Bachelor Thesis Report

-~ @ . A A& . & 0






e
TUDelft

Technische Universiteit Delft
Faculteit Elektrotechniek, Wiskunde en Informatica
Delft Institute of Applied Mathematics

Verdelingsvrije model van de generatoren van elliptische
verdelingen
(Engelse titel: Non-parametric estimation of generators of
elliptical distributions)

Verslag ten behoeve van het
Delft Institute of Applied Mathematics
als onderdeel ter verkrijging

van de graad van

BACHELOR OF SCIENCE
in
TECHNISCHE WISKUNDE

door
VICTOR RYAN
Delft, Nederland

July 2022

Copyright © 2022 door Victor Ryan. Alle rechten voorbehouden.







e
TUDelft

BSc verslag TECHNISCHE WISKUNDE

“Verdelingsvrije model van de generatoren van elliptische verdelingen

(Engelse titel: “Non-parametric estimation of generators of elliptical distributions”
Victor Ryan

Technische Universiteit Delft

Begeleider Commissieleden

Dr. A EE (Alexis) Derumigny Dr. Ir. G.E (Tina) Nane

July, 2022 Delft






Summary

In this thesis, we present simulation studies of a non-parametric estimator, proposed by Liebscher
(2005) [20]. This estimator uses a well-known non-parametric estimator called kernel density es-
timator. Non-parametric estimation is used when the parametric distribution of a given dataset is
unknown. This technique is then applied with an assumption that the distribution in question has
a density, so that its density can be estimated. The density that we are interested in, belongs to a
class of elliptical densities which has a similar contour shape as the Gaussian distribution. One of
an example of such density is the density of multivariate normal distribution. Liebscher’s estima-
tor uses elliptical density to circumvent the 'curse of dimensionality’. The ’curse of dimensionality’
often appears in non-parametric estimation. When a high dimensional dataset is applied to a non-
parametric estimator, the convergence rate of the estimator becomes slow. This is what we refer to
as the ’curse of dimensionality’. Liebscher’s estimator circumvents this 'curse’ by assuming that the
multi-dimensional dataset is sampled from an elliptical distribution. The estimator then transforms
the dataset into one-dimensional dataset, so that we can use the univariate kernel density estimation,
instead of the multivariate ones. We use Liebscher’s estimator to estimate the generator of elliptical
distribution. The generator is a positive real-valued function. Liebscher’s estimator depends on two
parameters: the bandwidth parameter and the tuning parameter around the boundary. In this thesis,
we investigate how these two parameter influence the performance of the estimator. We start with
the case when the simulated dataset is sampled from the standard multivariate normal distribution.
Then, we apply the estimator on a different elliptical distribution with different generator. As it turns
out, finding the parameter such that the estimator gives a minimal error is a difficult task. This is
because the area where the error is small, depends on the generator. We also observe that as we in-
crease the dimension of the simulated dataset, the computational time of the estimator increases as
well. Lastly, the estimator is applied to Wisconsin breast cancer dataset. The estimator is used to
study the accuracy of a Bayes’ classifier proposed by [1]. From the study, it appears that the role of
the tuning parameter is smaller in comparison the bandwidth parameter, in changing the accuracy
of the classifier.
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Introduction

Suppose we know that a dataset is sampled from a distribution P that belongs to a parametric family
{Pg : 0 € O}, where © < R¥. Then estimating P using the given dataset is equivalent to estimating the
k-dimensional parameter 6. This is what we often refer to as "parametric estimation”. On the other
hand, if we do not know in which parametric family P belongs to, then the parameter space is a
functional space which has infinite dimension. Such estimation is referred to as "non-parametric
estimation" [37, Chapter 1].

Assuming that P has a density, we can use non-parametric estimation to estimate it given a dataset.
A well-known non-parametric estimation technique is called kernel density estimation. This tech-
nique can be applied to one- or higher-dimensional dataset. However, kernel density estimation suf-
fers from the 'curse of dimensionality’, i.e. the performance of the estimator deteriorates for large
dimension (see [24], [15], [9]). To avoid this curse, Stute and Werner (1991) [36] suggested to use den-
sities that belongs to the class of elliptical densities. Such densities have the same elliptical contour
shape as the Gaussian distribution.

A more formal definition of elliptical densities is that the density admits a representation

fx) :=cqdet®) Vglx-w 'z ' x- ], xeR?, (1.1)

where d = 2, ¢4 is a positive constant, X is a non-singular matrix, g € R? is the centre of the given
dataset and g is a Lebesgue measurable positive real-valued function. Stute and Werner’s estimator
uses y:= (x— )"~ (x— p) to estimate g by computing its kernel density estimator. Since y € R, we
can use kernel density estimation for one-dimensional dataset to avoid the ’curse of dimensionality’,
provided that the density of the dataset is elliptical.

Unfortunately, their estimator faces some difficulties. Itis stated in their simulation study (see [36,
Section 3]) that the variance of the estimator increases to infinity as x — p. To improve the conver-
gence problem, Liebscher (2005) [20] proposed to transform y using a differentiable function. Then
use it to compute the kernel density estimator of g. So, in addition to the smoothing (or bandwidth)
parameter from the kernel density estimation in mind, Liebscher’s estimator has an additional pa-
rameter in comparison to Stute and Werner’s estimator. Through simulation studies, we would like to
investigate how these two parameters influence the performance of Liebscher’s estimator.

The report starts with theoretical background on elliptical distributions and kernel density esti-
mation (Chapter 2). In the last section of Chapter 2 we also describe Liebscher’s estimator. In Chap-
ter 3, we apply Liebscher’s estimator to simulated data. We outline the method of the simulation in
Section 3.1. In Section 3.2 we estimate g when the dataset is sampled from multivariate normal dis-
tribution for small and large dimension. After that, we investigate the performance of the estimator
for different g (Section 3.3). Lastly, we apply the estimators to Wisconsin breast cancer data (Chapter
4). Here, we are going to use Liebscher’s estimator to study the accuracy of a Bayes classifier.






