

about link 1, link 3, or link 4 of which the results look similar. When all four of them are combined into the same linkage,

then the result in Fig. 2 is obtained where eight links connect with revolute pairs in S . This linkage architecture is based

on the four different principal vector sets and has three principal points in each of the four-bar links. For clarity of the

illustration the masses of the principal vector links were not drawn. 

With the eight links connecting in S the linkage architecture is 6 times overconstrained yet movable. Since each opposite

pair of links moves as if it is a single rigid link, the eight links can be transformed into the four single links B 1 SB 6 , B 2 SB 5 ,

B 3 SB 8 , and B 4 SB 7 with S as their common joint. In that case the linkage architecture is 10 times overconstrained yet movable.

In the architecture of Fig. 2 links P 31 B 2 and P 43 B 7 can be extended to a common joint C 1 . Also links P 11 B 1 and P 41 B 4
can be extended to a common joint C 2 , links P 22 B 3 and P 12 B 6 can be extended to a common joint in C 3 and links P 33 B 5
and P 23 B 8 can be extended to a common joint in C 4 . In Fig. 3 these extensions are included with revolute pairs in joints

C i . Revolute pairs in joints D 1 , D 2 , D 3 and D 4 are also included, which is possible since the links intersect at invariant link

points for all motions, forming parallelograms. 



4 V. van der Wijk / Mechanism and Machine Theory 150 (2020) 103815 

Fig. 3. The Grand 4R Four-Bar Based Inherently Balanced Linkage Architecture including the extended links with joints C i and the joints D i . The common CoM 

of all 24 links in S for all motions. 

Fig. 4. (a) Inherently balanced linkage with S as a coupler point of a similar four-bar linkage, connected through double contour linkage P 43 C 1 P 31 ; (b) 

Inherently balanced linkage with three pantographs, shown with the two possible pantographs in the center which form a Burmester’s focal mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The resulting architecture in Fig. 3 will be referred to as the Grand 4R Four-bar Based Inherently Balanced Linkage Archi-

tecture . It shows the complete composition of the kinematic conditions for inherent balance with a 4R four-bar linkage as

a basis. With the four links passing through S the architecture is 26 times overconstrained yet movable. Also here S is the

common CoM of all 24 links for any motion. In the next section it is shown that because of the high number of overcon-

straints a wide variety of normally constrained inherently balanced mechanism solutions can be derived from this Grand

Architecture. 

3. Synthesis of normally constrained inherently balanced linkage solutions 

The Grand Architecture in Fig. 3 can be used as the starting point in the design of a balanced mechanism or manipulator

for an intended task. Every mechanism that is derived from the Grand Architecture without violating the kinematic geometry

has inherent balance properties. This means that then with a specific combination of mass parameter values, calculated

from the balance conditions, the resulting mechanism is balanced with respect to joint S , the base pivot, without the need

of additional masses or elements. With this approach balancing is considered before the (final) design of the mechanism of

which the topology then depends primarily on advantageous balance capability instead of other reasons for the choice of

the initial mechanism topology. 

First it is shown how normally constrained 2-DoF linkage solutions can be derived from the Grand Architecture which

relate to known theory on the motion of the common CoM, followed by examples of other 2-DoF linkage solutions. When

from the Grand Architecture in Fig. 3 all internal links are removed but links P 31 C 1 , C 1 P 43 , B 7 B 4 , and B 4 P 41 , then the normally

constrained linkage in Fig. 4 a is obtained where S , an invariant point in link B 7 B 4 , is the common CoM of all 8 links. In this

solution a four-bar P 43 B 7 B 4 P 41 can be observed that is similar to and smaller than the fourbar A 0 A 1 A 2 A 3 , sharing link A 3 A 0 .

This is related to the theory of Kreutzinger [29] who found that the common CoM of the three moving links of a four-bar

linkage traces a coupler curve of a similar four-bar linkage which is also similar to a coupler curve of the linkage itself.

Where Kreutzinger used this similar fourbar linkage as a graphical tool for analysis, here the similar fourbar is a real linkage

of which the masses are included as well. 

The extension of link P 43 B 7 to C 1 and link C 1 P 31 together constrain the four-bar linkage P 43 B 7 B 4 P 41 to move synchronously

with four-bar linkage A 0 A 1 A 2 A 3 . In fact, links P 43 C 1 and C 1 P 31 form together with links A 0 A 3 and A 2 A 3 another similar four-

bar linkage. This is related to the theory of Shchepetil’nikov [30] who named it a double contour transformation where links

P 43 C 1 and C 1 P 31 are the double contour of links A 0 A 1 and A 1 A 2 and subsequently links P 41 B 4 and B 4 B 7 are the double contour

of links A P and P C . With this method the graphical analysis of the motion of the common CoM could be more accurate
3 31 31 1 
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Fig. 5. (a) Inherently balanced linkage with a single pantograph to two opposite four-bar links; (b) Inherently balanced linkage with design variation of 

the pantograph in Fig. 5 a. 

Fig. 6. (a) Design variation of the inherently balanced linkage in Fig. 1 b; (b) Inherently balanced linkage solution with a single pantograph to two connect- 

ing four-bar links. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and less cumbersome as compared to the method of principal vectors, which was also invented for graphical analysis of the

motion of the common CoM of a system of rigid bodies [31] . 

Within the Grand Architecture in Fig. 3 numerous similar four-bar linkages can be found. Of the solution in Fig. 4 a 8

versions can be found which are essentially equal, two with respect to each link of the four-bar A 0 A 1 A 2 A 3 , a left and a right

one. For instance the version with links P 11 B 1 , B 1 B 6 , P 12 C 3 , and C 3 P 22 is left oriented and with respect to four-bar link A 0 A 1 .

When within the Grand Architecture all links are removed but links P 11 D 1 , P 23 D 1 , D 1 C 4 , C 4 D 3 , B 8 S , B 5 S , P 33 D 3 , and P 41 D 3 ,

then the solution in Fig. 4 b is obtained. This solution can be regarded as a combination of three balanced pantographs where

pantograph A 0 A 1 A 2 P 11 D 1 P 23 traces the common CoM of its four links in D 1 . Similarly the pantograph A 2 A 3 A 0 P 33 D 3 P 41 traces

the common CoM of its four links in D 3 . The third pantograph D 1 C 4 D 3 B 5 SB 8 connects to the mass centers of the two other

pantographs and traces the common CoM of all three pantographs in S . This solution is related to the graphical method of

Fisher to determine the common CoM of all body segments of a human in motion [24] . 

It is noted that in Fig. 4 b links P 23 D 1 and D 1 C 4 are two separate links and also P 33 D 3 and D 3 C 4 are two separate links.

Since the size of a pantograph does not affect its properties of similarity or scaling, the link lengths of the central pantograph

can be chosen freely such that link D 1 C 4 is no longer in line with link P 23 D 1 and link D 3 C 4 is no longer in line with link

P 33 D 3 . This holds also for the two other pantographs that therefore need not to be embedded within the links of the four-bar

linkage. 

For the solution in Fig. 4 b there exist 4 versions within the Grand Architecture. For the central pantograph also links

D 1 C 2 , C 2 D 3 , B 1 S , and SB 4 could be chosen for which along the diagonal A 1 A 3 two pantograph versions are found. Similarly

two versions of three pantographs can be found along the diagonal A 0 A 2 . It is interesting to note that the two central

pantographs together form a well known Burmester’s focal linkage with S as the focal point [32,33] . This means that within

the Grand Architecture two Burmester’s focal linkages are found. 

By removing all internal links from the Grand Architecture but the links P 21 B 1 , B 1 B 6 , B 6 P 42 , P 42 B 5 , B 5 B 2 , and B 2 P 21 the

inherently balanced solution in Fig. 5 a is obtained. These links form a single pantograph with the common CoM of all

10 links in S , the joint between links B 1 B 6 and B 5 B 2 . This solution is related to the theory of Dobrovol’skii [34] where a

single pantograph connected to the two opposite four-bar links is used as a graphical tool for analysis of the motion of

the common CoM of the four-bar linkage. From Fig. 5 a it is found that the connection points of the pantograph with the

four-bar linkage are principal points, an interesting new finding. 

Dobrovol’skii presented the pantograph in the form shown in Fig. 5 b, which is a design variation of the pantograph in

Fig. 5 a where E 1 is a joint between the extended links P 21 B 1 and P 42 B 5 and joints B 2 and B 6 are removed. As explained for

the pantographs in Fig. 4 b, also this pantograph may have any shape for the same property of similarity or scaling, keeping

the ratio P 21 S : P 42 S constant. 

