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CHAPTER 1

INTRODUCTION

1.1 Field of interest

Structures (e.g. bridges, beams and hinges) with optimal designs are becoming more
significant in our society in which efficiency and sustainability are vital. Obtaining the
most efficient design for complex structures is a delicate task of colossal (industrial)
importance. Optimal designs lead to better performances and lighter structures and
save design materials. A drawback of optimal designs is that they may be expensive
or difficult to manufacture. Traditional design methods primarily deal with straight-
forward and basic geometries. This obviously puts a restriction on the complexity of
the structures one might want to design and optimise.
Nowadays, fortunately, there are methods which do not have this problem. Three
commonly used methods are size, shape and topology optimisation. While size and
shape optimisation methods require close-to-optimal initial designs, topology optimi-
sation does not. In topology optimisation (TO) an objective function is minimised (or
maximised) under physical and geometrical constraints with the material distribution
as a problem variable. In other words, the aim of topology optimisation is to find the
optimal design under an objective and adhering a number of constraints.
A major part of this thesis focuses on a well-known topology optimisation problem,
namely the minimum compliance problem. The objective is to find a design for which
the compliance is minimal under a number of constraints. In the context of linear
elasticity the compliance is equivalent to the strain energy. This energy dictates the
stiffness of a structure in the following way: if the strain energy is minimal, the stiffness
of the design is maximal. Choosing this objective results in the strongest structure.
Although topology optimisation yields many advantages in comparison to older meth-
ods, solving the affiliated minimum compliance problem poses some obstacles. Find-
ing analytical solutions turns out to be a tedious task and in most cases they do not
exist. Even solving the minimum compliance problem numerically presents us with
specific issues. Three common numerical problems are the formation of checkerboards,
mesh dependency and local minima, which, amongst others, will be discussed in Sec-

1
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tion 1.2.
In light of checkerboard formation and mesh dependency, level-set methods (LSM)
have been proposed to circumvent them. Moreover, level-set based topology optimi-
sation methods yield a beneficial treatment of changes in the topology during the
optimisation process. In level-set methods, the design or material domain is repre-
sented implicitly by a level-set function (LSF), of which the zero interface describes
the boundary of this domain.
In addition to level-set based topology optimisation, the connectivity of the final de-
sign is of significant importance too. From a mechanical point of view a manufacturer
wants certain parts of the structure to be connected to each other. Two problems
regarding connectivity are the formation of the aformentioned checkerboards and the
formation of disconnected parts of the final design.

1.2 Historical background

In the year 1988 two very important mathematical papers were published. The topic
of each paper plays a major role in this thesis. Bendsøe and Kikuchi [8] are the found-
ing fathers of topology optimisation and Sethian and Osher [24] the architects of the
level-set method.
In 1988 Bendsøe and Kikuchi introduced a method that generates optimal topologies
utilising the homogenisation method (for more information on the homogenisation
method for topology optimisation, see [1] and [39]). In their paper the foundation
for topology optimisation was laid. Since then, numerous topology optimisation ap-
proaches have been developed. The basis of these approaches, however, is the same
and gives answer to the fundamental question of topology optimisation: where to place
material in a prescribed domain for the best structural performance?
For a broader review of the field of topology optimisation see the 2014 survey of
Deaton and Grandhi [12]. For a comparison of the different topology optimisation
methods see the comparative review of Sigmund and Maute [35].
A branch of topology optimisation that does not get a lot of attention, but is worth
exploring, is the subject of connectivity. One of the most straightforward connectivity
constraints is avoiding the formation of enclosed voids in the design structure and
is used in various manufacturing processes. For example, this constraint is applied
in additive manufacturing (commonly known as 3D printing), see the 2021 book of
Gibson et al. [15] for more information on the subject of additive manufacturing. In
the context of level-set topology optimisation Kasaiezadeh and Khajepour wrote an
article [16] in 2011 on how to use the level-set function to avoid discontinuity in the
structure.
Naturally, problems occur when solving a topology optimisation problem. The 0 -1
topology optimisation problem, for example, lacks analytical solutions in general [36],
[35]. However, there are some cases for which an analytical solution is found [17],
[18], [19], [27], [28]. Furthermore, there are numerical problems. In their 1998 review
article [36] Sigmund and Petersson indicate three common numerical problems which
occur in topology optimisation. First, there is the formation of checkerboards. This is
the construction of alternating void and solid elements ordered in a checkerboard pat-
tern caused by the non-convergence of finite-element solutions. Second, we have mesh
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dependency. This refers to the problem that for different mesh-sizes or discretisations
one does not obtain qualitatively the same solution. Third, there is the existence
of local minima. This means that for the same discretisation one obtains different
solutions if algorithmic parameters are altered, e.g., different initial designs. This is
caused by the numerical optimisation procedures of the optimisation algorithm.
Since 1988 a number of different approaches has been developed as Sigmund and
Maute point out in their review article [35]. These include density, level-set, topo-
logical derivative, phase field and evolutionary approaches. A thorough comparison
of these different approaches and other literature reference can be found in the same
review article.
As this thesis focuses on the level-set approach, it is important to understand what
the level-set method is. In 1988 Sethian and Osher published a paper about capturing
fronts propagating with curvature-dependent speed [24]. Later it was named the level-
set method and is thoroughly described in the book of Osher and Fedkiw [23]. This
method describes how one keeps track of a level-set (in most cases the zero level
contour) of a function. This function is called the level-set function and the contour
is also referred to as the interface, as it separates positive and negative regions. In
2000 the level-set method was applied in topology optimisation for the first time by
Sethian and Wiegmann [31]. Since then, various level-set based topology optimisation
methods have arisen. These can be classified, for example, by the approach for up-
dating the level-set field in the optimisation process and the method for discretising
the level-set function. In their review article Van Dijk et al. pay attention to these
different approaches and discuss the level-set approach in general [42].
The level-set method for topology optimisation was introduced because of the special
properties of the level-set function. The function is used to implicitly define the in-
terfaces between materials by iso-contours. This allows for a neat description of the
interfaces. Some notable works in the field of level-set topology optimisation are that
of Noël et al. [21] who use hierarchical B-splines to discretise the state variable fields
and level-set function, Yaji et al. [45] who embed the reinitialisation of the level-set
function in the time evolution equation utilising a convected level-set method and
Allaire and Jouve [3] who adapt the method for stress minimisation.
The reason we choose a level-set based topology optimisation over other approaches,
is because it holds many advantages and it is a relatively new approach. The main
advantage is that the interface is clearly and smoothly described implicitly by the
level-set function. In addition, Allaire et al. state a number of benefits for the level-
set approach in their 2004 paper [5]. The method permits radical topological changes
during the optimisation process, the CPU time is reasonable and it can handle gen-
eral mechanical models (including nonlinear ones) and objective functionals. In the
aforementioned comparative review paper of Sigmund and Maute [35] the level-set
approach is also reviewed. They remark that the level-set method is “well suited for
capturing stochastic shape variations for robust design optimization”. In the review
article of Van Dijk et al. [42] it is also noted that a level-set based topology opti-
misation algorithm treats topological changes conveniently, unlike explicit boundary
description methods. This means that during the optimisation process holes can fuse
together and new connections can be made in the design.
Unfortunately, there are drawbacks to a level-set approach for topology optimisa-
tion. A huge deficiency in the conventional level-set approach was that it did not
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allow the nucleation of holes. This is noted by Allaire et al. ([2], [5], [6]) and tech-
niques to circumvent this are briefly outlined. This lack of hole nucleation makes the
optimal design heavily dependent on the initial design as stated in plentiful works
(Allaire et al. [5], Sigmund and Maute [35], Van Dijk et al. [42] and Yaji et al. [45]).
Furthermore, similar to the traditional topology optimisation method, the level-set
based method suffers from local minima according to Allaire and Jouve [2] and Van
Dijk et al. [42]. Luckily, the majority of these obstacles has been dealt with.
However, there is also a non-numerical problem in topology optimisation. This will
be part of the research problem and is discussed in the next section.

1.3 Research problem

The use of standard benchmark problems for topology optimisation methods is briefly
addressed in the 2013 comparative review article of Sigmund and Maute [35]. While
the MBB beam and cantilever are typical benchmark problems in literature, there
is a lack of challenging standard test cases. Moreover, they mention a specifically
“challenging but still simple to implement compliant mechanism benchmark”: the in-
verter. It was first proposed by Sigmund in 1997 [32] and used as a ‘standard’ bench-
mark problem in later works of him and co-writers [33], [34]. In Section 3.4 the inverter
benchmark problem will be thoroughly described.
Sigmund and Maute recommend in their review article that the inverter example
should be chosen as a standard benchmark problem in future works regarding topol-
ogy optimisation and in particular level-set based topology optimisation. The heavy
influence of the initial design is a substantial burden for boundary control methods
(e.g. level-set methods).
Another problem the author wishes to take on is the lack of an algorithm which can
detected discontinuities in the design structure during the optimisation process and
prevent those from occurring. While Kasaiezadeh and Khajepour [16] detect a dis-
continuity based on the physics, an algorithm which actually looks at the material
distribution has not been proposed yet.

1.4 Thesis objectives

The first step of this thesis is to find out how a level-set embedded minimum com-
pliance problem can be solved numerically. This means developing a topology op-
timisation algorithm based on the level-set method that is able to interact with a
finite-element model and using it to find optimal designs. In view of this we set the
following objectives:

• Derive a level-set embedded minimum compliance problem.

• Solve this problem numerically, which leads to an algorithm.

• Compare the results of this algorithm to known benchmarks: MBB beam, can-
tilever and inverter.

At the hand of these objectives we want to contribute to the solution for standardised
benchmark problems.
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Once these objectives have been accomplished, we move on to the connectivity prob-
lem for which we set the following objectives:

• Formulate an algorithm which can detect a discontinuity during each step of
the optimisation process based on the material distribution derived from the
level-set function.

• Expand the detection algorithm such that it can prevent the final design from
having discontinuities.

• Implement the prevention algorithm into the algorithm which solves the level-set
embedded minimum compliance problem.

1.5 The reader’s guide to the thesis

Now that a background of the main topic has been presented and the research problem
of the thesis along with its corresponding objectives has been established, a concise
overview of the outline of this literature report is provided below.

Chapter 2 (Preliminaries)
Essential physical and material constraints as well as clarifying mathematical
notations are treated in this chapter.

Chapter 3 (Benchmark problems)
Three benchmark problems regarding the minimum compliance problem are
introduced and discussed thoroughly. Besides this, a comparative topology op-
timisation method is briefly addressed and used to show some results of these
benchmarks.

Chapter 4 (Minimum compliance problem derivation)
Some elemental definitions of linear elasticity along with the principle of mini-
mum potential energy are introduced at first. The main topic of this chapter is
the derivation and formulation of the minimum compliance problem.

Chapter 5 (Solving the minimum compliance problem)
Different methods and approaches for solving the minimum compliance problem
numerically are discussed. One approach is applied and results are examined.

Chapter 6 (Connectivity)
The matter of connectivity is utterly studied. First, an algorithm to detect a
discontinuity is devised and improved. Second, a prevention constraint is intro-
duced. Finally, detection and prevention are combined into an algorithm and
tested for the minimum compliance problem.

Chapter 7 (Conclusion and discussion)
In this final chapter conclusions are drawn, discussions are conducted and the
thesis is brought to an end.





CHAPTER 2

PRELIMINARIES

The physical and mathematical framework in which the problems of this thesis are
presented is treated in this chapter. It begins with the physical aspects of the design
material. Finally, those aspects are translated into a mathematical model.

2.1 The physical design

First and foremost, it must be noted that all physical designs are three-dimensional. How-
ever, as will be stated later, the mathematical problem can be two-dimensional as
well. This is due to the fact that two-dimensional mathematical shapes can be con-
structed as three-dimensional, physical structures. In engineering this procedure is
known as extrusion.
To start off, it is important to specify the properties we want our material to have.

2.1.1 Material properties

The material that will be used for the design is isotropic and homogeneous. A material
is said to be isotropic if its properties are the same in all directions. Homogeneous
means that a material has the same properties everywhere in the domain.
Throughout this thesis steel is used as the design material. In Table 2.1 the parameter
values of steel are displayed. These values are used in all codes and benchmark test
cases.

Notation Definition Value in SI units
ρ Density 7.750 kg ·m−3

E Young’s modulus 190 · 109 Pa
ν Poisson ratio 0.28

Table 2.1: Table of the parameter values of steel.

7
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2.1.2 Physical constraints

Naturally, the design does have a number of physical constraints. One of the most
important constraints we pose on the design is a volume limit. This limit is defined
as Vmax and is a volume fraction. That is, it denotes a fraction of the total volume
available to construct the design.
Essential elements of designing are design constraints. These constraints can be trans-
lated into physical constraints. The physical constraints treated in this thesis consist
of two material constraints and two mechanical constraints. The material constraints
dictate in which regions material must be present and in which no material is al-
lowed.
The first mechanical constraint relates to the boundary conditions and the second
states that the design structure must be connected, which will be thoroughly treated
in Chapter 6. For now, there is not explicit constraint on the connectivity of the ma-
terial domain. In the next section the constraints are explained in more detail and
expressed in mathematical terms.

2.2 Mathematical domain

It is imperative to define the mathematical domain in which we work. This can be
either R2 or R3 in the case of topology optimisation. For the sake of generality,
however, we shall refer to Rd where d is the dimension of the space. The domain
we focus on is defined as the reference domain Ω. This domain is a subset of the
whole domain, i.e., Ω ⊆ Rd. We refer to the design material/structure as the material
domain and assign it the letter D. This material domain is always ‘inside’ the reference
domain, i.e., D ⊆ Ω. The boundary of the material domain, ∂D, is denoted by Γ. All
space within the reference domain that is not material is called the void. It should
be pointed out that the use of D and Ω is typical in papers concerning topology
optimisation. It differs per paper which notation is used for the reference domain and
which for the material domain (also called design domain).
To make a clear distinction between a volume integral (area integral in R2) and a
surface integral (line integral in R2) we also use the capital Greek letters omega and
gamma to denote these integrals, respectively. So, a volume integral has the differential
dΩ and a surface integral dΓ.
Promptly, more specific information about the reference and material domain is given.

2.2.1 Reference domain

The reference domain can have any fixed form. So, it does not necessarily need to be
a square (or cube) or circle (or sphere). Due to this definition of the reference domain,
we give the material domain a predefined space in which we want it to be optimised. It
also puts a limit on the available space for the material domain. That is to say, the
aforementioned volume fraction Vmax is a fraction of the volume of the reference do-
main. A pleasant fortuity is that we can create holes, which serve as regions where
no material is allowed, in the reference domain. Furthermore, the boundary of the
reference domain, ∂Ω, is significant too, as it is needed to define the boundary condi-
tions of the level-set function. This, however, will be accounted for after the level-set
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method is introduced and implemented into the minimum compliance problem (see
Section 4.5).

