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Abstract
Piping systems are common in many architectures and designing such systems is 
often a complex task. Design automation of piping systems is therefore a universal 
research subject. Nonetheless, these piping systems are often still designed by hand 
as a result of their complexity. Consequently, costs associated with piping design are 
high, especially for large-scale architectures like ships and chemical plants. The goal 
of automatic pipe routing is to reduce the design time and associated costs of a pip-
ing system by automating the routing of these pipes. This survey provides an over-
view of the current state of automatic pipe routing literature to assist researchers and 
practitioners to further the study of automatic pipe routing. This is done by pinpoint-
ing and explaining the most important obstacles that stand in the way of making a 
full-scale automatic pipe routing method. The barriers that are analyzed are related 
to both model representation and optimization complexity. Finally, a synthesis table 
of research papers on automatic pipe routing is provided based on the handling of 
the aforementioned barriers and other general features of automatic pipe routing 
methodology. The survey concludes by discussing directions for further research.

Keywords Pipe routing · Space modeling · Optimization · Survey

1 Introduction

Piping systems are essential in many architectures like buildings, ships and chemical 
plants to transport liquids and gases from one place to another. Pipe routing of 
complex systems is still predominantly performed by hand using schematics (Piping 
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and Instrumentation Diagram, or P &ID) and 2D / 3D drawings in Computer-Aided 
Design (CAD), see [1]. Consequently, pipe routing requires more than 50% of the 
engineering hours in ship design [2] and 25% of the production costs in chemical 
plant design [3]. Some software procedures exist as support tools [4], but pipe 
routing is mostly performed with the expertise of a piping engineer by modeling 
them one by one. Therefore, it can happen that an ongoing design blocks the next 
pipe to be routed, which could mean that a big portion of the design has to be 
revised before a feasible route for the next pipe can be found. Because automating 
the pipe design process could significantly decrease the production time and cost 
of any project that requires a piping design, the field of automated pipe routing 
(APR) is important. Research on APR methods is therefore not a new concept, the 
conceptual idea of APR has been a research subject for over 50 years. Nonetheless, 
after many theoretical methods and case studies, pipe routing in practice is often 
still performed by hand.

There are several problems that arise in APR that make all-encompassing APR 
methods currently unattainable. One critical problem is the computational com-
plexity of pipe routing. Because pipe routing problems are highly nonlinear and 
the number of possibilities is countless, it is difficult for computer programs to 
capitalize on patterns within the mathematical model. This becomes especially 
problematic with the large set of constraints that exist for pipe routing [5] and the 
(subjective) qualitative nature of objectives and constraints for pipe routing [6]. 
Nonetheless, with the exponential increase of computational power and inven-
tions of advanced algorithms and machine learning methods, the idea of an ade-
quate automatic pipe router becomes more and more plausible.

To the best of our knowledge, there is only one short survey from 2008 on 
APR in the open literature [7]. Therefore, this extensive survey is intended to pro-
vide a complete overview of APR literature to assist researchers and practitioners 
to further the study of APR methods. The purpose of this survey is divided into 
three main goals, these goals are to: 

1. Use APR literature to pinpoint and explain the most important barriers that 
obstruct the implementation of APR methods.

2. Provide an overview and categorization of procedures that are implemented to 
overcome these barriers.

3. Provide a concise overview of APR research papers and their proposed methods 
with the use of a synthesis table.

For the last goal, the most important features of multiple APR research papers 
are captured in the synthesis table. This is done by providing general features of 
the papers and by using the categorization of procedures to classify how APR 
research papers handle important barriers. A concept model is introduced that 
outlines the fundamental design structure of APR methods. This concept model 
can be found in Fig. 1.

This concept model categorizes two different segments that are essential in 
APR methodology, the optimization model segment and the solution algorithm 
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segment. During the formulation of the optimization model, procedures are used 
to translate physical reality and design choices into a mathematical model. In the 
APR literature, procedures used in the formulation of the optimization model are 
commonly regarding four main components: space modeling, route modeling, 
objective modeling and constraint modeling. All these components are fundamen-
tal for the mathematical representation of the problem at hand. To model objec-
tives and constraints, it is essential that some sort of specification is provided for 
the space and for the routes of pipes. One basic example is to check if a pipe col-
lides with a piece of equipment. To check if this is the case, it is necessary to know 
both the location of the pipe and the location of this piece of equipment. Thus, 
space and route modeling is placed before objective and constraint modeling.

During the formulation of the solution algorithm, it is decided in which way the 
optimization model will be optimized. Note that the solution algorithm is highly 
dependent on the formulation of the optimization model. In the APR literature, pro-
cedures used in the solution algorithm are commonly regarding the following main 
components: branching, resource competition and space dimensionality. Branch-
ing is a component regarding the routing of a single pipeline among three or more 
connection points. Resource competition is about the competition of multiple pipes 
for limited resources, e.g., the room in cramped spaces. Space dimensionality is a 
barrier that is about the high quantity of options that results from the combination 
between multiple pipes and space complexity. Although branching is part of the for-
mulation of the optimization model, it is commonly indirectly performed by treating 
a branched pipeline as a multitude of single pipelines. Consequently, the treatment 
of branching in the formulation of the optimization model is regarded as pipe route 
modeling and is further elaborated in Sect. 3.1.4.

The link between the optimization model and the solution algorithm is the set of 
decision variables, which are often the variables that describe pipe routes. The fun-
damental difference between the optimization model and the solution algorithm is in 
their relation to the decision variables. The optimization model determines the qual-
ity (objectives) and feasibility (constraints) of a piping design as explicit functions 
of a specific configuration of the decision variables. The solution algorithm deter-
mines how to search through the dimension of decision variables to find a sufficient 
(or optimal) configuration of decision variables. Note that the concept model does 
not imply a definitive chronology. Decisions for the formulation of the optimization 
model and the construction of the solution algorithm should be made jointly since 
are heavily dependent on each other.

Fig. 1  A concept model of 
automatic pipe routing
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This survey is structured as follows: In Sect. 2, the basic pipe routing problem is 
described. To achieve this, both a semantic and (fundamental) mathematical descrip-
tion are given for the pipe routing problem. Sections 3 and 4 explain and categorize 
the procedures that are used in APR literature to deal with the main components of 
the optimization model and solution algorithm, respectively. In Sect. 5, these cat-
egories are used to provide a synthesis table that compiles and summarizes all APR 
research papers used in this survey. Section 6 concludes the survey with a discussion 
on the current state of research in APR and possible future adaptations.

2  Automatic Pipe Routing Problem Description

Research on APR is often related to pipe routing in ship design [1, 2, 8, 9], aero-
engine design [10–13], plant layout design [6, 14–16], cable routing [17–20] and 
water or gas distributing systems [21–24]. Nonetheless, there are many more 
domains where pipe routing is essential, for example, Mechanical, Electrical and 
Plumbing (MEP) engineering [25, 26], telecommunication satellites [27], electro-
mechanical products [28], automobile underhood pipe assembly [29] and encap-
sulated oil pipes in turbines [30]. Although objectives and constraints differ sig-
nificantly among several fields, a fundamental abstraction is present in all APR 
problems. This fundamental abstraction of APR can be defined as: Using auto-
mated methods to outline capacitated routes within a confined space to connect 
multiple points such that predetermined requirements are achieved. An example 
of an APR solution is shown in Fig. 2a, where a single pipe is routed between the 
two green blocks. The boundaries of the room in Fig. 2a indicate the boundaries 
of the confined space. The space within the confined space that is not occupied 
by obstacles is the space where can be routed, which will be referred to as the 
free space. The example in Fig. 2a can be showcased in 2D by an overhead view 
as shown in Fig.  2b. For convenience, 2D representations are used throughout 
this survey to explain new concepts as they provide a better overview.

(a) (b)

Fig. 2  An example that shows: a a 3D model of a APR solution, b a 2D representation of the 3D model 
shown in (a)
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The term requirements within the definition for APR relates to the objectives 
and constraints associated with a specific problem. An example of a common 
APR objective is to minimize the length of the routes such as to minimize mate-
rial cost. An example of an APR constraint is that pipe routes may not collide 
with solid obstacles. These obstacles can, for example, be electrical components 
or machinery. Even though “collision" with obstacles in the real world is not pos-
sible, these constraints are necessary because algorithms do not have these fun-
damental rules. The term capacitated in the definition for APR is used to indicate 
that the diameter of a pipe is incorporated in the physical constraints. This dis-
tinction is made because this is what makes pipe routing fundamentally different 
from standard routing problems. These diameter constraints can have a signifi-
cant impact, especially in cramped spaces. This is illustrated in Fig. 3 by the use 
of a 2D representation of a pipe routing problem.

The difference between capacitated routing and non-capacitated routing is self-
evident from Fig. 3. In essence, it means that the physical objects represented by 
the routes may not intersect. It can be seen that, although finding a route may be 
easy, the physical constraints introduced by the diameters can make a particular 
design state infeasible. This not only has an influence on the space between pipes 
but also on the space between pipes and obstacles. With the addition of the capac-
ity (diameter) constraint, the pipe routing design problem transforms from a rout-
ing problem to a joint routing and packing problem. It should be noted that capaci-
tated routing is a generalization of non-capacitated routing, as non-capacitated 
routing simply signifies that all pipes have a diameter of 0. Thus, even though 
this survey focuses on capacitated pipe routing, most methods can also be used for 
non-capacitated routing.

A few high-level mathematical descriptions of APR have been provided in previ-
ous research [6, 31–33]. The high-level theoretical idea of APR in this paper is built 
on the models of the aforementioned papers. Assume the following: 

1. A metric d ∶ ℝ
3 ×ℝ

3
→ ℝ

+.
2. The free space F  , which is a closed, bounded and path-connected subset of ℝ3 . 

The confined space S is then defined as the set of points within and on the bound-
ary of the bounding rectangle of F .

(a) (b)

Fig. 3  An example that shows the difference between a non-capacitated and b capacitated pipe routing
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3. The obstacle set O is a set of bounded, closed and path-connected sets called 
obstacles and is defined as follows: O = {o1, ..., om} with oi ⊆ S such that: 

lower-alpha oi is a bounded, closed and path-connected set, ∀i ∈ {1, ...,m}.
1 oi ∩ oj = � , ∀i ≠ j, i, j ∈ {1, ...,m}.
2 

⋃n

i=1
oi = S ⧵ Int(F) , with Int(F) the interior of the free space F.

4. P = {p1, ..., pm} , a set of pipes to be routed within the free space, where pi = (Ci, di) 
with Ci ⊂ ℝ

3 a finite set of points in ℝ3 that need to be connected and di ∈ ℝ
+ the 

diameter of pipe i.

Define the minimum distance of a point to a set of points as follows: md[a,B] =
min

b∈B d(a, b) . Now the pipe routing problem can then be explained as follows. For 
every pipe pi , find a path-connected set of points (i.e., the route or centerline of a 
pipe) 𝜋i ⊆ F  such that: 

1. Ci ⊆ 𝜋i

2. md[a,𝜋i] > di ∀a ∉ F

3. ∄a ∈ F ∶ md[a,�i] ≤ di ∧ md[a,�j] ≤ dj, ∀i ≠ j

Since this mathematical description is not something that can be directly solved by 
a computer, space and route modeling is used to approximate such problems, which 
will be discussed in Sect. 3.1. Note that this is a description of the fundamental idea 
of the pipe routing problem. Although this description may capture the parts of pipe 
routing that are always present in a pipe routing problem, there are other important 
case-dependent components that are not captured within this description. To accu-
rately capture the idea of a specific APR problem, it is also necessary to look at 
the constraints and objectives of the problem. Constraint and objective modeling in 
APR literature will be discussed in Sects. 3.2.1 and 3.2.2, respectively.

As mentioned in Sect. 1, decision variables form the link between the optimiza-
tion model and the solution algorithm. As APR methods are based on finding spe-
cific routes for all pipes, it is often the case that decision variables are equivalent to 
the route modeling parameters. A few different decision variable definitions exist in 
APR literature. One such method is to use the location of pipe supports as a deci-
sion variable, after which pipes are routed between these supports with a standard 
shape [34]. Nonetheless, decision variables are always closely related to pipe route 
representations.

