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ABSTRACT
Random forest is a popular prediction approach for handling high
dimensional covariates. However, it often becomes infeasible to
interpret the obtained high dimensional and non-parametric model.
Aiming for an interpretable predictive model, we develop a forward
variable selection method using the continuous ranked probability
score (CRPS) as the loss function. eOur stepwise procedure selects
at each step a variable that minimizes the CRPS risk and a stop-
ping criterion for selection is designed based on an estimation of the
CRPS risk difference of two consecutive steps. We provide mathe-
matical motivation for our method by proving that in a population
sense, the method attains the optimal set. In a simulation study, we
compare the performance of our method with an existing variable
selectionmethod, for different sample sizes and correlation strength
of covariates. Our method is observed to have a much lower false
positive rate. We also demonstrate an application of our method to
statistical post-processing of daily maximum temperature forecasts
in the Netherlands. Our method selects about 10% covariates while
retaining the same predictive power.
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1. Introduction

In the past decades, random forests [2] have gained traction in many areas of application.
Specifically in the last years, random forests have been successfully used for statistical post-
processing of weather forecasts, e.g. [19,21] and [18]. A random forest combines several
trees, each obtained by recursively making axis-aligned splits in the covariate space until
a stopping criterion is reached. The initial algorithm for random forests in [2] provides a
good approach for conditional mean regression and classification. Later on, the approach
was extended to estimate quantiles by Meinshausen [14] and further improvements were
made in [1], which introduced a quantile-based splitting criterion. Due to the results in
[1,14], random forests are also used for estimating the conditional quantile function.

These quantile forests have been used in statistical post-processing to obtain probabilis-
tic forecasts, e.g. [18,19,21]. Post-processing is used as a second step in weather forecasting
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following a first step of physical modeling, see [11]. This first step entails a numerical
weather prediction (NWP) model that uses non-linear partial differential equations of
atmospheric flow on a spatial and temporal grid. Together with parametrizations of unre-
solved physical processes within the grid cells and an estimated initial condition, which
is obtained from observational data and a so called first guess (i.e. a forecast for that time
based on a previous NWP model run), the NWP model approximates the solution to the
partial differential equations.An ensemble prediction system (EPS) adds uncertainty quan-
tification to the NWP model by computing an ensemble of forecasts for perturbed initial
conditions and/or the parametrization schemes [11].

Generally there is still a need for bias correction and calibration of numerical weather
forecasts, which motivates the second step: statistical post-processing. Historical forecasts
together with the corresponding observations are used in post-processing to estimate their
statistical relationship. This relationship can then be used in order to calibrate future
forecasts.

When post-processing forecasts of a weather phenomenon, a better performance is
often attained by adding more information from the NWP models as predictors. For
example, [21] showed that the post-processed precipitation forecasts perform substantially
better when indices of atmospheric instability from the NWPmodels are used inmodeling
the statistical relation. The improvement is due to the fact that the indices of atmospheric
instability help to distinguish between different types of precipitation. A full day of driz-
zle might accumulate to the same amount as a quick shower. However, the distributions of
precipitation under these two differentweather conditions are very different. Incorporating
NWP forecasts of other weather phenomena enables themodel to capture such differences.

A natural question is now: ‘Which additional forecasts contain useful information on
the phenomenon that one is post-processing?’ The set of potential forecasts to include
in the statistical model is generally very large and furthermore they exhibit large corre-
lations. In practice, including too many variables often leads to a decrease in statistical
efficiency, and more importantly the model becomes hard to interpret. For a practitioner,
it is important to understandwhich variables play key roles in the statisticalmodel and how
they calibrate the EPS forecast. This motivates variable selection procedures in statistical
post-processing.

A random forest is generally seen as a method that deals rather well with high dimen-
sional covariates. This property comes from the fact that in the tree fitting algorithm, a
random forest chooses the split variables and split points in a greedy way, based on a cer-
tain criterion, e.g. the variance. This is often rather effective in the beginning of the tree
fitting as many observations are split, but deep down in the tree there are fewer obser-
vations which makes the splitting criterion subject to higher variances. Therefore global
variable selection methods are considered in the literature to improve statistical efficiency
and interpretation of the random forest model.

Variable selection in random forests is mainly done in terms of two types of importance
measures. The first type calculates the decrease in impurity of a split made in a tree. In
[13] consistency of these measures is shown on fully randomized trees. But in practice
in a random forest setting these impurity measures are shown to exhibit biases [17]. The
second type is the permutation measure introduced in [2]. This measure computes how
much the predictive performance decreases by randomly permuting one single predictor,
which breaks the relation between response and the predictor. A popular approach is to
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perform a backward selection based on the permutation measures, where the model with
the best predictive performance is chosen, see e.g. [5,6,9].

Correlation between predictors has a large effect on the permutation importance scores.
An initial approach of dealing with this is to consider conditional importance scores, [16].
This has the downside that in some way the conditioning variable has to be chosen. A
more precise analysis of the effect of correlation on permutation measures is done in [9],
where they conclude that a backward selection is better able to handle correlation between
predictors than other strategies incorporating variable importance measures. We show in
our simulation study that although the correct variables are often selected by the backward
selection, there is no control on the rate of selected noise variables, i.e. the false positives.

In this paper, we propose a new method of selecting variables with random forests.
The developed method aims to improve the probabilistic forecasts. Let Y ∈ R denote the
response variable and X denote the covariate vector. Given an observed covariate x, a
deterministic forecast provides a single value, for instance E(Y | X = x) as the populta-
tion prediction, whereas a probabilistic forecast offers a conditional distribution of Y given
X = x as the prediction. The advantage of a probabilistic forecast is that it directly com-
municates forecast uncertainties that enable the users to make better decisions [3,15]. A
commonly used measure of performance for probabilistic forecasts of a scalar variable is
the so-called continuous ranked probability score [7]. In our variable selection procedure,
we will use this score as the loss function (cf. (1)) to select variables that are informative for
the entire conditional distribution instead of just for the conditional mean. The procedure
estimates the predictive risk based on the so-called out-of-bag samples (cf. Section 3.2),
which is similar to leave-one-out cross validation. At each step, the variable that leads to
the smallest CRPS risk is selected and the selection stops if the decrease in CRPS risk is not
significantly different from zero. We show by a detailed simulation study that our method
controls the false positive ratemuch better than the backward selectionmethod introduced
in [9], even in the presence of high correlations.