2.2.2 Material domain

The objective of topology optimisation is to find the optimal design. Therefore, we
must be clear on what the material domain D is. It is crucial to keep in mind that the
material domain will be updated during the optimisation process. This means that
we start with an initial material distribution, i.e., the initial design. Finally, we end
up with an optimal material distribution, i.e., the final and optimal design.
The material domain D is the set of coordinates where material is present. It is con-
tained in the reference domain and cannot exist outside of it. Due to possible design
constraints we allow the initial material domain to have predefined holes. Moreover,
it is even possible that new holes are created as a consequence of the topology op-
timisation. We must also take into account that there may be parts of the material
domain where material must be present. Therefor we define the domain A ⊆ D. That
is, A is the subset of D where there is always material. A simple visualisation of all
this is given in Figure 2.1. Although we will not encounter any benchmark problems
which have a set A in the interior of D, it is important to define A in this way in
order to stay generic. In our benchmark problems A is part of the boundary of D.

Figure 2.1: Two-dimensional visualisation of the mathematical
domain. Ω is the reference domain and ∂Ω its boundary. The ma-
terial domain is D and Γ its boundary. Material is always present
in A.
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2.2.3 Boundary conditions on Γ

In this thesis only two types of boundary conditions are considered: Dirichlet bound-
ary conditions (named after Peter Gustav Lejeune Dirichlet) and Neumann boundary
conditions (named after Carl Neumann). Therefore, we define ΓD, the part of the
boundary which has Dirichlet boundary conditions, and ΓN, the part which has Neu-
mann boundary conditions, such that Γ = ΓD∪ΓN. These boundary conditions apply
to the displacement u (which is explained in Chapter 4). Moreover, some parts of
the boundary can have both boundary conditions. However, a single displacement
component (ux, uy or uz) can only have one boundary condition.
We have two types of mechanical conditions on Γ which result in boundary conditions:

1. An external force t on the boundary. This gives a Neumann boundary condition
at the point where the force is exerted. So, there has to be material present at
this point.

2. Fixed material on the boundary. This gives a Dirichlet boundary condition, i.e.,
u = 0. Obviously there is material present on this part of the boundary.

If no explicit boundary condition is stated for a certain part of the boundary it is
assumed to have a homogeneous Neumann boundary condition.
It should be pointed out that often the boundary of D partly coincides with the bound-
ary of Ω. This happens at places where either one of the aforementioned mechanical
boundary conditions are defined.

2.2.4 Place-dependency of parameters and constants

Because we make a clear difference between material and void, the parameters and
constants we encounter are place-dependent in a certain way. Inside the material
domain, i.e., in the material, the parameters and constants exist. As the material is
isotropic and homogeneous the parameters and constants remain the same everywhere
inside the material domain. On the other hand, in the void, those parameters and
constants do not exist. So, the parameters and constants could be expressed with
the use of an indicator function, but that would only be necessary in computational
cases. Thus, we will refrain from denoting parameters and constants as functions of
place.
In the next chapter this mathematical framework is translated into concrete examples.



CHAPTER 3

BENCHMARK PROBLEMS

This chapter examines three benchmarks which will later be used to test the level-set
based topology optimisation algorithm for the minimum compliance problem, which
is derived in the subsequent chapter. To provide a frame of reference, a comparative
algorithm is used to solve these benchmarks as well. To be clear, this chapter does
not contain the level-set approach. We start this chapter with a brief description of
this comparative algorithm.

3.1 Comparative topology optimisation method

Before we discuss the comparative topology optimisation method, we first take a look
at a simplified version of the minimum compliance problem:

min
ρ

f(ρ)

s.t.

∫
Ω

ρ dΩ ≤ Vmax

∫
Ω

dΩ,

ρ(x) = 1x∈D.

(3.1)

Here f is the objective function, which in our case is the compliance, and the second
line is the volume constraint. The last line in Problem (3.1) shows that the density is
equal to 1 inside the material domain and 0 outside of it. This means that the optimi-
sation variable is discrete: a 0-1 topology optimisation problem. Due to the discrete
nature of Problem (3.1) it is generally hard to solve according to Sigmund and Peters-
son [36]. Approximation the discrete problem with continuous design variables proves
to be easier. A method which does this, is the density approach known as SIMP
(Simple Isotropic Material with Penalisation). Also called the power-law approach,
the SIMP approach considers the design variables to be continuous (i.e. 0 ≤ ρ(x) ≤ 1)
and forces these towards a black and white solution with the use of a penalisation
parameter. This means that intermediate densities (also called grey transition areas)

11
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are allowed, but pushed to either 0 or 1. The best choice for this penalisation pa-
rameter p turns out to be p = 3 [35]. For more information on SIMP see [9], [35]
and [36]. The well-known finite-element method (FEM) is used for the discretisation
and utilises rectangular elements. Moreover, a Helmholtz filter prevents the forma-
tion of checkerboard patterns. This filter ensures that the material has a minimum
thickness, has the problem of generating grey transition areas between void and solid
elements. We use a filter radius of rmin = 0.75·width

#horizontal elements . The iterative updating

is done by the method of moving asymptotes (MMA) (Svanberg [40]). The volume
constraint is Vmax = 0.5 and the maximum number of iterations is nmax = 200. The
stopping criteria are the following two: the relative change of the objective function
is below 10−2 and the infinity norm of the solution is below 10−2.

3.2 MBB beam

The Messerschmitt-Bölkow-Blohm (MBB) beam is a well-known standard benchmark
problem in the field of topology optimisation (see [21] and [34]). It consists of a
beam for which the bottom left and right points are fixed. So, these two points have
homogeneous Dirichlet conditions in the horizontal and vertical direction. On the
middle top point a force is exerted as shown in Figure 3.1. This is considered a
Neumann boundary condition, as mentioned in Chapter 3.

Figure 3.1: Reference domain of the MBB beam and the boundary
conditions.

Due to symmetry, we merely have to model half of the design. As shown in Figure 3.2,
the symmetric axis is the vertical line through the applied force. This leads to a math-
ematically induced, mechanical boundary condition: there can be no displacement in
the horizontal direction on this newly created boundary. So, on the left boundary we
have one homogeneous Dirichlet condition (ux = 0) and two homogeneous Neumann
conditions (uy,x = uz,x = 0). The reason we do this, is to create a smaller reference
domain which is computationally more efficient. The rest of the boundary, except the
bottom right point, has a homogeneous Neumann condition. For results in other lit-
erature see the 2007 paper of Sigmund [33] and the 2010 paper of Takewaza et al. [41]
(the latter refers to it as a bridge).
For our MBB beam benchmark problem we consider a width to height ratio of 6:1
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Figure 3.2: Reference domain of the right-hand side of the MBB
beam and the boundary conditions.

(entire beam). Regarding the physical dimensions, our entire MBB beam has a width
of 0.6 m and height of 0.1 m.

3.2.1 Numerical examples MBB beam

For these numerical examples we look at MBB beams with 24 by 8 (Figure 3.4), 48 by
16 (Figure 3.5) and 96 by 32 (Figure 3.6) elements in horizontal and vertical direction
respectively. In Figure 3.3 we see the initial material density distribution of the 48 by
16 MBB beam. The presence of material in the bottom right and top left corners is
clearly visible. The former represents the fixed point and the latter is the point where
the downward force is exerted.

Figure 3.3: Initial material density distribution of the 48 by 16
MBB beam with the SIMP approach.

From Figure 3.4a it is not quite clear that it is the MBB beam compared to results in
literature. The figure solely indicates that the structure goes from the top left corner
to the bottom right corner. This gives reason for a higher resolution. Remarkable
is that the structure did converge in 130 iterations. Figure 3.4b indicates that the
convergence was monotonic.
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(a) (b)

Figure 3.4: Final design 24 by 8 MBB beam with SIMP ap-
proach: (a) material density distribution; (b) Evolution of the ob-
jective function.

If we double the number of horizontal and vertical elements the final design (Figure
3.5a) becomes much clearer, as expected. We can now see that a new part has been
constructed in the lower left corner. This was not yet visible in the final design with
a lower resolution (see Figure 3.4a). If we take a look at the convergence plot in
Figure 3.5b, we see that convergence is quicker (97 iterations). In addition to this,
the objective function is also monotonically decreasing.

(a) (b)

Figure 3.5: Final design 48 by 16 MBB beam with SIMP ap-
proach: (a) material density distribution; (b) Evolution of the ob-
jective function.

Figure 3.6a clearly shows a form of convergence in the final design of the MBB
beam. The structure looks the same as the 48 by 16 MBB beam (see Figure 3.5a),
but has a higher resolution and the boundary is sharper and more distinct. This is
a result of the higher number of elements (96 by 32). Remarkable is the fact that it
took 196 iterations to converge, as is shown in Figure 3.6b. We would expect it to
take less iterations than the other two configuration, because it has a finer mesh. It
turns out that the convergence criterion for the objective function was satisfied after
22 iterations, but it took significantly more iterations to obey the criterion on the
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infinity norm of the solution. The objective function seems to decrease monotonically,
but after 25 iterations it looks to have converged completely.

(a) (b)

Figure 3.6: Final design 96 by 32 MBB beam with SIMP approach:
(a) material density distribution; (b) Evolution of the objective
function.

It is clear that the results of the 24 by 8 MBB beam are not useful for industrial
purposes in comparison to the higher resolution results. The 48 by 16 MBB beam
showed clear signs of convergence in the final design. The boundary, nonetheless,
was not clear and a higher resolutions is required if one desires to manufacture this
structure. The best results were, as could be expected, provided by the structure with
the highest resolution. The convergence to the optimal final design is evident and the
boundary of the structure is distinguishable as well. A serious drawback we observed
in Figure 3.6b was the a vast amount of iterations needed to converge which takes
a lot of CPU time. This problem can be circumvented by abandoning the criterion
on the infinity norm of the solution. A higher number of elements seems undue, but
could be necessary for additive manufacturing machines.

3.3 Cantilever

If one benchmark problem is required to be present, then it must be the cantilever
benchmark problem. In all fields of topology optimisation the cantilever problem is
commonplace, as it is simple to implement and solve. Some examples of the cantilever
in literature are found in [4], [39] and [41].
The cantilever is a rectangle of which the left edge is fixed (as if to a wall). So, we have
homogeneous Dirichlet conditions on the entire left-hand side of the rectangle. Fur-
thermore, there is a concentrated force vertically loaded at the centre point of the
right-hand side (see Figure 3.7). The rest of the boundary of the rectangle has homo-
geneous Neumann conditions. We examine a cantilever with a 2:1 width to height
ratio. Regarding the physical dimensions, our cantilever has a width of 0.2 m and
height of 0.1 m.
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Figure 3.7: Reference domain of the cantilever and the boundary
conditions.

3.3.1 Numerical example cantilever

For these numerical examples we look at cantilevers with 16 by 8 (Figure 3.9), 32
by 16 (Figure 3.10) and 64 by 32 (Figure 3.11) elements. In Figure 3.8 the initial
material density distribution of the cantilever is depicted. The material constraint of
predefined material at the left-hand side is visible in the initial design. The entire
left edge consists of material is fixed. On the right hand side are two elements with
material upon which force is exerted. The reason that this are two elements, is because
the code used for the comparative algorithm can only place material in an element
and not around or on a node. With two elements the the average force is still in the
middle of the right edge.

Figure 3.8: Initial material density distribution of the 32 by 16
cantilever with the SIMP approach.

The final design of the 16 by 8 cantilever depicted in Figure 3.9a does not tell us
much about what the structure is and where its boundary is. Only a clear hole in
the middle of the left-hand side has formed. Furthermore, there are a lot of elements
which have a density of 0.5. So, it is not clear whether or not there is material in those
elements. Figure 3.9b indicates that the objective function decreases monotonically,
but did not reach the convergence criteria within 200 iterations.
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(a) (b)

Figure 3.9: Final design 16 by 8 cantilever with SIMP ap-
proach: (a) material density distribution; (b) Evolution of the ob-
jective function.

Figure 3.10a shows a clearer structure than the previous configuration. Four holes
have emerged; two big ones and two smaller ones. The boundary still is not very
distinct. Similar to the 16 by 8 cantilever the 32 by 16 cantilever has a monotonically
decreasing objective function (see Figure 3.10b). The convergence criteria, however,
are again not reached.

(a) (b)

Figure 3.10: Final design 32 by 16 cantilever with SIMP ap-
proach: (a) material density distribution; (b) Evolution of the ob-
jective function.

The best result is achieved with the highest resolution as we can see in Figure
3.11a. Moreover, we see a form of convergence in the structure itself. The 64 by
32 cantilever has the same outlines as the 32 by 16 cantilever, except that it has a
more distinct boundary and better resolution. This is a consequence of the higher
number of elements. A huge difference with the previous two configurations is that
the final design converged in 154 iterations. This can be seen in Figure 3.11b. It is
important to point out that the criterion on the objective function was reached after
67 iterations. To reach the criterion on the infinity norm of the solution took another
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87 iterations.

(a) (b)

Figure 3.11: Final design 64 by 32 cantilever with SIMP ap-
proach: (a) material density distribution; (b) Evolution of the ob-
jective function.

It should be pointed out that the results above heavily depend on the Helmholtz
filter. If we were to lower the filter radius, we would have more holes and finer
features. This is visualised in Figure 3.12, where we used a filter radius of rmin =
2.34375·10−4 as opposed to a filter radius of rmin = 2.34375·10−3 in Figure 3.11a. The
reason for this is because the cantilever has an analytic solution with an infinite
amount of infinitely thin fibers (Lewiński[18]). Now, if we would not apply a density
filter and use the Optimality Criteria (OC) method for the update procedure, we see
in Figure 3.13 that checkerboards are formed. Also, in the boundary regions there are
barely any grey transitions between void and material elements. We used OC instead
of MMA, because the latter requires a density filter.

Figure 3.12: Final design 64 by 32 cantilever with SIMP approach
and lower filter radius (rmin ≈ 2.3 · 10−4).
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Figure 3.13: Checkerboard formation in the final design of the 64
by 32 cantilever. SIMP approach with OC and no density filter.

3.4 Inverter

The inverter is to a certain extend different from the MBB beam and cantilever. While
the first two benchmark problems have the objective of minimising the compliance,
in the inverter problem the objective is to minimise the displacement in a certain
point in one direction. On account of this, the inverter problem will be dismissed as
a compliant mechanism problem and treated as a minimum compliance problem. A
compliant mechanism problem would mean a second problem, besides the minimum
compliance problem. Which would be outside the scope of this thesis. Nonetheless,
a short description of the original inverter problem will be provided. The inverter

Figure 3.14: Reference domain of the inverter and the boundary
conditions.

is a “force or displacement-inverting mechanism and is used to change the direction
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of actuating displacement or force” according to Vegueŕıa et al. [43]. The reference
domain is a square where the left-hand side top and bottom corners are fixed (homo-
geneous Dirichlet). A force is exerted on the middle of the left edge in the horizontal
direction. This force can point to the left of or to the right. On the right-hand side in
the middle of the square there is a point which can only be displaced in the horizon-
tal direction(see Figure 3.14). So, we have a homogeneous Dirichlet condition for the
vertical component of this point.
Like the MBB beam, the inverter also has a symmetry property which is illustrated
in Figure 3.15.
In the setting of minimum compliance we do not alter the physical model of the
inverter. The difference is the objective, which is now finding the optimal design
wherefore the compliance is minimal.
Regarding the physical dimensions, our square inverter has a width of 0.2 m and
height of 0.2 m.