The goal of the optimization model is to model space and routes in such a way that 
objectives and constraints can be adequately represented without the loss of routing 
potential. This means that the modeling of decision variables is regarded to be roughly 
synonymous with route modeling. Examples of decision variables used in APR litera-
ture can thus also be found in Sect. 3.1. Objectives and constraints are direct functions 
of the decision variables. It can be the case that these functions are not analytically 
tractable, methods to deal with such problems will be discussed in Sect. 4.4.

The optimization model provides a framework that can indicate the quality and 
feasibility of a problem given a specific configuration of the decision variables. 
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There are multiple components that can cause complexity in the optimization of the 
decision variables. The goal of the solution algorithm is to exploit problem struc-
tures to reduce the number of configurations of decision variables that have to be 
checked. This can be performed by using approximations and heuristics. How APR 
literature implements such procedures will be discussed in Sect. 4. Nonetheless, this 
survey will first examine the way in which formulations of APR optimization mod-
els are handled in literature in Sect. 3.

3  Optimization Model

As mentioned before, the formulation of the optimization model concerns the proce-
dures used for the translation of physical reality and design choices to a mathemati-
cal model. To represent APR problems as a mathematical model, it is necessary to 
give specific descriptions of the routing space and the possible pipe routes in such 
a way that interaction between the two is possible. The mathematical description of 
APR provided in Sect. 1 is too abstract to simply solve on a computer, especially 
when objectives and constraints are modeled in the same way. To express the objec-
tives and constraints as mathematical functions of the decision variables, it is neces-
sary to model the space and routes as mathematical variables. Therefore, procedures 
that are used in the formulation of the optimization model first commit to space and 
route modeling, after which constraints and objectives can be expressed in terms of 
space and routes. Since space and route modeling are closely related, they will be 
examined simultaneously in Sect.  3.1. Constraint and objective modeling in APR 
literature will be examined in Sect. 3.2.

3.1  Space and Route Modeling

Space modeling is a necessary first step to express the objectives and constraints 
of the problem in a viable way. If a model is to capture every possibility of routing 
a pipe, it is required to use a continuous representation for these routes. Although 
such methods are used in APR occasionally (see Sect.  3.1.2), most APR research 
remodels these continuous problems using some kind of discretization method. This 
is done by either limiting some continuous variables to a discrete set of options or 
by making a complete discrete model of routing space by only allowing pipes to go 
through certain points in space, often resulting in the use of a graph. One example 
of a completely discrete model is a grid graph as shown in Fig. 4. Grid graphs are 
often used in APR literature because they restrict bends to 90 degrees and offer a 
framework in which objectives and constraints can be modeled with ease [5]. For 
such graphs, the routing space is divided into several uniform cells which can then 
be used to specify pipe routes. Figure 4 shows how such a grid graph is constructed. 
The APR problem in Fig. 4a is first discretized by decomposing the space into sev-
eral uniform cells. Every grid cell then gets a certain value corresponding to its 
continuous counterpart as shown in Fig.  4b. In this example, the grid cell values 
can be: free space (white), pipe 1 (green), pipe 2 (orange) or obstacle (gray). To 
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make a translation to a graph, every cell can be seen as a vertex having edges to 
every neighboring vertex. A pipe route can now be specified by finding a path on 
the imposed graph from the starting vertex to the ending vertex as shown in Fig. 4c. 
Objectives and constraints can also be expressed in functions dependent on edges 
and/or vertices. An example of an objective could be that the length of a route can 
be approximately minimized by using the minimum number of grid cells to go from 
start to end. An example of a constraint is to prohibit routing over obstacle grid cells 
to avoid collisions with obstacles. This is just one method to model space and routes 
but it shows how such a discretization method can make the modeling of objectives 
and constraints considerably easier.

Space modeling can be performed with different levels of detail. This level of 
detail is positively correlated with the complexity of the resulting problem that has 
to be solved. A one-to-one description of space and routes will often result in a more 
complex mathematical problem, while an easy-to-solve mathematical problem often 
reduces the actual problem to an abstract form. The idea of space and route mode-
ling in APR is thus to find a satisfactory balance between complexity and path qual-
ity. One way to deal with this is to use multiple space representations with different 
levels of details, which will be discussed in Sect.  4.3. This section will focus on 
single space and route representations.

One way to simplify the pipe routing model is to use a taxicab geometry. A taxi-
cab geometry is similar to a Euclidean geometry but uses a Manhattan distance met-
ric, defined as: d(A,B) =

∑Dim(A)

i=1
�A[i] − B[i]� [35]. Because the Manhattan distance 

measures the distance of the shortest orthogonal path between two points, the fun-
damental idea of a taxicab geometry is that only paths with 90-degree bends are 
allowed. Szykman and Cagan [36] name several reasons why this method is often 
preferred over a Euclidean geometry in APR: A taxicab geometry restricts sharp 
bends that can cause pressure drops. Additionally, it facilitates the parallel routing 
of pipes which results in installation operations becoming more practical and pipes 
becoming more accessible. Belov et al. [6] note that: “As done in the literature, we 
limit our pipe routing approach to rectilinear axis-parallel routing; in particular, we 
constrain all bends to be 90 degrees. This is acceptable as non-90 degree bends are 
extremely rare in real plants, ...”. Nonetheless, use may vary from field to field, in 
aero-engine design, non-orthogonal routes are adopted more frequently than in ship 
design [37]. Routing in a Taxicab geometry is referred to by many names, some of 
which are: orthogonal routing, Manhattan routing, rectilinear routing, lattice paths 

(a) (b) (c)

Fig. 4  An example that shows the specification of a grid graph
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and routing using Von Neumann neighborhoods. This survey will refer to such 
methods as orthogonal routing.

Literature on APR methods often uses discretization methods to reduce the prob-
lem to a well-known mathematical concept, the graph. Nonetheless, several research 
papers tackle APR in more detailed ways that do not discretize the space to the level 
of a graph. Some APR methods take a continuous approach where pipes can be 
routed through every point in space. The practical application of both discrete and 
continuous approaches will be discussed below, respectively. Section 3.1.3 provides 
an analysis of APR obstacle modeling in practice. Additionally, Sect. 3.1.4 elabo-
rates on how branching is taken into account during the formulation of the optimiza-
tion model.

3.1.1  Discrete Approaches

Graph methods use graph representations as abstractions of the free (routing) space. 
Route definitions are represented using the vertices and edges from this graph 
abstraction. Since graphs representations do not offer a lot of options in how routes 
are represented, differences are most often found in the way space is represented. 
The graph methods can be grouped into two distinct, but closely related, categories: 
cell decomposition methods (also known as navigation meshes) and skeletonization 
methods (also known as road maps). Cell decomposition methods refer to methods 
that divide the free space area into several non-overlapping areas called cells, where 
each vertex is related to a cell and edges are found between adjacent cells. One 
example of a cell decomposition method is provided in Fig. 4. Important to note for 
cell decomposition methods is that, in general, a path over multiple vertices does not 
give a precise route, as vertices are related to areas not to single points. Skeletoniza-
tion methods refer to methods that relate the vertices of a graph to specific points 
in space. Edges of a skeletonization graph are continuous lines that connect these 
points in space. Both methods are showcased in Fig. 5.

In Fig. 5a, an example of a routing space is given, which is decomposed into rec-
tangles in Fig. 5b. Figure 5c shows a cell decomposition graph of the space where 
the vertices of the graph are the light blue areas while the edges are the dark blue 
lines under the arrows. Figure 5d shows a skeletonization graph of the same space. 
Here, the vertices are exact points in space represented by the blue circles and the 
edges are the gray lines, which are continuous lines through the free space that con-
nect these points. While the resulting graph may be the same, their inherent proper-
ties are different. A part of research on APR, especially in the domain of water and 
gas distributing systems, assumes that space representation in form of a graph is 
provided beforehand and just focuses on the optimization of the graph itself.

Note that cell decomposition methods and skeletonization methods are closely 
related. A single point in every cell can be chosen after which a route can be found 
over every edge in the cell decomposition to get a skeletonization graph. Of course, 
an infinite number of points can be chosen in every cell, in this way cell decomposi-
tion methods can be seen as generalizations of multiple skeletonization graphs. Skel-
etonization methods have a more precise route definition but limit the routing pos-
sibilities. On the contrary, cell decomposition methods keep route definitions vague 
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such that multiple routing possibilities are still left open. As mentioned before, 2D 
examples are used for easy interpretation but most methods can be directly extended 
to 3D. This is not always the case however, one example is given by Dielissen and 
Kaldewaij [38], who show that the computational complexity of making a minimum 
rectangular cell decomposition of a confined space without detached obstacles is 
polynomial in 2D but NP-Complete in 3D. One typical method to deal with the 
translation from 2D to 3D is to use a finite number of 2D planes to approach a 3D 
routing space [8, 39, 40]. Additionally, in aero-engine design, a cylindrical represen-
tation is sometimes used [11, 37, 41, 42], which can also make the translation from 
2D to 3D complicated.

Figure  6 provides several different cell decomposition methods that are reg-
ularly used in APR literature. Figure 6a shows a uniform grid, which is a widely 
used graph method in APR literature [1, 5, 43]. This particular method can impose 
orthogonal routing by only allowing up/down and left/right movements in a cell. 
There is a choice to be made on the width of the grid cells, which in research is often 
related to the diameter of the smallest pipe to be routed [8, 44]. Figure 6b shows a 
quadtree, which subdivides a cell into more cells when details increase in obstacles. 
Such a method is called an octree in 3D and is sometimes used for APR methods 
[11]. Figure 6c shows a non-uniform grid used in [31, 45, 46], that is constructed by 
drawing orthogonal lines from every obstacle point until the boundary of the routing 
space is reached. Figure 6d shows a trapezoidal decomposition in which either only 

(a) (b)

(c) (d)

Fig. 5  An example that shows different methods for graph construction or confined space (a); b shows a 
decomposition of the confined space, c shows a cell decomposition graph while d shows a skeletoniza-
tion approach
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horizontal or only vertical lines are drawn from obstacle corner points, used in [47], 
this is also called corner stitching [48, 49]. Figure 6e shows Delauney triangulation, 
used in [27, 50]. Figure 6f shows a minimum convex or orthogonal decomposition. 
Although this last method has not yet been adopted in APR literature to our knowl-
edge, it is important to note that research on cell decomposition methods exists, in 
which certain aspects (like the number of cells or minimum edge lengths) are mini-
mized [51]. Every cell decomposition method shown above can also be used as a 
skeletonization method, this is done by relating every line of the cell decomposition 
to an edge, and relating every point where more than two lines come together to a 
vertex. For example, the lines of the non-uniform grid cell decomposition method 
(Fig.  6a) can be used as a skeletonization graph [15, 52]. The same can be done 
for uniform grid cell decomposition methods [15, 31], which is also called a lattice 
graph or a mesh graph.

Figure  7 provides several different skeletonization methods. Figure  7a shows 
a Hanan grid, which is a skeletonization method of the specific non-uniform grid 
graph in Fig.  6c. Figure  7c shows an escape graph used in [10, 53]. The escape 
graph is closely related to the Hanan grid but instead of drawing orthogonal lines 
from every obstacle point to the boundary of the routing space, they are drawn to 
the first obstacle that is reached. There are also specific skeletonization methods 
that are not directly related to cell decomposition methods. Figure 7b shows a vis-
ibility graph, used in [54, 55]. The visibility graph has the property that the shortest 
(non-orthogonal) path in a routing space with polygon obstacles lies on this specific 
graph, for more information see [56]. Figure 7d shows a generalized Voronoi dia-
gram, which specifies for every obstacle, the region of free space that is closest to 
this obstacle. The lines between these regions are then the collection of points that 
have the same distances to the (at least) two closest obstacles, see [57] for more 

(a) (b) (c)

(d) (e) (f)

Fig. 6  An example that shows different methods for cell decomposition; a a uniform grid cell decompo-
sition, b a quadtree cell decomposition, c a non-uniform grid cell decomposition, d a trapezoidal decom-
position, e a Delauney triangulation and f a minimum orthogonal decomposition
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information on generalized Voronoi diagrams. Besides these more widely used skel-
etonization methods, some new methods are also introduced in APR literature. One 
example is the track graph [53]. A track graph closely resembles an escape graph 
(Fig. 7c), but reduces the number of vertices in the graph. Lui [58] introduces the 
Manhattan visibility graph, which is an orthogonal visibility graph that resembles 
an escape graph but also vastly reduces the number of vertices. Yuan et al. [37] pro-
pose a compressed visibility graph that limits the number of vertices of the visibility 
graph. Thantulage et al. [59] uses random-based sampling for vertex placement to 
construct a skeletonization graph. Another original example is the chaos grid pre-
processing model [28], in which a logistic map is used to map grid points and cre-
ate a graph. Although this survey focuses on methods used in APR literature, many 
more methods for graph creation can be found in the literature on robotics and game 
development [60].