The outline of the paper is as follows. In Section 2, we give a detailed description of
the mathematical set-up of the variable selection procedure. Then in Section 3, we give a
small introduction to random forests and show how the variable selection can be applied
to the random forest set-up. A comparison on correlated covariates is given in Section 4
where we compare with an approach selecting variables in a backward selection based on
permutation measures. In Section 5, we apply the method to a practical example of post-
processing maximum temperature forecasts and compare it to a standard method in post-
processing. Finally, we end with a discussion in Section 6.

2. Forward selection

In this section, we describe the mathematical set-up of our forward variable selection
method.We provide the intuition of the procedure together with some theoretical motiva-
tion of the method in the case of independent covariates.

For now, we consider a pair of random observations (X,Y), where the response variable
Y ∈ R and the covariate vector X ∈ Rd. Let J ⊂ {1, . . . , d} denote a set of indices corre-
sponding to the entries of the covariate vector X and XJ denote the vector with the entries
from X corresponding to J. Let FY|XJ denote the conditional distribution function of Y
given XJ . In this section, we work from the population perspective and consider the exact
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distribution function FY|XJ as a forecast of Y. The next section will be concerned with the
estimation of the conditional distributions using random forests.

As motivated in Section 1, we are interested in a probabilistic forecast. We use the con-
tinuous rank probability score (CRPS) to measure the distance between the degenerate cdf
on {Y} and FY|XJ :

CRPS(Y , FY|XJ ) :=
∫ ∞

−∞

(
I(Y ≤ z) − FY|XJ (z|XJ)

)2 dz. (1)

The discrete rank probability score was first introduced in [4]. The application of CRPS
was limited due to a lack of tractability of the integral. During the past decades, the CRPS
has attracted renewed interest, in particular in the community of meteorology and atmo-
sphere science; see [10,22] among others. As a loss function, the CRPS has two attractive
properties. First, it is a proper scoring rule for a large class of distribution functions; see
Section 4.2 in [7]. Second, there exists an equivalent expression of the CRPS in terms of the
conditional quantile function. Denote the conditional quantile function by QY|XJ (τ |XJ),
where τ ∈ (0, 1) is a probability level. Then the CRPS can be expressed as

CRPS(Y , FY|XJ ) = 2
∫ 1

0
ρτ (Y − QY|XJ (τ |XJ)) dτ =: CRPS(Y ,QY|XJ ), (2)

where ρτ (u) = u(τ − I(u < 0)) the quantile check function. This equivalent expression
of CRPS plays an import role when it comes to the risk estimation. It enables us to evaluate
the loss by estimating the conditional quantile via a random forest, detailed in the next
section. The equivalence of these two expressions is shown in the appendix. In addition,
in Theorem 2.1 below we show that with CRPS as the loss, the procedure is able to retrieve
the informative variables correctly.

Corresponding to the CRPS loss, we can now define a risk for the subset of variables
corresponding to J as

R(J) := E[CRPS(Y , FY|XJ )]. (3)

In our approach an ideal variable selection procedure selects the set of variables corre-
sponding to J that minimizes this risk. Define mR = minJ⊂{1,...,d} R(J). Then, an optimal
set of variables denoted by XJ∗ is such that

R(J∗) = mR and |J∗| = min{|J| : R(J) = mR} (4)

where |J| denotes the cardinality of J. The goal is to identify the smallest model that reaches
an optimal risk. This is desirable when it comes to estimating the conditional distribution
of Y. It is important to note that J∗ is not necessarily unique. For example two collinear
covariates X1 and X2 both contain the same information on Y, then including any of the
two covariates would result in the same expected loss.

In order to obtain J∗, one could evaluate R(J) for all 2d possible sets, which is often
computationally infeasible. Instead we propose a forward variable selection approach as
follows. We construct a sequence of length d+ 1 of nested sets Jj for j = 0, . . . , d where
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J0 = ∅ and

Jj = Jj−1 ∪
{
argminq/∈Jj−1

R
(
Jj−1 ∪ {q})} . (5)

Our proposed forward selection procedure selects an optimal set Jo such that it is the
smallest set attaining the minimum risk among Jj, j = 0, . . . d. More precisely,

Jo = Jmin{j:R(Jj)=min0≤i≤d R(Ji)}. (6)

In the theorem below we show that under the assumption of independent covariates, the
sets Jo and J∗ coincide.

Theorem 2.1: Let X1, . . . ,Xd and ε be independent random variables. Let h : R|J∗|+1 →
R be a real valued measurable function and define Y = h(XJ∗ , ε), where J∗ ⊆ {1, . . . , d}.
Assume that E[Y2] < ∞, and for any I � J ⊆ J∗, there exists a set S ⊆ R with positive
Lebesgue measure such that E[I(Y ≤ z)|XJ] is not σ(XI) measurable for all z ∈ S. Then
J∗ is the unique subset of {1, . . . , d} satisfying (4), and J0 = J∗.