Figure 3.15: Reference domain of the lower side of the inverter
and the boundary conditions.

3.4.1 Numerical example inverter

For these numerical examples we look at inverters with 16 by 8 (Figure 3.17), 32 by
16 (Figure 3.18) and 64 by 32 (Figure 3.19) elements. Figure 3.16 shows the initial
material density distribution of the inverter. The material constraint of predefined
material at the bottom left and top right corners is visible in the initial design.

Figure 3.17 immediately shows us an interesting anomaly: the final design has a
discontinuity. The point in the top right corner is not connect to the rest of the
structure. If we look at the two other plots with higher resolution (Figure 3.18a and
Figure 3.19a), we see that this discontinuity is not due to the lower number of elements
of the 16 by 8 inverter. The only difference we can now distinguish, is a space of void
on the left-hand side. As anticipated and seen in the two other benchmarks, a higher
number of elements results in a clearer structure with a distinct boundary.
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Figure 3.16: Initial material density distribution of the 32 by 16
cantilever with the SIMP approach.

(a) (b)

Figure 3.17: Final design 16 by 8 MBB beam with SIMP ap-
proach: (a) material density distribution; (b) Evolution of the ob-
jective function.

If we look at the convergence plot of all resolutions (Figures 3.17b, 3.18b and 3.19b in
ascending order of total number of elements), we can conclude that the algorithm has
converged. Moreover, the total number of iterations for all configurations is around
45. So, the number of elements has no influence on the rate of convergence.
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(a) (b)

Figure 3.18: Final design 32 by 16 inverter with SIMP ap-
proach: (a) material density distribution; (b) Evolution of the ob-
jective function.

This discontinuity is undesirable and allows for further investigation. We want to
know when this discontinuity occurs. So, we test another number of elements and
look at different stages of the iteration process.

(a) (b)

Figure 3.19: Final design 64 by 32 inverter with SIMP ap-
proach: (a) material density distribution; (b) Evolution of the ob-
jective function.

In Figure 3.20 we see four iteration steps of the 50 by 25 inverter. After 24 iterations we
must conclude that the design is not as we intent it to be; connected. A void is created
between the top right point and the rest of the structure if we compare the initial
design (Figure 6.9a) to the design after 1 iteration (Figure 6.9b). After the second
iteration (Figure 6.9c, the two points on the left-hand side tend to connect. This
could be due to the strong local minimum Sigmund and Maute mention in their
review article [35]. It is, however, more likely that this is simply the optimal design,
as the used algorithm does not guarantee ‘connectedness’. This gives an incentive to
figure out if a level-set approach deals with this connectivity issue.
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(a) (b)

(c) (d)

Figure 3.20: Iteration steps of the 50 by 25 inverter with the SIMP
approach: (a) initial design; (b) 1 iteration; (c) 2 iterations; (d)
24 iterations.





CHAPTER 4

DERIVATION OF THE MINIMUM
COMPLIANCE PROBLEM

In this chapter we compose the topology optimisation problem after a brief in-
troduction to linear elasticity and the principle of minimum potential energy in
physics. Then, the minimum compliance problem is derived. Finally, we implement
the level-set method into the minimum compliance problem. First, we look at the
physics of linear elasticity.

4.1 Linear elasticity

Elasticity involves a change of shape, so we define the displacement vector u(x) as a
function of the location x ∈ Rd. As stated by Sadd [30] the (Cauchy) strain consists
of normal strain, which is “the change in length per unit length of fibers oriented
in the normal direction”, and shear strain, which is “the change in angle between
two originally orthogonal directions in the continuum material”. According to Sadd
[30] there is a relation between the displacement and the strain, which is called the
strain-displacement relation

ε(u) :=
1

2

(
∇u + (∇u)T

)
, εij =

1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (4.1)

Note that ε(u) is a symmetric tensor by definition, i.e., ε . Be aware of the fact
that the strain-displacement relation is linearised; ergo the name linear elasticity. For
information regarding the theory of nonlinear elasticity see Antman’s book [7] (in the
context of mathematics) or Rushchitsky’s book [29] (in the context of physics). If
one is interested in nonlinear elasticity in relation to topology optimisation, the 2004
paper of Allaire et al. [5] is recommended.
Another very important physical quantity is stress. In order to express the stress in

25
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terms of the strain we utilise a generalised version of Hooke’s law (named after Robert
Hooke) for linear, isotropic and, elastic materials [37]:

ε =
1

E

[
(1 + ν)σ − νtr(σ)I

]
, (4.2)

where E is the Young’s modulus, ν the Poisson ratio (named after Thomas Young and
Siméon Poisson, respectively), σ the stress tensor and I the identity matrix. In index

notation this becomes εij = 1
E [(1 + ν)σij − νδijσkk], where σkk =

∑d
i=1 σii and δij

is the Kronecker delta function (named after Leopold Kronecker). Remark that

εkk =
1

E
[(1 + ν)σ11 − νσkk + (1 + ν)σ22 − νσkk + (1 + ν)σ33 − νσkk]

=
1

E
[(1 + ν)σkk − 3νσkk] =

1− 2ν

E
σkk.

This gives σkk = E
1−2ν εkk. Now we can express the stress tensor in terms of the linear

strain tensor.

σij =
E

1 + ν
εij +

νE

(1 + ν)(1− 2ν)
δijεkk.

If we introduce the Lamé constants, λ = νE
(1+ν)(1−2ν) and µ = E

2(1+ν) (named after

Gabriel Lamé), we can give the constitutive equation for isotropic materials (Hooke’s
law) as described in [37].

σ(u) = 2µε(u) + λtr(ε(u))I. (4.3)

It should be mentioned that µ is also known as the shear modulus in the context of
elasticity.

4.1.1 Stiffness tensor

As we are dealing with linear elasticity, the stress components are assumed to be linear
functions of the strain components. So, following Equation (4.3), we can express the
stress as

σij(u) = Eijklεkl(u), with Eijkl = µ(δikδjl + δilδjk) + λδijδkl. (4.4)

The term Eijkl is called the stiffness tensor and for an isotropic homogeneous material
has the following symmetry properties:

Eijkl = Ejikl, Eijkl = Eijlk, Eijkl = Eklij . (4.5)

The first two symmetries are a consequence of the symmetry of the strain in Relation
(4.1). Due to the third symmetry we can define the following symmetric bilinear
function in Einstein notation (named after Albert Einstein):

a(u,v) :=

∫
D

Eijklεkl(u)εij(v) dΩ, (4.6)

where D is the aforementioned design domain. Definition (4.6) is loosely based on
an inner product introduced by Eremeyev and Lebedev [13]. Later, we will see that
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Definition (4.6) is the energy bilinear form as described by Bendsøe and Sigmund [9]
and used in the formulation of the minimum compliance problem. Using the stiffness
tensor expression of the stress (see Equation (4.4)), Definition (4.6) can be written as

a(u,v) =

∫
D

σ(u) : ε(v) dΩ. (4.7)

Here the Frobenius inner product (named after Ferdinand Georg Frobenius) is used. The
Frobenius inner product for two complex-valued n ×m matrices A and B is defined
as follows:

A : B := ⟨A,B⟩F =
∑
i,j

AijBij , (4.8)

where the overline denotes the complex conjugate. It follows from its definition that
the Frobenius inner product is sesquilinear.

4.2 The principle of minimum potential energy

From the principle of minimum potential energy we can derive the weak form of linear
elasticity, which is called the the principle of virtual work in stress analysis. The
minimum potential energy problem of an elastic body, based on [13] and [37], is
defined as Find u ∈ U such that P (u) ≤ P (v) ∀v ∈ U, for

P (u) = 1
2

∫
D

σ(u) : ε(u) dΩ−
∫
Γ

t · udΓ−
∫
D

f · udΩ, (4.9)

where t is the (external) traction, f the (internal) body forces and U the set of all
accessible displacements. Traction forces only act on the boundary of the design
domain. Traction can be seen as the force which makes an object move over a surface
by overcoming all resisting forces. In our case we regard externally applied traction
forces. Body force is a force that acts on the whole design domain. Examples of body
forces are gravity and (electro)magnetism.
Now, we want to find weak extrema of the functional P (u) which denotes the total
strain energy for an elastic body. Therefore, we look at the calculus of variations. This
tells us that a necessary condition for finding weak extrema for Problem (4.9) is the
Euler-Lagrange equation (named after Leonhard Euler and Joseph-Louis Lagrange):

d

dβ
P (u + βv)

∣∣∣
β=0

= 0 (4.10)

for any fixed virtual displacement v ∈ U0 := {w ∈ U : w = 0 on ΓD} and u the op-
timal solution of Problem (4.9). Here, U0 denotes the set of admissible displacements
with homogeneous Dirichlet boundary conditions.
Before we express the Euler-Lagrange equation, note that the functional P (u) can be
expressed in terms of the aforementioned symmetric bilinear function a, see Definition
(4.6). This results in

P (u) =
1

2
a(u,u)−

∫
Γ

t · u dΓ−
∫
D

f · u dΩ.
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Using this expression for the functional, we first look at P (u + βv) and express it
using the symmetric and bilinear properties of a(u,v).

P (u+βv) =
1

2
a(u,u)+βa(u,v)+

1

2
β2a(v,v)−

∫
Γ

t·u dΓ−β
∫
Γ

t·v dΓ−
∫
D

f·u dΩ−β
∫
D

f·v dΩ.

We take the derivative with respect to β.

d

dβ
P (u + βv) = a(u,v) + βa(v,v)−

∫
Γ

t · v dΓ−
∫
D

f · v dΩ.

Now we set β = 0 and equate the result to zero.

a(u,v)−
∫
Γ

t · v dΓ−
∫
D

f · v dΩ = 0.

So, the weak form of linear elasticity is∫
D

σ(u) : ε(v) dΩ =

∫
D

f · v dΩ +

∫
Γ

t · v dΓ ∀v ∈ U0. (4.11)

From Equation (4.11) the equation of motion for elastostatics can be derived. For this
derivation look at Appendix A.

4.3 Minimum compliance problem

As mentioned before, the functional of Definition (4.6) is used in the minimum com-
pliance problem as the internal virtual work. The sum of integrals on the right-hand
side of Equation (4.11) is called the load linear form [9]. We define the functional

l(u) :=

∫
D

f · u dΩ +

∫
Γ

t · u dΓ. (4.12)

The way we define the minimum compliance problem is roughly based on the same
problem defined by Bendsøe and Sigmund in their book [9].

min
D

a(u,u)

s.t. a(u,v) = l(v), ∀v ∈ U0,

u
∣∣
ΓD

= u0,

A ⊆ D,∫
D

1 dΩ ≤ Vmax

∫
Ω

1 dΩ.

(4.13)

Here D and ΓD are as described in Section 2.2. The objective of the minimum com-
pliance problem is to find the optimal design domain for which the compliance is
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minimal. This is equivalent to minimising the strain energy ( 1
2a(u,u)) over D. Note

that this is the same as minimising a(u,u) over D, which is the objective of Problem
(4.13). What is more, we minimise over D and not over u, contrary to Bendsøe and
Sigmund [9]. That is because u is a function of the design domain D; u is determined
by the principle of minimum potential energy which depends on the shape of D. Fur-
thermore, Problem (4.13) consists of the physical constraint regarding the principle of
minimum potential energy, a boundary condition and the volume constraint, in that
order. The homogeneous Neumann boundary condition is processed into the weak
form of linear elasticity.
Now, we aim to incorporate the level-set method into Problem (4.13). Therefor, we
shortly digress for a brief introduction to the level-set method.

4.4 The level-set method

The level-set method was introduced in 1988 by Sethian and Osher [24] in order
to keep track of the motion of an arbitrary interface. The method involves using a
level-set function: 

ϕ(x) > 0 ∀x ∈ Ω \D (void),

ϕ(x) = 0 ∀x ∈ Γ ∩ Ω (interface),

ϕ(x) < 0 ∀x ∈ D \ Γ (material).

(4.14)

A visualisation of this scalar function is provided by Figure 4.1. In Figure 4.1 the unit
normal vector on the interface, which is introduced in the next section is visible as
well.

Figure 4.1: Graphical representation of the level-set function.
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4.4.1 Properties of the level-set function

Some convenient and interesting properties follow from Definition (4.14).

Unit normal

The gradient, ∇ϕ, is perpendicular to the isocontours of ϕ and points in the direction
of increasing ϕ (on the zero interface that is, from the material to the void). Let x0

be a point on the zero isocontour of ϕ, then ∇ϕ(x0) is a vector that points in the
same direction as the local unit normal vector, n̂, on that isocontour in x0. Thus,
we can express this normal vector in terms of the level-set function for points on the
interface.

n̂(x) =
∇ϕ(x)

∥∇ϕ(x)∥
. (4.15)

Note that Equation (4.15) holds for any interface ϕ = a with a ∈ R.

Volume and surface integrals

Using the Heaviside function, Dirac delta function and a level-set function one can
compose a volume integral (area or length integral in R2 or R, respectively) and
surface integral (line or point integral in R2 or R, respectively) over the entire reference
domain Ω.
The Heaviside function (named after Oliver Heaviside) is defined as follows using the
(one-dimensional) variable ϕ:

H(ϕ) :=

{
1 if ϕ > 0,

0 if ϕ ≤ 0.
(4.16)

For convenience purposes we define the Dirac delta function (named after Paul Dirac)
as the derivative of the Heaviside function

δ(ϕ) := H ′(ϕ). (4.17)

As the level-set function is place-dependent, the volume integral of a function f(x)
over the interior D is defined as∫

D

f(x) dΩ :=

∫
Ω

f(x) (1−H(ϕ(x))) dΩ. (4.18)

Notice, how the integral on the right-hand side is over the entire reference domain. This
an advantage if integrating over Ω is more convenient than integrating over D. Before
we move on to the surface integral, we have to show some equalities. Osher and Fed-
kiw [23] state that the directional derivative of the Heaviside function in the normal
direction is a Dirac delta function which depends on the multidimensional variable x:

δ̃(x) := ∇H(ϕ(x)) · n̂. (4.19)

It is important to remark that this definition differs from the definition used by
physicists: δ̂(x) := δ(x1) · · · δ(xd).
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Due to how the level-set function is defined, the function δ̃(x) is only non-zero on the
interface Γ. With this definition of the Dirac delta function the surface integral of a
function f(x) over the boundary Γ is defined as

∫
Γ

f(x) dΓ :=

∫
Ω

f(x)δ̃(x) dΩ. (4.20)

Notice how we go from a boundary integral to an integral over the entire reference
domain.
In order for us to implement the level-set function into this boundary integral, we
rewrite Definition (4.19) using the chain rule.