Note that even though most discrete approaches in APR literature use a graph, 
there are some papers that have different discrete approaches for space and route 
representation. These methods often use a discrete set of basic shapes to go from 
one place to another [2, 3, 44]. For such methods, pipe routes have only a finite 
number of possible basic styles (minimum Manhattan distance and bends) to go 
from one point to another. Another method is provided by Shin et al. [61], in which 
routes are seen as sphere-shaped agents. These agents can move with a constant step 
length in six possible directions in 3D (up, down, left, right, forward and backward).

(a) (b)

(c) (d)

Fig. 7  An example that shows different methods for cell decomposition; a a Hanan grid, b an escape 
graph, c a visibility graph and d a generalized Voronoi diagram
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3.1.2  Continuous Approaches

Besides the graph-based approaches in the previous section, there are also some 
approaches that find routes for pipes without the restrictions imposed by discre-
tization. To provide an accurate model for APR, a specification of both space and 
routes has to be provided. Since pipe routes should be able to visit any point in free 
space for the continuous approach, it is sufficient to model just the obstacles and 
the boundaries of the confined space for collision detection. Pipe routes can be fully 
explained by just two distinct sets: the set of its straight pipe segments and the set 
of its bends. As a result, pipe routes in APR literature are generally expressed by a 
combination of these two sets. Bends are often described by their angles and straight 
pipe lengths by their length. This survey uses these two properties to explain the 
level of continuous specificity of a pipe routing representation. These properties 
are called length-continuity and bend-continuity. Length-continuous pipe routing 
implies that the length of the straight pipe segments can be chosen without limita-
tion, while bend-continuous pipe routing implies that the angle of a bend can be 
chosen without limitation. All graph methods shown before are both length-discrete 
and bend-discrete, as both are limited by a discrete set of possibilities. Note that 
there are more possible continuous characteristics that are not included, as these are 
not discussed in APR literature. One example is the shape of the bends, which is 
often pre-specified and constant beside the bend angle. Limiting bend shapes also 
limits the routing possibilities.

As can be seen in Table 1, most methods that incorporate continuous pipe lengths 
also incorporate continuous bend angles. This is often the case because a continu-
ous approach for both can be implemented without much complexity. The general 
method that is used for continuous APR in literature is performed as follows: Routes 
are represented by a diameter and an ordered list of points in space. These points in 
space represent bend points and the straight lines between every pair of consecutive 
bend points denote the centerline of the straight pipe segments. This is depicted in 
Fig. 8. In this way, the only decision variables that are needed to optimize the prob-
lem are the number of bends and the bend locations. The implied centerlines/routes 
of a pipe and its diameter can then be used for collision detection and other objec-
tives and constraints.

Table 1  Table of continuous 
specificity that is implemented 
in previous automatic pipe 
routing research

Source Length Bend Source Length Bend

[26] Cont. Disc. [62] Cont. Cont.
[63] Cont. Cont. [40] Cont. Cont.
[12] Cont. Cont. [34] Cont. Disc.
[64] Cont. Cont. [36] Cont. Cont.
[50] Cont. Cont. [30] Cont. Cont.
[29] Cont. Both [27] Cont. Disc.
[59] Both Both [65] Both Both
[13] Cont. Cont.
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Although this basic modeling method is most often used for continuous pipe 
routing, there are other methods for modeling space and routes in a continuous 
way.  Sandurkar and Chen [29] describe pipe routes by direction cosines, straight 
pipe lengths and bend angles. In this way, they can use both discrete and continuous 
approaches to describe bend angles. Wang et al. [26] make use of continuous inser-
tion points which are required to be visited but restrict bends to 90 degrees. In this 
way, pipes are expressed by multiple points in space and standard orthogonal shapes 
(basic styles) to connect these points.

3.1.3  Obstacle Modeling

Since obstacle modeling for discrete approaches is performed before discretization, 
the obstacle modeling methods used for discrete and continuous approaches are 
often similar. One common example is that obstacles are often increased by pipe 
radii such that a collision-free route can be defined by its centerline [1, 32, 44, 63]. 
Sometimes, an extra distance is added to take minimum clearance constraints into 
account [11, 15]. Both discrete and continuous approaches share the desired proper-
ties that: 1. Obstacle representations should not be too complex. 2. Obstacle mod-
els should be able to closely resemble physical reality. The property that obstacle 
models should resemble physical reality means that virtual obstacles can be used to 
adequately model constraints and objectives imposed by physical reality. The two 
properties above are often conflicting; obstacle models that closely resemble physi-
cal reality are generally complex while simple models often do not closely resemble 
physical reality. In APR literature, obstacles are regularly represented as orthogonal 

Fig. 8  An example of a continuous pipe representation, here (x
i
, y

i
) represents the location of point i and 

d is the diameter of the pipe
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shapes using minimum bounding box techniques [2, 16, 37, 66], or as a sum of sev-
eral orthogonal shapes [8, 46, 67]. Asmara et al. [68] introduces the optimized sub-
division boundary box method, which analyzes the obstacles to make a fitting vir-
tual obstacle using the sum of orthogonal shapes (boxes in 3D). This method is later 
used by Niu et al. [69] and Asmara [1].

Nonetheless, there is a difference in obstacle modeling between discrete and con-
tinuous approaches that should be noted. Discrete approaches often require very 
basic (orthogonal) descriptions for one of two reasons: 1. The more detailed the 
obstacles are in a routing space, the more cells are needed for a proper cell decom-
position. 2. The more detailed the obstacles are in the routing space, the more obsta-
cle points they have and thus the more vertices skeletonization methods will have. 
Since continuous approaches are often solved using metaheuristics (see Sect. 4.4), 
they can use more elaborate and detailed obstacle descriptions. The reason for this is 
that metaheuristic algorithms do not directly use the information structure contained 
in constraint and objective functions. This means that objectives and constraints can 
be represented by complex, intractable functions like specialized collision detection 
algorithms. In such cases, complex obstacle representations can be used, for exam-
ple, tessellated object representations [29, 59, 65].

3.1.4  Branched Pipe Route Modeling

Although pipe routing with branches is distinctly different from pipe routing with-
out branches, it often does not have a considerable impact on how the optimization 
model is constructed in practice. A single pipe with branches is commonly treated 
as a set of multiple pipes that have to be routed such that they are all connected [39, 
64, 70]. Consequently, pipe routes for branched pipes are then simply defined as a 
collection of (non-branched) pipe routes, all having their own objectives and con-
straints. Note that there is a multitude of methods to route these sub-pipes and to 
assure that they are linked. Nonetheless, since these methods are integral to the solu-
tion algorithm and are not part of the formulation of the optimization model itself, 
they will be discussed in Sect. 4.1.

3.2  Objective and Constraint Modeling

In this paper, the meaning of the words objectives and constraints is similar to that 
in mathematical optimization problems. An objective can be seen as an explicit 
goal with the purpose of being optimized, expressed as a scalar, and measured by 
a function of the decision variables. A constraint can be characterized as a limita-
tion on the possibilities of decision variables. Decision variables are a collection 
of settings that precisely describe the routes of all pipes1. The goal of APR is to 
find a set of decision variables such that all constraints are realized and the objec-
tives are optimized to an adequate level. Since multi-pipe routing problems are often 

1 Assuming the mathematical description of APR as described in Sect. 2, the decision variables describe 
the collection of all continuous lines {�

i
} ∀i ∈ {1, ...,m}.
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integer, highly nonlinear problems, a small change in the decision variables can have 
a substantial impact on the quality and/or feasibility of a certain design state. This 
implies that, for every pipe routing problem with a different set of objectives and 
constraints, it is needed to (re-)analyze these objectives and constraints to gain infor-
mation on that specific pipe routing problem. Section 4.4 provides an overview of 
how specific algorithms can capitalize on different information structures within the 
objectives and constraints.

Note that not every objective or constraint mentioned below is present in all APR 
problems, or that the objectives and constraints mentioned cover all possible objec-
tives and constraints. There are many types of pipe routing problems all with their 
own characteristics, this can also be seen in the concise APR literature overview 
provided in Sect. 5. The goal of this section is to provide the reader with a detailed 
account of different constraint and objective modeling methods that are used in 
APR literature. Note that this survey may classify some constraints and objectives 
in another category than in the source that is referenced. For example, some papers 
classify pipe length as a construction (installation) cost. Since this survey catego-
rizes this as a material cost, it is regarded as such.

3.2.1  Constraint Modeling

The goal of this section is to provide the reader with a detailed overview and catego-
rization of constraint modeling methods that are used in APR literature. APR con-
straints are sometimes separated in soft and hard constraints [1, 23, 61] or (having 
the same meaning respectively) in restrictive and quantifiable constraints [2, 7, 31, 
44]. Hard or restrictive constraints imply that they must be satisfied at all times, soft 
or quantifiable constraints imply that they can be disregarded when this shows to be 
either advantageous or necessary. As mentioned before, this survey treats constraints 
as limitations on decision variables that must be satisfied at all times. Thus, every 
constraint is a hard constraint. Soft constraints are seen as objectives because these 
are measures that should be optimized and do not directly limit the decision variables.

APR constraints are often divided into shape constraints and location constraints 
[28, 33, 71]. Shape constraints are constraints that put limitations on the shape of 
the pipe. Location constraints are constraints that put limitations on the locations 
where pipes can be routed. A common method to model location constraints is to 
use virtual obstacles and virtual sinks [16, 33, 55, 63]. Virtual obstacles do not exist 
in physical reality but are modeled as such to restrict certain areas. Virtual sinks 
are used to attract certain pipes to preferred areas. While the distinction between 
location and shape constraints is a useful distinction to make, this survey will pro-
vide a more detailed categorization of constraints. The different types of constraint 
categories are: physical constraints, safety constraints, operational constraints and 
maintenance constraints2. These categories will be explained independently below.

2 Note that it frequently happens that some restrictions are advantageous for multiple types of con-
straints. For example, a substantial part of operational and maintenance constraints overlap, as opera-
tional infeasibility often coincides with an increase in repair and maintenance times. To avoid repeating 
such constraints as much as possible, they are assigned to the most applicable category.
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Physical Constraints There are several different kinds of physical constraints that are 
discussed in APR literature. Physical constraints are constraints that make sure that a 
set of decision variables do not lead to a physically infeasible piping design. These con-
straints frequently consist of collision avoidance constraints and pipe shape constraints. 
These two categories and associated approaches in APR literature are given below.

• Collision avoidance constraints: As mentioned before, obstacles are often enlarged 
with the radius of the pipe to be routed.  Ikehira et  al. [67] increase pipe diam-
eters by the size of its accompanying flanges to avoid collisions between flanges 
and other physical objects. Enlarging obstacles for physical constraints can also 
be done dynamically for pipes with heterogeneous diameters. Dong and Bian [8], 
for example, introduce temporary obstacle grid cells that can be changed to nor-
mal grid cells when pipes with different diameters are routed. Although avoiding 
obstacle collisions is always necessary, it is sometimes allowed during optimiza-
tion to prevent the algorithm from getting stuck in local optima. This is commonly 
done with the use of potential energy [14, 25], which is a way to grade grid cells 
based on their location (also see Sect.  3.2.2). Allowing temporary collisions for 
global optimization can also be done with the use of other penalty functions, see, 
for example, [29, 30, 66, 67]. One such method is introduced by Sandurkar and 
Chen [29], in which the number of tessellated triangles that are crossed by pipes is 
minimized. To make sure these kinds of methods always avoid collisions when the 
algorithm is finished, the weight of the penalties can be increased over iterations in 
the algorithm [23]. Pipe collisions are often also avoided by routing pipes sequen-
tially, see, for example, [6, 29, 69]. In this way, pipes that have already been routed 
can be treated as obstacles. Nonetheless, this does have an effect on the optimiza-
tion complexity. As this is part of the resource competition component of the solu-
tion algorithm, it will be discussed in the associated section (Sect. 4.2).