Literature Review

2.1. Elliptical distributions

Let X be a random vector in R?, [ be a vector in RY and>beadxd non-negative definite matrix. It
is said that X is elliptically distributed if the characteristic function ¢(t) of X — g can be written as

() :=exp(it! wy ' =v),

for some function ¥ : R, — R,.
In this report however, we are only interested in distributions that belong to a class of elliptically
symmetric densities. The element of such class has a density that admits the following representation

fx®) = cadet®) V2 glx-w T x— ), 2.1)

where g : Ry — Ry and ¢y is a constant [16, Chapter 6, p. 107]. We refer g as a generator of fx,
as the nonsingular scale matrix and p as the mean of X. The distribution of X will be denoted as
X~ El(u, %, g) if its density is defined as in (2.1). Since (2.1) is a density function, by [8, Lemma 2], we
can integrate (2.1) on R to get:

JId/Z

 diz-1
t Hdr=1. 2.2
T@i2 Jo g(1) (2.2)

Cd
We use (2.2) to find the correct ¢, for a fixed g, i.e.

0o -1
cg= % (f 14271 g(p) dt) . (2.3)
T 0

To generate a random variable that has a density function given by (2.1), one can use another
representation of elliptical distributions. Suppose X ~ El(u, X, g) then

X2 p+312Ry@, 2.4)

where R is a random variable on R* that is independent of U® having the density of [(X— )T~ (X~
p)]” 2 (16, Chapter 6, p. 110] and U is a random vector in R? that is uniformly distributed on the

unit sphere in RY: see [2, Theorem 1]. Note that if we define Z := 3~ 2(X — 1), then YAV 4 R%. The
density of Z is

fz(2) = cag(z" 2),

3
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where the generator g is related to the density of R? by [22, Section 1.5, p. 36-37]

dal2

— n dr2-1
fre(t) = Cd—r(dlz) t g(1). (2.5)

Here are some examples of elliptical distributions:

Multivariate normal distributions IfX € R% and X ~ A4/ (i1, %), then the density of X is

- 1 LT S
fx):= o TanG) exp( 2(x w X x-pl. (2.6)
Then (2.6) yields
1 1
g(t):= exp(—zt) and c4:= W. 2.7)

Note that when (2.7) is substituted for g in (2.5), the function fr. in (2.5) is the density function
of y3.

Multivariate t-distribution If X has the density

—(v+d)/2
L((v+d)/2) 14 %(x—u)TZ_l(x—lJ) , (2.8)

S = S v T det ) 2

then X has multivariate ¢-distribution with the degrees of freedom v > 0. When v = 1, then the
distribution of X is the multivariate Cauchy distribution [23].

From (2.8), we see that g is

—(v+d)/2 T'(v+d)/2)
-

P L 2.9
4T T vi2) (vm) a2 (2.9)

=1+-—t¢
g(1t) +V

2.2. Kernel density estimation
Assume that a given dataset has only one dimension. One often use the histogram, which is a non-
parametric estimation technique, to estimate the density function of the dataset. However, if a smoother
estimator is desired, then kernel density estimator is a more suitable choice. In this section, we ex-
plain what kernel density estimation is.

Let X3,..., X, bei.i.d with density p(x). The kernel density estimator of p is defined in the follow-
ing manner:

1 &2 x—X;
Pu(x; h) := — ZK( p ’), (2.10)
i=1

where £ > 0 is the smoothing parameter called the "bandwidth", and K is a kernel function which has
the following properties:

1. K(u) is non-negative and integrable.
2. Kisnormalized, i.e.

fK(u) du=1.
R

3. Kis symmetric, i.e. K(u) = K(—u) for any u € R.
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Kernel function K(uw)
Rectangle (Unifrorm) K(u) = %, lul<1
Triangular Kw=Q0Q-|u),ul=<1
Gaussian K(u) = (2m)~1/? exp (—% u)
Epanechnikov [7] K(u) = 2(1 —u?),lul<1

Table 2.1: Examples of kernel functions

See Table 2.1 for some examples of common kernel functions. The estimation method using (2.10) is
called the kernel density estimation (KDE).

In measuring the performance of (2.10), we first look at the mean square error (MSE) of the es-
timator. The results that are shown here are from [13]. To see more detail on the computation and
other properties of KDE, we refer the reader to [26] and [29].

Recall that MSE of p,, for p is

MSE(p(x); P (x; ) := Ell B (x; 1) = p(0) 2
which can be decomposed into
MSE(p(x); P (x; 1)) = Var[p, (x; )] + {E[pn (x; )] — p(0)}°. (2.11)

Since Bias[p, (x; h)] := E[p (x; h)] — p(x), we see that the MSE is the sum of the variance of the estima-
tor and its bias squared.

Let My(K) = [ u>K(u) du and ||| is the L?-norm. Using variable substitution and Taylor expan-
sion, we can obtain an approximation of the bias and the variance of KDE:

2
Bias[p,, (x; h)] = h?p”(x)Mz(K) +o0(h?), ash— 0, (2.12)

S o= L2 1
Var[pn(x; h)] = nh||K||2p(x)+0(nh)’ as nh — oo. (2.13)

From (2.12), we see that to reduce the bias we need to choose small £, since it is approximately pro-

portional to k2. Additionally, we can derive from (2.13), that large h implies small variance. Suppose

his fixed, then (nh)~! will decrease as n — oo, and so the variance can also be reduced in this manner.
Now that we have the bias and the variance of KDE, Equations (2.12) and (2.13) yield

4 1 1
MSE(p(x); Pn(x; h)) = hz p" (x)* My (K)? + EIIKllﬁp(x) +o (h‘* +—|. (2.14)

nh

The challenge with KDE is to choose an & such that both the bias and the variance are small. It is
important to choose such £ to ensure the optimal uniform convergence rate [5].

Now let us investigate the mean integrated squared error (MISE) of p,(x; h). According to [13],
this is because MISE has the advantage of measuring the estimation accuracy globally rather than
local measures. The MISE of KDE is

MISE|[p, (x; h)] :f MSE[pn(x; h)] dx
R

ht 1 1
=IIIP”H%Mz(K)Z+%IIKII§+0(h4+%) (2.15)
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as h — 0and nh — oo.
We can then define AMISE, by leaving out the higher order term of (2.15):

AMISE ([, (x; e 2, 1 2
Pn(x; h)] = lep I5M>(K)” + %llKllz- (2.16)
Using (2.16), we find an h such that AMISE is minimal. This is done by solving for % in equation

iAMISE[A (x; )] =0
dan Pl U1 =0

It yields

2 1/5
h* = & ~n 5 (2.17)
Ip" 115 Mo (K)?n

We can plugin 2* in (2.16) to get

4/5
)

. 5 . .
AMISE[py (x; k) ()] = (1K (1P 1EMa (K)2H® 0415 ~ =415, (2.18)

It means that, with an optimal bandwidth, the estimator converge at the rate n~4/5.