δ̃(x) = ∇H(ϕ(x)) · n̂

= H ′(ϕ(x))∇ϕ(x) · ∇ϕ(x)

∥∇ϕ(x)∥

= H ′(ϕ(x))
∥∇ϕ(x)∥2

∥∇ϕ(x)∥
= H ′(ϕ(x))∥∇ϕ(x)∥.

Substituting Definition (4.17) into the last line gives

δ̃(x) = δ(ϕ(x))∥∇ϕ(x)∥. (4.21)

By substituting Equation (4.21) into the surface integral, Definition (4.20), we get

∫
Γ

f(x) dΓ =

∫
Ω

f(x)δ(ϕ(x))∥∇ϕ(x)∥ dΩ. (4.22)

The reason we rather use Equations (4.18) and (4.22), is to avoid identifying the
interior, exterior and boundary regions of D for the calculation of the volume and
boundary integrals. Instead, both integrals are taken over the entire reference domain
Ω.

4.5 Implementing the level-set method

Finally, we have the knowledge to implement the level-set method into the minimum
compliance problem, Problem (4.13). From the definitions of the volume integral,
Definition (4.18), and surface integral, Definition (4.22), we know how to implement
the level-function into the integrals of the problem.
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4.5.1 Level-set embedded minimum compliance problem

Combining all this together results in the level-set embedded minimum compliance
problem 

min
ϕ

ã(u,u, ϕ)

s.t. ã(u,v, ϕ) = l̃(v, ϕ) ∀v ∈ U0,

u
∣∣
ΓD

= u0,

ϕ
∣∣
A

= ϕ0,

Ṽ (ϕ) ≤ Vmax,

(4.23)

where

ã(u,v, ϕ) :=

∫
Ω

Eijklεkl(u)εij(v)(1−H(ϕ)) dΩ, (4.24)

l̃(u, ϕ) :=

∫
Ω

(f · u)(1−H(ϕ)) dΩ +

∫
Ω

(t · u)δ(ϕ)∥∇ϕ∥ dΩ, (4.25)

Ṽ (ϕ) :=

∫
Ω

(1−H(ϕ)) dΩ∫
Ω

dΩ
. (4.26)

Note that we no longer minimise over the design domain, but over the level-set func-
tion. That is, because the level-set function describes the design domain. By the same
token, there also is a Dirichlet ‘boundary’ condition on the level-set function on the
domain A.
The next step is choosing methods to solve Problem (4.23).



CHAPTER 5

SOLVING THE MINIMUM
COMPLIANCE PROBLEM

The level-set based topology optimisation method described in this chapter is based
on the 2015 paper of Otomori et al. [25]. They use a reaction-diffusion equation to
update the level-set function. First, we must decide upon the method to solve the
minimum compliance problem.

5.1 KKT conditions

We have to deal with a constrained optimisation problem, Problem (4.23). A widely
used and very effective strategy for finding a local extremum subject to an equal-
ity constraint is the method of Lagrange multipliers (named after Joseph-Louis La-
grange). The Lagrangian for Problem (4.23)is given by

F̃ [ϕ, γ,v] = l̃(u, ϕ) + ã(u,v, ϕ)− l̃(v, ϕ) + γ
(
Ṽ (ϕ)− Vmax

)
, (5.1)

where γ and v are the Lagrange multipliers and the displacement u depends on the
material distribution determined by ϕ. The vector v is considered the Lagrangian pa-
rameter of the equation of motion. The Lagrangian consists of the objective functional
(first term), the equation of motion in its weak form (second and third term) and the
volume constraint (fourth term). Unfortunately, the inequality constraint is not suited
for the method of Lagrange multipliers. Therefore, we take a look at the KKT op-
timality conditions (named after William Karush, Harold Kuhn and Albert Tucker),
which allow inequality constraints. These KKT conditions apply to the Lagrangian

33
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and for Problem (4.23) are as follows:

∂F̃

∂ϕ
[ϕ, γ,v] = 0,

ã(u,v, ϕ)− l̃(v, ϕ) = 0,

γ
(
Ṽ (ϕ)− Vmax

)
= 0,

γ ≥ 0,

Ṽ (ϕ)− Vmax ≤ 0.

(5.2)

In contrast to the method of Lagrange multipliers, which takes the gradient with
respect to all optimisation variables and Lagrange multipliers, the first KKT condition
only takes the gradient of the Lagrangian with respect to the optimisation variables. In
our case, we only have one optimisation variable, ϕ, so we only have one partial
derivative.
Level-set functions that satisfy these KKT conditions (5.2) are candidate solutions
for the optimal level-set function that represents the optimal design. Yet, finding
such level-set function solutions directly is practically impossible, aside from a few
unique cases for which a closed-form solution could be derived analytically according
to Boyd and Vandenberghe [10]. Therefore, we have to decide how to update the
level-set function such that the KKT conditions are met.

5.2 Update procedure

The review article of Van Dijk et al. [42] mentions four update procedures: the
Hamilton-Jacobi (HJ) equation, mathematical programming, the optimality crite-
ria method and global search and gradient-free methods. These procedures determine
how the level-set function is driven to the optimal solution for the optimisation prob-
lem at hand. The latter of the procedures has shown to be computationally expensive,
but the others are well suited [42].
Traditionally, the level-set function is updated with a so-called Hamilton-Jacobi equa-
tion, as is done by Allaire and Jouve [3] and De Gourmay [11], for example.
We introduce a generalised HJ equation, which is the standard HJ equation with a
reaction and diffusion term added to it.

∂ϕ

∂τ
− vn∥∇ϕ∥ − D(ϕ)−R(ϕ) = 0, (5.3)

where vn denotes the normal velocity field and D and R the diffusive and reaction
terms, respectively. The diffusive term gives multiple benefits. According to Van Dijk
et al. [42] it “eases the numerical treatment of the HJ equation, smooths the level-set
function and reduces the dependency of the optimisation results on the discretisa-
tion of the level-set function.” These are all assets we prefer our update procedure
to bear. The reaction term serves as source and sink term within the material do-
main. This allows for the nucleation of holes.
We follow the update procedure of Otomori et al. [25] who use a generalised HJ equa-
tion without the convective term, vn∥∇ϕ∥. This makes it more a reaction-diffusion
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equation than a HJ equation. As can be seen in Equation (5.3), a fictitious time τ
is introduced and the optimisation problem is replaced with a time evolution equa-
tion. Thus, we consider the level-set function to be place and pseudo-time-dependent,
i.e., ϕ = ϕ(x, τ). The idea is that we iterate the level-set function, and as a result
the material domain, until it convergences to the optimal design. That is, we have
reached the KKT conditions.

5.2.1 Reaction-diffusion equation

Like Otomori et al. [25] we use the following reaction-diffusion equation:

∂ϕ

∂τ
= −K

(
∂F̃

∂ϕ
− α∆ϕ

)
in Ω, (5.4)

where K > 0 is a proportionality coefficient. Equation (5.4) is a reaction-diffusion
equation, cf. Equation (5.3). The parameter α dictates the effect of the diffusivity on
the evolution of the level-set function.
Adding the regularisation term makes it difficult to guarantee that the objective func-
tional monotonically decreases. This is yet an open problem according to Otomori et
al. [25].
We set appropriate boundary conditions for ϕ. This results in a boundary value prob-
lem: 

∂ϕ

∂τ
= −K

(
∂F̃

∂ϕ
− α∆ϕ

)
, in Ω,

ϕ = −1 in A,

ϕ = −1, on ∂ΩD,

∂ϕ

∂n
= 0, on ∂ΩN,

ϕ(x, 0) = −1, in Ω,

(5.5)

where ∂ΩD := A∩ ∂Ω. This results in a Dirichlet boundary condition on the level-set
function. On the remaining part of the boundary of the reference frame the level-set
function has a homogeneous Neumann condition. So, ∂ΩN := ∂Ω \ ∂ΩD is considered
a free boundary. Different nonhomogeneous Dirichlet boundary conditions result in
different optimal designs. It is important to point out that we choose the initial value
of the level-set function to be equivalent to material everywhere in the reference do-
main. The idea is that during the update procedure material is removed.

The next step is choosing the information we use to update the reaction-diffusion
equation, Equation (5.4). Their are five types of update information: variational and
parameter shape sensitivities, material parameter sensitivities, topological derivatives
and non-sensitivity information. The former is the most common, but uses a velocity
field, which must be extended. The only type of velocity extension that supports
hole nucleation is the natural extension as mentioned by Van Dijk et al. [42] in their
review paper. These nucleations, however, are incidental. Since we want consistent
hole-nucleation, topological derivatives are the only sufficient update information as
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also pointed out by Van Dijk et al. in [42]. Therefore, a short introduction of the
topological derivative is in order.

5.2.2 Topological derivative

As reported by Van Dijk et al. [42] the topological derivative of a shape functional W
in a bounded domain Q is defined as:

dτW (Q) := lim
r↓0

W (Q \B(r))−W (Q)

|B(r)|
, (5.6)

where | · | is a measure of the volume, and B a hole. The topological derivative is the
change of a shape functional due to the introduction of an empty sphere B (or circle
for d = 2) in the domain Q. To put it plainly, the topological derivative measures
the change of the functional with respect to a change in the domain. This process is
depicted in Figure 5.1. A good read on topological derivatives is the book of Novotny
and Soko lowski [22].

Figure 5.1: Graphical concept of the topological deriva-
tive. Adopted by Otomori et al. [25].

As we want to use the topological derivative to update the level-set function, we
note that the partial derivative of the Lagrangian in Problem (5.5) is related to
the topological derivative. Due to the material domain being defined by the level-set
function, there is an equivalence between the derivative of the Lagrangian with respect
to ϕ and the topological derivative of the Lagrangian. So, it is justified to replace the
partial derivative of the Lagrangian with its topological derivative.
The topological derivative is problem-dependent and we use the derivation of Otomori
et al. [25] for the topological derivative for the minimum compliance problem, Problem
(4.23).

dτ F̃ [ϕ] := u0
i,jAijklu

0
k,l − γ. (5.7)

Here the superscript 0 indicates the value of the displacement of the material domain
without the newly created hole. The topological depends on the level-set function in
the sense that the displacement is derived from the material distribution. Furthermore,
the tensor Aijkl is defined as

Aijkl :=
3(1− ν)

2(1 + ν)(7− 5ν)

[
− (1− 14ν + 15ν2)E

(1− 2ν)2
δijδkl + 5E(δikδjl + δilδjk)

]
. (5.8)
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The topological derivative is calculated with the displacement of the material domain,
which in turn is determined by the level-set function. The derivation of Definition (5.7)
can be found in the appendix of [25].

In addition to this, we introduce a normalisation parameter C. This parameter nor-
malises the sensitivities such that the value of α is independent of the particular
problem (e.g. cantilever, MBB beam, etc.) that is being solved. The normalisation
parameter is defined as

C :=

∫
Ω

dΩ∫
Ω
|dτ F̃ |dΩ

. (5.9)

In the paper of Otormori et al. [25] the parameter C has a minus sign. This is due to
the fact that their material domain is represented by positive values of the level-set
function. For our level-set function it is the other way around and the minus sign is
left out. Moreover, Yamada et al. [46] set K = 1. They state that the influence of K
on the dependency of the obtained optimal design is “extremely low”.
To conclude this part, we present Problem (5.5) with the topological derivative, the
normalisation parameter and K = 1.



∂ϕ

∂τ
= −

(
Cdτ F̃ − α∆ϕ

)
, in Ω,

ϕ = −1, in A,

ϕ = −1, on ∂ΩD,

∂ϕ

∂n
= 0, on ∂ΩN,

ϕ(x, 0) = −1, in Ω.

(5.10)

The next step is discretising Problem (5.10) and solving it numerically.

5.3 Discretisation

As mentioned before, we wish to iteratively find the optimal solution for ϕ by adhering
the KKT conditions. In order to achieve this, we discretise Problem (5.10) both in
time and space.

5.3.1 In time

During the spatial discretisation step will we see that the diffusive term in Problem
(5.10) is best treated implicitly and the topological derivative explicitly. Knowingly
we chose an IMEX (implicit-explicit) finite-difference approach to update the level-
set function towards the optimal solution. The level-set function at pseudo-time τn is
denoted as ϕ(x, τn) = ϕn(x), where n is the iteration step. Furthermore, τn = n∆τ ,
where ∆τ is the time step for the fictitious time τ . Discretising Problem (5.10) in
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time gives

ϕn+1(x)

∆τ
− α∆ϕn+1(x) =

ϕn(x)

∆τ
− Cdτ F̃ [ϕn(x)], in Ω,

ϕn+1 = −1, in A,

ϕn+1 = −1, on ∂ΩD,

∂ϕn+1

∂n
= 0, on ∂ΩN,

ϕ0 = −1, in Ω,

ϕ0 = −1, on ∂ΩD,

∂ϕ0

∂n
= 0, on ∂ΩN.

(5.11)

This approach is known as the forward-backward Euler method (named after Leon-
hard Euler).

5.3.2 In space

We use the finite-element approach to express Problem (5.11) in its weak form. There-
for we introduce a linear test function b̃(x) in functional space

B̃ :=
{
ϕ(x)|ϕ(x) ∈ H1(Ω) with ϕ = 0 on ∂ΩD

}
.