Fig. 6 a shows a variation of the principal vector linkage in Fig. 1 b, also an inherently balanced linkage solution. This

solution is related to the theory of Artobolevskii [35] in which the principal vectors are used as a graphical tool in a slightly

different way with the active use of only one principal point, P . 
11 
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Fig. 7. Inherently balanced linkage (a) with centered similar four-bar connected by a parallelogram; (b) with similar four-bar and a connecting link to a 

side. 

Fig. 8. Inherently balanced linkage (a) with centered similar four-bars; (b) without any similar four-bar or parallelogram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Herewith the inherently balanced linkage solutions derived from the Grand Architecture that are related to a known

theory have been found. However there still are numerous other inherently balanced linkage solutions that can be derived.

For instance by removing all internal links from the Grand Architecture but links P 11 C 2 , C 2 P 41 , B 1 S , and SB 4 the solution in

Fig. 6 b is obtained. This solution shows that the common CoM of all 8 links is in S for all motions, which is a joint of a

single pantograph connected in principal points P 11 and P 41 with the four-bar linkage. This means that in addition to the

solution in Fig. 5 b, a single pantograph can also be connected to two connecting four-bar links for inherent balance. 

In Fig. 7 a an inherently balanced solution is shown that is obtained when from the Grand Architecture all internal links

are removed but links P 12 B 6 , B 6 S , SB 7 , and B 7 P 43 . The result is a small similar four-bar linkage that is connected to the outer

four-bar linkage by means of a parallelogram. Fig. 7 b shows the inherently balanced solution obtained by removing from

the Grand Architecture all internal links but links P 11 B 1 , B 1 B 6 , B 6 P 12 , and B 6 P 42 . The result is a similar four-bar linkage as in

Fig. 4 a, however here it is constrained with the outer four-bar through link B 6 P 42 , forming a parallelogram. 

Fig. 8 a shows the result of an inherently balanced linkage obtained by solely keeping links P 23 C 4 , C 4 P 33 , D 1 C 2 , C 2 D 3 , B 1 S ,

and SB 8 inside the Grand Architecture. This is a different combination of similar four-bar linkages which is more centered

as compared to the solution in Fig. 4 a. The result in Fig. 8 b is obtained by removing all internal links from the Grand

Architecture but links P 21 B 1 , B 1 B 6 , B 6 P 42 , P 13 B 7 , B 7 B 4 , and B 4 P 32 . The common CoM of all 10 links is in S , which is the joint

between links B 1 B 6 and B 7 B 4 . With respect to the results so far, this inherently balanced linkage has no parallelograms

neither similar four-bar linkages. 

In total 32 different inherently balanced linkage solutions have been derived from the Grand Architecture in Fig. 3 , which

are presented in the Appendix together with their balance conditions. 

4. Generalization for mass asymmetric links 

When the link CoM is not located along the line through the joints of the link but at a certain offset from this line,

then the link is mass asymmetric. This is the general case while mass symmetric links can be seen as a specific case,

however simpler and more common in real applications. Fig. 9 presents the Grand 4R Four-Bar Inherently Balanced Linkage

Architecture where all links are mass asymmetric and S is the common CoM for all motions. As compared to the mass-

symmetric case in Fig. 3 , here the principal points do not lay along the line through the joints and various internal links

have become triangular elements, such as link P 12 B 6 C 3 where B 6 is not on the line through P 12 and C 3 . Segment P 12 B 6 is

parallel to line A 0 P 42 and segment B 6 C 3 is parallel to link B 4 P 32 and to line P 41 A 3 . Another difference is that joints D i do not

exist for the general case. This has as a direct consequence that the general architecture is only 18 times overconstrained

and that the number of normally constrained inherently balanced linkage solutions that can be derived from the general

architecture is significantly lower. 

The General Grand Architecture was drawn to scale with the parameter values in Table 1 as explained in Fig. 10 which

is without including the mass of the internal links. The composition of the general architecture is analogous to the mass

symmetric architecture by combining four general closed-chain principal vector linkages which were obtained and precisely
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Fig. 9. Grand 4R Four-bar Based Inherently Balanced Architecture for general mass distributions of the links. 

Table 1 

Parameter values of the General Grand Architecture drawn in 

Fig. 9 and Fig. 10 . 

(cm) (kg) (cm) (cm) 

l 1 = 70 m 1 = 8 . 0 e 1 = 0 . 55 · l 1 f 1 = 0 . 15 · l 1 
l 2 = 65 m 2 = 6 . 7 e 2 = 0 . 43 · l 2 f 2 = 0 . 10 · l 2 
l 3 = 55 m 3 = 6 . 5 e 3 = 0 . 52 · l 3 f 3 = 0 . 23 · l 3 
l 4 = 100 m 4 = 5 . 5 e 4 = 0 . 48 · l 4 f 4 = 0 . 07 · l 4 

Fig. 10. Illustration of the link CoM parameters for the architecture in Fig. 9 (drawn to scale). 

Fig. 11. Inherently balanced linkage solutions with mass asymmetric links (a) generalized from Fig. 4 a; (b) generalized from Fig. 6 b. 

 

 

 

 

 

 

 

calculated in [13,26] . Also here there are eight links coming together in joint S , which also can be merged into the four

ternary elements B 1 SB 6 , B 2 SB 5 , B 3 SB 8 , and B 4 SB 7 with S as common joint. 

The inherently balanced linkage solutions that can be derived from the General Grand Architecture are comparable of

topology with the solutions obtained from the mass symmetric case. For instance Fig. 11 a shows the solution of Fig. 4 a for

links with a generally located CoM. All three links P 43 B 7 C 1 , P 31 C 1 , and B 7 SB 4 have an angle instead of being straight links as

in Fig. 4 a. 

In Fig. 11 b the solution for general mass distributions of the linkage in Fig. 6 b is shown. Also here links P 23 B 8 C 4 and

P 33 B 5 C 4 have an angle at B 8 and B 5 , respectively. Fig. 12 a shows an inherently balanced solution comparable to Fig. 8 b

where links B SB and B SB have an angle at their common joint in S . In Fig. 12 b an inherently balanced linkage solution
1 6 3 8 
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Fig. 12. Inherently balanced linkage solutions with mass asymmetric links (a) generalized from Fig. 8 b; (b) closely related to Fig. 7 a with two additional 

links. 

Fig. 13. (a) TWIN-4B inherently balanced linkage with link parameters; (b) 3-DoF open loop model with mass parameters and equivalent masses substi- 

tuting links 2 and 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is shown that is closest to the solution in Fig. 7 a. Since for general mass distributions joints D i do not exist, two additional

links P 13 B 8 and P 21 B 1 are required to constrain the motion normally. In this solution all links are straight. 

5. Deriving the balance conditions: example of the TWIN-4B 

After the choice of an inherently balanced linkage solution as starting point in the design, the next step is to obtain the

relations among the mass parameter values for which the linkage is balanced. These relations are known as the balance

conditions. In this section it is shown, as an example, how the balance conditions are derived for the linkage in Fig. 7 a,

which will be referred to as TWIN-4B linkage. 

In Fig. 13 the TWIN-4B linkage is shown with its design parameters. The balance conditions in fact consist of two groups

of conditions. The first group of balance conditions are the kinematic balance conditions and follow from the properties of

similarity as determined by the Grand Architecture and can be written from Fig. 13 a as: 

a 1 
l 1 

= 

a 2 
l 2 

= 

a 3 
l 3 

= 

a 4 
l 4 

(3) 

for similarity of the two four-bars and | A 0 P 12 | = | P 43 D 4 | = a 5 and | P 12 D 4 | = | A 0 P 43 | = a 6 defining the parallelogram

A 0 P 12 D 4 P 43 . Since these properties of similarity are completely defined by the design of the links, they turn out to be purely

geometric conditions. The second group of balance conditions are the mass balance conditions which determine the rela-

tions among the link mass values and their centered location in each link. These conditions can be derived with a method

where the linkage obtains three relative degrees of freedom and writing the linear momentum equations of each relative

DoF individually [13,26] . This takes advantage of the characteristic that the linear momentum of a force balanced mechanism

is constant (zero) for any of its motions. 

The first step is to model the linkage as an open loop linkage with three degrees of freedom. This can be done in

multiple ways such as the one illustrated in Fig. 13 b where link 2 ( A 1 A 2 ) and its parallel link 6 ( B 7 S ) are eliminated and

substituted with equivalent masses. The mass m 2 of link 2 is modeled with equivalent masses m 

a 
2 

and m 

b 
2 

located in A 1 

and A 2 , respectively, where mass equivalence is determined by m 

a 
2 

+ m 

b 
2 

= m 2 and m 

a 
2 
e 2 = m 

b 
2 
(l 2 − e 2 ) . The mass m 6 of link

6 is modeled similarly with equivalent masses m 

a 
6 

and m 

b 
6 

located in S and B 7 , respectively, where mass equivalence is

determined by m 

a 
6 

+ m 

b 
6 

= m 6 and m 

a 
6 

p 6 = m 

b 
6 
(a 2 − p 6 ) . Another option which is similar is to substitute link 3 ( A 2 A 3 ) and

its parallel link 7 ( SB 6 ). These are the two simple options, since substituting either link 1 ( A 0 A 1 ) or link 4 ( A 3 A 0 ) with their

parallel link would disconnect the inner links from the outer links. In that case the geometry of the grand architecture is

needed as graphical tool for analyzing the individual motions of each relative DoF, which is more complicated. As shown in

Fig. 13 b, parallelograms not related to the substituted links do not need to be opened. 