• Pipe shape constraints: One simple pipe shape constraint is that pipes are commonly 
routed in an orthogonal way, examples are [1, 5, 26]. Occasionally, the straight pipe 
segments between bends are restricted to have a minimum length [27, 72]. Such 
restrictions are implemented as they can be imposed by suppliers [27]. Qu et  al. 
[41] extends pipe nozzles coming from obstacles with a certain length such that the 
directional orientation of the pipe nozzles is taken into account.

Safety Constraints Safety constraints are constraints that make sure that every design 
state is safe. Pipe routing safety is extremely important, especially for aero-engines. 
Ren et al. [42] note that: “General Electric (GE) Company investigated the airplane 
accidents caused by sudden stops of aero-engines and finally was shocked by the con-
clusive finding that about 50% of these kinds of accidents occurred due to the invali-
dation of pipes, wires and/or sensors.” Safety constraints are often incorporated by 
the use of restricted areas or minimum distances from specific equipment or machin-
ery. Most of them can be grouped into the following categories: virtual obstacles, 
minimum distances and potential energy. These categories and associated approaches 
in APR literature are given below.
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• Virtual obstacles are often used to make sure pipes do not cross unsafe areas 
[46, 55, 63, 73]. This can be done for all pipes or for a subset of pipes (e.g., no 
heat-sensitive pipes near combustion engine [61]). How these virtual obsta-
cles are modeled depends on how obstacles are modeled. One example is to 
make certain vertices in a graph unavailable [46].

• Minimum distances are often used to ensure pipes are not routed too close to 
certain areas to make sure a design state is safe [5, 71, 74].

• Just like for obstacle avoidance, potential energy can be used for safety con-
straints to allow certain transgressions during optimization to avoid local optima 
[8, 10, 41, 53].

Operational Constraints Operational constraints are constraints that attempt to exclude 
all design states that adversely impact operational procedures. Most operational con-
straints can be grouped into the following categories: hydraulic feasibility, thermal 
expansion and accessibility necessities. These categories and associated approaches in 
APR literature are given below.

• Hydraulic feasibility: Hydraulic feasibility constraints are constraints regu-
larly used in the APR domain of gas and water distributing systems, see, for 
example, [21, 23, 75, 76]. Nonetheless, they are also applied in other APR 
domains [15, 27, 63, 71]. Although flow and pressure are highly dependent, 
research does not always take both into account at the same time. Flow con-
straints relate to the number of bends, slope, drop limits, and pipe diameters 
[15, 21, 23, 27, 63, 71]. Pressure constraints relate to pipe lengths, pipe diam-
eters, number of bends and bend angles [15, 24, 36, 63, 75]. These pressure 
and flow constraints can be implemented using associated methods, for exam-
ple, the Hazen-Williams equation [22, 23] or with the use of Fluid-Structure 
Interaction (FSI) [63].

• Thermal expansion: Thermal expansion constraints are constraints that prevent 
excessive stress levels caused by thermal expansion. Belov et al. [6] use a guided 
cantilever method for flexibility relating to thermal expansion.  Kumar and 
Cheng [15] make sure thermal stress does not exceed a given limit.

• Accessibility necessities: It is often the case that virtual obstacles are introduced to 
prevent routing within operational areas [47, 77]. One example is to simply remove 
vertices from the graph that lay in operational places [78]. Zhu and Latombe [33] 
take valve accessibility into account by restricting the height of associated pipes 
such that valves can be reached by hand.

Maintenance Constraints Maintenance constraints are constraints that attempt to 
exclude all design states that adversely impact maintenance procedures. Most mainte-
nance constraints can be grouped into the following categories: stability & reliability 
and accessibility necessities. These categories and associated approaches in APR lit-
erature are given below.

• Stability & reliability: Supports are often used for stability and reliability in APR 
literature. Stanczak et al. [27] attach pipes to floors or walls in an orthogonal fash-
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ion for stability reasons. Kumar and Cheng [15] take into account both sustained 
and occasional stress levels of pipes by using supports. Dong and Lin [44] avoid 
pipe paths with air pockets.

• Accessibility necessities: As with operational constraints, maintenance accessi-
bility constraints often use virtual obstacles to block routing within maintenance 
areas, see, for example, [16, 55, 63, 74]. One example is that pipes should not 
be routed in front of equipment or close to the engine [42]. Another example is 
to route pipes that require frequent maintenance on the outer layers of the aero-
engine such that they are easily accessible [63].

3.2.2  Objective Modeling

The goal of this section is to provide the reader with a detailed overview and cat-
egorization of objective modeling methods that are used in APR literature. The most 
common method to model objectives is with the use of potential energy. Potential 
energy for grids was introduced by Ito [43] and is used by most APR methods that 
include a grid. Even some continuous approaches use a grid for the sole purpose of 
incorporating potential energy [26]. To take heterogeneous pipes into account, this 
potential energy can be either dependent on the type of pipe [25] or more gener-
ally, dependent on the diameter of the pipe [41]. The reason why potential energy 
(and therefore a grid cell decomposition method) is so widely used in APR literature 
is that it can be used to model many different types of spatial objectives. Asmara 
[1] shows that the simple idea of potential energy can be used for: routing points, 
obstruction areas, sink areas, rough areas, attraction areas, magnet areas, distraction 
areas and special-type areas. As with constraint modeling, objectives used in APR 
literature can be categorized into several different categories. These categories are: 
material cost objectives, construction objectives, operational objectives, mainte-
nance objectives and aesthetic objectives. It is often the case that objectives within 
these groups are expressed in the same quantitative or qualitative manner but this is 
not always the case3. These categories will be explained independently below.

Material Cost Objectives Material objectives are about the direct costs of pipes. Mate-
rial costs are often kept simple by focusing solely on the total routed length of the 
pipes, see, for example, [20, 46, 55]. Even when other objectives are implemented, 
the length of pipes is commonly the most important objective of APR. Nonetheless, 
there are some other variables related to material costs that are frequently used. One 
such variable is the diameter of pipes [2, 15, 23]. These diameters can be modeled as 
continuous variables [22, 79] and as discrete variables [24, 52]. Although having a set 

3 It can be difficult to find a function that accurately represents certain subjective and qualitative goals, this 
is especially the case for complex issues like valve operability or design aesthetics. Objectives can also have 
fundamentally different evaluation methods, making an objective ordering between them impossible. Such 
objectives often clash in optimization, such that improvement in one objective leads to a deterioration in 
another objective. Optimization of such a set of incomparable objectives is called multi-objective optimiza-
tion and is often handled by either one of two methods; 1. Creating a single scale for all objectives assum-
ing a certain subjective trade-off among these objectives. 2. Using Pareto-efficiency for optimization. More 
on multi-objective optimization and Pareto-efficiency can be found in [135].
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of discrete pipe diameters can complicate optimization, this decision is made since 
suppliers often only have a finite set of diameters [24]. Note that the number and 
angle of pipe bends could be considered material costs when they are bought from 
suppliers. This survey will list these under construction costs because most research 
on APR categorizes pipe bends as construction costs under the assumption that bent 
pipes are made, not supplied.

Construction Objectives Constructions objectives are used to make the construction/
installation of the pipes as cheap and smooth as possible. Pipe bending has to be 
performed by a person on a bending machine, the number and angle of bends have 
specific man-hours costs. Therefore, minimizing pipe bending costs is a common 
objective. Additionally, objectives for reducing support costs are also frequently 
taken into account. Most construction objectives can be grouped into the following 
categories: pipe bends, parallel routing and support structures. These categories and 
associated approaches in APR literature are given below.

• Pipe bends: The cost of pipe bending can be different between two distinct types 
of pipe. Park and Storch [2] note that “The bending cost follows a step function 
because cold bending is used for small pipes and high-frequency bending is used 
for large pipes. The bigger the pipeline diameter, the more costly the bending, 
because it takes more man-hours." There are several methods that quantify the 
number and angle of bends. As shown in the quote above by Park and Storch, 
they take into account different types of bending costs dependent on pipe diam-
eters.  Sui and Niu [80] reduce the number of bends while backtracking using 
the Maze algorithm. Sometimes a maximum number of bends is implemented 
[27, 54, 59, 81]. This can be done to either limit the number of bends but also 
to make sure Genetic Algorithms can be modeled using a fixed-length encoding 
(see Sect. 4.4). Other methods that are used are: minimizing average bend angles 
[13] and using a discrete set of bend angles (i.e., a finite bend catalog) [62].

• Parallel routing: For construction purposes, it is often the case that pipes should 
be routed close to each other such that they can use the same pipe supports. Poten-
tial energy can also be used to route pipes in parallel [39, 44, 71]. Implementa-
tion of this method can be done by giving higher potential energy values to grid 
cells that lay next to an already routed pipe [39]. In this way, newly routed pipes 
will prioritize routes along pipes that already have been routed. Besides potential 
energy, other methods have been implemented to achieve routing pipes in parallel. 
Some methods are: Minimizing the lengths of supports [64]. Route pipes in paral-
lel as a function of projection overlaps, distances and angles between pipes [37]. 
Directly optimize distances between pipes [8]. Use virtual sinks [1, 33] to guide 
currently routed pipes to pipes that have already been routed. Dong and Bian [8] 
prioritize parallel routing for pipes with equal properties, i.e., pipes with the same 
diameters or with the same pipe-dependent constraints.

• Support structures: Pipes are often routed as close to walls, floors, ceilings, equip-
ment or machinery as possible such that no external support has to be used. Pro-
posed methods generally use potential energy for routing along obstacles. This 
is implemented by giving grid cells close to obstacles higher potential energy. 
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Besides potential energy, other methods for routing close to obstacles are: Mini-
mizing the average radial distance of discrete points to obstacles [37]. Requiring 
bends to be in a support zone and minimizing the cost of virtual support structures 
[6]. Using an evaluation function for the smallest perpendicular distance to obsta-
cles [78] and minimizing the length of pipes that is not along walls [82].

Operational Objectives Operational objectives are objectives that are used to ease 
future operational procedures. Most operational objectives can be grouped into the 
following two categories: energy costs and accessibility. These two categories and 
associated approaches in APR literature are given below.

• Energy costs: Pipe diameters can be optimized for energy objectives after a pip-
ing design has been achieved [15]. Nonetheless, several methods jointly optimize 
pipe routing and energy objectives. Shiono et al. [24] use a mixed integer non-
linear programming to optimize pipe length and pipe diameters such that cus-
tomers receive the right pressure gas. Pressure and heat drops are often directly 
modeled in the evaluation function [78, 79]. One way to do this is to minimize 
pipe lengths, number of bends and bend shapes for pressure drops [15, 37]. To 
take flow objectives into account, penalty functions can be used for nodal head 
and pipe flow velocities [21, 22]. Energy loss can also be prevented by analyzing 
how thermal insulation layers can be used [79].

• Accessibility: Operational accessibility objectives are often used to minimize the 
discomfort caused by pipes during operational procedures. Potential energy can 
be used to limit pipe routing inside operational areas [8]. Wu et al. [83] use fuzzy 
functions as a penalty for traversing areas meant for machine operation. Ikehira 
and Kimura [84] and Kimura [9] optimize valve operability by using three levels 
for valve accessibility: good, fair and bad. The level of accessibility is calculated 
with a recursive fill algorithm that mimics the movement of a person, after which 
the sum of minimum distances from each valve to accessible segments is mini-
mized. Park and Storch [2] use a combination of valve operation frequency, man-
hour costs and a coefficient that signifies difficulties and discomfort levels to 
quantify valve operability.