Unfortunately, the optimal bandwidth in (2.17) is not applicable in practice since it still depends
on the unknown function p”. There are however several bandwidth selection methods that are fre-
quently used. One of the method was introduced by Silverman in [34], which often is referred to
Silverman’s rule of thumb

hgipy := 1.065 17 1/2,

where 0 is the estimated standard deviation of the data. A more robust bandwidth selection method
uses the interquartile range

IQR :=upper quartile — lower quartile.

We refer the bandwidth selection method that uses this quantity as %o, where 'rot’ stands for 'rule of
thumb’:
J o IQRY s
hrot :=1.06min<{ o, —rn" "> 2.19
rot { 134 } (2.19)
see [13, Section 3.3.1].
There are more sophisticated bandwidth selection other than the rule of thumb that Silverman

proposed. For instance, the ordinary least squares cross-validation computes

n
minCV(h) := f ﬁfl(x; h)dx— g Z Pn—i Xi; h), (2.20)
h>0 n;;
where p, _;(X;, h) is the estimated density without the ith sample. However [11] and [12] state that
the convergence rate is slow. Despite of this, Stone (1984) [35] proves that (2.20) is indeed optimal
asymptotically.

The cross-validation method has been altered and modified to improve its performance. If the
reader wishes to see other variation of cross-validation method and discussion/review of them, then
see [18] and [30]. Lastly, it is mentioned in [17] that cross-validation and Silverman’s rule of thumb
are not recommended for general practice. Instead, they investigate other data-based bandwidth
selection such as [25] and [32].
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2.3. Estimating the generators of elliptical distributions: Liebscher’s esti-

mator
As we have mentioned in Chapter 1, we can use non-parametric estimation when we do not know
which parametric family the dataset is sampled from. Unfortunately its accuracy deteriorates for
large dimension of X. Stute and Werner suggested an estimator that overcomes 'the curse of dimen-
sionality’, by assuming that the density of the dataset is defined as in (2.1).

Stute and Werner'’s [36] estimator faces two difficulties. Firstly, the variance of the estimated fx
keeps increasing around p. Then, there is a bias when estimating g around ¢ = 0. The latter was fixed
by modifying the KDE; Liebscher [20] improved it by using a differentiable function v, such that its
derivative ' is bounded and lim,_o+ x~4/?>*1y/(x) is a positive constant.

Let us describe the estimator that Liebscher proposed. The estimator uses kernel density estima-
tor to estimate g, with estimators for g and X plugged-in. An example of estimator for g and X is the
sample mean and the sample variance respectively. Let fi,, and <, be such estimators of g and Z. The
proposed estimator is computed in the following way:

1. Let Xj,..., X, bei.i.d samples of random vectors in R? from fx and define a function v : R, — R,
by
w(x) = —a+ (@??+ x4, (2.21)

with a>0. Let Yy,; = ¢ ((X; — ﬁn)ngl (X; —[n),i=1,...,n. Using this newly acquired data, we
estimate the density of Y;, by the KDE below:

y- Yln) y+Yin
K +K

( h h

1 n
ﬁn(y;h) = EZI
i=

] . (2.22)

Note thatif d =2 or a = 0, then y(x) = x, which is the estimator that was proposed by Stute and
Werner (1991); see [36]. Further note that the kernel density estimation in (2.22) differs than
the one in (2.10). This is the "mirror image" technique that fixes the second difficulty that Stute
and Werner’s estimator has. The "mirror image" technique is explained further in [31].

2. Using the estimator in (2.22), we obtain an estimator of the generator g as follows:

nd/Z

' d/2)

-1
gn(2) = ( ) Z7 12 Ny () Py (2); h) (2.23)

where z€ R,.

3. To estimate the density function of elliptical distribution, we simply plug-in Z,,, I, and (2.23)
in (2.1):
Fn® =det@) gl -1, TE, (x- ). (2.24)

There are several assumptions for £, I, K, v and h need to satisy so that the estimator fn
converges uniformly as described in [20, Theorem 3.1]. Liebscher then was able to prove that the
optimized convergence rate of his estimator is the same as the optimal one from one-dimensional
kernel density estimation. But he also noted that the convergence rate is slow around p. Other source
such as [1], mentioned that Liebscher’s estimator rules out many distributions of practical interest,
since it requires at least four moments for the random variables of interest.






Simulation Studies

In this chapter, we investigate the estimator (see Section 2.3) of the density generator of (2.1) through
simulations. We start with outlining the methods and steps that are used to produce the results shown
in Section 3.2 and Section 3.3. We first restrict ourself by looking at a particular case when fx is the
density of the multivariate normal distribution. We are also interested in how long it takes to compute
the estimated generator, as we increase the sample size and the dimension of the simulated dataset.
After that, the performance of the estimator is investigated when g is not defined as in (2.7). The
programming language that is used in this study is R, version 4.1.3 [27].

3.1. Method

In this simulation study, we set the mean g = 0 and the scale matrix X as an identity d x d matrix 1.
First, let us list the input that we use in the simulation:

¢ The number of simulations 7jy,. Here ngm, := 100.

e The number rows/sample of the data n that is used to estimate g. In this study, we look at
n:= 25,100,500, 1000.

¢ The bandwidth parameter & and the tuning parameter a around 0. Because a = 0 is equivalent
to Stute and Werner’s estimator, we decide to choose & and a in two ways so we can compare
the two estimators:

1. a =0 and compute hy; (see (2.19)), which is one of the Silverman’s rule of thumb. We will
refer this method as ‘a0 & S, where ‘S’ stands for Silverman.

2. the parameter a and h are chosen such that the error is minimal. We label this method as
‘besta & h’.