The second step then is to write the linear momentum equations for the individual motion of each of the three DoFs

and equal them to the linear momentum of the total mass moving in S , the desired common CoM. The individual motion

means rotation of one of the three principal elements (here links 1, 3, and 4) about any point with its parallel links rotating
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Fig. 14. (a) Motion of the first relative DoF; (b) Motion of the second relative DoF; (c) Motion of the third relative DoF. With the linear momentum 

equations of these motions the mass balance conditions are obtained readily. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

synchronously while all other links solely translate or are immobile [13,26] . In Fig. 14 a one possibility of the motion of the

first DoF is illustrated where link 1 rotates about A 0 , link 5 rotates about P 43 , links 3 and 4 are immobile and links 7 and

8 have solely translational motion. The linear momentum L 1 of this motion can be written with respect to reference frame

x 1 y 1 , which is aligned with A 0 A 1 as illustrated, and must be equal to the linear momentum of the total mass moving in S :

L 1 
˙ θ1 

= 

[ 

m 1 (a 5 + p 1 ) + m 

a 
2 l 1 + m 5 (a 5 + p 5 )+ 

m 

b 
6 (a 5 + a 1 ) + (m 

a 
6 + m 7 + m 8 ) a 5 

0 

] 

= 

[
m tot a 5 

0 

]
(4)

with the total mass m tot = m 1 + m 2 + m 3 + m 4 + m 5 + m 6 + m 7 + m 8 and the equivalent masses m 

a 
2 

= m 2 (1 − e 2 /l 2 ) , m 

a 
6 

=
m 6 (1 − p 6 /a 2 ) , and m 

b 
6 

= m 6 p 6 /a 2 . 

In Fig. 14 b the motion of the second DoF is illustrated where link 4 rotates about P 43 , link 8 rotates about D 4 , links 1,

3, and 7 have translational motion and link 5 is immobile. The linear momentum L 2 of this motion can be written with

respect to reference frame x 2 y 2 , which is aligned with A 0 A 3 as illustrated, and must be equal to the linear momentum of

the total mass moving in S : 

L 2 
˙ θ2 

= 

[ −(m 1 + m 

a 
2 ) a 6 + m 4 p 4 + m 8 (a 4 − p 8 )+ 

(m 

b 
2 + m 3 )(l 4 − a 6 ) + (m 

a 
6 + m 7 ) a 4 

0 

] 

= 

[
m tot a 4 

0 

]
(5)

with m 

b 
2 

= m 2 e 2 /l 2 . 

In Fig. 14 c the motion of the third DoF is illustrated where link 3 rotates about A 3 , link 7 rotates synchronously about

B 6 , and all other links are immobile. The linear momentum L 3 of this motion can be written with respect to reference frame

x 3 y 3 , which is aligned with A 3 A 2 as illustrated, and must be equal to the linear momentum of the total mass moving in S :

L 3 
˙ θ3 

= 

[
m 

b 
2 l 3 + m 3 e 3 + m 7 (a 3 − p 7 ) + m 

a 
6 a 3 

0 

]
= 

[
m tot a 3 

0 

]
(6)

With the linear momentum equations (Eqs. 4 –6) the second group of balance conditions is readily known. After substituting

m tot , they can be rewritten as: 

(m 2 + m 3 + m 4 ) a 5 − m 1 p 1 − m 

a 
2 l 1 − m 5 p 5 − m 

b 
6 a 1 = 0 (7)

(m 1 + m 2 + m 3 + m 4 + m 5 + m 

b 
6 ) a 4 + (m 1 + m 2 + m 3 ) a 6 

−(m 

b 
2 + m 3 ) l 4 − m 4 p 4 + m 8 p 8 = 0 (8)

(m 1 + m 2 + m 3 + m 4 + m 5 + m 

b 
6 + m 8 ) a 3 − m 

b 
2 l 3 − m 3 e 3 + m 7 p 7 = 0 (9)



10 V. van der Wijk / Mechanism and Machine Theory 150 (2020) 103815 

Table 2 

Numerical example of parameter values for inherent balance of 

the TWIN-4B in Fig. 13 . 

(cm) (kg) (cm) (cm) 

l 1 = 70 m 1 = 7 . 00 p 1 = 18 . 73 a 1 = 11 . 36 

l 2 = 65 m 2 = 6 . 50 e 2 = 32 . 50 a 2 = 10 . 55 

l 3 = 55 m 3 = 5 . 50 e 3 = 27 . 50 a 3 = 8 . 92 

l 4 = 100 m 4 = 10 . 00 p 4 = 23 . 76 a 4 = 16 . 22 

m 5 = 2 . 76 p 5 = −2 . 45 a 5 = 16 . 27 

m 6 = 1 . 05 p 6 = 5 . 27 a 6 = 26 . 24 

m 7 = 0 . 89 p 7 = 4 . 46 

m 8 = 4 . 25 p 8 = 21 . 23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By combining the kinematic balance conditions with these mass balance conditions the force balance conditions of the

TWIN-4B in Fig. 13 are found as: 

(m 2 + m 3 + m 4 ) a 5 − m 1 p 1 −
(

m 2 

(
1 − e 2 

l 2 

)
+ m 6 

p 6 
l 2 

)
l 1 − m 5 p 5 = 0 (10) 

(m 1 + m 2 + m 3 + m 4 + m 5 ) a 4 + (m 1 + m 2 + m 3 ) a 6 

−
(

m 2 
e 2 
l 2 

+ m 3 − m 6 
p 6 
l 2 

)
l 4 − m 4 p 4 + m 8 p 8 = 0 (11) 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 8 ) 
l 3 
l 4 

a 4 −
(

m 2 
e 2 
l 2 

− m 6 
p 6 
l 2 

)
l 3 − m 3 e 3 + m 7 p 7 = 0 (12) 

where a 2 = l 2 a 1 /l 1 , a 2 = l 2 a 4 /l 4 , a 2 = l 2 a 3 /l 3 and a 3 = l 3 a 4 /l 4 were substituted together with the expressions for the equiv-

alent masses m 

a 
2 
, m 

b 
2 
, m 

a 
6 
, and m 

b 
6 
. 

When designing the linkage, it is possible to choose, for instance, the relative size of the similar four-bars with a scaling

factor λ. Then a 1 = λl 1 , a 2 = λl 2 , a 3 = λl 3 , a 4 = λl 4 and from the force balance conditions ( 10 –12 ) parameters a 5 , a 6 , and p 7
can be calculated, respectively, as: 

a 5 = 

m 1 p 1 + m 2 (1 − e 2 
l 2 

) l 1 + m 5 p 5 + m 6 
p 6 
l 2 

l 1 

m 2 + m 3 + m 4 

(13) 

a 6 = 

−(m 1 + m 2 + m 3 + m 4 + m 5 ) λl 4 + (m 2 
e 2 
l 2 

+ m 3 − m 6 
p 6 
l 2 

) l 4 + m 4 p 4 − m 8 p 8 

m 1 + m 2 + m 3 

(14) 

p 7 = 

−(m 1 + m 2 + m 3 + m 4 + m 5 + m 8 ) λl 3 + (m 2 
e 2 
l 2 

− m 6 
p 6 
l 2 

) l 3 + m 3 e 3 

m 7 

(15) 

On the other hand it is also possible the leave the relative size of the similar four-bars dependent by calculating a 4 from

(12) as: 

a 4 = 

l 4 
l 3 

(
(m 2 

e 2 
l 2 

− m 6 
p 6 
l 2 

) l 3 + m 3 e 3 − m 7 p 7 

m 1 + m 2 + m 3 + m 4 + m 5 + m 8 

)
(16) 

The scaling factor of the similar four-bars then is determined by λ = a 4 /l 4 with which a 1 , a 2 , a 3 , a 5 , and a 6 can be obtained

as in the first case. 