Proof: Let (�,A,μ) denote the probability space supporting X1, . . . ,Xd and ε. Define the
standard inner product on L2(�,A,μ) by (Z1,Z2) = E(Z1Z2), for any random variables
Z1 and Z2 on (�,A,μ). Then L2(�, σ(X1, . . . ,Xd, ε),μ) becomes a Hilbert space, where
the conditional expectationE(Z|XJ) is the orthogonal projection ofZ onto the closed linear
subspace L2(�, σ(XJ),μ). Now we have

R(J) =
∫ ∞

−∞
E

[(
I(Y ≤ z) − FY|XJ (z|XJ)

)2] dz

=
∫ ∞

−∞
E

[(
I(Y ≤ z) − E[I(Y ≤ z)|XJ]

)2] dz

=:
∫ ∞

−∞
gJ(z) dz.

As the conditional expectation equals the orthogonal projection, for any z ∈ R,

gJ(z) = min
G∈σ(XJ)

E[(I(Y ≤ z) − G)2]. (7)

Therefore, for any z ∈ R, if J1 ⊂ J2, we have

gJ1(z) ≥ gJ2(z). (8)

This implies that R(J1) ≥ R(J2).
Next, note that if J2 = J1 ∪ {j} and j /∈ J∗, then for any z ∈ R,

gJ1(z) = gJ2(z). (9)

This is because E[I(Y ≤ z)|XJ2] = E[I(Y ≤ z)|XJ1] by the independence of Y and Xj. In
this case R(J1) = R(J2).

Finally, we show that if J2 = J1 ∪ {j}, where j ∈ J∗ then R(J1) > R(J2). We prove by con-
tradiction. If not, then R(J1) = R(J2), which means in view of (8) that gJ1(z) = gJ2(z), for
all z ∈ R \ C, where C has zero Lebesgue measure.
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From here we denote I(Y ≤ z) by Iz to simplify notation. Expanding the squares and
using the tower property of conditional expectation we see that

gJ1(z) − gJ2(z) = E
[(
Iz − E[Iz|XJ1 ]

)2 − (
Iz − E[Iz|XJ2 ]

)2]
= E

[−2IzE[Iz|XJ1] + E[Iz|XJ1 ]2 + 2IzE[Iz|XJ2] − E[Iz|XJ2 ]2
]

= E
[
E

[−2IzE[Iz|XJ1 ] + E[Iz|XJ1 ]2 + 2IzE[Iz|XJ2 ] − E[Iz|XJ2 ]2
∣∣ XJ2

]]
= E

[
(E[Iz|XJ1] − E[Iz|XJ2 ])2

] = 0.

From this we conclude that E[Iz|XJ1] = E[Iz|XJ2] for all z ∈ R \ C. This implies that
E[Iz|XJ2 ] is σ(XJ1) measurable which contradicts our assumption, hence R(J1) > R(J2).

We can now observe that the forward sets are built by adding variables from J∗ until all
variables of J∗ have been added, therefore J0 = J∗. �

Remark 2.1: Apart from measurability, we do not impose constraints on the function h
and the noise term ε. It allows a large class of models including additive models, models
with interaction terms, etc. When it comes to the estimation, we will use a random forest
which is a model-free statistical learning method.

Remark 2.2: The assumption that E[I(Y ≤ z)|XJ] is not σ(XI)-measurable for any I �

J ⊆ J∗, is needed to prove the uniqueness of J∗. As we know that R(J∗) = R(J∗ ∪ {j}) for
j /∈ J∗, there are many sets, which have minimal risk in population sense. The assumption
essentially ensures that J∗ does contain only indices j such that the functionh is not constant
for xj almost everywhere with respect of the distribution of X.

3. Forward selection using random forests

We use a random forest to estimate the conditional distribution function FY|XJ and the
risk. Now, we make a little excursion to explain the random forest algorithm. We follow
the tree construction algorithm proposed in [20] and the extension for quantile estimation
from [1]. We choose this approach because it is the only approach that makes splits based
on a quantile criterion, additionally in [1] asymptotic normality for the quantile estimates
is established.

3.1. Intermezzo: random forests

Denote the data set by (X1,Y1), . . . , (Xn,Yn). A random forest is defined as a collection of
trees. Each tree T is obtained by recursively splitting a set of observations by making axis-
aligned splits in the covariate space, meaning a split is made on a single covariate value at a
time. As a result, every tree induces a partitioning of the covariate space in possibly semi-
infinite hyper rectangles. Denote the conditional quantile function by QY|X(τ |·), where
τ ∈ (0, 1) denotes a probability level. In this section, we focus on fitting a forest in order to
estimate the function QY|X(τ |·). The estimation procedure for QY|XJ (τ |XJ) works exactly
the same by fitting a forest-based on {(XJ

1,Y1), . . . , (XJ
n,Yn)}.

Recurrent splits are made starting with parent node P, a node in the current partition,
creating two child nodes C1 and C2, such that P = C1 ∪ C2 and C1 ∩ C2 = ∅. This split
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should be informative with respect to QY|X(τ |·) and is chosen to maximize,

e(C1,C2) = nC1nC2

nP
(QY|X(τ |X ∈ C1) − QY|X(τ |X ∈ C2))

2, (10)

where nP, nC1 , nC2 are the number of observations Xi in each node. In practice this makes
the algorithm very slow as it requires the computation of two quantiles for each possible
split. Instead in [1] a relabeling step is proposed and defined as I(Yi > QY|X(τ |X ∈ P)) for
the τ quantile. Now a standard regression split, as used in a standard random forest [2], is
made on the labels. This means to maximize the squared difference between the average
label in both child nodes.

The trees fitted in [1,20] are called honest trees and are slightly different from the
standard structure of tree fitting. A tree is fit by first sub-sampling a set of indices from
{1, . . . , n} of size s< <n and then randomly splitting this sub-sample in two sets I and
J both of size s/2. Recursive splits of Rd are then made based on criterion (10), with data
points (Xi,Yi) : i ∈ I . The tree becomes honest by removing all the data points indexed by
set I and using only the data points indexed by set J for estimation of QY|X(τ |x) for new
observations X.