* The dimension of the data d.
* The grid G which is used to compute g shifts to +oco as the dimension increases. So we let
G:=[0.14+(d—-2),20+ (d -2)],

which means that the grid shifts by d — 2. We take 200 points from G such that the distance
between each points is 0.1, i.e. we let Ax :=0.1. These points are denoted by x;,i = 1,...,200
and the grid size of G is 200.
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Input: ngim,n,d,a, h, g,

grid and grid size

Generate data X

------ > from multivariate [<------

normal distribution
¥

Are h and a pre-specified?

Leta =0
no

Compute hyor =

. J~ IQR]| -1/5
1.06m1n{a,m}n

Compute the estimator g

using Liebscher’s estimator

/ Compute ISE / / Compute SAE /

Figure 3.1: The flowchart of the simulation. The red dashed arrow indicates the loop.

Each simulation will generate data from a distribution with density (2.1), which then used to estimate
g by applying the Liebscher’s estimator (see Section 2.3). To generate the dataset, we use an R package
ElliptCopulas [3] and its implementation is based on [4]. We choose the Epanechnikov kernel for
the kernel density estimation (see Table 2.1).

In order to measure the performance of Liebscher’s estimator, we decide to use the integrated
squared error (ISE) and the supremum absolute value error (SAE):

+00
ISE:= ||g—§||§=f0 |g(0)~g0)|* dx and SAE:= g~ §lleo = suplg(x) — §x)],
x>0

i.e. the L?- and L®°-norm error respectively. To estimate these two quantities, we use the following

estimators:
200

ISE:= Z |g(x,~) — §(x,~)|2 .Ax and SAE:= i_rlna)ziooﬂg(xi) - §(x,~)|}.
ot =1,...,
See Figure 3.1 for the illustration of the simulation.
Once the simulation is ended, we then obtain 7, estimated errors. Let ISE j and SAE j be the
estimated error in j-th simulation, j =1,..., nsim. These estimated errors are used to estimate MISE :=

E [ lg- §||§] and MSAE :=E || g - g|| ] by taking the average over ngim:

Nsim I Nsim
) ISE;, MSAE= )" SAE;.
Rsim j=1 Nsim j=1

MISE =
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3.2. Simulation results: the multivariate normal case

Let g and c; be defined in (2.7), then the generated data is sampled from the standard multivari-
ate normal distribution .4;(0, I;). We first generate one simulated d-dimensional dataset and apply
Liebscher’s estimator to get the estimated g (denoted by g) with a fixed £, a and n. The results of the
estimation can be seen in Figure 3.2. Note that x-axis is different for each d due to how we define the
grid G. It appears that the value of g keeps getting smaller as d increases. Also, the estimator performs
reasonably well when n =500 and a=h = 1.

Dimension: 3 Dimension: 7 Dimension: 15
! 1.26-04 - 1.5e-09 -
3e-02
[} Se-05- 1e-09-
2e-02 L
g - He-10- b
18-02 4e-0 5e-10 R
0e+00- Qe+00- De+00-
) 5 10 15 20 5 10 15 20 25 15 20 25 30
5 =+ true generator
= Dimension: 31 Dimension: 63 )
21e-19 41e-39- — estimated g
1 1
1
1.6e-19 3e-39-
1e-19 1.9e-39-
L \
4.6e-20- 8.7e-40-
1e-20- ' ' ' -1.9e-40- ' ' ' '
30 35 40 45 G5 70 75 a0

Figure 3.2: The estimated g(x) = exp(—x/2) from one simulated d-dimensional dataset. Here we choose
d=3,7,15,31,63,127. Further, a =1, h = 1 and n = 500. The true generator g is given by the red dashed curve. The
estimator g is the solid black curve.

Based from this figure, a number of question arise. Firstly, for different d and n, how does a and
h influence the performance of Liebscher’s estimator? Secondly, suppose there is an area where the
errors are small, then how large is the interval of @ and h that we can choose to get the "best’ estimate?
Then, we also want to know how long the computational time is as we increase the sample size and
the dimension of the simulated dataset. Lastly, we are curious about the relationship between the
error and the sample size. We compare the estimated error when a = 0 and % = hyq, with the errors
using the 'best’ a and h.

3.2.1. Contour plots of the errors as a function of (a, h)
To answer the first question, we measure the performance of the estimator with various combination
of a and h and visualize it using contour plots. We decide to look at two different measure of perfor-
mance: MISE and MSAE, i.e. the L?- and L®-norm error. The parameters a and h range from 0.1 to
1000. However, since the range is too large, we only take 20 points out of this interval such that the
distance between each point increases logarithmically.

We have seen in Figure 3.2 that the range of g is different for each dimension. This means that,
depending on d, the range of MISE and MSAE are different. This explains why the contour lines in
Figure 3.3 have different values for each d = 3,7,15,31. So it is appropriate to define the following set:

AP (k) := {(a, h) : Err(a, h,n,d) < ka},



12 3. Simulation Studies

where Err is either MISE or MSAE and k is a constant. Note that instead of using the notation k, we
use kg due to the difference in range of values for each d. Further note that E/r\r(a h, n,d) depends on
the choice of a and h, as well as n and d. The set A(Err) (kq) can be interpreted as the area of a and h
such that the estimated error in that area is bounded above by kg.

Now, let us focus on Figure 3.3 (see Figure 3.4 for the legend of these plots). Here, we plot the
contours of the function (a, h) — Err for different dimensions and n. There are four sub-figures: the
two sub-figures 3.3a and 3.3b are the contour plots of L?- and L*°-norm error when n = 25. The other
two sub-figures (3.3c and 3.3d) are structured similarly as 3.3a and 3.3b, but here n = 1000. In each
sub-figure, we also plot results for d = 3,7,15, 31.

The coloured area can be interpreted as the set A(Em (kg). The area with darker green colour is the

area where the error is the smallest. For instance, AZIE/IESE) (ks) has darker green colour when k3 = —4.2.

However, this would be the case when k; = —9 with the same n and Err. On the contrary, if the colour
becomes lighter, then the error is larger in comparison to the area where the colour is green. So, we
are able to see the different contour curves, when we choose the appropriate k,; for each d.