As a numerical example, Table 2 shows a set of parameter values for which the TWIN-4B is inherently balanced and S

is the common CoM for any motion of the linkage. The results represent the realistic situation when the mass of each link

is directly related to the length of each link (mass per length is equal for all links) and when the link CoM of each link is

halfway the link. The scaling factor of the inner four-bar with respect to the outer four-bar here is λ = 0 . 16 . It is possible

to scale the linkage geometry without affecting the balance, i.e. all lengths in Table 2 could be multiplied by, for instance,

seven or ten and the design would remain balanced with the same mass values. Similarly all mass values in Table 2 could

be multiplied by any number without affecting the balance for the same geometry, link lengths and link CoM positions. 

6. Synthesis example of a spatial inherently balanced double Bennett linkage 

The principal vectors are not limited to planar motions: they describe the motion of the link CoMs with respect to the

common CoM for any spatial motion. For instance, the four-bar linkage in Fig. 1 a could have spherical joints in A 0 , A 1 , A 2 ,

and A and move out of plane with exactly the same principal vectors as for the planar case with revolute pairs. For spatial
3 
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Fig. 15. The Inherently Balanced Double Bennett Linkage with its common CoM in fixed joint S (b) can be obtained from the planar TWIN-4B linkage by 

having equal opposite link lengths as in (a) and by twisting the revolute pairs out of plane according to the Bennett conditions. 

Table 3 

Numerical example of parameter values for inherent 

balance of the Double Bennett Linkage in Fig. 15 . 

(cm) (kg) (cm) (cm) 

l 1 = 70 m 1 = 7 . 00 p 1 = 17 . 31 a 1 = 13 . 75 

l 2 = 90 m 2 = 9 . 00 e 2 = 45 . 00 a 2 = 17 . 67 

l 3 = l 1 m 3 = m 1 e 3 = 35 . 00 a 3 = a 1 
l 4 = l 2 m 4 = m 2 p 4 = 22 . 43 a 4 = a 2 

m 5 = 3 . 14 p 5 = −1 . 97 a 5 = 17 . 69 

m 6 = 1 . 77 p 6 = 8 . 84 a 6 = 22 . 57 

m 7 = 1 . 37 p 7 = 6 . 87 

m 8 = 4 . 02 p 8 = 20 . 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

motion the principal vectors define planes, the principal vector planes, with different orientations [36] . In fact, the planar

situation is just a specific case of the general spatial situation when all the principal vectors are within the same plane and

the different principal vector planes obtain the same orientation and unite to a single plane. This means that also the Grand

Architecture in Fig. 3 can be transformed into a spatially moving inherently balanced linkage architecture. The challenge,

however, is to find the right combination of joints to ensure the correct spatial motions, not gaining overmobility and on

the other hand not locking the linkage immobile. It is beyond the scope of this article to study this in detail, but as an

example with solely revolute pairs it is illustrated how the TWIN-4B linkage can be transformed into a spatial inherently

balanced double Bennett linkage. 

The Bennett linkage is a spatial four-bar linkage with solely revolute pairs as joints [37] . It is possible to change the two

similar four-bars of the TWIN-4B linkage in Figs. 7 a and 13 a into two similar Bennett linkages by including the same Bennett

conditions for each of them. Then the first step is to include the Bennett condition that opposite links have equal length,

which is illustrated in Fig. 15 a where l 1 = l 3 , l 2 = l 4 , a 1 = a 3 , and a 2 = a 4 . This results in a linkage with three parallelograms,

one with sides l 1 and l 2 , a similar one with sides a 1 and a 2 , and a third one with sides a 5 and a 6 . The next step is to include

the twist angles of the axes of rotation of the joints, which are again equal for each pair of opposite links and are related

with 

sin α

l 1 
= 

sin β

l 2 
(17)

This is illustrated for α = 40 ◦ and β = 55 . 73 ◦ in Fig. 15 b which shows the resulting linkage with the two similar Bennett

linkages. The parallelogram A 0 P 12 D 4 P 43 remains planar and connects the two similar Bennetts such that they move similarly

at all times. By including the Bennett conditions, the force balance conditions ( 10 –12 ) do not change and determine the

common CoM of this Inherently Balanced Double Bennett Linkage to be in (fixed) joint S for all motions. Table 3 shows a

numerical example of a set of parameter values for inherent balance. Since the values do not depend on the twist angles,

they hold for any twist of the four-bars. Similarly as for the TWIN-4B values in Table 2 , also here the values represent the

realistic situation shown in Fig. 15 b where the mass of each link is directly related to the length of each link and where the

link CoM of each link is halfway the link. Here the scaling factor of the inner Bennett with respect to the outer Bennett is

λ = 0 . 20 . 

7. Discussion 

The Grand Architecture in Fig. 3 was formed from four closed-chain principal vector linkages with some links extended

to pivots C i as illustrated in Fig. 2 . Other link extensions with extra joints are also possible, for instance links P 21 B 1 and

P B could be extended to a common joint forming a parallelogram with sides SB and SB . This was shown in the solution
42 5 1 5 



12 V. van der Wijk / Mechanism and Machine Theory 150 (2020) 103815 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Fig. 5 b where the new common joint is E 1 . Four of these extra parallelograms are possible in the Grand Architecture,

however they do not add new kinematic information. Essentially they just extend existing parallelograms and therefore

they are only design variations as explained for Fig. 5 . This is also true for the multitude of other possible parallelogram

extensions which therefore are not included in the Grand Architecture. 

These additional parallelograms however can be very useful in the synthesis of inherently balanced mechanisms. The

inherently balanced linkage solutions presented in this paper are mainly a direct result of link elimination from the Grand

Architecture. The solutions still can be modified in a variety of ways without losing their property of inherent balance. For

instance by shifting or redesigning the parallelogram links and also by exchanging links with other mechanism elements

such as gears and sliders. Also new links may be added that move similarly to other links in the Grand Architecture. As

long as the kinematic properties of the Grand Architecture are maintained, any change is possible without disrupting the

inherent balance. This next step in the synthesis is still a topic under investigation. 

A disadvantage of the presented inherently balanced linkage solutions could be their limited range of motion due to

singularities of the parallelograms. Exchanging links with other mechanism elements may be required to enlarge the range

of motion. Also the choice of the closed-chain four-bar linkage as basis of the grand architecture limited the results that

could be found to 2-DoF solutions. To find other solutions, for instance with 3-DoF or 4-DoF, other linkages need to be used

as basis of a grand architecture with which the approach in this paper can be followed. 

This paper does not consider the shaking moment balance, however inherently shaking moment-balanced mechanisms

can be obtained from inherently force-balanced linkage solutions by reducing the DoFs of the force-balanced linkage solu-

tion. For instance from a 3-DoF force-balanced linkage solution a 2-DoF force- and moment-balanced linkage solution can

be derived by constraining the relative motions according to the inertia parameters. This can be accomplished for instance

by introducing slider elements [38] . 

Almost all inherently balanced linkage solutions in this paper were obtained by solely removing links from the inside of

the Grand Architecture. This results in linkages that are force balanced without the need of countermasses, which is rare

for common balance methods since for them the use of countermasses is the main issue. The link CoM of all links can

be at or nearby their natural locations, which is perfectly according to the philosophy of inherent balance . When links of

the circumscribed four-bar are eliminated instead of inner links, then linkage solutions are obtained with links that extend

freely as shown for linkage solution 10 in the appendix. These extended links could be regarded as kind of countermasses,

however they can also be applied as useful links in an application. This category of inherently balanced linkage solutions is

left for future work. 

All the inherently balanced linkage solutions consist of at least 8 links. For a parallel mechanism or robot manipulator

design the solutions where two links are connected in the common CoM S is useful since then, to drive the 2-DoFs of the

linkage, the two actuators can be mounted at the base. For other applications such as deployable structures it might be

more practical to have a single link in S . 

The force balance conditions showed to consist of two parts: (1) kinematic balance conditions given by the Grand Archi-

tecture and (2) mass balance conditions determining the mass parameter values of the links. This is different from common

balance methods which only consider the second part. It is because of the kinematic balance conditions that advantageous

balance solutions are obtained with the presented inherent balance approach. 

It was shown that the solutions that can be derived from the Grand Architecture with mass asymmetric links in Fig. 9 is

limited as compared to the solutions that can be derived from the Grand Architecture with mass symmetric links in Fig. 3 .

However, nothing restricts the designer to change the links of a mass symmetric inherently balanced linkage solution into

mass asymmetric links, that’s very well possible. Also then the mass balance conditions can be obtained from the linear

momentum equations which for mass asymmetric links is more extensive as explained in [26] . 

From the result of the inherently balanced double Bennett linkage in Fig. 15 b, together with the Grand Architecture

in Fig. 3 , it can be derived that the common CoM of a normal Bennett linkage traces a coupler curve of a similar Bennett

linkage which is also similar to a coupler curve of the Bennett linkage itself. This is an extension of the theory of Kreutzinger

explained in Section 3 which shows the same property for planar four-bar linkages [29] . It will be interesting to investigate

this property also for other spatial inherently balanced linkage solutions. 