A random forest is then obtained by fitting B trees. Denote by lb(X) the leaf node of tree
b in which X falls. Then for 1 ≤ i ≤ n, the weight for (Xi,Yi) induced by the bth tree is
given by,

wi,b(X) = I(i ∈ J & Xi ∈ lb(X))∑
j∈J I(Xj ∈ lb(X))

, (11)

where 0
0 = 0. The forest weights are obtained by averaging the tree weights over the B

trees, wi(x) = 1
B

∑B
b=1 wi,b(X). An estimate of Q̂Y|X is then given by the locally weighted

estimated quantile,

Q̂Y|X(τ |x) = argminθ

n∑
i=1

wi(x)ρτ (Yi − θ), (12)

with ρτ (u) = u(τ − I(u < 0)) the quantile check function. Note that the structure is simi-
lar to kernel regression, but instead of a deterministic kernel with bandwidth h the weights
are determined by the data via the forest. Random forests are sometimes called adaptive
nearest neighbor estimators for this reason. The tree weights wi can also be used to obtain
the estimator of conditional distribution function:

F̂Y|X(y|x) =
n∑

i=1
wi(x)I(Yi ≤ y). (13)

In the variable selection procedure we aim to select variables that are predictive for the con-
ditional distribution. Therefore, instead of building random forests with respect to a single
τ quantile, consider a sequence of quantiles 0 < τ1, . . . , τK < 1. This needs a different type
of relabeling than for a single quantile as explained above. They define the relabeling then
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by,

Zi =
K∑

k=1

I(Yi ≤ Q̂Y|X(τk|X ∈ P)).

The best split is then chosen to maximize the following multi-class classification rule:

ê(C1,C2) =
∑K

k=1
[∑

Xi∈C1
I(Zi = k)

]2
nC1

+
∑K

k=1
[∑

Xi∈C2
I(Zi = k)

]2
nC2

.

3.2. Estimation of predictive loss

Themain quantity in the theoretical framework from Section 2 is the CRPS risk. Replacing
the theoretical conditional quantile function by its estimator in (2), we obtain the following
targeted loss in the estimation context:

CRPS(Y , Q̂Y|XJ ) = 2
∫ 1

0
ρτ (Y − Q̂Y|XJ (τ |XJ)) dτ . (14)

Here we denote by Q̂Y|XJ the random forest estimator of the conditional quantile function
with respect to the dataset {(XJ

1,Y1), . . . , (XJ
n,Yn)} and with two arguments, a probability

level τ and the covariate vector XJ .
A naive way to estimate the expected loss (that is the expectation of (14)), would be

considering

2
n

n∑
i=1

∫ 1

0
ρτ (Yi − Q̂Y|XJ (τ |XJ

i )) dτ .

However, this would lead to over-fitting because the training set (data for estimatingQY|XJ )
is the same as the testing set (data for estimating the expectation). This problem can be
circumvented by using so called out-of-bag samples as test set.

The out-of-bag samples for the bth tree are defined as the samples that are not used for
generating the tree. For each observation (XJ

i ,Yi), a sub forest Fi is defined by Fi = {Tb :
i /∈ (Ib ∪ Jb)}. Namely, this sub forest consists of trees for which (XJ

i ,Yi) is out-of-bag.
Observe that the number of trees in Fi is random and hence not necessarily the same for
all i. The expected number of trees for each sub forest is B(1 − s

n ).
We use the sub forestFi to estimate the conditional quantile function and denote it with

Q̂Fi
Y|X(τ |XJ). Since the trees in sub forest Fi do not use observation (XJ

i ,Yi), we use this
quantile estimator to evaluate the CRPS loss for (XJ

i ,Yi). Doing this for all observations,
we obtain the estimated CRPS risk given by,

R̂(J) := 2
n

n∑
i=1

∫ 1

0
ρτ (Yi − Q̂Fi

Y|XJ (τ |XJ
i )) dτ . (15)

In the sequel, we write Q̂Fi
Y|XJ (τ |XJ

i ) = Q̂Fi(τ |XJ
i ) for simplicity.

This out-of-bag procedure for estimating risk has similarities with leave-one-out cross
validation. For validating the quantile of the ith observations we use all trees which do not
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use the ith observation. The difference is that sub forests have in expectation the same size,
but not exactly. Computationally the out-of-bag sample approach is also much faster com-
pared to leave-one-out cross validation. Note that a tree has n−s out-of-bag samples and
hence the tree is used in n−s sub-forests. On the other hand leave one out cross validation
does not reuse trees and estimates a new forest for each element in the summation of (15).

3.3. One step forward

The forward variable selection sequentially adds variables such that the predictive loss is
minimized. We here explain how each step is performed. Let d denote the total number of
covariates and d′ denote the number of signal variables, that is d′ = |J∗|. In order for the
estimation procedure to work, we need a sparsity assumption: d′ << d.

Recall that for an index set J, the estimated risk R̂(J) is given by (15). Suppose that we
have selected the first j−1 variables with indices in Ĵj−1. Then the jth variableXîj is selected
based on

îj = argminq/∈Ĵj−1
R̂(Ĵj−1 ∪ {q}). (16)

and Ĵj = Ĵj−1 ∪ {îj}. The procedure of a single step forward is detailed in Algorithm 1.