Let us fix the aforementioned k3 and k;. We observe that the area of A%r)(kg) is smaller than

A(Err)(kﬂ Further, let k5 and k3; be chosen such that A(Em(kls) and A(fgrl)(kgl) are coloured dark
green. Then the h-values that belongs in their respective sets are more constrained than the a-values.
These areas are stretched downwards starting around d = 7 or d = 15. As for the location of where the
area has darker green (small error), it is quite similar for both the contour plots of (a, h) — MISE and
(a, h) — MSAE.

Another observation that we should point out, is how the contour curves are very similar across
two distinct measures of performance. Visually, the contour curves in Figures 3.3c and 3.3d are simi-
lar. However, the values of these contour curves are not the same. If we look at Figure 3.3c, the most
outer contour curve for d = 15 is approximately —17.6. In Figure 3.3d, with the same d, the most outer
contour curve has value —8.9. The same observation can be made if we focus on L?-norm error and
compare between n = 25 and n = 1000. Visually 3.3a and 3.3c are similar, but the values on the con-
tour lines are different. Additionally, in both (a, k) — MISE and (a,h) — Ms‘ﬁa, we see that the most
outer contour curve becomes more flatter as d increases.

From these contour plots, we conclude that the two performance measures give a similar be-
haviour. In both measures, we notice that the area with small error becomes more reduced as d
increases. However, the vertical extent of such area increases for large d. It appears that we have to
zoom into a part of the figure to have a clear visualization of where the error is small since the upper
part of the contour plots gets flatter. The only noticeable difference between the two measures is the
range of the values on the contour curves. We also have looked at the case when n = 100 and n = 500.
Because the plots are visually similar than the ones in Figure 3.3, we decide to put them in Appendix
A, Figure A.1.

3.2.2. The relationship between the ’best’ parameters and the sample size

In this part, we are going to find the parameters a and & for which the errors are small for each dimen-
sion. We call such a and & as the 'best’ a and h. On top of that, we can also find out the relationship
between n and the parameters of the estimator.

However, the 'best’ parameters are obtained from the estimated errors. So, instead of looking at
specific coordinates where the error is small, we also look at an acceptable interval of @ and h where
the error is 10% of the minimum error for instance. To define the interval more properly, we look at
the set

a>0,h>0

A d —{a>0 Err(ahnd)<q min Err(ahnd)}

We define the set #, 4 similarly as 7, 4, corresponding to the bandwidth parameter / > 0. Note that
when g =1, then these «,, 4 and /£, 4 contain the 'best’ a and h respectively.
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3.2. Simulation results: the multivariate normal case
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Figure 3.3: Contour plots of MISE and MSAE as a function of (, k). The dimensions that are shown in each sub-figure are
(from left to right) 3,7,15 and 31. In (a) and (b), the sample size is 25. As for (c) and (d), we choose n = 1000. Darker green
colour means that MISE (or MSAE) is smaller than the colour that are lighter.
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low high
error error

Figure 3.4: The legend bar for Figure 3.3.

Looking at the dashed line in Figure 3.5a, it seem that a behaves unpredictably due to large un-
certainty. For instance, when d = 3 the dashed line increases slightly as n becomes large. But when
d =127 and d = 31, the best a seems to fluctuates. As for the best &, also visualized by the dashed
line in Figure 3.5b, it decreases as n — oco. The same behaviour is observed even if we take a different
measure of error. It might be difficult to see how the 'best’ a and & change with 7 in Figure 3.5. So we
refer the reader to Figure A.2a and A.2b in Appendix A. These figures are the visualization of the set
Ay qand A, g when g = 1.

Another thing that we can point out from Figure 3.5 is that choosing h matters much more than
a, and this, for any choice of dimension. The set <7, ; becomes wider as d — oo and it starts around
d =7 and d = 15. This means that we can choose any a from 0.1 until around 10 for d = 7,15 to get a
good estimate of g. The choice of a can even reach to a = 100 when d = 127. On the contrary, the set
JCp g is narrow for each d.

On the contrary, the set #, 4 is narrow for each d. We conclude that for larger dimension, we
have more flexibility in choosing a than h to have a good estimate of g. The reason for this flexibil-
ity might be because g moves away from the boundary as d — oo and the parameter a improves the
behaviour of the estimator around the boundary. Therefore, the parameter a has less influence for
sufficiently large d. The estimator’s performance seems to be more sensitive to changes of the band-
width parameter k. This tells us the importance of choosing & for both low- and high-dimensional
dataset.

3.2.3. Computational time

In each simulation, we also manage to measure the computation time when estimating g. To sum-
marize how long that takes, we choose the 'best’ a and & obtained from the estimated MISE. We may
also consider to choose the 'best’ a and & from the estimated MSAE. However, we see in Figure 3.5
that the 'best’ parameters, obtained from MISE, still lie in their respective set <7, 4 and /¢, 4 (set Err
in both sets to be MSAE).

Using these parameters we compute g, using the simulated d-dimensional dataset. The simula-
tion is also done ngj, times. We then obtained ngy, elapsed times of each simulation, whereafter we
compute the average of these values.

The plot of the average computational time against n for each choice of d can be seen in Figure
3.6. We observe that the average computational time increase with n linearly for each choice of d.
Further, for d = 127, the average computational time seems to be larger than any points for d < 127.

Let us relate the previous results that we have with this finding. We have learnt that when the
dimension of the given dataset is large, we have more flexibility in choosing a. This means that the
choice of & is the main concern, in order to obtain a good estimate of the generator. Combining the
result in this subsection, we conclude that there is a cost in computational time when we increase
the dimension of the dataset. That is, the higher the dimension of the dataset we have, the more time
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Liebscher’s estimator takes to compute g,. Fortunately, there is more flexibility in choosing a for a
good estimate of g.