Then, the weak form of Problem (5.11) for all b̃ ∈ B̃ and all n ∈ N is

∫
Ω

ϕn+1(x)

∆τ
b̃(x) dΩ +

∫
Ω

α∇ϕn+1(x) ·∇b̃(x) dΩ

=

∫
Ω

(
ϕn(x)

∆τ
− Cdτ F̃ [ϕn(x)]

)
b̃(x) dΩ in Ω,

ϕn+1 = −1, in A,

ϕn+1 = −1, on ∂ΩD,

ϕ0 = −1, in Ω,

ϕ0 = −1, on ∂ΩD,

(5.12)

Notice that the second term on the left-hand side of the PDE in Problem (5.12) has
been obtained after applying Gauß’ divergence theorem (named after Carl Friedrich

Gauß) and using the fact that b̃ = 0 on ∂ΩD and ∂ϕn+1

∂n = 0 on ∂ΩN. In light of
mathematical acknowledgement it is fair to point out that a special case of Gauß’
divergence theorem is used which is known as Green’s first identity (named after
George Green).
We discretise System (5.12) in space using the finite-element method (FEM). We
approximate the level-set function as a weighted sum of bilinear spatial basis functions
with finite support:

ϕ(x, τn) ≈ ϕh(x, τn) :=

N∑
j=1

ϕj(τn)b̃j(x), (5.13)
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where ϕh is the numerical approximation of ϕ, N the number of nodes, ϕj(τn) a

nodal value and {b̃j |b̃j ∈ H1(Ω) for i = 1, 2, ..., N} a set of independent basis func-
tions. This form of parameterisation of the level-set function through the choice of
basis function affects the optimisation process. For example, the support size of the
basis functions can vary from local to global. We choose local basis functions, which
are nonzero in a finite part of the material domain. More important is the type of
basis function. The most common are FEM based basis functions, but radial basis
functions (RBFs) and spectral parameterisation have been applied as well. The latter
is not preferable for detailed descriptions of the material domain according to Van
Dijk et al. [42]. We apply our bilinear spatial basis functions on quadrilateral elements.
We choose b̃ = b̃i for all i ∈ {1, 2, ..., N}. Substituting this into (5.12) gives{

TΦn+1
h = Y,

ϕ = 0 on ∂ΩD,
(5.14)

where Φn
h is a vector that expresses the nodal values of the level-set function at time

τn. The stiffness matrix T and vector Y in System (5.14) are defined

T :=

Ne⋃
e=1

∫
Ve

(
1

∆τ
b̃
T
b̃ + α(∇b̃)T∇b̃

)
dVe, (5.15)

Y :=

Ne⋃
e=1

∫
Ve

(
ϕh(x, τn)

∆τ
− Cdτ F̃ [ϕh(x, τn)]

)
b̃
T

dVe, (5.16)

where Ne is the number of elements and Ve is the volume of an element.
⋃N

e=1 rep-

resents the union set of the elements, where e is the element number. b̃ is the row
vector of basis functions.
Note that System (5.14) could also be seen as applying FEM and the backward Euler
method which results in a fixed point problem because of the topological derivative
term dτ F̃ [ϕn+1(x)]. Performing one Picard iteration (named after Émile Picard) gives
System (5.14), where the initial fixed point estimate is taken as ϕn.

Equation of motion

In order to update the level-set function, the displacement of the material domain
based on the current level-set function must be calculated. This displacement is used
to calculate the topological derivative, Definition (5.7), and the compliance, which
is twice the objective functional of Problem (4.23). Therefore, we have to solve the
equation of motion. In Equation (4.11) the weak form of the equation of motion is
given. We use the same FEM procedure as for the spatial discretisation of the reaction-
diffusion equation. This means that we have the same basis functions, be it that they
are d dimensional. In order to avoid singularities in the global stiffness matrix, we
introduce an ersatz material for the void. This is common for level-set approaches
and done in other works as well , e.g., Allaire and Jouve [3], and Gain and Paulino
[14]. There are other ways to prevent the singularities, but using ersatz material is
computationally easy to implement. Furthermore, it is worth noticing that all force
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conditions of all three benchmark problems are uncomplicated and exist on that part
of Γ which coincides with the boundary of the reference frame. So, we do not need
to integrate over the entire reference frame as is done in Definition (4.25). We use
Definition (4.12) and the neglect body forces, i.e., f = 0. Neglecting body forces is
justified as their effect is insignificant on the scale on which we operate in combination
we the material we use (steel). They would also complicated the equations we have
to solve computationally.
Now, the weak form of the equation of motion becomes

ãext(u,v, ϕ) = l(v), (5.17)

where

ãext(u,v, ϕ) :=

∫
Ω

(
Eijklεkl(u)εij(v)(1−H(ϕ)) + Eersatz

ijkl εkl(u)εij(v)H(ϕ)
)

dΩ,

(5.18)

l(u) =

∫
∂Ω

t · udΓ. (5.19)

Here Eersatz
ijkl is the same as Eijkl (Definition (4.4)) except that it uses a very small

Young’s modulus, namely Emin, which has the following property: Emin ≪ E.

A note on the calculations

The code that is used to obtain the results which are discussed in Section 5.4 is
derived from the code that is presented in the paper of Otomori et al. [25]. In this
code rounding errors are made when nodal values are converted to elemental value and
vice versa. The topological derivative is calculated for each element. To calculate the
nodal value of the topological derivative, the average value of the adjacent elements
is used. To calculate the elemental level-set values, the average of the nodal values of
an elements is used. This average value determines whether the element in question
consists of material or void. This results in a 0 -1 element-wise reference domain,
which is used to calculate the displacement in Equation (5.17). So, if an element has
the value 1, only the first term of the integrand on the right-hand side of Definition
(5.18) is used to calculate the displacement. If an element has the value 0, only the
second term is used to calculate the displacement. These rounding errors have little
influence on a fine mesh. However, the calculations would be more accurate if these
averages were omitted. Attempts have been made to devise a better code, but this
was not fruitful.

5.3.3 Bounded level-set function

We define a more specific level-set function.
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Bounded level-set function

Instead of the usual definition of the level-set function, we utilise a level-set function
with upper and lower limits for this method.

−1 ≤ ϕ(x) < 0 ∀x ∈ D \ Γ,

ϕ(x) = 0 ∀x ∈ Γ,

0 < ϕ(x) ≤ 1 ∀x ∈ Ω \D.

(5.20)

Again, the positive values represent the void domain, the negative values the material
domain and the zero-contour the interface between the two. The upper and lower
bounds are imposed on the level-set function to assure that the smoothing effect of
the diffusive term only applies to points close to the boundary.
After updating the level-set function, the nodal values of the level-set function are
replaced based on the following rule, such that the upper and lower limit constraints
of the level-set function are satisfied:

if ∥ϕj∥ > 1 then ϕj = sign(ϕj) ∀ j ∈ {1, 2, ..., N}. (5.21)

This step can be seen as a reinitialisation step and avoids the level-set function from
becoming too flat or steep. Either one could lead to convergence issues.

5.3.4 Volume constraint

As it is the most common inequality constraint in topology optimisation, a method
on how to update the volume constraint and its Lagrange multiplier is presented.
The volume constraint is dealt with using the augmented Lagrangian method, in
which the Lagrange multiplier γ is updated according to the following scheme:

γn =

∫
Ω

(
dτ F̃n + γn

)
dΩ∫

Ω
dΩ

exp

[
p

(
G̃n

Vmax
+ d

)]
. (5.22)

Here p and d are parameters that adjust the position of the curve and dτ F̃n =
dτ F̃ [ϕh(x, τn)]. The subscript n indicates the iteration step. Other methods to satisfy
the volume constraint could be applied as well, but this scheme is simple.

We stabilise the convergence through

G̃n = Ṽ (ϕh(x, τn)))− Vmax − (V0 − Vmax) max

{
0, 1− n

nvol

}
≤ 0, (5.23)

where n is the current iteration number and V0 is the volume fraction of the initial
material domain. The first term represents the volume of the configuration at the cur-
rent iteration. The third term on the right-hand side is added to the primal volume
constraint to relax the upper limit of the volume constraint so that the constraint is
gradually tightened during nvol iterations. After nvol iterations, the constraint func-
tional represents the original volume constraint.
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5.3.5 Algorithm

In Algorithm 1 the minimum compliance process is described step-by-step.

Algorithm 1 Algorithm for minimum compliance

Require: set input values
Initialise LSF
for n← 1 to nmax do

Solve ãext(u,v, ϕ
n) = l(v) for u ▷ FEM (5.17)

Calculate ã(u,u, ϕn) ▷ FEM (4.24)
Calculate Ṽ (ϕn) ▷ (4.18)
if Optimisation criteria reached then ▷ Criteria: ã(u,u, ϕn) and Ṽ (ϕn)

END for loop
end if
Update dτ F̃n without γn ▷ FEM (5.7)
Update γn ▷ Augmented Lagrange Method (5.22)
Solve TΦn+1 = Y for Φn+1 ▷ IMEX and FEM (5.14)

Ensure ∥ϕn+1∥ ≤ 1 ▷ (5.21)
end for
return ϕn

Plot results

5.4 Numerical results

The moment is here to show and discuss the numerical results of all three benchmark
problems. Most parameters presented in the code are known. Only the optimisa-
tion parameters that have been introduced in this chapter have yet to be assigned a
value. We choose the same optimisation parameters as Otomori et al. [25], those are,
in no particular order

α = 2 · 10−4, Emin = 1 · 10−4, ∆τ = 0.1, d = −0.02, p = 4, nvol = 100.

The value of α dictates the influence of the diffusive term in Equation (5.4). It should
not be above 0.001, because then the structures do not converge or go to local min-
ima. The time step size ∆τ slightly influences the final design and should be chosen
between 0.05 and 1. The value of d heavily influences the volume constraint. It should
have a value close to 0. Choosing it to high results in not being able to attain equality
(i.e. Ṽ = Vmax) and choosing it to low results in not being able to adhere the volume
constraint at all. The other parameter p shows the same behaviour but for a wider
range of values. Finally, the value of nvol slightly influences the final design. It dictates
how fast the volume constraint is fully enforced and how smoothly it is reached. It is
preferable to choose this value such that nvol = 1

2nmax. For every benchmark we start
with material everywhere, i.e., ϕ = −1, such that we can clearly see the nucleation of
holes in the material domain.

As for the optimisation criteria, we have three criteria which must be met:

1. The number of iteration must have surpassed nvol, that is n > nvol.
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2. The volume fraction of the material domain must be less than Vmax or differ by
less than 0.5%. That is, Ṽ (ϕn) < 1.005Vmax.

3. The compliance of each of the last five steps differs by less than 0.5% of the

current compliance. That is,
∣∣∣ ã(ϕn,u,u)−ã(ϕn−i,u,u)

ã(ϕn,u,u)

∣∣∣ < 0.005 for i ∈ {1, 2, 3, 4, 5}.

5.4.1 MBB beam

We only take the right-hand side of the MBB beam into account, as mentioned in
Chapter 3. As before, we look at the final results of a 24 × 8 (Figure 5.2a), 48 × 16
(Figure 5.2b) and 96 × 32 (Figure 5.2c) MBB beam. In Figure 5.2 we detect clear
differences between the three designs. The boundary in Figure 5.2a is smooth, but
wavy. Similar to the result of the comparative algorithm (see Figure 3.4), the structure
stretches from the bottom right corner to the top left corner. The main difference is
that the result of the level-set algorithm has a clear distinction between the material
and the void. Furthermore, there is a small hunk of material at the bottom, which is
not connected to the main structure. This discontinuity is not problematic, as it does
not concern a non-free boundary point. It is, however, remarkable and probably caused
by the presence of the ersatz material. When comparing Figure 5.2b to Figure 5.2a, we
see that the boundary looks very smooth for the higher number of elements. Moreover,
a new part of the construction has formed in the bottom left part of the reference
domain. It is noteworthy that the 48 by 16 MBB beam with the level-set function
looks a lot like the 96 by 32 MBB beam of the comparative algorithm (see Figure
3.6). Using even more elements results in the final design depicted in Figure 5.2c. This
final design of the 96 by 32 MBB beam gives reason to believe that the structure is
converging to an optimal design as it looks the same as the 48 by 16 MBB beam apart
from an even smoother boundary. The resolution of the 48 by 16 MBB beam would
be sufficient for industrial purposes.

(a) (b) (c)

Figure 5.2: Final designs of the MBB beam with level-set ap-
proach. (a) 24 × 8; (b) 48 × 16; (c) 96 × 32. Yellow indicates
material, dark blue is void.

Figure 5.3 shows the evolution of the zero level-set curve for the different resolu-
tions. Especially Figure 5.3c of the 96 by 32 MBB beam visualises the nucleation and
merging of holes. This is an evident result of the level-set function in combination
with the topological derivative.
Lastly, we look at the convergence criteria. In Figure 5.4 the compliance and volume
fraction of each configuration are depicted. For every configuration the compliance
mostly monotonically increases as long as the volume constraint has not been ad-
hered. Also, the moment the volume fraction starts to decrease, the compliance shoots
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(a) (b) (c)

Figure 5.3: Contour plot of the zero-level-set curve of the MBB
beam. (a) 24×8; (b) 48×16; (c) 96×32. Red: n = 8, blue: n = 35,
green: n = 70, yellow: n = 105, purple: n = 140, brown: n = 175,
and black is the last iteration.

a bit up. This is a major difference in comparison to the comparative algorithm for
which the objective function decreased monotonically. A reason for this can be the
fact that the level-set algorithm starts with material everywhere and then material is
removed. This removal of material can result in an increase of compliance, because
less material has to deal with the same amount of force. Moreover, in Figure 5.4 we see
that the volume constraint is satisfied for all three configurations and decreases mono-
tonically for the two configurations with the higher number of elements.. From the
same figure we can also conclude that every configuration reaches the convergence cri-
teria within 200 iterations. Figure 5.4a shows that the compliance and volume fraction
converge after 155 iterations. The graph of the compliance shows huge fluctuations
after 100 iterations. The 48 by 16 MBB beam adheres the convergence criteria even
faster (116 iterations), which is visible in Figure 5.4b.Both graphs look smoother than
the previous configuration. Figure 5.4c indicates the same behaviour for the 96 by 32
MBB beam, be it that the fluctuations are minimal. In addition to this, it converged
quite fast in comparison to the other two configurations: 103 iterations.

(a) (b) (c)

Figure 5.4: Convergence of the compliance and volume fraction
of the MBB beam with level-set approach. (a) 24× 8; (b) 48× 16;
(c) 96× 32.

It is also interesting to see that the final volume fraction increases as the number of
elements increases too. Even so, every final volume fraction is clearly below Vmax.



Section 5.4 Numerical results 45

5.4.2 Cantilever

As mentioned before, the width to height ratio of the cantilever is 2 : 1. Again we look
at the results of a 16× 8 (Figure 5.5a), 32× 16 (Figure 5.5b) and 64× 32 cantilever
(5.5c). In Figure 5.5 we detect certain differences between the three designs.

(a) (b)

(c)

Figure 5.5: Final designs of the cantilever with level-set ap-
proach. (a) 16 × 8; (b) 32 × 16 (Emin = 1); (c) 64 × 32 (Emin =
1). Yellow indicates material, dark blue is void.

There is a curious difference between the 16 by 8 cantilever and the other two configu-
rations. In Figure 5.5a we see that the cantilever is not symmetrical in the horizontal
axis which was expected based on the results of the comparative algorithm and liter-
ature. This asymmetry can be the consequence of the very low Young’s modulus of
the ersatz material. If we make that Young’s modulus slightly bigger (Emin = 1), we
get a symmetrical, but disconnected cantilever (see Figure 5.6a). This discontinuity
is caused by the low number of elements, which is not handled well by the code. In
Figure 5.6b we see the disadvantage of the 0 -1 elemental domain, as mentioned in
Section 5.3. For the 32 by 16 and 64 by 32 cantilevers a similar problem regarding the
Young’s modulus occurred. The global stiffness matrix, which is used to calculate the
displacement, became singular for Emin = 1 ·10−4 after a number if iterations. To this
extent, we use a higher Young’s modulus Emin = 1. The 32 by 16 cantilever is similar
to the cantilevers in Figure 3.10 and Figure 3.11. In Figure 5.5b we see that the bound-
ary is more distinct although a bit wavy for some parts of the boundary. This wavy
boundary disappears for a higher resolution, which can be seen in Figure 5.5c. The
number of enclosed voids in the 64 by 32 cantilever is notable compared to the 32 by
16 level-set cantilever and 64 by 32 cantilever of the comparative algorithm (Figure
3.11a).
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(a) (b)

Figure 5.6: Disconnected, symmetrical 16 by 8 cantilever with
level-set approach and Emin = 1: (a) material domain (yellow
indicates material, dark blue is void); (b) black (material) and
white (void) plot of the 0 -1 elemental domain.