Algorithm 1: A forward step

Result: î, R̂(J ∪ {q}) : q /∈ J
Define data (Y1,X1), . . . (Yn,Xn);
Define set J ⊂ {1, . . . p};
for q /∈ J do

construct a forest with (Y ,XJ∪{q});
Calculate R̂(J ∪ {q});

end
î = argminqR̂(J ∪ {q})

3.4. Stopping criterion

Motivated by the result in Theorem 2.1, we stop selecting variables when there is no fur-
ther decrease in CRPS risk. From the proof of Theorem 2.1, adding variables that are not in
J∗ does not have an effect on the CRPS risk. In practice, where we are working with finite
samples, additional covariates decrease in fact the statistical efficiency of the random forest
which leads to higher CRPS values. Because of the random component in the forest pro-
cedure, different forests will have different risk. In general this can be avoided by fitting an
enormous number of trees to reduce the random component, but in practice this is infea-
sible due to the computational load. Instead we make use of the randomness to design a
stopping criterion. Ideally, the procedure stops at jth step if R(Ĵj−1) − R(Ĵj) = 0 and con-
tinues if the difference is positive. However, the difference is unknown and we estimate it
via the already fitted forests at jth and (j + 1)th steps. More precisely, we estimate this dif-
ference by R̂(Ĵj−1 ∪ {q}) − R̂(Ĵj ∪ {q}), where q /∈ Ĵj. Note that R̂(Ĵj−1 ∪ {q}) is computed
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at the jth step for identifying îj and R̂(Ĵj ∪ {q}) at the (j + 1)th step for identifying îj+1. So,
this estimation does not require any extra forest fitting.

Now suppose that the variable added at jth step is a noise variable. Then for any
q, R(Ĵj−1 ∪ {q}) − R(Ĵj ∪ {q}) = 0 and the estimate R̂(Ĵj−1 ∪ {q}) − R̂(Ĵj ∪ {q}) fluctuates
around zero due to the randomness in the estimation. Therefore,

I(R̂(Ĵj−1 ∪ {q}) − R̂(Ĵj ∪ {q}) > 0)
asym.∼ Bern(0.5).

Combining all the information for q /∈ Ĵj, we define

Wj :=
∑
q/∈Ĵj

I(R̂(Ĵj−1 ∪ {q}) − R̂(Ĵj ∪ {q}) > 0). (17)

Then approximately Wj ∼ Bin(Mj, 0.5), where Mj = d − |Ĵj| under the assumption that
the jth selected variable is a noise variable. The procedure stops at jth step if the following
stopping criterion ismet:Wj < Cj

1−α , whereC
j
1−α is the 1 − α quantile of Bin(Mj, 0.5) and

α ∈ (0, 1) is a pre-specified level. The mathematical motivation for the stopping criterion
is provided in the appendix.

In practice, the integration in (15) is numerically approximated. Let τt = t
k+1 , t =

1, . . . , k, where k is a pre-specified integer. The estimated risk R̂(J) in (15) is approximated
by

R̂(J) = 2
k

k∑
t=1

ρτt (Yi − Q̂Y|X(τt|X)). (18)

The complete procedure is given in Algorithm 2.

Remark 3.1: This stopping criterion works well when Mj (number of variables not been
selected yet) is sufficiently large. This is more or less assured by our sparsity assumption
of d′ << d. In other words, this algorithm assumes that there are sufficiently amount of
noise variables. This is also the situation when variable selection is interesting.

For the situation when there are only a few or no noise variables, we need some adjust-
ment in the algorithm. The algorithm stays the same untilMj becomes small, that is, most
variables are selected. Then stopping criterion in (17) will automatically stop with select-
ing new variables. Because for a smallMj, one has C

j
1−α = Mj due to the discreteness of a

binomial distribution and the stopping criterionWj < Cj
1−α is met. For instance, ifMj = 4

then Cj
0.95 = 4. To adjust the algorithm to accommodate this issue, we suggest to estimate

the risk differently. For a sufficiently large L, we fit 2L random forests to estimate the risk
R(Ĵj−1) and R(Ĵj), each with L forest respectively. The adjusted stopping criterion is defined
as

W̃j :=
L∑
l=1

I(R̂l(Ĵj−1) − R̂l(Ĵj) > 0),

where R̂l(Ĵj−1) is the estimate of R(Ĵj−1) based lth random forest. The procedure stops if
W̃j < C̃1−α , where C̃1−α is the 1 − α quantile of Bin(L, 0.5). Note that this is computa-
tionally much more demanding due to the fact that 2L more random forest models are
computed at each step.



JOURNAL OF APPLIED STATISTICS 11

Algorithm 2: Forward variable selection
Result: Jo
Set data (Y1,X1), . . . (Yn,Xn);
Set j = 1, J0 = ∅, α;
Calculate J1 with Algorithm 1 using J = J0;
repeat

j = j + 1;
Calculate Jj with Algorithm 1 using J = Jj−1;
CalculateWj from Equation 17;

untilWj ≤ Cj
1−α ;

Jo = Jj−1;

4. Comparison based on simulation

In this section we assess the performance of our variable selection procedure for correlated
explanatory variables. We will compare with the backward selection based on a permuta-
tionmeasure with amean squared error criterion proposed in [9]; details of themethod are
stated later in this section.We compare with this method as it is currently the only method
that deals with selection with correlated predictors for random forests and we will refer to
it as the backMSEmethod. For the comparison we simulate data from the followingmodel,

Y = μ(X) + σ(X)ε, (19)

where ε follows a standard normal distribution and independent of this,X ∈ R25 follows a
multivariate normal distribution. For the covariance structure of X we split up the covari-
ates into blocks Il = {(l − 1) ∗ 5 + 1, . . . , (l − 1) ∗ 5 + 5} for l = 1, . . . , 5. The covariance
matrix of X is then given by,

Cov(Xj,Xi) =

⎧⎪⎨
⎪⎩
1, if i = j;
ρ, if i, j ∈ Il for the same l;
η, otherwise.

(20)

Observe that the value of ρ controls the correlation strength within each block and η con-
trols the strength between blocks. We generate data from four simulation models with
sample size n ∈ {500, 1000, 2500}. In the first three models, the covariates are simulated
with a block independent structure where signal variables are independent of each other.
Precisely for Models 1-3, we set ρ ∈ {0, 0.4, 0.8} and η = 0. The μ and σ for each model
are specified below. The sparsity assumption made in Section 3.3 is satisfied within these
models as d = 25 and d′ = 3.