8. Conclusions 

In this paper the Grand 4R Four-Bar Based Inherently Balanced Linkage Architecture was presented and it was shown

how from this highly overconstrained mechanism a variety of 32 normally constrained 2-DoF inherently balanced linkage

solutions could be derived by removing specific combinations of redundant links. These solutions all have specific kinematic

properties of similarity with advantageous balance capability such as no need of countermasses. For one linkage solution

named the TWIN-4B it was shown how the balance conditions regarding the mass parameters can be derived with linear

momentum equations and the balance conditions for all 32 solutions were presented. The difference between solutions with

mass symmetric links and mass asymmetric links was explained. From the Grand Architecture with mass asymmetric links

fewer solutions can be derived as compared to the Grand Architecture with mass symmetric links, while, interestingly, all the

mass symmetric link solutions can also have mass asymmetric links. It was shown how a planar inherently balanced linkage

solution could be transformed into a spatial inherently balanced linkage solution by example of the TWIN-4B which resulted,

after including the Bennett conditions, into an inherently balanced double Bennett linkage. All these results together present
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a tool that allows designers to first select an inherently balanced linkage solution as their starting point in the design

of their balanced device, which is expected to be significantly more fruitful than trying to balance a certain linkage at

the end. 
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Appendix: Overview of 2-DoF inherently balanced linkages with their conditions for shaking force balance and 

gravity force balance 

This appendix presents 32 2-DoF inherently balanced linkage solutions with mass symmetric links derived from the

Grand Architecture in Fig. 3 together with their balance conditions. The mass balance conditions are comparable to and

derived as Eqs. (7 )–( 9 ) in Section 5 , which are without the kinematic balance conditions. The kinematic balance conditions

which determine the similar motions of parallel links and the similarity of four-bars are given for all linkage solutions in

Table 4 . As such, the designer can directly use each of these 32 linkages as a starting point in their design of a force balanced

device. 

Inherently balanced linkage Mass balance conditions 

1 

(m 2 + m 3 + m 4 + m 8 + m 9 ) a 1 −
m 1 p 1 − m 4 

e 4 
l 4 

l 1 + m 6 p 6 + m 7 p 7 = 0 

(m 1 + m 3 + m 4 ) a 2 − m 2 p 2 + m 5 p 5 −
(m 3 + m 4 (1 − e 4 

l 4 
)) l 2 − m 8 p 8 = 0 

(m 1 + m 2 + m 4 + m 5 + m 6 ) a 3 − m 3 p 3 −
m 4 (1 − e 4 

l 4 
) l 3 + m 9 p 9 + m 10 p 10 = 0 

2 

(m 1 + m 2 + m 3 + m 4 + m 9 ) a 1 −
m 1 e 1 − m 2 (1 − e 2 

l 2 
) l 1 − m 5 p 5 −

m 6 a 3 − m 8 p 8 + m 10 p 10 = 0 

(m 1 + m 2 + m 3 ) a 5 + m 4 p 4 −
(m 1 + m 2 (1 − e 2 

l 2 
)) l 4 = 0 

(m 1 + m 2 + m 3 + m 4 + m 10 ) a 2 −
m 3 e 3 − m 2 

e 2 
l 2 

l 3 − m 5 a 4 −
m 6 p 6 − m 7 p 7 + m 9 p 9 = 0 

3 

(m 1 + m 2 + m 3 + m 4 + m 6 ) a 1 −
m 1 e 1 − m 2 (1 − e 2 

l 2 
) l 1 − m 5 p 5 + 

m 7 p 7 = 0 

(m 1 + m 2 + m 3 ) a 4 + m 4 p 4 −
(m 1 + m 2 (1 − e 2 

l 2 
)) l 4 = 0 

(m 1 + m 2 + m 3 + m 4 ) a 3 − m 3 e 3 −
m 2 

e 2 
l 2 

l 3 − m 5 a 2 + m 6 p 6 − m 8 p 8 = 0 

( continued on next page ) 
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Inherently balanced linkage Mass balance conditions 

4 

(m 2 + m 3 + m 4 ) a 1 − m 1 p 1 −
m 4 

e 4 
l 4 

l 1 = 0 

(m 1 + m 2 + m 3 + m 4 ) a 2 − m 2 e 2 −
(m 3 + m 4 (1 − e 4 

l 4 
)) l 2 + 

m 5 p 5 − m 6 a 4 − m 7 p 7 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 ) a 3 − m 3 e 3 −
m 4 (1 − e 4 

l 4 
) l 3 − m 6 p 6 + m 8 p 8 = 0 

5 

(m 1 + m 3 + m 4 + m 11 (1 − p 11 

a 8 
)) a 1 −

m 2 p 2 − m 3 (1 − e 3 
l 3 

) l 2 + m 6 p 6 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 + 

m 11 (1 − p 11 

a 8 
)) a 3 − m 1 p 1 + m 5 p 5 + 

m 7 p 7 + (m 2 + m 3 + m 4 + 

m 11 (1 − p 11 

a 8 
)) a 2 − (m 3 

e 3 
l 3 

+ m 4 + 

m 11 (1 − p 11 

a 8 
)) l 1 − m 9 p 9 −

(m 10 + m 11 
p 11 

a 8 
+ m 12 ) a 4 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 + 

m 7 + m 11 (1 − p 11 

a 8 
)) a 5 − m 4 e 4 −

m 3 
e 3 
l 3 

l 4 − m 11 (1 − p 11 

a 8 
)(l 4 − a 7 ) −

m 10 p 10 − m 11 
p 11 

a 8 
a 6 −

m 12 (a 6 + p 12 ) + m 8 p 8 = 0 

6 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 + 

m 10 (1 − p 10 

a 6 
)) a 1 − m 1 e 1 + m 7 p 7 −

(m 4 
e 4 
l 4 

+ m 10 (1 − p 10 

a 6 
)) l 1 − m 9 p 9 + 

m 10 (1 − p 10 

a 6 
) a 5 = 0 

(m 1 + m 3 + m 4 + m 10 (1 − p 10 

a 6 
)) a 4 −

(m 1 + m 4 
e 4 
l 4 

+ m 10 (1 − p 10 

a 6 
)) l 2 + 

m 2 p 2 + m 6 p 6 − m 8 p 8 −
(m 9 + m 10 

p 10 

a 6 
) a 2 = 0 

(m 1 + m 2 + m 4 + m 10 (1 − p 10 

a 6 
)) a 3 −

m 3 p 3 − m 4 (1 − e 4 
l 4 

) l 3 + m 5 p 5 = 0 

7 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 + 

m 7 + m 8 + m 10 
p 10 

a 6 
) a 1 − m 2 e 2 −

m 3 (1 − e 3 
l 3 

) l 2 − m 5 p 5 −
(m 6 + m 10 

p 10 

a 6 
) a 2 + m 9 p 9 = 0 

(m 2 + m 3 + m 4 + m 5 + m 6 + 

m 10 
p 10 

a 6 
) a 4 − (m 2 + m 3 (1 − e 3 

l 3 
)+ 

m 5 + m 6 + m 10 
p 10 

a 6 
) l 1 − m 1 p 1 + 

(m 5 + m 10 
p 10 

a 6 
) a 3 + m 6 p 6 + m 8 p 8 = 0 

(m 1 + m 2 + m 3 + m 5 + m 6 + 

m 10 
p 10 

a 6 
) a 5 − m 4 p 4 −

m 3 
e 3 
l 3 

l 4 + m 7 p 7 = 0 

8 

(m 2 + m 3 + m 4 ) a 1 − m 1 p 1 − m 4 
e 4 
l 4 

l 1 −
(m 5 + m 7 + m 10 

p 10 

a 6 
) a 3 + 

m 7 p 7 + m 8 p 8 = 0 

m 2 p 2 + (m 3 + m 4 (1 − e 4 
l 4 

)) l 2 −
(m 1 + m 3 + m 4 ) a 2 − (m 1 + m 3 + 

m 4 + m 5 + m 7 + m 10 
p 10 

a 6 
) a 4 −

m 5 p 5 − m 6 p 6 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 + 

m 7 + m 8 + m 10 
p 10 

a 6 
) a 5 − m 3 e 3 −

m 4 (1 − e 4 
l 4 

) l 3 + m 9 p 9 = 0 

( continued on next page ) 
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9 