Maintenance Objectives Maintenance and repair objectives are objectives that are 
used to ease future maintenance and repair procedures. Most of these objectives can 
be grouped into the two following categories: stability & reliability and accessibility. 
These two categories and associated approaches in APR literature are given below.

• Stability & reliability: In aero-engine design, it is often the case the pipes are 
routed as close to the surface as possible for stability and reliability reasons [42, 
55]. Afshar [21] models the reliability of the piping system as the number of 
independent paths that can secure flows when unforeseen failures happen.

• Accessibility: As with many objectives, maintenance accessibility objectives 
are often quantified by potential energy. Maintenance spaces can be predeter-
mined, after which potential energy can be used to avoid these spaces [26, 41, 
85]. Besides potential energy, punish functions can be used for crossing main-
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tenance and repair areas [42, 67]. Another method can be used when pipes are 
routed sequentially. The idea is to route pipes that require frequent maintenance 
and inspection last, since they will be blocked less often by previously routed 
pipes [40].

Aesthetic Objectives Aesthetic objectives often coincide with other objectives. One 
example of such a shared solution is to route pipes orthogonal. While this may be 
beneficial for aesthetic reasons, it is often performed with some other objective in 
mind. Nonetheless, several aesthetic objectives and methods of implementation are 
specifically mentioned in APR literature. One such method is to route pipes in bun-
dles as much as possible [86]. Another method is to arrange pipes to have the same 
height as much as possible, this can be implemented by using different (grid) layers 
on the height dimension [39]. Qu et al. [41] note that “... pipes should be laid along 
the axial and circumferential directions of engines.”, this is performed by giving pri-
ority to these routing directions. Potential energy can also be used to make sure that 
pipes do not interfere with other equipment [41].

4  Solution Algorithm

The formulation of the solution algorithm involves the procedures used to overcome 
obstacles that obstruct the optimization of the optimization model. The most impor-
tant property of a problem with regard to optimization is its computational com-
plexity. Therefore, this section will address several main components that introduce 
computational complexity. This section assumes that the reader is familiar with the 
essence of computational complexity theory. A detailed account of computational 
complexity can be found in [87].

It has been shown that the complexity of APR is an element of the NP-Hard 
class [88], which practically means that the time it takes to find the optimal solu-
tion of the problem increases exponentially with respect to the problem size. APR 
is an element of the NP-Hard class because there are several problems that are part 
of or equivalent to the pipe routing problem, which are shown to be in NP-Hard. 
Some examples are: Numberlink [89], Circuit Design [90–92] Multi-Agent Path-
finding [93] and Unsplittable Multicommodity Flow Problems [94]. Note that all 
these resembling cases are regarding the pipe routing problem in a setting that uses 
a graph, i.e., a discretized version of the actual problem. Nonetheless, for continuous 
representations, it is known that finding the shortest path of even a single pipe in 3D 
is NP-Hard as it directly translates to a Euclidean shortest path problem [95]. This 
changes when obstacles can be fully described by obstacle points, for which a vis-
ibility graph can be used to find the shortest path in polynomial time [96]. For more 
information on Euclidean shortest paths, this paper refers to [97].

There are several components that contribute to the optimization complexity of an 
APR problem. The three most important barriers to the optimization of APR prob-
lems will be discussed in this survey. These three barriers are: branching (Sect. 4.1), 
resource competition (Sect. 4.2) and space dimensionality (Sect. 4.3). These barriers 
are chosen as they are caused by specific problems and thus, procedures to overcome 
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these barriers will share the same goal. Another reason why these three barriers are 
chosen is that variability among procedures to overcome these barriers is high in APR 
literature. As mentioned before, for every barrier, procedures proposed in the literature 
are categorized and explained such that they can be summarized in Sect. 5. Section 4.4 
will analyze the advantages and disadvantages of several types of algorithms, as algo-
rithms often have built-in methods for dealing with complexity from many different 
kinds of barriers.

4.1  Branching

The idea of branching is that single pipes need to be connected to three or more end-
points. This means that the pipe needs to have at least one point on its route where 
it is split into a branch. Although pipe branching is often not taken into account in 
APR methods, they are present in most pipe routing design problems. Asmara [1] 
notes on pipe routing in ship design that: “Most of the shortest path algorithms are 
basically only concerned with finding the shortest path that connects two points, 
while in practice, more than 70% of pipes have a branch.” The idea of branched 
pipe routing is to minimize the total length of the pipe and its branches together. 
This is related to well-known problems in both graph theory, called Steiner mini-
mal trees (SMT), and in geometry, called geometric Steiner minimal trees. In geo-
metric Steiner minimal trees (GSMT), a distinction can be made between Euclidean 
minimum Steiner trees (EMST) and rectilinear minimum Steiner trees (RMST). The 
SMT problem is shown to be part of the complexity class NP-Hard [98]. Addition-
ally, the GSMT problem is shown to be part of the complexity class NP-Complete 
[99], making both problems exceedingly hard to optimize.

Figure 9 gives an example to illustrate the concept of SMT. Figure 9a provides 
a graph with terminals and Steiner points, Fig. 9b provides the SMT of this graph. 
In an SMT, terminals are vertices that must be connected to each other and Steiner 
points are vertices that may be used to connect these terminals. An SMT is a collec-
tion of edges such that every terminal is connected and the sum of the edge weights 
(often related to distances) is minimized. Both an EMST and RMST have specific 
terminals that correspond to points in a geometric space. Any other point in this geo-
metric space can then be seen as a Steiner point. The idea of a GSMT is to minimize 
the sum of the Euclidean (EMST) and Manhattan (RMST) distance while making 
sure the terminals are connected. Pipe branching in a discrete environment directly 
translates to the SMT problem and pipe branching in a continuous environment 
directly translates to the GSMT problem, making it a difficult variable to optimize 
in any space setting. Several methods have been proposed to approximate or find the 
exact minimum Steiner trees in relation to APR. These methods will be discussed 
and categorized in this section. Although several methods for the optimization of 
Steiner trees are explained below, research on this topic is extensive. See the survey 
of [98] for more information on the Steiner Minimum Tree problem.

As mentioned above, pipe branching in a continuous environment translates 
directly to a GSMT problem. Note that to translate the continuous APR problem into 
a GSMT problem, the obstacles also have to be taken into account. Such problems are 
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often called Obstacle Avoiding Steiner Minimal Tree (OASMT) problems. Although 
such methods are not directly incorporated in APR literature, it is widely applied to 
similar problems. Hu et al. [100] translate a Circuit Design routing problem into an 
OARSMT (Obstacle-Avoiding Rectilinear Steiner Minimal Tree) problem. See the 
survey of [101] for more information on the OARSMT problem. Additionally, reduc-
ing (OA)RSMT problems to the boolean satisfiability problem (SAT) such that they 
can be used by state-of-the art solvers also seems to be advantageous for both the 
RSMT [102] and OARSMT [103] problems.

The start and endpoints of a branched pipe can have several different diameters, 
i.e., it is possible that a pipe branch has a smaller diameter than the actual main pipe-
line [2, 8, 69]. Asmara [1] makes the distinction between fixed branches and float-
ing branches. It is noted that: “In a fixed branch there is a master pipe and a child 
pipe ... In a floating branch, all nozzles have the same priority.” It is also noted that 
if branches are routed sequentially, the hierarchy in fixed branches can be used for 
determining the routing order of branches. This method is also adopted by Dong and 
Bian [8], Dong and Lin [44] and Niu et al. [69], who restrict branch connections of 
only one level difference in hierarchy4. Park and Storch [2] see branch pipelines as 
either end-forked (branches of a pipe that lie near one of the endpoints) or middle-
forked (branches of a pipe that do not lie near one of the endpoints). They use differ-
ent methods to deal with each kind of branch and also incorporate a recursive method 
that deals with multi-level branches. Ganley and Cohoon [104] show that an optimal 
rectilinear (orthogonal) Steiner minimum tree problem with obstacles can be con-
structed by only using the vertices in an escape graph. Finding an SMT on an escape 

(a) (b)

Fig. 9  An example that shows a a graph with terminal and Steiner points and b its associated minimum 
Steiner tree

4 Hierarchical branching indicates that there is a finite ordered set of pipe diameters. One hierarchi-
cal level difference between two branches implies that there is no pipe diameter that lies in between the 
diameters of these branches.
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graph is thus equal to finding an RMST problem with obstacles in a taxicab geom-
etry. This survey makes the distinction between four main groups of methods used 
for branching in APR literature: sequential method, minimum spanning tree method, 
parallel method and exact method. An overview of these methods is provided below.

Sequential Method Sequential branching methods treat branched pipe routing as a 
collection of single non-branched pipe routing problems. This is often done by ini-
tially creating a path between two terminals, after which new terminals are added in 
a sequential manner. Figure 10 shows an example of how the sequential branching 
method can be used to add terminal points one by one. The orange vertices are the 
terminal vertices that all have to be connected with each other. The blue vertices 
are the Steiner vertices, which can be used but are not required to be used, to con-
nect the terminal vertices. This is a useful method for multi-level branching prob-
lems because main pipelines can be given priority by routing them first. Sequen-
tial branching can be performed by first finding a main path between two terminal 
points and then iteratively creating a new (branched) path by choosing a random 
terminal point and connecting it with the current path [1, 33, 39, 70]. Instead of 
choosing a random terminal point to route next, it can also be chosen to be the ter-
minal point closest to the current path [105]. Some methods find a main pipeline 
after which branch points are placed on this pipeline to dictate where pipes should 
connect [9, 28]. Jiang et al. [64] break down the problem of branches by treating it 
as a collection of vertex pairs that resemble single pipes.

Minimum Spanning Tree Method These methods create a minimum spanning tree 
(MST) as an approximation for an SMT. Since an MST can be found in polynomial 
time, it can be used as a fast approximation for an SMT. Figure 11 shows an example 
of how such an approximation method can be implemented. First, an MST is used 
to connect all vertices, after which Steiner vertices can be removed from the tree 
until there are no Steiner points left that can be removed. Several MST branching 
methods are implemented in APR literature to reduce complexity and improve the 
solution. Wu et al. [79] use an iterative procedure of Kruskal’s algorithm by adding 
vertices until the graph is connected. Some methods use the properties of visibility 
graphs and the removal and shifting of Steiner points to reduce the SMT problem to 
an MST problem [54, 66].

(a) (b) (c)

Fig. 10  An example of a sequential branching method
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Parallel Method Parallel branching methods iteratively look for a global optimum 
with the use of metaheuristic algorithms like Genetic Algorithms (GA), Particle 
Swarm Optimization (PSO), or Ant Colony Optimization (ACO). More on these 
metaheuristic algorithms can be found in Sect.  4.4. Branch pipe routing is often 
solved through ACO algorithms by letting ants in different colonies meet each other, 
see, for example, [11, 22, 75, 82]. Qu et al. [11] implements this idea with a modi-
fied max-min ant system to represent a pipe by a group of ant colonies that walk 
together and can split/branch out when needed. Dong and Lin [39] use the same 
cooperative system in the context of a PSO algorithm. Liu and Wang [10] use PSO, 
combined with the properties of an escape graph, to find an orthogonal minimum 
Steiner tree with obstacles for a single pipe. Savic and Walters [23] use a minimum 
spanning tree method as an initial solution for the graph Steiner tree method and 
improves this solution using a genetic algorithm. Jiang et al. [82] use a sequential 
branching method as an initial solution for their Co-evolutionary Improved Multi 
Ant Colony Optimization (CIMACO) algorithm, after which initial points are 
changed by the CIMACO algorithm to improve the global solution.

Exact Method These methods find an exact solution for the branch pipeline prob-
lem. One such example is provided by Shiono et al. [24], in which cyclic orderings 
are used for all the demand vertices in a graph as introduced by Bern [106].