Model 1: μ(X) = X1 + X6
2 + X11

4 and σ(X) = 1.
Model 2: μ(X) = X1 and σ(X) = exp(X6

2 + X11
3 ).

Model 3: μ(X) =
{
X2
6, if X1 ≥ 0,

−X6, if X1 < 0,
and σ(X) =

{
2, if X11 ≥ 0,
1, if X11 < 0.
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For the first three models, with different values of ρ we investigate the effect of different
correlation strengths between the noise variables and the signal variables on the selection
procedure. The difference between the threemodels is in how the signal variables influence
the response. In the first modelY only depends on covariates through itsmean function. In
the second model the dependence is both on the main and the variance. The third model
considers discontinuous covariate dependence on both mean and variance.

We consider a fourth model which introduces correlation cross blocks, so the signal
variables are dependent now and the covariance matrix of predictors is no longer block
diagonal. The dependence between Y and the signal variables is the same as Model 1.

Model 4: μ(X) = X1 + X6
2 + X11

4 and σ(X) = 1, where ρ = 0.8 and η ∈ {0.2, 0.4, 0.6}.

The backMSE method evaluates the relevance of a covariate by its permutation impor-
tance measure, which is defined as

I(Xj) = E
[
(Y − E(Y|X(j)))

2] − E
[
(Y − E(Y|X))2

]
,

whereX(j) = (X1, . . . ,X′
j , . . . ,Xd) such thatX′

j =d Xj andX′
j is independent ofY and of the

other covariates. A large score of I(Xj) indicates that covariateXj is important. Themethod
randomly permutes the values ofXj tomimic a random sample ofX′

j . An estimator of I(Xj)

using out of bag samples is given in (2.1) in [9].
In [9] it is shown that the order of the permutation importance measures can not be

naturally interpreted in the presence of correlation between the covariates, as variables that
are correlated share their importance. As a result, the importance of the important variables
is lower than it should be. The backMSE deals with this problem by iteratively removing
the least important variable and refitting the model and calculating the importance scores.
This process is repeated until no variables are left. The optimal model is then chosen as
the model that minimizes the out-of-bag mean squared error. Why this works is easily
seen with two highly correlated informative variables. Initially they do not seem important
because they share their importance, but by removing one the importance is not shared any
more. The left over variable shows the true importance and will therefore be in the selected
set.

It is recommended in [9] to compute several forests and take averages to stabilize the
variable importance scores and the error estimates. We compute for each step 20 forests
where each forest contains 2000 trees. For this method, we follow the standard forest
algorithm from [2], fitting trees based on bootstrap samples of size n, mtry is set to the
default value for regression p/3 and taking a minimum leaf size of 5.

For our method we also take fixed parameters with sub-sampling fraction s = 0.5, a
minimum node size of 1, mtry = p and 1000 trees. We have tested the influence of these
tuning parameters on several simulation models and the results are rather robust to differ-
ent choices. Our selection model adds variables one at a time and stops when additional
variables do not increase performance. As themodel is therefore often small it makes sense
to not over randomize by settingmtry to smaller than p. We advise to choose a small s for
large datasets in order to reduce computation time.

For each model we simulate 100 data sets. The results are summarized in Figure 1. We
show for each model, sample size and covariate dependence structure the average number
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of correctly selected signal variables in blue, the average number of incorrectly selected
noise variables in red and the total number of signal variables with the black line. From
this the average number of missed signal variables is visualized as the difference between
the black line and the height of the blue bar.

For the firstmodel we see that the backMSEmethod retrievesmore signal variables than
the forward selection for low sample sizes and that as the sample size grows the forward
variable selection also recovers all signal variables. A large difference is seen in the number
of noise variables that are selected. The forward selection performs much better in this
than the backMSE, which systematically selects noise variables and tends to even select
more as the sample size increases. This phenomenon is also visible for Models 2 and 3 as
seen in Figure 1(b, c). For these twomodels where the variance is dependent on covariates,
the CRPS criterion clearly has an edge over the backMSE that selects variables based on
the mean squared error and therefore has a hard time selecting these variables. For Model
4 similar results are visible to the Model 1 with correlation strength ρ = 0.8, indicating
that increased correlation between signal variables does not affect the overall quality of the
result.

The reason why the backMSE selects many noise variables is two-fold. First the
backMSE method selects the optimal set based on a predictive mean squared error crite-
rion. This approach does not account for the inherent variable selection within the random
forest, where at each node the split that reduces the variance the most is chosen. As a result
the random forest is able to ignore noise variables partially. In practice this means that
in an out-of-bag performance measure the addition of a single noise variable cannot be
detected. Therefore the variables that are selected will not be the smallest set, but instead a
set with maximum number of noise variables maintain the lowest performance. Secondly,
the backMSE does not adequately deal with the correlation. For example in Model 1 with
ρ = 0.8 all variables X1, . . . ,X5 have higher variable importance compared to X6, which
means that if X6 is in the model, so are X2, . . . ,X5.

Thanks to our testing approach, a small number of noise variables is selected with the
forward selection. Using the randomness induced by the random forest, our testing pro-
cedure selects a variable that leads to a significant reduction of the predictive loss. The
significance level naturally controls the number of selected noise variables by the nature
of the testing procedure. We have set the significance level to 5% for all simulations in the
paper.

4.1. Variable selection in the setting d>n

We end this section with a simulation in a situation where d>n, i.e. when there are more
variables than observations, and show that our method is able to deal with these high
dimensional problems. The dimension of the covariate space is set to d = 150 and sample
size n = 100. The dependence between the covariates has a similar block independence
structure as for Model 1, but the number of blocks is now 30. Dependence between the
covariates and the response is defined by (19) with functions,

μ(X) = X1 + X6 + X11

σ(X) = 1.
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Figure 1. Average number of selected variables over 100 simulations. Total number of variables is the
height of the bar blue for signals variables and red for noise variables. Bars from left to right correspond
to the sample sizes and top to bottom corresponds to different levels of correlation, except for Model 4
where top to bottom corresponds to minimum correlation strength between blocks. The horizontal line
coincides the total number of signal variables in the model.