One can wonder if this number of enclosed hole rises, if the number of elements
is even higher. So, we look at a 100 by 50 and a 140 by 70 cantilever. Figure 5.7
shows these final designs. Both the 100 by 50 cantilever (Figure 5.7a) and 140 by 70
cantilever (Figure 5.7b) have the same number of holes as the 64 by 32 cantilever,
namely 7. This is quite remarkable, because we would expect the structure to look
more like its analytic solution, which has finer features and more holes (Lewiński
[18]). Although the 100 by 50 cantilever looks slightly different (smaller holes in the
middle of the structure and bigger holes near the outer boundary) compared to the 64
by 32 and 140 by 70 cantilevers. The fact that the overall form and number of holes
stays the same for finer meshes indicates that this level-set approach bears some kind
of mesh-independency. The final designs of the MBB beam support this suspicion.

(a) (b)

Figure 5.7: Final design of two cantilevers on finer meshes with
level-set approach and Emin = 1. Yellow indicates material, dark
blue is void: (a) 100 by 50 elements; (b) 140 by 70 elements.

In two configurations (32 by 16 and 64 by 32) in Figure 5.8 we can see the nucleation
and merging of holes. The contour plots of the 16 by 8 are left out, because they
are quite messy due to the asymmetry. If we look at all intermediate designs during
the optimisation process of the 16 by 8 cantilever, we notice the first clear signs of
asymmetry in iteration 22.
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Figure 5.9: Iteration 14 of the 16 by 8 cantilever with level-set
approach. Yellow indicates material and dark blue is void.

(a) (b)

Figure 5.8: Contour plot of the zero-level-set curve of the can-
tilever. (a) 16×8; (b) 32×16; (c) 64×32. Red: n = 8, blue: n = 35,
green: n = 70, yellow: n = 105, purple: n = 140, brown: n = 175,
and black is the last iteration.

Lastly, we look at the convergence criteria. In Figure 5.10 the compliance and volume
fraction of each configuration are depicted. The volume constraint is adhered for every
configuration. What is notable is, the fact that for the 16 by 8 cantilever the compli-
ance skyrockets when the volume fraction starts to decrease (see Figure 5.10a). After
that, it falls down again. This is caused by a discontinuity in the intermediate design,
as we can see in Figure 5.9
The 32 by 16 cantilever did not converge within 200 iterations, unlike the 16 by 8
cantilever, which converged after 119 iterations. Both the criterion on the volume
and compliance were not met. Figure 5.10b shows that for the 32 by 16 configuration
the compliance starts to fluctuate heavily after 100 iterations. The same holds for
the volume fraction, but to a smaller extent. The convergence plots of the 64 by 32
cantilever, displayed in Figure 5.10c, are the smoothest in comparison to the other
two configurations. Moreover, it reaches the convergence criteria the fastest: 112
iterations.
As to the final volume fractions of the MBB beam (Figure 5.4), the final volume
fractions of the cantilever (Figure 5.10) are closer to Vmax, but also increases for a
higher number of elements.
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(a) (b) (c)

Figure 5.10: Convergence of the compliance and volume fraction
of the cantilever with level-set approach. (a) 16 × 8; (b) 32 × 16;
(c) 64× 32.

5.4.3 Inverter

As mentioned before the width to height ratio of the lower half of the inverter is
2 : 1. We examine the results of a 16 × 8 (Figure 5.11a), 32 × 16 (Figure 5.11b) and
64×32 (Figure 5.11c) inverter. In Figure 5.11 we detect slight differences between the
three designs. The boundary of the 16 by 8 inverter does not look smooth, instead it
looks rugged. For the higher configurations this is not the case. Noteworthy is the size
of the material on the top right corner. Every time the number of elements increases,
the triangle in that corner tends to become smaller. This is a result of the smaller
element size.
As we saw for the comparative algorithm, the final design is disconnected for the
level-set approach as well. This gives reason to approach this problem differently.

(a) (b) (c)

Figure 5.11: Final designs of the inverter with level-set ap-
proach. (a) 16× 8; (b) 32× 16; (c) 64× 32.

The contour plots in Figure 5.12 shows that the structure has already a huge discon-
tinuity between the left part and right part of the structure after 8 iterations. This
indicates that the structure breaks very early during the optimisation process.
Lastly, we look at the convergence criteria. In Figure 5.14 the compliance and volume
fraction of each configuration are depicted. For all three configurations the volume
fraction drops quite steep compared to the other two benchmark problems. At the
same time the compliance makes a steep climb. This happens after 11 iterations and
might be caused by a discontinuity in structure.
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(a) (b) (c)

Figure 5.12: Contour plot of the zero-level-set curve of the in-
verter. (a) 16×8; (b) 32×16; (c) 64×32. Red: n = 8, blue: n = 35,
green: n = 70, yellow: n = 105, purple: n = 140, brown: n = 175,
and black is the last iteration.

(a) (b) (c)

Figure 5.13: Iterations steps of the 32 by 16 inverter. After(a) 10
iterations; (b) 11 iterations; (c) 12 iterations.

Figure 5.13 indeed confirms that the breakup occurs after 11 iterations. In Figures
5.13a and 5.13b we see that three holes are forming in the top right corner. During
the 11th (Figure 5.13c) a huge part of the material is removed. This explains the drop
in the volume fraction and rise in the compliance, which we detected earlier.
Unlike the MBB beam and cantilever, the volume fraction of the inverter drops below
Vmax to a value slightly lower that 0.4. This is very strange, because from Figure 5.14c
we can deduce that the optimal design is achieved after 50 iterations. After 50 itera-
tions the volume constraint is adhered and the compliance is in a local minimum. On
another note, the staircase-like graph of the compliance in Figure 5.14a is unusual as
well. Both irregularities could be caused by the Lagrangian γ.
In contrast to the final volume fractions of the MBB beam (Figure 5.4) and cantilever
(Figure 5.10), the final volume fractions of the inverter decrease as the number of
elements increases. This is a result of the convergence criterion on the number of
iterations that should have passed, namely more than nvol. Because of the breakup,
the volume constraint is reached very fast and the role of nvol becomes obsolete. We
can consider this to be a drawback of this specific choice of convergence criterion.
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(a) (b) (c)

Figure 5.14: Convergence of the compliance and volume fraction
of the inverter with level-set approach. (a) 16× 8; (b) 32× 16; (c)
64× 32.

Cause of the breakup

The reason the top right corner point is not connected to the main structure in the
final designs of both the SIMP and level-set approach is that there is not explicit
constraint on this connectivity. There is no physical reason that this top right corner
point should be connected through material to the other two points of interest. This
is because there is no mechanical condition on this top right corner point which would
result in a boundary condition on the displacement. Moreover, because there is no
mechanical condition, there is also no reason there should be material present in that
particular point. Now, if we would fix this top right corner point, there is a justification
for the presence of material in that point. In Figure 5.15 we see the final designs of
the inverter if the point is fixed. We see that the structure is now entirely connected
through material. That is because there is a physical reason to connect that point
to the other two point with predefined material. The force pointed to the right is
intercepted by the fixed point on the right.
So, the final designs shown in Figures 3.17, 3.18, 3.19 and 5.11 are actually the
correct optimal designs for the minimum compliance problem as there is no explicit
constraint on the connectivity of the structure. Using the level-set approach does not
change the final design or fix this discontinuity compared to the SIMP approach. Now,
we have reason to investigate the possibilities of incorporating an explicit connectivity
constraint into the algorithm.

(a) (b) (c)

Figure 5.15: Inverter with fixed top right corner point.



CHAPTER 6

CONNECTIVITY

As we saw in Chapters 3 and 5, it is possible that the structure breaks and does
not obtain a desired optimal design. This happened for the inverter problem with
both the SIMP approach (Figure 3.20) and level-set approach (Figure 5.11). In this
chapter we look at the possibilities to prevent this ‘breakdown’ from occurring during
the optimisation process by explicitly defining a connectivity constraint. Only the two
dimensional case is treated in this chapter.

6.1 Path connectedness

Instead of looking at the problem in terms of breaking, we look at it in terms of
connectivity. We desire some sort of connectedness to be present in our optimal de-
sign. For example, a structure is called simply-connected if there are no enclosed
voids present in the material domain. We, however, allow our design to have these
enclosed voids. We even chose our update procedure such that these holes can be nu-
cleated. The type of connectivity we are interested in is mentioned in the 2011 paper
of Kasaiezadeh and Khajepour [16]. They call a structure generally connected “when
there is at least one path to connect the location of the applied force to the geometri-
cal boundary conditions”. The author of this thesis has altered this definition slightly
and taken multiple forces into account. A structure is called path connected if there is
a material path connecting every non-free boundary point with every other non-free
boundary point. This definition does not include the non-free boundary points which
have a homogeneous Dirichlet boundary condition due to a symmetry axis. So, this
definition concerns all points in ∂ΩN. Using the set A would even be better, because
we want all points where we have material a priori to be path connected. This includes
points in the interior of A as well. Otherwise, it would be redundant to have material
in those points. For our benchmarks, however, we have ∂ΩN = A.

51
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6.2 Detection algorithm

First, we want to know how we can detect that a design is path connected. If we
know that, we also know when it is no longer path connected. During every iteration
of the optimisation process the path connectedness should be checked, because then
we know the exact moment the structure becomes disconnected. Knowing this mo-
ment gives room for a prevention method.
Now, we must think of an algorithm that is able to systematically check the path
connectedness. Because the location of each force must be connected to all Dirichlet
boundary conditions, all forces are connected to each other as well. Therefore, we do
not have to make a difference between a force on the boundary or a Dirichlet bound-
ary condition. They all have to be connected. A boundary force or Dirichlet condition
is either on a boundary node or an entire boundary element edge. If it is on a node,
the adjacent elements are called mb elements. If it is on an edge, the element to which
this edge belongs is called an mb element. Moreover, we know that this node or edge
must consist of material.

Now, we create a number of empty lists: Lpath, Lcheck, Lnew and Lcon. We put all mb

elements in Lpath. Then we select one of these elements at random and call it m0. This
is the element from where the path connectedness detection algorithm starts. The m0

element is taken from Lpath and put into Lnew.

6.2.1 Detection loop

The detection loop starts by checking for every element in Lnew if it is connected
through material to its neighbouring elements. To make sure we do not double check
any elements, we do not check elements that are in Lcheck. We look at how this check
is performed for one single neighbour.
As we apply FEM to calculate the level-set function during each iteration step, we
utilise the fact that we have linear basis functions on either triangular or quadrilateral
elements. The shared edge of the two elements has two nodal values of the level-set
function. There are three cases to distinguish:

1. Both nodal values of the level-set function are negative. This indicates that the
entire edge consists of material.

2. One of the two nodal values of the level-set function is nonnegative. This
indicates that the zero level-set curve goes through the edge (including the
nodes). So, part of the edge consists of material.

3. Both nodal values of the level-set function are nonnegative. This indicates that
no part of the boundary consists of material.

It is important to remark that these statements only hold for linear basis functions. In
the first and second case we say the two elements are connected. In other words, if
one of the two nodes is negative, the two elements are connected. After this check
has been completed for every neighbour that is not in Lcheck, we put every newly
connected neighbour element in Lcon. Now, we move all elements from Lnew to Lcheck
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and all elements from Lcon to Lnew. Then, we check whether path connectedness has
been achieved by looking whether all elements of Lpath are in either Lcheck or Lnew. If
not, the detection loop is repeated until path connectedness is achieved. The detec-
tion loop also stops when no more elements are added to Lnew. If this is the case, a
breakdown has occurred and the structure is not path connected.

6.2.2 False positive

For the quadrilateral elements there is a situation in which two elements are connected
through a third element with the current algorithm described above while they should
not be. This can be seen as a false positive. An example of this situation is depicted in
Figure 6.1. The problem is caused by ‘elm5’ which has two negative level-set values on
opposite vertices and the same for two positive level-set values. In this specific setting
the algorithm would first connect ‘elm4’ with ‘elm5’ and in the next step connect
‘elm5’ to ‘elm6’. This means that ‘elm4’ is connected with ‘elm6’ which is not correct.
This problem does not occur if triangular elements are used in the finite-element
method.

elm1

elm2

elm3

elm4

elm5

elm6

elm7

elm8

elm9

Figure 6.1: Graphical example of a false positive. The red and
blue dots indicate positive and negative level-set values, respec-
tively. The zero level-set curve is represented by green lines.

As the problem occurs in ‘elm5’, we brief focus on this specific element. Henceforth,
we refer to such an element as a false positive.

Solution

A solution to the false positive problem has been found by the author and is explained
thoroughly. We consider a quadrilateral element with alternating nodal level-set val-
ues. For simplicity, we assume that the quadrilateral is the unit square. A random
quadrilateral can easily be converted to a unit square (see [44]). Starting with (0, 0)
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and going counterclockwise, the nodal level-set values of the vertices are called a1,
a2, a3 and a4. We do not know before hand which vertices of the unit square are
negative and which are positive. We only know that the values of a1, a2, a3 and a4
are alternating in sign. The corresponding basis functions are

b̃1(x, y) = (1− x)(1− y),

b̃2(x, y) = x(1− y),

b̃3(x, y) = xy,

b̃4(x, y) = (1− x)y.

(6.1)

From this we derive the approximate the level-set function in this single element based
on Definition (5.13),

ϕh(x, y) = (a1 − a2 + a3 − a4)xy + (a2 − a1)x + (a4 − a1)y + a1. (6.2)

As we are interested in how the zero level-set curve behaves in the unit square element,
we equate Expression (6.2) to zero. This equation can be viewed as a general quadratic
equation as described by Zwillinger in his book [47]:

Ax2 + By2 + Cxy + Dx + Ey + F = 0, (6.3)

where

A = 0,

B = 0,

C = a1 − a2 + a3 − a4,

D = a2 − a1,

E = a4 − a1,

F = a1.