(m 2 + m 3 + m 4 ) a 1 − m 2 (1 − e 2 
l 2 

) l 1 −
m 1 p 1 − m 5 p 5 + m 8 p 8 = 0 

(m 1 + m 2 + m 3 ) a 2 − m 4 p 4 −
(m 2 

e 2 
l 2 

+ m 3 ) l 4 + m 7 p 7 = 0 

(m 1 + m 2 + m 3 + m 4 + m 7 + 

m 8 ) a 3 − m 2 
e 2 
l 2 

l 3 − m 3 e 3 −
m 5 a 4 − m 6 p 6 = 0 

10 

(m 2 + m 3 (1 − e 3 
a 6 

) + m 7 (1 − p 7 
a 6 

)) a 1 −
m 1 p 1 − m 3 (1 − e 3 

a 6 
) l 1 − m 3 

e 3 
a 6 

a 5 + m 4 p 4 −
m 7 (1 − p 7 

a 6 
)(l 1 − a 5 ) − m 8 p 8 = 0 

(m 1 + m 3 (1 − e 3 
a 6 

) + m 7 (1 − p 7 
a 6 

)) a 2 −
m 2 p 2 + m 5 p 5 = 0 

(m 1 + m 2 + m 3 (1 − e 3 
a 6 

) + m 4 + 

m 5 + m 7 (1 − p 7 
a 6 

)) a 3 + m 6 p 6 −
(m 3 

e 3 
a 6 

+ m 7 
p 7 
a 6 

+ m 8 ) a 4 = 0 

11 

(m 2 + m 3 + m 4 ) a 1 − m 5 
p 5 
a 5 

a 6 −
m 1 p 1 − m 2 (1 − e 2 

l 2 
) l 1 + m 8 p 8 = 0 

(m 1 + m 2 + m 3 + m 5 
p 5 
a 5 

) a 2 − m 4 p 4 −
(m 2 

e 2 
l 2 

+ m 3 ) l 4 + m 7 p 7 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 
p 5 
a 5 

+ 

m 7 + m 8 ) a 3 − m 2 
e 2 
l 2 

l 3 − m 3 e 3 −
m 5 (1 − p 5 

a 5 
) a 4 − m 6 p 6 = 0 

12 

(m 1 + m 2 + m 3 + m 4 + m 8 ) a 2 −
m 1 e 1 − m 4 

e 4 
l 4 

l 1 − m 5 p 5 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 8 ) a 3 −
(m 1 + m 2 + m 3 + m 4 ) a 5 + 

(m 1 + m 2 + m 4 
e 4 
l 4 

) l 2 − m 2 e 2 −
m 6 p 6 − m 7 a 4 − m 8 p 8 = 0 

(m 1 + m 2 + m 4 ) a 1 − m 3 p 3 −
m 4 (1 − e 4 

l 4 
) l 3 − m 7 p 7 = 0 

13 

(m 2 + m 3 + m 4 ) a 1 − m 1 p 1 −
m 4 

e 4 
l 4 

l 1 + m 9 p 9 − m 5 p 5 = 0 

m 2 p 2 + m 6 p 6 − m 8 p 8 − m 5 a 4 −
(m 1 + m 3 + m 4 ) a 2 + m 7 a 5 + 

(m 3 + m 4 (1 − e 4 
l 4 

)) l 2 = 0 

(m 1 + m 2 + m 3 + m 4 + m 8 + m 9 ) a 3 −
m 3 e 3 − m 4 (1 − e 4 

l 4 
) l 3 −

m 7 p 7 + m 10 p 10 = 0 

( continued on next page ) 
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14 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 + 

m 10 
p 10 

a 6 
) a 1 − (m 1 (1 − e 1 

l 1 
)+ 

m 10 
p 10 

a 6 
) l 4 − m 4 e 4 + m 7 p 7 + 

m 10 
p 10 

a 6 
a 5 = 0 

(m 1 + m 2 + m 4 + m 10 
p 10 

a 6 
) a 2 + 

m 3 p 3 − (m 1 (1 − e 1 
l 1 

) + m 4 + 

m 10 
p 10 

a 6 
) l 3 + m 5 p 5 − m 9 p 9 = 0 

(m 1 + m 3 + m 4 + m 9 + m 10 
p 10 

a 6 
) a 3 −

m 1 
e 1 
l 1 

l 2 − m 2 p 2 + m 6 p 6 −
m 8 p 8 − m 10 (1 − p 10 

a 6 
) a 4 = 0 

15 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 
p 6 
a 6 

+ 

m 7 + m 8 + m 9 ) a 1 − m 1 e 1 −
m 2 (1 − e 2 

l 2 
) l 1 − m 5 p 5 + m 10 p 10 = 0 

(m 1 + m 2 + m 3 + m 5 ) a 4 − (m 6 
p 6 
a 6 

+ 

m 7 ) a 2 + (m 1 + m 2 + m 3 ) a 5 −
(m 2 

e 2 
l 2 

+ m 3 ) l 4 − m 4 p 4 − m 8 p 8 = 0 

(m 1 + m 2 + m 4 + m 5 + m 6 
p 6 
a 6 

+ 

m 7 ) a 3 − m 2 
e 2 
l 2 

l 3 − m 3 p 3 −
m 6 

p 6 
a 6 

a 7 − m 7 p 7 + m 9 p 9 = 0 

16 

(m 1 + m 2 + m 3 + m 4 ) a 1 −
m 1 e 1 − m 4 

e 4 
l 4 

l 1 − m 5 p 5 −
m 8 p 8 + m 10 p 10 = 0 

(m 1 + m 3 + m 4 ) a 2 + m 2 p 2 −
(m 1 + m 4 

e 4 
l 4 

) l 2 − m 5 a 5 −
m 6 p 6 + m 7 a 4 = 0 

(m 1 + m 2 + m 3 + m 4 + m 10 ) a 3 −
m 3 e 3 − m 4 (1 − e 4 

l 4 
) l 3 −

m 7 p 7 − m 8 a 6 + m 9 p 9 = 0 

17 

(m 1 + m 2 + m 3 + m 4 + m 5 + 

m 7 (1 − p 7 
a 6 

)) a 1 − m 3 (1 − e 3 
l 3 

) l 2 −
m 2 e 2 + m 6 p 6 − m 7 

p 7 
a 6 

a 4 + 

m 8 p 8 − m 10 p 10 = 0 

(m 2 + m 3 + m 4 + m 7 (1 − p 7 
a 6 

)) a 2 −
(m 3 

e 3 
l 3 

+ m 4 + m 7 (1 − p 7 
a 6 

)) l 1 + 

m 1 p 1 − m 5 p 5 = 0 

(m 1 + m 2 + m 3 + m 7 (1 − p 7 
a 6 

)+ 

m 8 ) a 3 − (m 3 
e 3 
l 3 

+ m 7 (1 − p 7 
a 6 

)) l 4 −
m 4 p 4 + (m 7 (1 − p 7 

a 6 
) − m 10 ) a 5 −

m 9 p 9 = 0 

18 

(m 1 + m 2 + m 3 + m 4 + m 5 + 

m 7 
p 7 
a 6 

+ m 10 
p 10 

a 7 
) a 1 − m 2 e 2 −

(m 3 (1 − e 3 
l 3 

) + m 10 
p 10 

a 7 
) l 2 −

(m 6 + m 7 (1 − p 7 
a 6 

) − m 10 
p 10 

a 7 
) a 4 + 

m 6 p 6 = 0 

(m 1 + m 2 + m 3 + m 4 + m 7 
p 7 
a 6 

+ 

m 10 
p 10 

a 7 
) a 2 − m 1 e 1 −

(m 2 + m 3 (1 − e 3 
l 3 

) + m 10 
p 10 

a 7 
) l 1 + 

m 5 p 5 − m 8 p 8 = 0 

(m 1 + m 2 + m 3 + m 4 + m 7 
p 7 
a 6 

+ 

m 8 + m 10 
p 10 

a 7 
) a 3 − m 4 e 4 −

(m 3 
e 3 
l 3 

+ m 7 
p 7 
a 6 

) l 4 + m 9 p 9 + 

(m 7 
p 7 
a 6 

− m 10 (1 − p 10 

a 7 
)) a 5 = 0 

( continued on next page ) 