3.2.4. The relationship between the error and the sample size
In this last subsection, let us focus on MISE. Recall from Section 3.1, that we decide to choose a and h
in two ways: a0 &S’ (a = 0 and h = hyo¢ as defined in 2.19) and 'best a & h’ (a and h such that the error
is minimal). With these two different methods, we are interested in how the estimated MISE changes
as the sample size n increases.

logso(MISE)
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-4.0- -9.0-
-19.0-
45- -95-
L]
-19.5- ]
50- -10.0-
-
105~ 20.0-
. ! . ; . . . . . ! ! s Parameter
15 2.0 25 30 15 2.0 25 2.0 15 2.0 25 3p  Choice
Dimension: 31 Dimension: 63 Dimension: 127 ab&s
— pesta&h
8.5~ -78.0-
-157.0-
78.5-
-39.0-
79.0- 157.5-
-
-
39.51 795~
e -158.0-
830.0-
-400- | ! ! ! ! ! ! ! ! ! !
15 20 25 30 15 20 25 30 1.5 20 25 30
log+g(n)

Figure 3.7: The linear relationship between log; MISE and log;(n) for each dimension, where the estimated I? norm
error is computed using the method ‘a0 & S’ and 'best a & h’. The fitted line is plotted using ordinary linear regression.
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First, we plot log,,(n) against loglo(WSE) to see how the errors change when we have large sam-
ple size. In Figure 3.7, we see that the relationship between the two can be summarized using linear
model. We refer the reader to Appendix B for the estimated values of the slope and the intercept of
these lines. An interesting observation of Figure 3.7, is that the line of the group "ag and S’ seem to
decrease faster than the line of the group ’best a and k. Then one can expect that for large enough
n, a=0and h = hyo, the log,, of MISE will be as large as the error when we choose the best a and
h. This means that we may use Stute and Werner’s estimator and /4 to get as good as Liebscher’s
estimator, when we have a sufficiently large dataset (n > 1000).

3.3. Simulation results: other generators

So far, we only focus on the case of the standard multivariate normal distribution. Since Liebscher’s
estimator is a non-parametric estimation, we would like to see how the estimator performs for other
generators. We would like to see whether the contour plots of the errors is similar to the ones in
Section 3.2.1. The generators that we investigate in this section has one or multiple bumps (a similar
study has been done in [4]). We also choose some generator that has steeper curve around x = 0 for
instance.

3.3.1. Defining the generators and first impressions

There are six generators that we consider: gj(x) = 2y/x(1 + x3) 7!, g (x) = 4e ™ ¥(1 + e 2, g3(x) =
e +4e *sin? (x),84(x) = e™* sin2(2x),g5 (x) = e 24 e~ (=222 gng 86(x) = x2e~*°/3_ The visualiza-
tion of each of these generators can be seen in Figure 3.8. We estimate each of the generator by com-
puting the Stute and Werner’s estimator (i.e. a = 0) with different sample size n. As for the bandwidth
parameter h, we compute the corresponding hyo.

2sgrifx)(1+x"3) dexpl-xp(1+expl-x)t2 exp(-x) + dexpl-x)sin(x}'2

0.15
0.10-
AN "
0.05° 25
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Figure 3.8: The estimated different generators where d = 3, a = 0 and h is computed by using (2.19). The true generator g is
the black dashed curve.

Let 8; »n,i = 1,...,6 be the estimated generator i obtained by using n sample size. In Figure 3.8
we see that g, does not perform well around x = 0 for any choice n of interest. For g; , where i # 1
and n = 1000, each of the estimated generator lies very close to their corresponding true generator.
Further, we observe that the estimator struggles to estimate the generator when there is a bump near
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x=0,e.g. 835, 8, and g, for n #1000. Interestingly, when the generator has multiple bumps, the
estimator g, , performs better around x = 0 than g, around the same point.

Overall, the estimator can adequately estimate different generator other than (2.7). As usual, one
can improve the estimator’s performance by having larger sample size. But in this case, we might
want to use the tuning parameter a as well, especially when 7 is small (n < 1000).

In the next part of this section, similar to what we did in Section 3.2.1, we vary a and & to investi-
gate how Liebscher’s estimator perform when the dataset is not sampled from the Gaussian distirbu-
tion.

3.3.2. Contour plots for a case d = 3
Let us focus on MISE. We shall look at how the mean integrated squared error changes when a and &
varies. Also, we do another 100 simulations, in which we set a = 0 and compute h;, of the simulated
dataset, sampled from elliptical distribution with generator g;,i = 1,...6. By doing this, we would like
to know whether ki, is a good bandwidth selection method.

We fix n = 25, d = 3 and we visualize the results by contour plots. Let

A%? (¢):={(a,h) : MISE(a, h,n,d, g) < c},

which can be interpreted as the coloured area in Figure 3.9. One can observe that the shape of the
area Agvgng) (—3.5) differ for each generator. We also see that the average h.y, illustrated by the black

dashed line, intersect with the area A%;,S? (—3.5) for g1, g3 and gs, but not for the other three gener-
ators. It means that there are cases where we can use h = h if one wish to have a good estimate of
the generator. But we still have to choose an appropriate a for different generators. This means that
hrot is not a reliable bandwidth selection method.

logg(MISE) . -35 . -3.0 . 25 . -2.0 : average h.rot
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Figure 3.9: The values of MISE as a function of (log;( a,log h). The horizontal dashed line is the average bandwidth
parameter that is obtained from (2.19). Here we choose a =0 and d = 3.

Lastly, let us look at what happen on MISE for a = 0 and compare the results with n = 1000. In
Figure 3.10, we plot h — log,;,MISE, h € (0, 1] for n = 25,1000. Further, we add two vertical lines that
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represents the average h,t, obtained by datasets with the corresponding sample size n. The colours
correspond to the sample size that are used to compute the estimator.
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Figure 3.10: The log; of MISE as a function h € (0,1],d = 3 and a = 0 for different generators. The different coloured points
represents how many sample is used to estimate g. These same colours are used to represent the location of the average
hrot, computed by using 25 or 1000 samples.

We observe in Figure 3.10 that the required / to minimize the L? norm-error is smaller for large n,
i.e. the average hyq: is smaller when 7 = 1000.. This same observation was also seen in Section 3.2.2.
Nevertheless, it seems that choosing & = h;o may still gives us a good estimator for some generator
(e.g. g2, g3 and gs). But there is also case where such choice of i does not give the smallest MISE (e.g.
generator g1).

We conclude that determining the best a and h appears to be a hard problem. This is because
the area where the performance of the estimator at its best, are different for each generator. Further,
choosing h = hyo; appears to be unreliable, which is a reason to not use this bandwidth selection
method. Though, we find that having a large sample size improves the performance of the estimator,
when we use Silverman’s rule of thumb. Nevertheless, even if one wishes to use this method, we still
have to choose an appropriate a, for a small dimensional dataset.