4.2  Resource Competition

This component of the solution algorithm is concerned with multi-pipe routing in a 
space with limited resources. Multi-pipe routing implies that more than one pipe has 
to be routed in the same confined space. Limited resources indicate that a choice has 
to be made to decide which pipes can make use of these resources. One such exam-
ple is the room that has to be shared by pipes, in which a routing order of pipes can 
be used to prioritize certain pipes. Pipes are commonly routed one-by-one, both in 
practice and in literature, see, for example, [58, 70, 77]. Since any pipe that has been 
routed will form an obstacle for the next pipe to be routed, the order in which pipes 
are routed can have a large influence on the final design. One example is shown in 
Fig. 12.

(a) (b) (c)

Fig. 11  An example of a minimum spanning tree branching method
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From the example in Fig. 12, it becomes clear that first finding the shortest route 
for the green pipe can cause feasibility problems for the orange pipe (Fig.  12b), 
when overlaps are not allowed. It is also clear that a feasible solution can be found 
by changing the routing order such that the shortest path for the orange pipe is found 
first (Fig. 12c). The limited resource here is the space between the three obstacles 
since both pipes would be shorter if they are routed optimally through this space. 
Every pipe can be seen as a dynamic obstacle, in which changes have an impact on 
the objective function but also on the constraints of all other pipes. This introduces 
significant complexity, as ordering n different pipes results in n! permutations of 
unique pipe orders. This can also be seen when looking at the shortest routes on 
graphs. The problem of routing a single connection as the shortest path is part of the 
complexity class P . Nonetheless, when the shortest path has to be found for two or 
more routes and these routes have to compete for a specific scarcity within the con-
fined space (e.g., capacity constraints), the problem becomes an unsplittable multi-
commodity flow problem, which is part of the NP-Hard complexity class [94].

This survey will use the term centralized optimization, which stems from [32]. 
Zhu uses a spectrum to signify the level of dealing with the complexity of lim-
ited resources. On the far left of this spectrum is “Independent planning” and on 
the far right “Centralized planning” [32]. Independent planning implies that the 
problem of conflicting pipe objectives is completely disregarded. This is often 
performed by sequentially finding the shortest path for every pipe without taking 
a routing order into account. Ideally, APR methods should use fully centralized 
methods, which implies that all limited resources are taken into account such that 
pipe priorities are globally optimized. Despite the complexity of such fully cen-
tralized methods, approximations can be used to take these limited resources into 
account. Examples of such methods that are implemented in APR literature are 
often metaheuristic algorithms like: ACO [16, 65, 82], GA [25, 30, 44, 107] and 
PSO [39]. See Sect.  4.4 for more information on these types of algorithms and 
how centralized optimization is achieved.

Although sequential routing methods are limited by the problem of com-
petition between pipes, there are multiple techniques that take the global opti-
mum into account while routing pipes sequentially. These methods are: piping 
sequence, backtracking, subset routes and macro-pipes. An overview of these 
methods is provided below.

(a) (b) (c)

Fig. 12  An example that illustrates how routing order can impact routing feasibility
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Piping Sequence/routing Order The order in which pipes are routed can have a 
big impact on the final pipe routing design. Jansen et al. [108] show that ordering 
the sequence of routes based on path length and Minkowski distance can improve 
routability by over 70%. Therefore, the routing order is often optimized for routa-
bility in APR literature. The most commonly used method is to route pipes with 
the biggest diameters first, see, for example, [6, 8, 37, 69]. It can also be chosen 
to route short pipes before long pipes [12, 37, 41, 63] and pipes in dense areas can 
be routed before pipes in sparse areas [12, 41, 63]. Another way to optimize pip-
ing routability is to prioritize pipes with the largest surface [6] or biggest volume 
[81]. A more elaborate method to improve routability is to base the routing order 
on estimated pipe interferences, such that pipes with a low interference degree can 
be routed before pipes with a high interference degree [37, 40]. Besides routabil-
ity, some methods use piping sequences to take material and construction costs into 
account. One method aims to minimize the route length of expensive pipes by rout-
ing them before inexpensive pipes [41, 109]. Thick-walled pipes can also be routed 
before thin-walled pipes to reduce the number of bends of thick-walled pipes, and 
subsequently the total bending costs [12, 40, 63]. Accessibility can also be improved 
with the use of routing order. In aero-engine design, it is advantageous to route pipes 
that should lay close to the engine before outer pipes [12, 63]. Closely related to 
this is to route pipes based on the frequency of maintenance, i.e., route pipes with 
infrequent maintenance before pipes with frequent maintenance [40, 41]. Although 
there are many objectives that can be improved by the routing order, some meth-
ods incorporate the routing order in the algorithm to directly optimize the objec-
tive function.  Asmara [1] uses discrete particle swarm optimization to iteratively 
improved the routing order of pipes. Singh and Cheng [78] use simulated annealing 
to optimize the routing order. Qu et al. [41] uses standard routing sequencing meth-
ods which can be adjusted within an improved ant colony optimization algorithm if 
there is a tie between two pipes.

Backtracking/re‑routing Another method to deal with limited resources in the rout-
ing space is deleting or re-routing certain pipes as to make place for new ones. Back-
tracking generally engages itself with choosing which routes to change and how they 
should be changed [32]. Zhu and Latombe [33] introduce a sophisticated backtracker 
that chooses pipes based on their relative position and fully reroutes these pipes in a 
different order. Asmara [1] combines this method with particle swarm optimization 
to create the hybrid backtracker. Ikehira and Kimura [84] route all pipes separately 
without collision constraints but re-routes pipes based on the number of collisions 
such that a feasible solution is found.

Subset Routes The general idea of subset routes is that a finite set of routes is opti-
mized in a global way. One example is provided by Yamada and Teraoka [52], who 
use the property of multiple shortest paths in Manhattan routing to create a set of 
feasible shortest paths and second-shortest paths which can be subsequently opti-
mized. Kim and Corne [110] limit routes to basic forms and chooses between these 
basic forms using stochastic hillclimbing, simulated annealing and a GA. A similar 
method is used by Ma et al. [20], who use a hierarchical GA that first finds several 
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good routes, after which the best combination of routes is chosen from this subset of 
good routes.

Macro‑pipes Zhu and Latombe [33] introduce the idea that there are a lot of inde-
pendent groups of pipes and that these groups can be routed together as macro-
pipes. Even though they do not implement this method themselves, it has been used 
by more recent papers for routing in a space with limited resources. Both Zhao et al. 
[13] and Dong and Bian [8] make assumptions that certain sets of pipe bundles are 
provided to attempt to route these pipes as parallel as possible. Yuan et al. [37] uses 
a clustering method to retrieve sets of pipes that should be routed as macro-pipe.

4.3  Space Dimensionality

Space dimensionality often creates a barrier to the optimization of the model as a 
result of a combination of two factors. One factor is that the complexity of a pipe 
routing problem strongly depends on the number of pipes involved. This is because 
the number of ways to route multiple pipes in the same confined space can get 
large very quickly when the number of pipes increases. For example, if two pipes 
can be routed in three different ways, there are eight ( 23 ) options for a pipe design. 
If 10 pipes can be routed in three different ways, there are 59,049 ( 310 ) options. 
As Asmara [1] notes: “Also the complexity of the problem rises exponentially with 
the number of pipes to be routed.” The second factor is the complexity of space. 
Although the number of pipes to be routed cannot be changed, the number of ways 
in which these pipes can be routed is highly dependent on how space and routes are 
modeled. As is mentioned in Sect. 3.1, mathematical models of APR problems are 
often discretizations of the actual problem. The way the space is modeled is not only 
important for the description of the problem, but also for its complexity. Take, for 
example, the grid method used in the previous section as shown in Fig. 4. For this 
method, the complexity of the problem naturally depends on the number of vertices 
and edges (grid cells) in the resulting graph. Thus, for combinatorial purposes, it 
is advantageous to use as few vertices and edges as possible. Nonetheless, using 
fewer vertices also makes the graph representation of the space less precise, as there 
are fewer points in space that can be reached. This trade-off between space repre-
sentation and time complexity is something that should be taken into account when 
constructing an APR method. Some methods in APR literature try to optimize both 
space representation and time complexity at the same time. Such methods will be 
referred to as hierarchical routing and will be discussed in this section.

Hierarchical routing is the idea of using multiple modeling techniques that dif-
fer in complexity to infer information and optimize the pipe routing problem in a 
cooperative way. The general application for hierarchical routing is to first opti-
mize the high-abstraction descriptions with lower complexity, then translate these 
to more detailed descriptions which can then be used for further optimization and 
specification. Global and detailed routing are ways in which to describe how spe-
cific these descriptions are. Detailed routing refers to the optimization of an APR 
problem where the location of a pipe is exactly specified. Global routing refers to 
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the optimization of a pipe routing problem where the location of a pipe is not exactly 
specified. To show the difference between the two cases, an example is provided in 
Fig. 13.

In Fig.  13a, a confined space is shown with three obstacles in gray and two 
pipe nozzles in green. These pipe nozzles are the start and end of the pipe to be 
routed, they also give an indication of the diameter of the pipe. In Fig.  13b, a 
detailed route is shown for this particular problem, where the exact location of 
the pipe route is known. In Fig. 13c, the free space is divided into multiple cells 
using a cell decomposition method. Using this cell decomposition, the global 
route in Fig. 13d can be found by routing over the cells. This is a global route as 
it does not indicate where exactly the pipe should be routed, it is only known over 
which cells to route. An example of hierarchical routing can now be given: first 
find a global route using the cell decomposition after which a detailed route can 
be found that goes through the chosen cells of the global route. This particular 
global cell routing method is applied extensively in the field of Very Large Scale 
Integration (VLSI) [111].

The method shown in Fig. 13 is not the only method for hierarchical routing. 
Several categories are made to divide approaches to counter space dimensionality 
in APR literature. These categories are named: bounded area search, cell hier-
archy method, point hierarchy method and other methods. An overview of these 
methods is provided below.

(a) (b)

(c) (d)

Fig. 13  An example in which the same pipe is routed using detailed routing (a) and (b) and global rout-
ing (c) and (d)
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Bounded Area Search Multiple research papers in APR literature use a particular 
method that this survey will refer to as bounded area search. This method restricts 
the routing space for every possible route to be within the minimum bounding box 
of the start and endpoint(s). These minimum bounding boxes can be increased by 
either a simple constant [41, 69] or they can be increased based on the routing space 
itself. Bai and Zhang [85], for example, extend these minimum bounding boxes such 
that blocking obstacles are eliminated. The bounded area search method can also be 
adapted in an iterative way by using big subspaces that are decreased over time [42]. 
These methods can be interpreted as hierarchical routing, as the bounded areas can 
be regarded as global routes.

Cell Hierarchy Method The cell hierarchy method uses cell decomposition to divide 
a routing space in big cells. Routes are then found by using a number of adjacent 
cells, after which the adjacent cells are used to find a detailed path. The hierarchi-
cal routing method explained above with the help of the illustration in Fig.  13 is 
an example of a cell hierarchy method. The first research paper that implements 
global cell routing specifically for APR, uses this exact method [47]. Sometimes 
only global routing is considered for either cost estimation [77] or flexibility of the 
resulting design [27]. Zhu [32] uses both a sequential and concurrent method for 
global cell routing. For the sequential method, global routing is performed by choos-
ing channels, where detailed routes are found within these channels. This process 
is sequentially repeated for every pipe. For the concurrent method, first, the chan-
nels are chosen for every pipe, after which pipes are attempted to be routed through 
these channels. Asmara [45] uses a cell decomposition method with two levels of 
hierarchy. Bigger cells are used to first route with the help of Dijkstra’s algorithm, 
then smaller cells are used which are related to the diameters of the pipes. Park and 
Storch [2] use a cell generation procedure to create adjacent orthogonal cells to cre-
ate freeways for lower priority pipelines.