V. van der Wijk / Mechanism and Machine Theory 150 (2020) 103815 17 
Inherently balanced linkage Mass balance conditions 

19 

(m 2 + m 3 + m 4 + m 10 (1 − p 10 

a 8 
)) a 1 −

m 1 p 1 − (m 4 
e 4 
l 4 

+ m 10 (1 − p 10 

a 8 
)) l 1 −

m 5 p 5 + m 10 (1 − p 10 

a 8 
) a 7 = 0 

(m 1 + m 2 + m 3 + m 4 + 

m 10 (1 − p 10 

a 8 
)) a 2 − m 2 e 2 −

(m 3 + m 4 (1 − e 4 
l 4 

)) l 2 + m 5 a 5 −
m 6 p 6 − m 7 a 6 + m 8 p 8 = 0 

(m 1 + m 2 + m 3 + m 4 + m 8 + 

m 10 (1 − p 10 

a 8 
)) a 3 − m 3 e 3 −

m 4 (1 − e 4 
l 4 

) l 3 − m 7 p 7 + m 9 p 9 −
m 10 

p 10 

a 8 
a 4 = 0 

20 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 
p 6 
a 7 

+ 

m 7 ) a 1 − m 1 e 1 − m 2 (1 − e 2 
l 2 

) l 1 −
m 5 a 4 + m 8 p 8 − m 10 p 10 = 0 

(m 1 + m 2 + m 3 + m 5 + m 6 
p 6 
a 7 

+ m 7 ) a 2 −
(m 2 

e 2 
l 2 

+ m 3 + m 6 
p 6 
a 7 

+ m 7 ) l 4 −
m 4 p 4 − m 5 p 5 + m 6 

p 6 
a 7 

a 5 + m 7 p 7 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 
p 6 
a 7 

+ 

m 7 + m 8 ) a 3 − m 2 
e 2 
l 2 

l 3 − m 3 e 3 −
(m 6 

p 6 
a 7 

+ m 7 ) a 6 − m 9 p 9 − m 10 a 8 = 0 

21 Same conditions as for 22 

22 

(m 1 + m 2 + m 3 + m 4 + m 6 
p 6 
a 9 

) a 1 −
m 1 e 1 − m 4 (1 − e 4 

l 4 
) l 1 − m 5 p 5 −

m 6 (1 − p 6 
a 9 

)(a 4 + a 5 ) − m 10 
p 10 

a 10 
a 4 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 + 

m 10 
p 10 

a 10 
) a 2 + (m 1 + m 3 + m 4 + 

m 6 
p 6 
a 9 

) a 6 − m 2 p 2 − (m 3 + m 4 
e 4 
l 4 

+ 

m 6 
p 6 
a 9 

) l 2 + m 7 p 7 − m 8 a 7 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 + 

m 7 + m 8 + m 10 
p 10 

a 10 
) a 3 −

m 3 e 3 − (m 4 
e 4 
l 4 

+ m 6 
p 6 
a 9 

) l 3 + 

m 6 
p 6 
a 9 

a 8 − m 8 p 8 + m 9 p 9 = 0 

23 Same conditions as for 22 

( continued on next page ) 
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24 

(m 2 + m 3 + m 4 ) a 1 − m 1 p 1 −
m 4 (1 − e 4 

l 4 
) l 1 − m 5 p 5 −

(m 6 + m 10 
p 10 

a 5 
) a 4 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 + 

m 10 
p 10 

a 5 
) a 2 + (m 1 + m 2 + m 3 + 

m 4 ) a 6 − m 2 e 2 − (m 3 + m 4 
e 4 
l 4 

) l 2 + 

m 6 p 6 + m 7 p 7 − m 8 a 7 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 + 

m 7 + m 8 + m 10 
p 10 

a 5 
) a 3 − m 3 e 3 −

m 4 
e 4 
l 4 

l 3 − m 8 p 8 + m 9 p 9 = 0 

25 

(m 2 + m 3 + m 4 ) a 5 − m 1 p 1 −
m 2 (1 − e 2 

l 2 
) l 1 − m 5 p 5 − m 6 

p 6 
a 2 

a 1 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 + 

m 6 
p 6 
a 2 

) a 4 + (m 1 + m 2 + m 3 ) a 6 −
(m 2 

e 2 
l 2 

+ m 3 ) l 4 − m 4 p 4 + m 8 p 8 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 
p 6 
a 2 

+ 

m 8 ) a 3 − m 2 
e 2 
l 2 

l 3 − m 3 e 3 + m 7 p 7 = 0 

26 

(m 2 + m 3 + m 4 + m 5 + m 6 ) a 1 − m 1 p 1 −
m 2 (1 − e 2 

l 2 
) l 1 − m 5 p 5 + m 9 p 9 = 0 

(m 1 + m 2 + m 3 + m 4 ) a 2 − (m 2 
e 2 
l 2 

+ m 3 ) l 4 −
m 4 e 4 + m 5 a 5 − m 6 p 6 − m 7 a 4 + m 8 p 8 = 0 

(m 1 + m 2 + m 4 + m 7 + m 8 ) a 3 − m 2 
e 2 
l 2 

l 3 −
m 3 p 3 − m 7 p 7 + m 10 p 10 = 0 

27 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 + 

m 10 (1 − p 10 

a 6 
)) a 1 − m 4 e 4 −

m 3 
e 3 
l 3 

l 4 + m 7 p 7 + m 8 p 8 −
m 10 (1 − p 10 

a 6 
) a 4 = 0 

(m 2 + m 3 + m 4 + m 10 (1 − p 10 

a 6 
)) a 2 −

(m 8 + m 10 
p 10 

a 6 
) a 5 + m 1 p 1 + m 5 p 5 −

(m 3 
e 3 
l 3 

+ m 4 + m 10 (1 − p 10 

a 6 
)) l 1 −

m 9 p 9 = 0 

(m 1 + m 3 + m 4 + m 10 (1 − p 10 

a 6 
)) a 3 −

m 2 p 2 − m 3 (1 − e 3 
l 3 

) l 2 + m 6 p 6 = 0 

28 

(m 1 + m 2 + m 3 + m 5 
p 5 
a 8 

+ m 9 + m 10 ) a 1 −
m 1 (1 − e 1 

l 1 
) l 4 − m 4 p 4 − m 5 

p 5 
a 8 

a 5 + 

m 8 p 8 − m 10 p 10 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 
p 5 
a 8 

+ m 7 + m 8 + 

m 9 + m 10 ) a 4 + (m 1 + m 2 + m 4 + m 5 
p 5 
a 8 

+ 

m 7 + m 9 + m 10 ) a 2 − (m 1 
e 1 
l 1 

+ m 2 + 

m 5 
p 5 
a 8 

+ m 9 + m 10 ) l 3 − m 3 p 3 + 

(m 5 
p 5 
a 8 

+ m 10 ) a 6 − m 7 p 7 + m 9 p 9 = 0 

(m 1 + m 3 + m 4 + m 7 + m 8 ) a 3 − m 1 
e 1 
l 1 

l 2 −
m 2 p 2 − m 5 (1 − p 5 

a 8 
) a 7 − m 6 p 6 = 0 
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29 

(m 1 + m 2 + m 3 + m 9 ) a 1 − m 4 p 4 −
m 1 (1 − e 1 

l 1 
) l 4 + m 8 p 8 − m 10 p 10 = 0 

(m 1 + m 2 + m 4 + m 7 + m 9 + m 10 ) a 2 + 

(m 1 + m 2 + m 3 + m 4 + m 7 + m 8 + 

m 9 ) a 4 − m 3 p 3 − (m 1 
e 1 
l 1 

+ m 2 + 

m 9 ) l 3 + m 5 p 5 − m 7 p 7 + m 9 p 9 = 0 

(m 1 + m 3 + m 4 + m 7 + m 8 ) a 3 −
m 1 

e 1 
l 1 

l 2 − m 2 p 2 + m 6 p 6 = 0 

30 

(m 2 + m 3 + m 4 + m 9 
p 9 
a 7 

) a 1 −
m 1 p 1 − m 4 

e 4 
l 4 

l 1 − m 5 p 5 −
m 8 p 8 − m 9 (1 − p 9 

a 7 
) a 4 = 0 

(m 1 + m 3 + m 4 + m 9 
p 9 
a 7 

) a 2 + (m 1 + 

m 2 + m 3 + m 4 + m 5 + m 9 ) a 5 −
(m 3 + m 4 (1 − e 4 

l 4 
) + m 9 

p 9 
a 7 

) l 2 −
m 2 p 2 + m 6 p 6 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 + 

m 9 ) a 3 − m 3 e 3 − m 4 (1 − e 4 
l 4 

) l 3 + 

m 7 p 7 − m 9 
p 9 
a 7 

a 6 = 0 

31 

(m 2 + m 3 + m 4 ) a 1 − m 1 p 1 −
m 4 (1 − e 4 

l 4 
) l 1 + m 6 p 6 + m 8 p 8 = 0 

(m 1 + m 2 + m 3 + m 4 + m 6 + m 7 + 

m 8 ) a 2 − (m 1 + m 4 (1 − e 4 
l 4 

)) l 2 −
m 2 e 2 + m 5 p 5 + m 10 p 10 = 0 

(m 1 + m 2 + m 3 + m 4 + m 5 + m 6 + 

m 8 ) a 3 − m 3 e 3 − (m 4 
e 4 
l 4 

+ m 8 ) l 3 −
m 7 p 7 + m 9 p 9 = 0 

32 

(m 1 + m 2 + m 3 + m 8 + m 9 + 

m 12 
p 12 

a 7 
) a 1 − m 3 

e 3 
l 3 

l 4 −
m 4 p 4 + m 5 p 5 + m 7 p 7 = 0 

(m 2 + m 3 + m 4 + m 12 
p 12 

a 7 
) a 2 + 

(m 11 + m 12 (1 − p 12 

a 7 
)) a 5 −

(m 3 
e 3 
l 3 

+ m 4 ) l 1 + m 1 p 1 − m 5 a 4 −
m 6 p 6 + m 9 p 9 + m 10 p 10 = 0 

(m 1 + m 3 + m 4 + m 6 + m 7 ) a 3 −
m 2 p 2 − m 3 (1 − e 3 

l 3 
) l 2 + m 8 p 8 + 

m 11 p 11 − m 12 
p 12 

a 7 
a 6 = 0 
Table 4 

Kinematic balance conditions of the 32 inherently balanced linkage solutions. 