Application on Real Dataset: Statistical
Classification Problem

In the health care industry, there are diseases that are difficult to identify and diagnose. Fortunately,
there are programs that can efficiently and accurately identify heart diseases [19]. Further, the authors
in [21] present overview of programs that can detect dermatological diseases using image processing.
Both sources use a technique, called "machine learning" (ML), to achieve their goal.

Machine learning, cited from [28], is

"a field of computer science that studies algorithms and techniques for automating
solutions to complex problems that are hard to program using conventional program-
ming methods."

The machine essentially learns a set of labels from a given dataset. Then, it uses them to predict the
labels of data points that are not in the given dataset.

There are several ways of how the machine learns. In [28], they mention four learning models:
supervised learning, unsupervised learning, semi-supervised learning and reinforcement learning.
In supervised learning, which is the focus on this chapter, the machine uses a dataset in which data
points have already been classified (e.g. by an expert). The machine then learns from these classifica-
tions, to predict a classification from new unlabelled data points. One of the categories that falls into
supervised learning is the classification problem.

A classification problem occurs when an observation can be categorized into a disjoint set of
classes. The categorized data is used to predict in which class a data point belongs to after the ma-
chine has learnt a given dataset with the correct classes. A classifier that can be applied to make such
predictions is the naive Bayes classifier. This classifier is based on the well-known Bayes theorem:

P(A|B))P(B))
Y P(AIB)P(B))

where {By, B, ...} is a partition of the sample space such that I’ (B;) > 0 for any j. To read more about
other classifier, see [10].

The classifier that we are using is a Bayes’ classifier that is based on the estimated posterior prob-
abilities. This method was proposed by [1] as a possible application of their non-parametric estima-
tion technique. For the classifier, they seem to replace P (A| B;) with an estimated conditional density
function of the given dataset. In this thesis, we estimate it using Liebscher’s estimator. Since this es-
timator depends on the bandwidth parameter s and the tuning parameter a, we will investigate how
these two parameters influence the accuracy of the proposed classifier.

P(BjlA) = (4.1)

21
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To investigate the accuracy, the Wisconsin breast cancer (diagnostic) dataset [6] is used for learn-
ing the characteristics of two types of tumour: benign and malignant tumour. The dataset consists
of 569 breast tumour patients, in which 212 of them are diagnosed with malignant tumour and 357
patients are diagnosed with benign tumour. Further, there are 10 characteristics of each cell nuclei
observation of the patients. We will not use 10 of them and we assume that the measured character-
istics of interest are sampled from elliptical distribution.

This chapter is organized as followed: in Section 4.1 we explain how the classifier is defined. In
Section 4.2, we explain what we mean by the 'accuracy’. Lastly, in Section 4.3, we visualize how % and
a influence the accuracy of the classifier.

4.1. Method

Let the train set be the dataset that is used to construct the classifier. In this section, we outline how
the train the set is used in the machine, so that it classifies new data points into either benign or
malignant class.

Let n be the sample size of the train set, #Bqin and #Main be the number of benign and malignant
cases in the train set respectively. Let y € R? be a new data point that we want to classify. Then we
construct the classifier using the ones that were used in [1], which is a Bayes’ classifier based on the
estimated posterior probabilities:

FulyM)P (M) - fn(yB)P(B)

PMly) = = n _ _——— and PBly) = = ! — S—
fn(yIM)IP(M) + f,(yIB)IP(B) fn(yIM)PM) + f,(yIB)I?(B)

(4.2)

Here, P (B) = #Birain/ 7 and PM) = #Mirain/ . The estimator f,l is the Liebscher’s estimator as defined
in (2.24). After (4.2) is computed, we do the following procedure: if ]lAD(MIy) < ]ls(Bly) then the data
point of y belongs to benign class, otherwise y belongs to malignant class.

From the simulation studies, we have seen that the choice of parameter h is more constrained
than parameter a, especially for high-dimensional dataset. Therefore, for the Liebscher’s estimator,
we look at different combination of / for fn(le) and fn(yIM). We denote hgenign and hyalignant as the
bandwidth parameter for fn (yIB) and fn(ylM) respectively. The influence of a on the accuracy of the
classifier will also be investigated, but we decide to choose a for both fn(le) and fn(ylM).

4.2, Sensitivity, specificity and accuracy
In the previous section, we have explained a method on classifying new data points into either benign
or malignant class. Here, we explain how the accuracy of the classifier is computed.

In order to avoid over-fitting, we decide to split the Wisconsin dataset into two sets: 60% of its
data points are randomly chosen to construct the classifier (i.e. the train set) and the rest is used
to measure the accuracy. The data points in the test set will be classified and we will compare the
prediction with the true labels in that set.

To compare the classification that is made by the algorithm with the true classification from the
given dataset, one can use a confusion matrix [33]. Let us start with explaining what a "confusion
matrix" is. It is a square matrix such that the number of columns and rows is equal to the number of
classes in the given dataset. In the Wisconsin dataset, there are two classes: benign (B) and malignant
(M) tumour. Therefore, we have a 2 x 2 confusion matrix.

In the confusion matrix, we use the following terminologies:

True Benign (TB) is the number of data points for which the algorithm correctly predict the benign
class. The number of correct malignant class prediction is similarly referred to as True Malig-
nant (TM)
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False Benign (FB) is the amount of misclassification of the benign class, i.e., the number of incorrect
prediction as having benign tumour. Similarly, we call the number of incorrect prediction as
having malignant tumour, as False Malignant (FM)

The confusion matrix for Wisconsin dataset can be seen in Table 4.1. Let #Best and #M;est be the

Benign Malignant
(From test set) | (From test set)

Preleted TB FB
Benign

Pre(‘ilcted M ™

Malignant

Table 4.1: A confusion matrix of the Wisconsin dataset

number of patients diagnosed with benign and malignant tumour in the test set respectively. Note
that TB + FM = #Best and TM + FB = #Mest.