Point Hierarchy Method The point hierarchy method is a method to set out a 
roadmap for detailed routing. The idea of global routing for this method is to use 
specific points in space that have to be visited. Detailed routing can then be per-
formed by finding specific routes between these points. Figure  14 illustrates how 
such a method can be implemented. Two points, point 1 (x1, y1) and point 2 (x2, y2) 
are set in space. Now a detailed route has to be found that visits both these points. 
In this way, specific sets of paths can be imposed and other sets of paths can be 
avoided. Dong and Lin [44] use a GA to place intermediate points after which routes 
between these points are found using basic styles. Dong and Bian [8] make use of 
the same method, but implement the A* algorithm to connect these points. Ikehira 
and Kimura [84] optimize valve placement with the use of a GA. Here, the pipes 
are routed in detail between the valves using local search algorithms. Kimura [9] 
extends this method by optimizing equipment placement instead of valve placement, 
where equipment refers to the set of valves, pumps, T-branches and other connection 
points. Roh et al. [34] optimize the placement of pipe racks such that they can be 
used as intermediate points for pipes.
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Other Methods There are other methods in hierarchical pipe routing. Some of these 
methods are about using the concept of global routing to gain information that is 
indirectly used in detailed routing, i.e., the global routes do not construct a path that 
can be used for detailed routing. One example is provided by Yuan et al. [37], where 
a visibility graph is used to find global optimum routes for pipes to gain information 
on the interference relation between pipes. Only this information on the interference 
relation between pipes is used in detailed routing. There are also methods that route 
pipes while disregarding some constraints. In this way, an approximate route can be 
found for the pipe which can be adjusted in detailed routing for constraint adher-
ence. One such method is to disregard pipe collisions [67] in global routing. Kang 
et  al. [86] use a 2D sectional plan for global routing while taking a few primary 
constraints, like hatch covers, main equipment and outfitting, into account. Detailed 
routing is performed in 3D with an additional set of secondary constraints. Belov 
et  al. [6] routes sample paths without taking into account stress constraints, after 
which these sample paths can be re-routed in a specific shape to adhere to these 
constraints.

4.4  Algorithms

Different types of algorithms are used in APR literature. Choosing an algorithm is 
highly dependent on space, route, objective and constraint modeling. Pathfinding 
algorithms can only be used when space and routes are represented by a graph, while 
mathematical optimization depends on the exact modeling of objectives and con-
straints. How the other optimization barriers are handled also has to be considered 
in the choice of an algorithm. To have a fully centralized approach (see Sect. 4.2) 
to multi-pipe routing, it is necessary to choose an algorithm that optimizes all pipes 
at the same time. As mentioned before, this is often performed with (stochastic) 
metaheuristic algorithms. An overview of deterministic and stochastic algorithms is 
provided below accompanied by relevant examples used in APR literature.

(a) (b)

Fig. 14  An example of the point hierarchy method
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4.4.1  Deterministic Algorithms

Deterministic algorithms are algorithms that do not incorporate random sampling. 
This implies that if a certain set of inputs are used, deterministic algorithms will 
always provide the same set of outputs. The use of deterministic algorithms in APR 
literature can be divided into the following two categories: pathfinding algorithms 
and mathematical optimization. A short description of both these categories com-
bined with relevant examples is provided below.

Pathfinding Algorithms Pathfinding algorithms are algorithms that explore graphs 
in such a way that a starting vertex and an ending vertex are connected by a set 
of adjacent vertices. When pathfinding algorithms are used in APR literature, it is 
often one of two algorithms that are implemented. One of these algorithms is Dijk-
stra’s algorithm, introduced by Dijkstra [112] (also called lee’s algorithm in a grid 
cell decomposition setting [113]). Dijkstra’s algorithm is a simple algorithm that 
finds the path with the shortest distance between a base vertex and any other vertex 
in a graph in polynomial time. Note that Dijkstra’s algorithm can not be used in 
graphs with negative weights. Several research papers use Dijkstra’s algorithm for 
pipe routing, see, for example, [55, 58, 105]. Vertex costs for Dijkstra’s algorithm 
are sometimes adjusted to take other factors into account. This can be the number of 
bends [73, 105], the number of pipe collisions [73] and even the degree of parallel 
routing in pipes can be included [105]. Ando and Kimura [114] use Dijkstra’s algo-
rithm on a grid but allow non-orthogonal bends by smoothing the path fluctuations 
over multiple grid connections.

The other pathfinding method that is often used in APR literature is called the A ∗ 
algorithm, introduced by Hart et al. [115]. The A ∗ resembles Dijkstra’s algorithm but 
uses a specific function to determine the cost of a vertex: f (v) = g(v) + h(v) . Here, 
f(v) is the cost of vertex v, g(v) is the current shortest distance to v and h(v) is a heu-
ristic that describes the fitness of v. This fitness value is used to guide the algorithm 
to a specific target. Therefore, it is often the case that the A ∗ algorithm is a lot faster 
than Dijkstra’s algorithm. Note that if h(v) = 0 ∀v , the A ∗ algorithm collapses into 
Dijkstra’s algorithm. The cost function of the A ∗ algorithm can be interpreted as the 
costs of the base vertex to the current vertex plus the expected cost from the current 
vertex to the target. Optimization of pipe routes on a grid is often performed with the 
A ∗ algorithm, see, for example, [27, 32, 70]. Naturally, the methods that have been 
implemented for Dijkstra’s algorithm can also be implemented for the A ∗ algorithm. 
Additionally, these methods can also be applied to the heuristic cost component to 
avoid expected costs in environments that have not yet been explored. These expected 
costs include the number of bends [27, 32] and the degree of parallel routing [70].

Another interesting pathfinding method is jump point search. Jump point search 
(JPS) is a method that identifies jump points on a 2D grid such that only a small 
part of the grid points have to be examined and computation time can be decreased 
[116]. Min et al. [117] use jump point search for pipe routing optimization in a com-
plex 3D environment. After two experiments, they find that the routing time of JPS 
was 13,010 times faster (experiment 1) and 388 times faster (experiment 2) than that 
of A* [117].
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Mathematical Programming Most optimization methods discussed in this survey 
can be regarded as mathematical programming methods, nonetheless, this subsec-
tion will be about methods that use systematic approaches for complete declarative 
mathematical models. One example is given by  Shiono et  al. [24], who optimize 
pipe lengths and diameters on a graph using a mixed integer nonlinear program 
(MINLP). An exact solution was found using an MINLP solver with the help of 
linear relaxation in pipe diameter constraints. Belov et al. [6] model the pipe routing 
problem as a mixed integer program that takes several operational, maintenance and 
installation objectives and constraints into account. They use several state-of-the-art 
constraint propagation (CP) and mixed integer linear programming (MILP) solvers 
for optimization. Sakti et al. [81] use constraint programming to pack a free space 
with cylindrical volumes for pipe routing optimization. Stanczak [62] construct and 
solve an elaborate MILP model that iteratively uses a different graph for space rep-
resentation for a continuous approach to piping design.

4.4.2  Stochastic Algorithms

Stochastic algorithms are algorithms that iteratively try to improve on a solution 
with the use of random sampling. This implies that if a certain set of inputs are 
used, stochastic algorithms will provide a different set of outputs every time it 
is used. Stochastic algorithms used in APR literature are often population-based 
metaheuristics. The biggest advantage of these algorithms is that objectives and 
constraints do not need to be mathematically tractable, as their inherent struc-
tures are only used indirectly by the algorithm. The use of stochastic algorithms 
in APR literature can be divided into the following categories: Ant Colony Opti-
mization, Particle Swarm Optimization, Genetic Algorithms, Combinations and 
Other. A short description of these categories combined with relevant examples 
is provided below.

Ant Colony Optimization Ant colony optimization (ACO), introduced by  Dorigo 
[118] is a population-based metaheuristic that takes inspiration from the natural 
behavior of ant colonies [119] to solve discrete optimization problems. Ants com-
municate with each other by trail pheromones, which are used to mark a path that 
each ant has walked. Paths that have a higher pheromone intensity are preferred 
by ants and are thus assigned a higher probability of being chosen. In this way, a 
stochastic iterative procedure is created that simulates the behavior of ant colonies. 
Since pheromone intensities are often modeled to dampen over time, short paths 
will have a higher pheromone intensity than long paths. Pheromone intensities of 
multiple ants are commonly also modeled to stack on each other, thus the more ants 
follow a trail the higher pheromone intensity it will have. It can also be chosen to 
make the pheromone intensity dependent on the length of the path that the ant has 
walked. In this way, the pheromone intensity of the new-found path can dominate 
over a longer but more travelled path. Although this is the main idea of ACO, many 
modifications exist to improve and adapt the algorithm to specific problems. Using 
ACO for the optimization of APR models is straightforward, as the main objective 
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of APR is to minimize path length. Fernando [65] gives a broad overview of ACO 
algorithms that could be used with respect to APR.

As mentioned above, ACO is intended to solve discrete optimization problems. 
This is the reason that graph methods are often implemented for ACO procedures 
in APR literature, see, for example, [11, 22, 53, 65]. Thantulage et  al. [59] use 
a standard ACO algorithm based on both a random-based skeleton and grid-
based cell decomposition. ACO algorithms can also be adjusted such that they 
relate more to APR problems, these algorithms are often called Improved ACO 
(IACO) algorithms. Some examples of such adjustments are to remove unneces-
sary bends, collisions and pipe lengths (loops) [16, 46, 120]. Qu et al. [41] use an 
ACO algorithm that is improved with three different kinds of ants that use differ-
ent moving directions to diversify the searching procedure. Inertia ants prioritize 
straight lines, general ants search with a variable step size for path diversity and 
smart ants use a heuristic approach for faster algorithm convergence.

Max-Min Ant Systems (MMAS) are ACO algorithms that have certain bounds 
for pheromone intensities (max, min) to better control their influence on ants 
within the system [21]. Another difference with the standard ACO algorithm is 
that, instead of all ants, only the single best ant updates the pheromone trail to 
better exploit the best solutions found during the search [121]. Qu et al. [53] use 
MMAS on both an escape and track graph.  Qu et  al. [11] uses an MMAS for 
branched single pipe routing optimization in an octree environment. This method 
improves search abilities by using a selection of suitable neighbors found using 
pre-processing techniques and incorporating a dynamic updating mechanism. For 
better global solutions, multiple ant colonies can be used to represent different 
pipe branches or even different pipes.  Ivić et  al. [22] use a cooperative random 
walk method on a graph to optimize branched pipe routing. Fernando [65] uses 
ACO for single, multi-objective and multi-pipe routing. Two multi-colony ant 
systems are used for a centralized approach to multi-pipe routing. One of these 
algorithms incorporates colony-dependent pheromones such that ants can infer 
different information from different colonies.  Jiang et  al. [82] include direction 
information in the pheromones as a heuristic and use an extension process that 
increases the pheromone track dependent on the pheromone intensity. This is 
done to counter premature and slow convergence. Additionally, they implement 
a centralized optimization approach with the use of co-evolutionary improved 
multi-ACO (CIMACO). Wu et  al. [16] use a dynamic method for pheromone 
intensity and track selection to avoid premature convergence in local optima.

Particle Swarm Optimization Particle swarm optimization (PSO), introduced by 
Kennedy and Eberhart [122], is a population-based metaheuristic that takes inspira-
tion from the movement of birds in bird flocks and fish in fish schools [122]. Parti-
cles in a swarm iteratively move through the solution space with a specific direction 
and velocity on the basis of three different components: their current velocity, the 
position of their personal best solution (cognitive component) and the position of the 
swarm’s best solution (social component). These three components are taken into 
a single equation to calculate the velocity that determines the location in the next 
iteration. An example of such a set of equations is:
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where vt is the velocity at time t, xt the position at time t, pbt the best personal posi-
tion at time t and gbt the best global position at time t. Every component has a coef-
ficient that determines its influence. The coefficient that determines the persistence 
of the current velocity is called the inertia weight ( � ), the other two coefficients 
( c1, c2 ), determining the influence of personal best and global best locations, are 
called acceleration coefficients [10, 54] or learning factors [28]. Inertia weights 
can be made dependent on time, such as to prevent premature convergence in local 
optima [123]. The acceleration coefficients are often multiplied by a random num-
ber as to make the iterative procedure of PSO stochastic.