Note that also here the sparsity assumption is satisfiedwith d = 150 and d′ = 3. The exper-
iment is repeated for 100 times and the results for our forward method and the backMSE
method are displayed in Figure 2.



JOURNAL OF APPLIED STATISTICS 15

Figure 2. Average number of selected variables over 100 simulations for n = 100 and d = 150. The
blue bars correspond to the signal variable the red bars to the noise variable. The covariate dependence
structure from left to right changes with the indicated correlation strength (see label). The horizontal
black line coincides with the total number of signal variables in the model.

It can be observed that ourmethod is able to select all signal variables all of the time, only
when correlation strength is 0.8, more variables are selected. The backward method again
systematically selects more noise variables for all correlation strengths, which is consistent
with the results observed in the setting with d<n.

5. Post-Processingmaximum temperature forecasts

There are substantial risks related to extremely high temperatures. Consecutive days of
high temperatures, i.e. heat waves, lead to higher mortality, especially among older people.
Besides high temperatures can cause train rails to expand and thereby potentially disrupt
the train system. Additionally, in the absence of rain they likely cause severe droughts
as seen in 2018 in The Netherlands, which has had large consequences for nature areas
and agriculture. The Royal NetherlandsMeteorological Institute (KNMI) issues alarms for
persistent warm weather. To design a good alarm system it is essential to have good qual-
ity weather forecasts. One of the most used ensemble models, the European Centre for
Medium-Range Weather Forecasts (ECMWF) ensemble model, has a negative bias in the
maximum temperature forecast. As an illustration, Figure 3 shows the forecast bias for data
observed at weather station de Bilt where KNMI is located. For accurate forecasts, this bias
needs to be corrected for. This can be easily done by estimating the linear relation between
the forecasts and the observations. Although this quickly improves the maximum temper-
ature forecast, this leaves unused a vast amount of forecast data for other weather types.
We will show that using a wide range of potential covariates, the maximum temperature
forecasts are improved further than by a simple bias correction. By performing the variable
selection we then also investigate inmore detail what effect different covariates have on the
forecast distribution estimated using the random forest model.

We use maximum temperature observed at seven stations spread across The Nether-
lands, namely Den Helder, Schiphol, De Bilt, Eelde, Twente, Vlissingen and Maastricht



16 J. VELTHOEN ET AL.

Figure 3. Scatter plot of error of the ECMWF high resolution deterministic run maximum temperature
forecast against that deterministic forecast in the warm half year for the years 2011-2019 at De Bilt. The
black line indicates a zero error and the red dashed line is the linear regression of the data points.

(http://projects.knmi.nl/klimatologie/daggegevens/selectie.cgi). The focus is on high tem-
peratures, hencewe consider only observations frommid-April untilmid-October. In total,
we look at 9 years of data ranging from 2011 to 2019.

As covariates we use the output of the ECMWF model, which contains a 51 member
ensemble and a higher resolution deterministic run. These forecasts are initiated two times
a day, at 00UTC and at 12UTC, but here we use only forecasts of the latter run. We define
the lead time of the forecast as the time difference between the start of the day for which
the forecast is valid and the initiation time of the forecast. For this analysis we will consider
forecasts with lead times equal to 36+ 24k hours for k = 0, 1, 2, 3, 4, 5. The ensemble con-
tains 51 exchangeable members and in order to use them we compute a set of summary
statistics from the ensemble. These summary statistics are the mean, standard deviation,
quantiles and number of ensemble members exceeding a pre-specified threshold. For the
quantiles in our application we choose the 25%, 50% and 75 % quantiles. Thresholds are
chosen as to extract different types of information from the ensemble relative to theweather
phenomenon itself. For cloud cover we use three thresholds, 20 %, 50 % and 80 % of cloud
cover to create variables measuring probabilities of a few to no clouds, partly clouded
weather and clouded weather.
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Apart from the forecasts for maximum temperature and cloud cover, we consider other
covariates including forecasts for daily average temperature at 2m, dew point temperature,
minimum temperature, daily average wind speed and daily accumulated precipitation. For
long lead times, predictability of these typical weather phenomena decreases, but the range
of predictability of for example flow pattern at 500 hPa extends much further. Therefore
the first three principal components flow pattern at 500 hPa over Europe are also used as
predictors [12]. Note that these covariates are the same for each station.

For the response variable we consider the forecast error, which we obtain by subtracting
the deterministic forecast run from the observed maximum temperature. By doing so, the
seasonality in the temperature is largely reduced. In Figure 3, the forecast error is clearly
visible as the distance between the red linear regression line and the x-axis is rather large.
Additionally it is clear that the spread of error changes as a function of the deterministic
forecast. A possible explanation is that there still remain seasonality effects that are not
taken care of by a simple linear effect. Therefore, also the sine and cosine of the day of the
year with a period of one year and half a year are included as two predictors. In total this
gives us 71 covariates. For a given lead time an observation on a given day is denoted by
(Y ,X), withY the error of the deterministic run andX the 71 dimensional covariate vector.

In what follows, we will explore 3 methods, quantile random forests as in [1] with all
variables, quantile random forests with variables selected by our forward variable selection
and Non-homogeneous Gaussian Regression (NGR) [8]. This third method is known in
the meteorology literature as an EMOS (Ensemble Model Output Statistics) method and is
used as a standard approach in post-processing. The NGRmethod assumes the data follow
a Gaussian model,

Y|X = x ∼ N
(
xTβ , exp(xTγ )

)
.

The parameters β and γ are then estimated by maximum likelihood. For this model,
we select variables based on the Bayesian Information Criterion (BIC) by a forward and
backward stepwise approach.