(6.4)

Remark that, as a result of the alternating signs of a1, a2, a3 and a4, we know that
C,D,E and F are never zero. Zwillinger [47] gives a table which can be used to
determine the type of conic at hand. For this table he uses four quantities derived
from Equation (6.3). For our level-set function in Expression (6.2) these quantities
are

∆ =
1

4
C(DE − CF ), (6.5)

J = −1

4
C2 < 0, (6.6)

I = 0, (6.7)

K = −1

4
(D2 + E2) < 0. (6.8)

Note that we used that A = B = 0 and that C,D,E and F are nonzero. Now, if we
look at the table of the different types of conics in the book of Zwillinger [47], we see
that the only possible types are a hyperbola or intersecting lines, which both require
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J < 0. In Figures 6.2a and 6.2b two cases of the hyperbola are depicted. The first shows
that the quadrilateral is connected internally and to all its neighbours. The latter
shows that the material is internally disconnected. Figure 6.2c shows the intersecting
lines. In this case the element is also internally disconnected, as neither the material
nor the void is connected.

(a) (b) (c)

Figure 6.2: Three situations of the material distribution in ele-
ment with alternating nodal level-set values. (a) hyperbola (con-
nected); (b) hyperbola (disconnected: false positive); (c) tipping
point (disconnected: false positive).

Intersecting lines only occur if ∆ = 0, which implies that DE = CF (since C ̸= 0). In
terms of the nodal level-set values this comes down to

a1a3 = a2a4. (6.9)

However, we want to know if the quadrilateral element is a false positive or not. There-
for, we look at the centre (x0, y0) of the hyperbola. We assume that if this centre
is in the material, i.e., ϕh(x0, y0) < 0, the quadrilateral element is internally con-
nected. According to Zwillinger [47], the coordinates of this centre are the solution of
the following system of equations:{

2Ax + Cy + D = 0,

Cx + 2By + E = 0.
(6.10)

So, for our bilinear level-set approximation the coordinates of the centre are given by

x0 = −E

C
, y0 = −D

C
. (6.11)

We substitute the coordinates of Expression (6.11) into the general quadratic equation
of the zero level-set curve, Equation (6.2). This results in the following expression:

ϕh(x0, y0) = F − DE

C
. (6.12)

Finally, an element with alternating nodal level-set values is called internally con-
nected if and only if

a1a3 − a2a4
a1 − a2 + a3 − a4

< 0. (6.13)
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Notice that if an element is internally connected,the possibility of intersecting lines
(see Equation (6.9)) is automatically ruled out, because the numerator of Inequality
(6.13) is nonzero. An element that has alternating nodal level-set values but does not
adhere Inequality (6.13) is called internally disconnected.
The next step is implementing this knowledge into the algorithm. The most simple
way is by selecting all elements with alternating nodal level-set values and check if
they adhere Inequality (6.13). If not, they are placed in Lcheck. This prevents them
from being checked as potential connected neighbours, because elements in Lcheck are
considered checked and are not checked again during the main algorithm. However, if
the element in question is an mb element, placing it in Lcheck would cause problems,
if it is also in Lpath. Simply transferring them from Lpath to Lcheck solves the prob-
lem. However, we can make the detection algorithm substantially faster if we perform
a special check on the mb elements before we possibly transfer them. First, we take a
look at the problems that might occur if we do not place mb element in Lcheck.

6.2.3 Problems with mb elements

Boundary elements which have a node on which a Dirichlet or force boundary con-
dition is defined are treated differently. They are called mb elements and are placed
in Lpath, before detection loop starts. One of these mb elements is chosen as the
starting point (placed in Lnew) of this loop which can cause problems if this element
is internally disconnected. Note that these problems only occur for nodal boundary
conditions. We take a look at these problematic cases.
We start by looking at a Dirichlet or force boundary condition on a node on a corner
of the reference frame. If this element is internally disconnected (Figure 6.3) or has
three positive nodal level-set values (Figure 6.4) than we know beforehand that the
structure is not path connected. The corner point is automatically isolated from the
rest of the structure. In the case of internally disconnectedness, the detection loop
would start without any problems because the corner element is in Lnew and not in
Lcheck. This is problematic, because the algorithm does not detect that the structure
is not path connected.

corner
element

Dirichlet or
force condition

on a corner

Figure 6.3: Graphical example of a corner node with a Dirich-
let or force boundary condition on an internally disconnected ele-
ment. The red and blue dots indicate positive and negative level-
set values, respectively. The zero level-set curve is represented by
green lines.
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corner
element

Dirichlet or
force condition

Figure 6.4: Graphical example of a corner node with a Dirich-
let or force boundary condition on an element with three positive
nodal level-set values. The red and blue dots indicate positive and
negative level-set values, respectively. The zero level-set curve is
represented by green lines.

Now, we look at a boundary node that is not on a corner of the reference domain. In
this case there are two adjacent elements which are placed in Lpath. if one of the two
elements in internally disconnected as depicted in Figure 6.5, then this element can
wrongly be chosen as the starting point. Then, the same problem as for the internally
disconnected corner element occurs.

elm1

elm2

Dirichlet or
force condition

Figure 6.5: Graphical example of boundary node with a Dirichlet
or force condition with one internally connected and one discon-
nected adjacent element. The red and blue dots indicate positive
and negative level-set values, respectively. The zero level-set curve
is represented by green lines.

In the case that both adjacent elements are internally disconnected, the node with a
Dirichlet or force condition becomes isolated, as we can see in Figure 6.6. So, there is
no reason to start the detection loop as the structure is already not path connected
at this nodal point.
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elm1

elm2

Dirichlet or
force condition

Figure 6.6: Graphical example of a boundary node with two inter-
nally disconnected adjacent elements. The red and blue dots indi-
cate positive and negative level-set values, respectively. The zero
level-set curve is represented by green lines.

In order to keep the detection algorithm neat, we have to change the definition of the
mb elements. A special check has to take place before an element can be defined as
mb element. Problems could only occur for Dirichlet boundary or force conditions on
nodes, so all elements which have an edge with a Dirichlet boundary or force condition
on it are defined to be mb elements.
If we encounter a nodal boundary or force condition on a corner of the reference
frame, we look at the corresponding corner element. If it has three positive level-set
values, a breakdown has occurred and no path connectedness can be detected. If
it has alternating nodal level-set values, we check if Inequality (6.13) is adhered. If
this is not the case, a breakdown has occurred and no path connectedness can be
detected. If the inequality is adhered, the corner element is defined as mb element. In
any other case the corner element is also defined as mb element.
If we encounter a nodal boundary or force condition that is not on a corner of the
reference frame, this means that there are two adjacent elements. If one of the two
elements has alternating nodal level-set values and does not adhere Inequality (6.13),
this element is placed in Lcheck and the other defined as mb element. If both elements
have alternating nodal level-set values, there are three possibilities:

1. Both elements do not adhere Inequality (6.13) and a breakdown has occurred
which implies that no path connectedness can be detected.

2. One of the two elements does not adhere Inequality (6.13). This element is
placed in Lcheck and the element that does adhere the inequality is defined as
mb element.

3. Both elements adhere Inequality (6.13), they are both defined as mb elements.

In any other case the the adjacent elements are also defined as mb elements.

6.2.4 Two diagonal internally connected elements

Two elements, which have alternating nodal level-set values and are internally con-
nected, can be diagonally connected with each other, if the other two adjacent neigh-
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bour elements also have alternating nodal level-set values but are internally discon-
nected. This diagonal connection, however, will not be detected by the current algo-
rithm because the internally disconnected neighbour elements are excluded from the
path. An example of this type of problem is illustrated in Figure 6.7. In this case the
problem occurs between the two internally connected elements ‘elm5’ and ‘elm9’. They
do not connect because the two adjacent internally disconnected elements ‘elm6’ and
‘elm8’ are excluded from checking as they have already been place in Lcheck before
the detection loop has commenced.
Fortunately this problem is easily solved. For each element, which has alternating
nodal level-set values and is internally connected, we check if its diagonal neighbours
are internally connected as well. If this is indeed the case the diagonal neighbour is
added to Lcon.

elm1

elm2

elm3

elm4

elm5

elm6

elm7

elm8

elm9

elm10

elm11

elm12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 6.7: Graphical example of two diagonally connected ele-
ments. The red and blue dots indicate positive and negative level-
set values, respectively. The zero level-set curve is represented by
green lines.

6.2.5 Final detection algorithm

Now, taking everything into account regarding internally connected and disconnected
elements, and the definition of mb elements, the final algorithm to detection path
connectedness is presented in pseudo-code in Algorithm 2.
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Algorithm 2 Final algorithm for path connectedness

Require: B.C., forces, topology, nodal level-set values
Create empty lists: Lpath, Lcheck, Lnew and Lcon

Put all mb force and boundary elements in Lpath

False positive elements not in Lpath are placed in Lcheck

Select one element from Lpath at random and call it m0

Place m0 in Lnew

while Lnew is nonempty do
for each element m0 in Lnew do

for each neighbour m1 that is not in Lcheck do
if at least one of the two corresponding nodes is negative then

Add m1 to Lcon

end if
end for
if m0 is internally connected then

for each diagonal neighbour m1 with a corresponding negative node do
if m1 is internally connected then

Add m1 to Lcon

end if
end for

end if
end for
Move all elements from Lnew to Lcheck

Move all elements from Lcon to Lnew

if all elements of Lpath are in the union of Lcheck and Lnew then
Path connectedness detected

end if
end while
No path connectedness detected

6.3 Prevention

We could also try to prevent the structure from ever losing its path connectedness or
enable the algorithm to regain it. Kasaiezadeh and Khajepour [16] imposed an extra
inequality constraint which secured path connectedness. They looked at what would
physically happen if the structure would lose its path connectedness and concluded
that the strain energy increases significantly in the void (which consists of ersatz ma-
terial). Indeed, in Figure 6.8 we see that the strain energy density increases extremely
for the 32 by 16 inverter during the twelfth iteration, the moment the intermediate
design breaks.
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Figure 6.8: Plot of the strain energy ersatz material of the 32 by
16 inverter with the level-set approach.

Despite the volume fraction of the void increasing, the strain energy in the ersatz
material increases absurdly after the breakup. The strain energy goes from 1.95·10−25

to 3.29 · 10−23, which is almost a factor 169 bigger. It is worth mentioning that the
strain energy in the ersatz material also increase when a hole is formed, but not
as sharply as in the case of a breakup. So, by imposing a limit on the total strain
energy in the void of the structure, Kasaiezadeh and Khajepour [16] retained generally
connectedness.
The inequality constraint on the strain energy in the ersatz material is defined as

S̃(u,v, ϕ) :=

∫
Ω

Eersatz
ijkl εkl(u)εij(v)H(ϕ) dΩ ≤ Smax, (6.14)

where Smax denotes the upper bound for the strain energy. Note the similarities
with the energy bilinear term (cf. (4.24)). There are, however, two important differ-
ences. First, the integral is zero over the material domain due to the use of H(ϕ)
instead of (1 −H(ϕ)). Second, the elasticity tensor corresponds with the ersatz ma-
terial, i.e. the Young’s modulus is very small. Notice that we can express Definition
(5.18) as

ãext(u,v, ϕ) = ã(u,v, ϕ) + S̃(u,v, ϕ).

A serious drawback of this inequality constraint is that one has to determine the value
of this upper bound Smax. This value differs for every problem and material. Moreover,
if a structure would obtain its optimal, path connected design without using this
constraint, then using it during the entire optimisation process could effect the final
design. In other words, this inequality constraint could make the structure converge
locally instead of globally. That is why Kasaiezadeh and Khajepour choose to use the
functional S̃ in their Lagrangian only if the upper bound is exceeded.

6.4 Combining detection and prevention

Now the following idea has occurred to the author. We use the detection algorithm
parallel to the optimisation process. During each iteration the path connectedness is
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checked. If the algorithm detects that there is no longer path connectedness, we go
back one iteration and impose the strain energy inequality, Inequality (6.14), on the
minimum compliance problem, Problem (4.23). This should secure the path connect-
edness for that step. To determine the value of Smax we use the known strain energy
in the ersatz material, S̃(ϕ), before and after the occurrence of the discontinuity in
the following way:

Smax :=
S̃(ϕn+1) + S̃(ϕn)

2
. (6.15)

Here ϕn denotes the level-set function before the breakup and ϕn+1 after. An observant
reader recognises the arithmetic mean in this definition. As there is no accurate way to
predict Smax a priori, we have to estimate it during the iteration process. Because we
have the value of S̃(ϕ) before and after the structure disconnects, we know that Smax

should be between those two values. The arithmetic mean is an acceptable estimator
in this case, as we do not want to spend too much time on finding the exact value. A
disadvantage of simply using S̃(ϕn) as Smax is that the value might be too far of the
actual Smax and this could result in a suboptimal final design. If the estimation of
Smax is too high, the structure will break again and we can find a lower value with
Definition (6.15) again based on the new broken structure. The new value of Smax

could be higher then its previous value. This is not something we want and therefore
we redefine Smax slightly,

Smax = min

{
S̃(ϕn+1) + S̃(ϕn)

2
, Smax

}
. (6.16)

Before the optimisation loop we set Smax = ∞. If the value of Smax is low enough,
the structure will not break and we can continue the iteration process.
Imposing this constraint will alter the Lagrangian and therefore the topological deriva-
tive. The Lagrangian becomes

P̃ [u,v, ϕ, γ, β] := l̃(u, ϕ)+ã(u,v, ϕ)−l̃(v, ϕ)+γ
(
Ṽ (ϕ)− Vmax

)
+β
(
S̃(u,v, ϕ)− Smax

)
,

(6.17)
where β is an extra Lagrange multiplier for the inequality constraint on the strain
energy in the ersatz material. The topological derivative becomes

dτ P̃ := u0
i,jAijklu

0
k,l − βu0

i,jA
ersatz
ijkl u0

k,l − γ. (6.18)

Here Aersatz
ijkl is the same tensor as Aijkl, but it has a different Young’s modulus and is

nonzero in the void. Note that the calculation of this alternative topological derivative
does not result in any extra computational effort as we already have calculated the
displacement in the material and ersatz material (see Equation (5.17)). Similar to γn
the new Lagrangian multiplier for the strain energy constraint should be updated as
well. The Lagrangian βn is updated according to the following scheme:

βn = max

{
S̃(ϕn+1)− Smax

Smax
, 0

}
. (6.19)

The reason we choose for this scheme is that it becomes zero when S̃(ϕn+1) is smaller
than Smax. This could happen when the value of Smax is too high. In addition to
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this, we want β to depend on Smax and the strain energy in the ersatz material of
the broken structure. So, we chose the relative difference between the two, because it
takes the ‘size’ of the quantities into account. Now that the topological derivative is
different than before, we have to update the Lagrangian for the volume constrain, γ,
as well. The Lagrangian γn is updated according to the following scheme:

γn =

∫
Ω

(
dτ P̃n + γn

)
dΩ∫

Ω
dΩ

exp

[
p

(
G̃n

Vmax
+ d

)]
, (6.20)

where G̃n is the same as in Definition (5.23). Note that only the topological derivative
is different.
After the Lagrangian of Definition (6.17) and the topological derivative of Definition
(6.18) have been used for one iteration and secured path connectedness, the following
iteration step uses the original Lagrangian of Definition (5.1) and topological deriva-
tive of Definition (5.7) again. The detection algorithm is active during every iteration
step.
At last, we have derived a new algorithm to solve the level-set embedded minimum
compliance problem, Problem (4.23). Compared to the previous algorithm, Algorithm
1, this new algorithm, Algorithm 3 detects if there is no path connectedness and in
that case can prevent it.