Since many approaches in APR literature use a graph representation, it is also 
the case that most PSO applications are done on a graph for APR. Most research 
on PSO methods on graphs in APR literature is performed by Liu and Wang. The 
authors first use PSO in a grid cell decomposition for a single pipe with variable 
inertia weights [5]. Two years later, they use PSO to route branched pipelines 
with both dynamic inertia weights and dynamic acceleration coefficients to con-
trol local and global exploration of the search method [124]. The same authors 
implement PSO with the use of a Discrete PSO (DPSO) algorithm on an escape 
graph for branched pipelines [10] and make use of a geodesic adjusted visibility 
graph [54]. The use of PSO for APR on graphs is performed by more research-
ers. Feng et al. [28] use the chaos grid pre-processing graph and a PSO method 
modified with an approach that mimics the migration characters of people, where 
some particles move from underdeveloped locations to more developed places 
and some brave particles move from developed places to undeveloped places to 
search for better living spaces. Dong and Lin [39] use multiple swarms with co-
evolution on a grid cell decomposition graph to route multiple pipes in a cen-
tralized fashion. This is performed with the use of dynamic inertia weights and 
stochastic acceleration coefficients.

Contrary to ACO, some PSO methods are used in APR literature for continu-
ous routing. Wang et al.  [26], who use randomly generated key points where the 
number of key points depends on the complexity of the space environment and the 
distance between start and end. These key points are connected using basic styles 
with the help of insertion points such as to impose orthogonality. Zhao et al. [13] 
use multi-objective PSO (MOPSO) for continuous multi-pipe routing while mini-
mizing length, pipe smoothness and maximizing parallel pipe routing. Different 
sets of comparable solutions are provided by clustering the non-dominated sets of 
the multi-objective results.

Genetic Algorithms The Genetic Algorithm (GA), introduced by Holland [125], is a 
population-based metaheuristic that mimics the process of natural selection. Every 
entity in the population has a specific encoding called a chromosome, having sev-
eral genes to mimic DNA sequences. As with ACO and PSO, iterations (also called 

(1)vt+ 1 = �vt + c1(pbt − xt) + c2(gbt − xt),

(2)xt+ 1 = xt + vt+ 1
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generations for GA) are used to adjust the population over time. Every specific 
entity has a fitness value directly related to its chromosome. A population and its 
entities change on the basis of three steps: selection, crossover and mutation. Selec-
tion is the way in which two entities are chosen as parents, who pass their genes to a 
new generation. Entities with a higher fitness value often have a higher probability 
of becoming parents than entities with a lower fitness value. Crossover is the way in 
which the genes of the parents are used to construct a new genome for the offspring. 
Mutation is a technique to randomly change genomes with a small probability. This 
is often performed on one or a few genes within a genome of an entity.

GAs are frequently used for automated optimization of piping design, see, 
for example, [29, 44, 80, 107]. Important for GA in APR literature is the way 
in which pipe routes are encoded. A straightforward method is to find an initial 
solution for the APR problem, which is then encoded to pipe routes such that it 
can be adjusted every iteration. One example of this is to relate genes to bend 
locations as (shown in Fig. 8). Initial routes can be found by simply connecting 
start and ending points with straight lines, without taking into account any objec-
tives or constraints [42]. Other methods, like Dijkstra’s algorithm [71, 72, 80] and 
an MST [79] are also used for initial solutions. Pipe routes can also be encoded in 
a constructive way, where an initial solution is not provided. For such a method, 
in every iteration, the pipe route is extended from the previous point to search for 
the target [107]. The difference between fixed and variable-length chromosome 
encoding is also important. Fixed-length encoding means that the number of 
genes within a chromosome is constant over time, while a variable-length encod-
ing implies it can change over time. Although variable-length encodings increase 
algorithm complexity, they offer more freedom to express pipe routes [126].

Several modifications can be used to improve the GA for APR purposes. Ito 
[126] uses a genetic algorithm with the use of two concepts: an eye mechanism that 
looks ahead to prevent loops and collisions, and a zone concept that uses different 
priority vectors for different zones. Furuholmen et  al. [107] use a coevolutionary 
GA to design routes for multiple pipes in a constructive way, where every pipe is 
represented by a full population. Cooperative coevolution is also used by Dong and 
Lin [44] to route multiple pipes using basic styles between intermediate points. GAs 
can also be used for continuous pipe routing. Sandurkar and Chen [29] use a genetic 
encoding based on pipe directions, lengths and bends for the optimization of con-
tinuous pipe routing. Other methods use equipment placement encodings [9, 84] and 
bend location encodings [30] to signify the placement of pipes.

Combinations Combinations between algorithms are often made to exploit multi-
ple patterns at once. One example is to use an A* algorithm for routing pipes but 
to optimize the routing order using DPSO [1, 45]. Asmara [1] uses a fast line-
searching algorithm called Mikami-Tabuchi algorithm to check if a solution exists 
before routing is performed. Jiang et al. [64] use a multi-colony ACO algorithm that 
is enhanced with several genetic operators, making it a Multi-ACO-GA algorithm. 
Kumar and Cheng [15] use a combination of simulated annealing, Dijkstra, 3DA* 
and fruit fly optimization for combined optimization of both design and installation 
schedules. Dong and Bian [8] use an improved A*-GA for multi-pipe routing, where 
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points placed by the genetic algorithm are connected by an improved A* algorithm 
that takes path length, number of bends and routing along supports into account.

Other Some examples of other nondeterministic algorithms that are used are: 
Szykman and Cagan [36] use simulated annealing to choose between four options 
based on a random distribution. These four options are: adding a bend, removing a 
bend, relocating a bend to a random place and relocating a bend to another place on 
the same route. Shin et al. [61] use a deep reinforcement learning technique called 
proximal policy optimization to guide multiple pipes through a space using discrete 
steps. Ivorra [50] uses the Laminar Navier-Stokes equations to equate pathfinding 
problems with the natural motion of viscous fluid substances. Liu and Liu [66] use 
an advanced multi-objective evolutionary algorithm [127] to optimize 3D pipe rout-
ing with branches on an improved escape graph.

5  Concise Overview of APR Literature

This section provides an all-encompassing overview of APR literature on the 
basis of multiple APR research papers that are referenced throughout this sur-
vey. The final result is the synthesis table that is split into two tables as shown in 
Tables 2 and 3. This synthesis table summarizes APR research papers by provid-
ing information on the general features of their methodology and by providing 
information on procedures regarding barriers of both the optimization model and 
solution algorithm. Sections 3 and 4 have introduced several categories of proce-
dures to deal with these barriers. These categories can consequently be used to 
give a concise description of how APR research papers deal with such barriers. 
The features and associated abbreviations within the table are explained below 
the table.

Some feature entries are denoted by “−” which means that these features are 
not present in the associated research paper.

• General features

– Domain: This is about the domain for which APR research is performed. 
Domains can be: Pipe routing in general (General), Ship design (Ship 
Des.), Plant layout design (Plant Des.), Gas and water distributing systems 
(Distr. Sys.), Aeroengine design (Aero Eng.), Cable Routing (Cable) and 
Other (Other).

– 2/3D: This is about the use of 2D or 3D in the methodology. Note that 3D 
implies that 3D is used, but 2D could also have been used.

– Multi: This indicates if the research paper routes multiple pipes or only a 
single one.

– Case study: This is about the size of the case study that is tested. Values range 
from Small (single, non-branched pipes) to Big (many-branched multi-pipes 
within a complex environment). Valuation is based on the number of pipes, 
the number of obstacles, the complexity of obstacles and the use of branches.
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• Optimization model (Sect. 3)

– Space: This is about the space representation that is used. Space modeling 
can be done by: Cell decomposition (CD), Skeletonization (SK), Assumed 
graph (AG), Free space (FS), or any combination of these.

– Length: This is about the length-continuity of pipes. The values can be: 
Discrete (Disc), Continuous (Cont.), or Discrete and Continuous (Both).

– Bend: This is about the bend continuity of pipes. The values can be: Dis-
crete (Disc), Continuous (Cont.), or Discrete and Continuous (Both).

– Constraint modeling: For every type of constraint, a valuation is pro-
vided that signifies to what extent this type of constraint is handled in the 
research paper. Values range from Low to High. Valuation is based on the 
number and complexity of implemented constraints.

– Objective modeling: For every type of objective, a valuation is provided 
that signifies to what extent this type of objective is handled in the research 
paper. Values range from Low to High. Valuation is based on the number 
and complexity of implemented objectives.

• Solution algorithm (Sect. 4)

– Branch: This is about the procedures that are used to deal with the branch-
ing barrier. Methods that can be used are: Sequential branching (Seq.), 
Minimum spanning trees (MST), Parallel branching (Par.), Exact Branch-
ing (Exact) or any combination of these (Multiple).

– Space dim.: This is about the procedures that are used to deal with the space 
dimensionality barrier. Methods that can be used are: Bounded area search 
(BAS), Cell hierarchy method (CHM), Point hierarchy method (PHM) and 
Other methods (Other). Sometimes (GO) is used to indicate that global rout-
ing is performed, but detailed routing is not performed.

– Lim. resources: This is about the procedures that are used to deal with the 
resource competition barrier. Methods that can be used are: Piping order 
(Order), Backtracking/re-routing (BT), Subset routes (SR), Macro-pipes (MP) 
or Fully centralized optimization with the use of metaheuristics (MetaH).

– Algorithm: This is about the algorithm or combinations of algorithms that are used.

Note that this section is not intended to rank the methods provided in the given 
sources. It is solely about the extent to which the content of these papers can assist 
readers in reproducing such methods. For example, if a paper mentions certain con-
straints, but does not show if or how they are implemented, then it does not prove 
useful for the reader and will not be taken into account in the synthesis table.

6  Discussion

This survey provides an overview of APR literature and the methods they have pro-
posed. The three main goals of this survey have been addressed as follows: Section 2 
offers a basic description of APR problems. Sections 3 and 4 explain and categorize 
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the most important barriers that obstruct the implementation of APR methods (goals 
1 and 2). Section 5 then provides a synthesis table that gives a concise overview of 
APR literature (goal 3).

Although the possibility of an adequate APR method becomes more and more 
plausible, contemporary approaches still seem to be inadequate to be used without 
supervision or expert input. Thus, for practical purposes, it is important for future 
methods that user interaction is increased. This is useful for assisting piping engi-
neers to complete the piping design at an expert level by reducing human errors 
[86], but also to train new piping engineers [133]. Finally, it could also prove use-
ful to ease the transition to a fully functional APR system in the future. One such 
method could be to improve the interaction between CAD models and the APR opti-
mizer to assist piping engineers with visual results [1, 31, 134].

The limitation of APR literature is that although there are some important vari-
ables that may have an indirect influence on pipe routing optimization, they are not 
taken into account. One example is layout optimization, which is about the place-
ment of equipment and/or machinery. Layout optimization is very important for pipe 
routing because most pipes have to be connected to equipment, which means that 
an APR problem is highly dependent on the layout. Even though joint optimization 
would be preferred [21], the application of this method is limited in the literature. A 
few examples can be found in [81, 109].

There are many future research possibilities on the subject of APR. One of these 
unexplored territories is the introduction of uncertainty into pipe routing. In prac-
tice, uncertainty is common in piping design. Uncertainty can happen in several 
places. They can happen in how the space looks like, i.e., the confined space bound-
aries and obstacles. They can also happen in pipes, i.e., which pipes, their diameters, 
or their starting and ending positions. Uncertainty can also happen in objectives and 
constraints, think about the fluctuating price of materials. One potent example is 
the transition of the maritime industry towards zero-carbon energy sources. Because 
the future of this energy transition is very uncertain and ships are built for long time 
periods, it is expected that ships that are built right now have to transition some-
where in their lifetime. Taking this uncertainty into account can decrease future 
transition costs. There are a few examples of APR methods that take a small amount 
of uncertainty into account. One such method has been developed in the domain of 
APR in ship design by Roh et al. [34]. They propose a method that links pipe routes 
to the hull structure of the ship. This method is developed to construct a piping 
design that is robust for future structural changes in the ship’s hull. Asmara [1] uses 
sensitivity analysis to check the robustness of the piping design. Since research on 
uncertainty in graph theory is abundant, a connection between the two fields could 
prove to be useful in the future.
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