Linkage Kinematic balance conditions 

1 none 

2 a 1 + a 3 
l 1 

= 

a 5 
l 4 

= 

d 1 
l 2 

, 
a 2 + a 4 

l 3 
= 

l 4 −a 5 
l 4 

3 a 2 + a 3 
l 3 

= 

l 4 −a 4 
l 4 

, 
a 4 
l 4 

= 

a 1 + d 1 
l 1 

= 

d 2 
l 2 

4 l 1 −a 1 
l 1 

= 

a 2 + a 4 
l 2 

= 

a 3 + d 1 
l 3 

= 

l 4 −d 2 
l 4 

5 a 1 
l 2 

= 

a 8 
l 3 

, 
a 3 
l 1 

= 

a 5 
l 4 

, 
a 2 
l 1 

= 

a 7 
l 4 

, 
a 4 
l 1 

= 

a 6 
l 4 

= 

l 1 −a 2 −a 3 
l 1 

− a 8 
l 3 

6 a 1 + a 5 
l 1 

= 

a 2 + a 4 
l 2 

= 

l 3 −a 3 
l 3 

= 

l 4 −a 6 
l 4 

7 a 2 −a 1 
l 2 

= 

l 1 −a 4 −a 3 
l 1 

= 

a 5 
l 4 

= 

a 6 
l 3 

8 a 3 
l 1 

= 

a 4 
l 2 

= 

a 5 
l 3 

= 

a 6 
l 4 

9 a 2 
l 4 

= 

a 3 + a 4 
l 3 

= 

l 2 −d 2 
l 2 

, 
l 4 −a 2 

l 4 
= 

a 1 + d 1 
l 1 

( continued on next page ) 



20 V. van der Wijk / Mechanism and Machine Theory 150 (2020) 103815 

Table 4 ( continued ) 

Linkage Kinematic balance conditions 

10 none 

11 a 2 
l 4 

= 

a 3 + a 4 
l 3 

= 

a 5 
l 2 

= 

a 6 
l 1 

12 l 3 −a 1 
l 3 

= 

a 5 
l 2 

= 

d 1 + a 2 
l 1 

= 

d 3 + d 4 
l 4 

, 
a 3 + a 4 

l 2 
= 

d 1 
l 1 

= 

d 2 
l 3 

= 

d 3 
l 4 

13 a 2 −a 4 
l 2 

= 

a 3 
l 3 

, 
a 1 
l 1 

= 

l 2 −a 2 −a 5 
l 2 

= 

d 4 
l 4 

, 
a 4 + a 5 

l 2 
= 

d 1 
l 1 

= 

d 2 
l 3 

= 

d 3 
l 4 

14 l 4 −a 1 −a 5 
l 4 

= 

l 3 −a 2 
l 3 

= 

a 3 + a 4 
l 2 

= 

a 6 
l 1 

15 a 1 
l 1 

= 

a 2 
l 4 

= 

a 6 
l 2 

= 

a 7 −a 3 
l 3 

, 
a 2 + a 4 

l 4 
= 

a 7 
l 3 

= 

d 1 + a 6 
l 2 

= 

d 2 
l 1 

16 a 1 
l 1 

= 

a 2 −a 4 
l 2 

= 

d 4 
l 4 

, 
a 3 
l 3 

= 

l 2 −a 2 −a 5 
l 2 

= 

d 5 
l 4 

, 
a 5 
l 2 

= 

a 6 
l 3 

= 

d 6 
l 4 

l 2 −a 2 
l 2 

= 

a 3 + a 6 
l 3 

, 
a 4 
l 2 

= 

d 1 
l 1 

, 
a 4 + a 5 

l 2 
= 

d 2 
l 1 

= 

d 3 
l 3 

17 a 1 + a 4 
l 2 

= 

l 1 −a 2 
l 1 

= 

l 4 −a 3 −a 5 
l 4 

= 

a 6 
l 3 

= 

d 1 
l 1 

18 a 1 + a 4 
l 2 

= 

a 2 
l 1 

= 

a 6 
l 3 

, 
a 3 + a 5 

l 4 
= 

a 7 
l 3 

= 

d 1 
l 1 

, a 7 = l 3 − a 6 

19 l 1 −a 1 −a 7 
l 1 

= 

a 2 
l 2 

= 

a 3 + a 4 
l 3 

= 

a 8 
l 4 

, 
a 4 
l 3 

= 

a 5 
l 2 

= 

a 8 −d 3 
l 4 

a 6 
l 2 

= 

a 7 
l 1 

, 
a 5 + a 6 

l 2 
= 

d 1 
l 1 

= 

d 2 
l 3 

= 

d 4 
l 4 

20 a 1 
l 1 

= 

l 4 −a 2 −a 5 
l 4 

= 

a 6 −a 3 
l 3 

= 

a 7 
l 2 

, 
a 4 −a 1 

l 1 
= 

a 3 
l 3 

= 

d 2 
l 2 

= 

a 2 −d 3 
l 4 

a 2 
l 4 

= 

a 3 + a 8 
l 3 

, 
a 5 
l 4 

= 

d 1 
l 1 

= 

d 4 −a 7 
l 2 

21 a 1 + a 4 + a 5 
l 1 

= 

l 2 −a 6 
l 2 

= 

l 3 −a 8 
l 3 

= 

a 9 
l 4 

, a 2 
l 2 

= 

a 3 
l 3 

= 

a 4 
l 1 

= 

a 10 

l 4 
, 

l 1 −a 1 
l 1 

= 

a 2 + a 6 + a 7 
l 2 

= 

d 1 + a 8 
l 3 

= 

l 4 −d 2 
l 4 

22 equal to 21 

23 equal to 21 

24 l 1 −a 1 
l 1 

= 

a 2 + a 6 + a 7 
l 2 

= 

d 1 
l 3 

= 

l 4 −d 2 
l 4 

, 
a 2 
l 2 

= 

a 3 
l 3 

= 

a 4 
l 1 

= 

a 5 
l 4 

25 a 1 
l 1 

= 

a 2 
l 2 

= 

a 3 
l 3 

= 

a 4 
l 4 

26 l 1 −a 1 
l 1 

= 

a 2 + a 4 
l 4 

= 

d 1 
l 3 

= 

l 2 −d 3 
l 2 

, 
l 3 −a 3 

l 3 
= 

l 4 −a 2 + a 5 
l 4 

= 

d 2 
l 1 

= 

l 2 −d 4 
l 2 

27 a 1 + l 4 −a 4 
l 4 

= 

a 2 + a 5 
l 1 

= 

l 2 −a 3 
l 2 

= 

l 3 −a 6 
l 3 

28 a 2 
l 3 

= 

a 7 
l 2 

= 

a 8 
l 1 

, 
a 3 
l 2 

= 

a 4 
l 3 

= 

d 2 
l 1 

, 
l 2 −a 3 

l 2 
= 

a 6 
l 3 

= 

a 5 + d 1 
l 4 

a 2 + a 4 
l 3 

= 

l 4 −d 1 −a 1 
l 4 

29 a 3 
l 2 

= 

a 4 
l 3 

, 
d 1 + a 1 

l 4 
= 

l 1 −d 2 
l 1 

= 

d 3 
l 3 

, d 3 = l 3 − a 4 

30 a 1 + a 4 
l 1 

= 

l 2 −a 2 
l 2 

= 

a 6 
l 3 

= 

a 7 
l 4 

, 
a 3 
l 3 

= 

a 5 
l 2 

= 

a 4 −d 1 
l 1 

= 

d 2 
l 4 

31 none 

32 a 1 
l 4 

= 

a 2 −a 5 
l 1 

= 

a 6 
l 2 

= 

a 7 
l 3 

, 
l 1 −a 2 −a 4 

l 1 
= 

a 3 
l 2 
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