6.5 Results of the new algorithm

The results, which were provided by Algorithm 3, were unsatisfactory and quite
strange. The algorithm behaves unpredictable. It first removes material, then adds
material, for one iteration it regains path connectedness and eventually removes all
material, except for the points in A. This can be seen in Figure 6.9. Moreover, the
value of Smax becomes extreme: zero. This causes β to become infinity. This suggests
that the Algorithm 3 does not work as intended. The problem probably lies in the fact
that this algorithm wants to achieve path connectedness in one iteration step. This
is in contrast with the manner in which the volume constraint is achieved. To adhere
the KKT condition for the volume constraint, Algorithm 1 takes a huge amount of
iterations to reach it. It is very plausible that path connectedness should be regained
in the same manner.

6.5.1 Alternative prevention algorithm

Although there is no time left to test, the author would like to suggest a restoration
algorithm that might work. Instead of trying to secure path connectedness in one iter-
ation step, we give the algorithm ‘time’ to restore path connectedness similar to how
the volume constraint is reached. So, if the path connectedness is lost, the algorithm
calculates β and includes the strain energy constraint in the Lagrangian. Different
from Algorithm 3, this new algorithm only uses the level-set function from before
the breakup to calculate Smax. Instead of calculating βn, the displacement and dτ P̃n

based on the last unbroken ϕ, we use the updated level-set function even though it
has no path connectedness. This means that the definition of the upper bound for the
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Algorithm 3 Algorithm for minimum compliance with detection and prevention

Require: set input values
Initialise LSF
Smax =∞
for n← 1 to nmax do

Solve ãext(u,v, ϕ
n) = l(v) for u ▷ FEM (5.17)

Calculate ã(u,u, ϕn) ▷ FEM (4.24)
Calculate Ṽ (ϕn) ▷ (4.18)
if Optimisation criteria reached then ▷ Criteria: ã(u,u, ϕn) and Ṽ (ϕn)

END loop
end if
Update dτ F̃n without γn ▷ FEM (5.7)
Update γn ▷ Augmented Lagrange Method (5.22)
Solve TΦn+1 = Y for Φn+1 ▷ IMEX and FEM (5.14)

Ensure ∥ϕn+1∥ ≤ 1 ▷ (5.21)
Check path connectedness ▷ Algorithm 2
while Path connectedness is false do

Solve ãext(u,v, ϕ
n+1) = l(v) for u ▷ FEM (5.17)

Calculate S̃(ϕn) and S̃(ϕn+1) ▷ (6.14)
Calculate Smax ▷ (6.16)
update βn ▷ (6.19)
Calculate dτ P̃n for ϕn ▷ (6.18)
Solve TΦn+1 = Y for Φn+1 with dτ P̃n ▷ IMEX and FEM (5.14)

Ensure ∥ϕn+1∥ ≤ 1 ▷ (5.21)
Check path connectedness ▷ Algorithm 2

end while
end for
return ϕn

Plot results
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(a) (b)

(c) (d)

Figure 6.9: Progress of Algorithm 3 for the 32 by16 inverter: (a)
material removal; (b) material introduction; (c) path connected-
ness; (d) everything removed.

strain energy in the ersatz material becomes

Smax

(
ϕn, ϕj

)
= min

{
S̃(ϕj) + S̃(ϕn)

2
, Smax

(
ϕn, ϕj−1

)}
. (6.21)

Remark that Definition (6.21) enables us to use the strain energy in the ersatz material
from before the breakup and from the newest level-set function. Moreover, it always
uses the lowest value.
Algorithm 4 shows the pseudo-code of the alternative restoration algorithm.
It is, nonetheless, fairly unlikely that this algorithm will solve the issue. There is
still no mechanical reason to connect the top right corner point to the rest of the
structure. Presumably, Algorithm 4 will restore the connectivity after a number of
iterations, but then the structure will break again. It will most likely not converge to
an optimal design.
[20]
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Algorithm 4 Alternative algorithm for minimum compliance with detection and
restoration

Require: set input values
Initialise LSF
Smax =∞
β = 0
for n← 1 to nmax do

Solve ãext(u,v, ϕ
n) = l(v) for u ▷ FEM (5.17)

Calculate ã(u,u, ϕn) ▷ FEM (4.24)
Calculate Ṽ (ϕn) ▷ (4.18)
if Optimisation criteria reached then ▷ Criteria: ã(u,u, ϕn) and Ṽ (ϕn)

END for loop
end if
Update dτ P̃n for ϕj without γj ▷ (6.18)
Update γn ▷ Augmented Lagrange Method (6.20)
Solve TΦn+1 = Y for Φn+1 with dτ P̃n ▷ IMEX and FEM (5.14)

Ensure ∥ϕn+1∥ ≤ 1 ▷ (5.21)
Check path connectedness ▷ Algorithm 2
if path connectedness is false then

Calculate Smax

(
ϕbreak, ϕn+1

)
, last path connected LSF: ϕpath ▷ (6.21)

Update βn+1 ▷ (6.19)
if βn+1 == 0 then

Smax =∞
end if

end if
end for
return ϕn

Plot results



CHAPTER 7

CONCLUSION AND DISCUSSION

This is the final chapter of this thesis. First, we look at what has been achieved and
from there we draw our conclusions. Finally, we discuss the used methods and propose
ideas for further research.

7.1 Conclusion

In Chapter 2 a clear and generic framework was defined. This makes the methods
we use more adaptable to tackle other problems besides the ones studied in this the-
sis. A mathematical derivation of the minimum compliance problem with a focus on
the physics of linear elasticity was provided in Chapter 4. Such a derivation is quite
scarce in literature and helps to understand the physics of the topology optimisation
problems. When we solved the minimum compliance problem numerically, we pon-
dered the available methods and justified the choice for our approach. Moreover, a
clear and thorough description of the steps we took to solve the minimum compliance
problem was given as well. In the papers mentioned in this thesis such thoroughness
was mostly absent. To keep our initial design as simple as possible, we chose to have
material everywhere in our reference frame. Unlike many other topology optimisation
methods this initial design does not need any predefined holes for the final design to
have holes as well. The obtained final designs have holes, because we incorporated
the topological derivative into the update procedure of the level-set function. The
results of the implementation of the level-set function are exceptional in comparison
to the results of the comparative SIMP algorithm. The boundaries are very smooth
as expected, even for a low number of elements. Furthermore, the structures seem to
converge to a certain optimal structure, because the final designs look quite similar
for a higher number of elements. This suggest, but does certainly not prove, that this
level-set approach might not be mesh-dependent. Thus, looking at the final designs,
we can conclude that the level-set approach provides results which have a smoother
boundary and clearer distinction between the void and the material than the results
of the SIMP approach. Moreover, the level-set approach does not rely on any kind of
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filter to avoid the formation checkerboard.
In all final designs of the inverter (bottom half) a discontinuity occurred, which could
have been anticipated, because we knowingly altered the objective of the original
compliant inverter problem. Due to this change in objective, there was actually no
mechanical reason to have material in the top right corner. There are two mechan-
ical reasons to have material a priori in a point. There either is a force exerted on
this point or it is fixed. In topology optimisation such points are automatically con-
nected by optimisation algorithms, because there is a mechanical reason to connected
them. As such a mechanical reason did not exist for the top right corner point in the
inverter, this point was not connected to the main structure. Simply placing mate-
rial in that point a priori and trying to pose a connectivity constraint did and will
not change this, because the proposed algorithms do not have specific information
regarding which points should be connected.
Unfortunately the author did not have this insight immediately and explored the pos-
sibilities to prevent such a discontinuity. We defined path connectedness and posed it
as a constraint of the minimum compliance problem. To begin with, we developed an
algorithm to check the path connectedness based on the nodal level-set values and the
topology of the elements. Later, we devised a method which should restore path con-
nectedness, if the structure broke during the optimisation process. Unfortunately this
method did not work, looking at the results it delivered. So, an alternative restoration
algorithm was provided, but not tested.

7.2 Discussion

Changing the original inverter problem from an optimum design problem of com-
pliant mechanisms to a minimum compliance problem, heavily influenced the final
design. Now, we do not know if the discontinuity in the minimum compliance prob-
lem would be present in the optimum design problem of compliant mechanisms. So,
it would be interesting to investigate other problem objectives such as maximising
the displacement in a single point, maximising the fundamental eigenfrequency or
maximising the eigenfrequency gap to see if such discontinuities are commonplace. In
addition to this, other benchmark problems would be interesting as well. In this the-
sis only one non-standard benchmark was tested. It would be more academic if more
difficult benchmark problems are treated. Especially Michell structures [20] are in-
teresting regarding the detection algorithm, as these structures have multiple force
loads.
Looking at the results of the final designs with the level-set approach, we saw that
the compliance increased during the optimisation process, contrary to the SIMP ap-
proach. This could be caused by the diffusive term in the reaction-diffusion equation
as mentioned before, but it is more likely that it is caused by the removal of material
to reach the volume constraint. If material is removed, there is less material to absorb
the strain energy, so it rises substantially. A way to research this is to let the initial
design be a slightly thinner version of the optimal design. Then, the optimisation
algorithm should add material and lower the compliance. Parallel to this, the signifi-
cance of the constant α could be inspected.
A huge drawback of the used code is how it handles the equation of motion, and makes
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rounding errors when converting nodal values to elemental values and vice versa. The
true essence of the level-set function is not used in the equation of motion, as the
integration is performed over a 0-1 element-wise level-set function. The first problem
could be circumvented with mesh fitting and refinement, in which case elements near
the zero level-set curve would be refined and their edges placed on that curve. This
creates a clear difference between material elements and void elements. This could,
however, take a lot of CPU time and is quite difficult to implement. For the second
problem no solution comes to mind, but this problem is negligible for fine meshes.
Then, there is the introduction of ersatz material in the void. This, of course, also
results in small errors in the final design, as it still influences the equation of mo-
tion. Ersatz material was introduced to prevent the global stiffness matrix of the
equation of motion from becoming singular. This happens because we integrate over
the entire reference frame. Again mesh fitting is the solution. This makes integrating
over the entire reference frame redundant, as we know which elements approximate
the material domain. So, we only have to integrate over those elements. A drawback is
that the prevention algorithm, which relies on the strain energy in the ersatz material,
cannot be used anymore.
The role of the Lagrangian γ should also be further explored. It seems to affect the
volume constraint in an undesirable way. That is, the volume fraction does not con-
verge to Vmax as we should expect, but often goes below that value. Although the
volume constraint does allows this, it is logical to have as much material as possible,
because that would make the structure more stiff.
It is obvious that the prevention algorithm should be analysed and tested further
than is done in this thesis. The algorithm does not work and the suggested alterna-
tive restoration algorithm is not yet tested. Maybe the current approach with a focus
on the ersatz material is not the best and other possibilities, such as the extended
finite-element method (XFEM), should be considered.
The algorithm to detect path connectedness is adequate, but fairly slow in terms of
CPU time. It would be compelling to develop a similar detection algorithm based on
the edges and nodes, instead of the elements and nodes. This would make way for the
implementation of Dijkstra’s algorithm (named after Edsger Dijkstra).
A particularly ambitious study would be tackling three dimensional benchmark prob-
lems. This thesis merely provides the generic models which could be used for three
dimensional objects as well, but solely treats two dimensional benchmarks. Note that
a completely different detection algorithm has to be devised in the three dimensional
case, as the topology of the elements changes.
Finally, there is definitely more research needed to determine if the level-set approach
is better than the SIMP approach or any other approach for that matter. The results
of this thesis are promising and in favour of the level-set approach, but more tests are
essential to be conclusive.





APPENDIX A

DERIVATION OF THE
EQUATION OF MOTION

To derive the equilibrium equation of motion for linear elasticity, we have to alter the
right hand side of Equation (4.11).

σ : ε(v) = σ :

[
1

2

(
∇v + (∇v)

T
)]

=
1

2

[
σ : ∇(v)

]
+

1

2

[
σ : (∇v)

T
]

=
1

2

[
σ : ∇(v)

]
+

1

2

[
σT : (∇v)

T
]

=
1

2

[
σ : ∇(v)

]
+

1

2

[
σ : ∇v

]
= σ : ∇(v).

So we have

σ : ε(v) = σ : ∇(v).

Now Equation (4.11) becomes∫
Ω

σ(u) : ∇v dΩ =

∫
Ω

f · v dΩ +

∫
Γ

t · v dΓ. (A.1)

We introduce the traction-stress relation [37] for all u on the boundary ΓN:

t = n̂ · σ(u), ti = n̂jσji(u), (A.2)

where n̂ is the unit normal vector. This gives

t · v = (n̂ · σ(u)) · v = σT (u)n̂ · v = σ(u)v · n̂.
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We substitute this into Equation (A.1) and bring the boundary integral to the left
hand side. ∫

Ω

σ(u) : ∇v dΩ−
∫
Γ

σ(u)v · n̂ dΓ =

∫
Ω

f · v dΩ. (A.3)

Now we apply Gauß’ divergence theorem [38].∫
Ω

σ(u) : ∇v dΩ−
∫
Ω

∇ · (σ(u)v) dΩ =

∫
Ω

f · v dΩ

We take a look at the integrand of the second integral on the left hand side and work
it out.

∇ · (σv) =

d∑
i,j=1

∂

∂xi

(
σijvj

)

=

d∑
i,j=1

vj
∂σij

∂xi
+

d∑
i,j=1

σji
∂vi
∂xj

= (∇ · σT ) · v + σT : ∇v = (∇ · σ) · v + σ : ∇v

This gives the weak form of the equilibrium equation∫
Ω

[
∇ · σ(u) + f

]
· v dΩ = 0. (A.4)

From the Du Bois-Reymond lemma (named after Paul du Bois-Reymond and also
know as the Fundamental Lemma of the calculus of variations see [26]) it follows that

−∇ · σT (u) = f, −σji,j = fi. (A.5)

Now, together with the traction-stress relation (A.2) and boundary conditions we find
that the displacement u in the field D is the solution of the following boundary value
problem: 

−∇ · σT (u) = f, ∀u ∈ D,

u = u0 ∀u ∈ ΓD,

n̂ · σ(u) = t, ∀u ∈ ΓN.

(A.6)



APPENDIX B

NOMENCLATURE

Notation Definition SI unit
ρ Density kg·m−3

x Place vector m
u Displacement vector m
ε Strain-displacement tensor -
σ Stress tensor Pa
E Young’s modulus Pa
ν Poisson ratio -
λ Lamé’s first constant Pa
µ Lamé’s second constant Pa

Eijkl Stiffness tensor element Pa
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