For each station and lead time, we fit a separate model. The models are estimated with a
9-fold cross validation, each time leaving out a single year. In Figure 4(a) the CRPS risk is
shown as a function of lead time, where the box-plots contain the CRPS risk for all stations.
Then in Figure 4(b) the number of selected variables is shown for our method and NGR,
where we leave out the random forest with all 71 variables.

Based on the CRPS, all methods perform comparably. This is also confirmed by other
verification measures such as reliability diagrams, quantile reliability diagrams and proba-
bility integral transform histograms, which are not shown in this paper. A selection of these
diagrams is shown in the appendix. The interesting part comes from the number of selected
variables. Our method selects a small portion (less than 10%) of covariates, substantially
less than NGR.We investigate this further by considering which variables are selected. The
result is visualized in Figure 5. For each lead time, the color indicates the frequency of a
covariate being selected by 63 estimatedmodels (7 locations and 9 cross-validation sets per
location). An extremely important variable would be selected all 63 times.

Yellow boxes correspond to a few variables that are always selected. But the number of
light blue boxes is much smaller for ourmethod compared to NGR. From this we conclude
that our method selects fewer variables and it also selects similar variables for different
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Figure 4. (Left panel) the CRPS risk against leadtime where the boxplots contain the CRPS risk for each
station. (Right panel) the number of selected variables against leadtime.

Figure 5. Selected variables for each lead time. All cross validations and all stations have been aggre-
gated where the maximum number of times a variable can be selected is 63.

stations. This suggests that our variable selection method is more robust compared to the
NGR method for short lead times, where a diverse set of variables is selected.

The main variables that our method selects are the sine of the day of the year, the stan-
dard deviation of the ensemble forecast and variables related to cloud cover. Since our
procedure typically selects a small set of variables, it is then feasible to interpret the esti-
mated model. For instance, to investigate how a selected covariate, say Xj influences the
forecast distribution of Y, one can compare the conditional distribution of Y given differ-
ent values of Xj while the other covariates denoted byX(−j) are kept the same.We consider
Y, the forecast error at de Bilt with lead time 36 h andXj the cloud cover, which is the num-
ber of ensemble members with cloud cover exceeding 50%. The values of other covariates
are fixed the same as the data of 31-05-2018 at De Bilt, denoted by X(−j) = x∗

(−j). Figure 6
shows the conditional density of Y given (Xj = c,X(−j) = x∗

(−j)), where different colors
indicate three different values of c. Note that all 51 ensemble members exceed 50% cloud
cover. As shown in the lower panel of Figure 6, cloud cover clearly has an effect based on
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Figure 6. The conditonal distribution of the forecast error, based on estimated models for De Bilt with
lead time36 h.Different colors indicatedifferent valuesof cloudcoverwhile the valuesof other covariates
are fixed to be the same as that for 31-05-2018 at de Bilt. Top figure for the random forest model with all
variables and the bottom figure for the random forest model with the selection of variables.

the estimation of our method: c = 51 yields a bimodal distribution while c = 10 leads to a
unimodal distribution. This suggests that in this configuration, higher cloud cover implies
a higher chance for a negative forecast error (left mode in the plot). However, the distribu-
tions obtained by random forest (without variable selection) are very similar; see the upper
panel of the figure. This is because that there are other covariates correlated to cloud cover,
and these covariates still indicate that there is a high cloud cover even when the number
of ensemble members exceeding 50% could cover is set to 10. In other words, changing
the value of a single variable in a random forest with many correlated covariates is not
interpretable. Such a random forest model fails to capture the effect of a signal variable.

6. Summary and discussion

In this paper, we have proposed a general framework for a forward variable selection
with respect to a loss function. We show in population sense that under an independence
assumption between covariates and by choosing the continuous ranked probability score
as loss function that the forward selected variables form the correct set with respect to
the CRPS risk functional. Applying the method in a random forest set-up, we show that
the out-of-bag samples can be efficiently used to asses predictive performance. The main
difficulty in the procedure is determining the stopping time, that is when selecting more
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variables does not add in predictive performance. Due to randomness and the inherent
greedy variable selection procedure in the random forest algorithm this can not be deter-
mined by the calculated predictive performance. Instead in a single forward selection step
we use the predictive performance of each possible set to construct a test to detect increas-
ing predictive performance. The procedure then stops a null hypothesis of non increasing
predictive performance can not be rejected. We show that this test is consistent.

With a simple simulation study we show that our variable selection method, compared
to a backward selection based on a permutation importance measure, is more capable of
discriminating between signal variables and noise variables. This improvement is shown
for various sample sizes and correlations between the covariates. Additionally we show that
similar results are obtained in a high dimensional setting where d>n.

In an application on post-processing maximum temperature, our method shows con-
sistency in the number of selected variables and in the variables being selected over several
stations. Moreover, our method selects less than 10 % of the covariates and still attains the
same predictive power as the quantile random forest with all covariates. Further, it is easier
to interpret our resulting model, due to the largely reduced number of covariates. Without
variable selection, it is hardly possible to analyze the effect of a single covariate in a ran-
dom forest model when it is heavily correlated to other covariates. In our data example, in
the presence of thick cloud cover, our random forest model indicates that there is a higher
risk of over forecasting (lower panel of Figure 6) instead of under-forecasting which was
indicated by Figure 3.

There are two interesting directions for future research. First, the theoretical results in
Sections 2 and 3 are derived under the assumption that the covariates are independent.
However, the ability of our method to select signal variables from a correlated setting is
evidenced by our simulation study and data application. It is interesting to investigate such
a setting. Second, we focus in this paper on how this forwardmethod behaves for the CRPS,
but themathematical set-up in Section 2 ismuchmore general and allows to select variables
with respect to other loss functions. It would be interesting to extend the current results to
a more general set of loss functions.
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