Using Table 4.1, we can now compute sensitivity, specificity and accuracy of the classifier. The
sensitivity is computed by taking the ratio of TB with #Bes;. The specificity is the ratio of TM with
#Miest- Formally we define these two quantities as the following:

™

sensitivity := and specificity := 4.3)

test test
The sensitivity shows how good the classifier with predicting the benign class, while the specificity
measures the performance of predicting the malignant class.
To compute the accuracy, we take the ratio of the sum of TB and TM with the sample size of the

dataset:
TB+TM TB+TM

TB+EM+FB+TM  #Biagt + #Myast

accuracy := (4.4)

The accuracy is interpreted as the overall performance of the classifier, i.e., how good is the classifier
with predicting both benign and malignant class correctly.

Recall that we split the dataset randomly. This means that the measured accuracy on the test set
is random. So we decide to estimate the final accuracy by repeating the procedure 10 times. Then
compute the average of the accuracies among the 10 repetitions. The goal of this averaging is to
improve and stabilize the estimation by reducing the variance.

4.3. Classification results

The Wisconsin dataset consists of ten real-valued columns. In this report we are interested in five of
them: texture, area, smoothness, compactness and fractal dimension of the worst nuclei observations
for each patient (5-dimensional dataset). We also consider a dataset that contains only the worst
texture and worst smoothness (2-dimensional dataset). Lastly, we look at another dataset where we
add the feature 'worst area’ to the aforementioned 2-dimensional dataset. This 3-dimensional dataset
was also used in [1].

For each dataset, we split the dataset into benign class and malignant class after we divide it into
the train and test set. We split them based on the diagnosis to compute fAn(yIB) and fn(yIM). We
also estimate the mean and the variance of each class in the train set using the sample mean and
sample variance. Then, their respective generator are estimated and compare them with function g
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as defined in (2.7), i.e. the generator of the multivariate normal distribution (see Figure 4.1). This is
because we want to see if the dataset we are using can be approximated by some elliptical density. We
observe that the estimated generator lies very close to the generator as defined in (2.7). Though for
a=1and h =1, the estimated generator of the malignant group using 5-dimensional train setat x =0
does not perform well. This is probably due to the inappropriate choice of a for the malignant group.

Dimension: 2 Dimension: 3 Dimension: 5
0.15 - 0.06- 0.015-
= exp(=x/2)*(2pi)N-d/2)
0.10- 0.044 0.010-
=< 1
= Estimated
Generator
0.05- 0.02- 0.005 - )
= Benign
= Malignant
0.00- 0.00- 0.000 -
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
X

Figure 4.1: The estimated generators of both benign and malignant group from their corresponding train set. The dashed
black line is the generator of (2.7). We choose a=1and h =1.

4.3.1. The influence of ienign and limalignant ON the accuracy (a = 0)

Let us now show how the accuracy of (4.2) is influenced, when we let a = 0 and we vary the parameter
hBenign and Ayalignant. We start with the contour plot of the average accuracy using the 2-dimensional
dataset (Figure 4.2). In this figure, we manage to capture an area where the average accuracy is the
smallest (75% - 80% accuracy). We also observe that choosing a very small k for both class, results in
a worst accuracy. Choosing a very large h for both groups seems to be not be a good idea as well as
the accuracy is around 25% - 30%.

For comparison purpose, we do have investigated how the contour plots look like when we take
the 3- and 5-dimensional dataset and a = 0 (see Figure 4.3 and Figure 4.4 respectively). It appears that
when we choose the appropriate column, s and a, the classifier can have a high accuracy as close as
to 100%; the highest average accuracy is approximately 96% in the case of our 3-dimensional dataset.
When we add the other two features of interest to the 3-dimensional dataset, the highest accuracy
becomes lower (around 85% - 90%).

4.3.2. The influence of a and the bandwidth parameter on the accuracy

Let us incorporate the tuning parameter a as well when estimating ﬁl Here, we let agenign = @Mmalignant
as opposed to the bandwidth parameter where hpenign and halignane may not be equal when we vary
them. So instead of using the notation @genign OT @Benign, We denote the tuning parameter per usual
(i.e. the parameter a). To cover the large a as well, we choose a = 2,5,10,30,50,100. Also, only the
3- and 5-dimensional dataset are investigated, since the parameter a will not influence the estimated
generator (see Section 2.3).

We start with the 3-dimensional dataset (see Figure 4.5). Visually, the area where the average
accuracy is the lowest, is smaller than when a = 0. Surprisingly, the highest average accuracy is still
around 95% - 100% when we increase a. What is clear from this figure, is how the dark blue area start
to appears around a = 30. It seems as if this area pushes the high accuracy area to the left hand side.
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Figure 4.2: The contour plot of the average accuracy of the classifier using the dataset with column worst texture and worst
smoothness (2-dimensional dataset).
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Figure 4.3: The contour plot of the average accuracy of the classifier using the dataset with column texture, smoothness
and area of the worst nuclei (3-dimensional dataset).
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Which means that a smaller £ is required for the high accuracy, if a is increased.

100.00-
10.00-
Average
accuracy
. {0.35, 0.40]
] W ox.0
0.10 . {0.45, 0.50]
. {D.50, 0.55]
|

E; 0.01- {0.55, 0.80)
z B coooes
£ 100.00- M ocs0m
B vn.om
B o705
10.00- . {0.80, 0.85]
B o5 00
[ 30,03
{0.55, 1.00]
0.10-
0.01-
1000 100.00 0.01 0. 10.00  100.00 0.01 . ‘0 1000 10000
hauig‘

Figure 4.5: The average accuracy of the classifier using the dataset with column worst texture, worst smoothness and worst
area (3-dimensional dataset). We choose a = 2,5,10,30, 50, 100.

This same behaviour can be seen when we consider the 5-dimensional dataset (see Figure 4.6).
But here, the area where the average accuracy is the highest change from 85% - 90% to 80% - 85%.
Though from this figure we can not tell whether the accuracy is lower or that the high accuracy area
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becomes very small.
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Figure 4.6: The average accuracy of the classifier using the dataset with with the additional column compactness and
fractal dimension of the worst nuclei (5-dimensional dataset). The same a is chosen as in Figure 4.5.

Note here that both hgenign and hmalignant Tange from 0.01 to 10000, but for the 3-dimensional
dataset case they range from 0.01 to 1000. We do this because in Figure 4.4 and 4.6 (a = 2), there are
smaller areas where the average accuracy is at the highest. And it seems that those areas lie on the
line Aalignant = NBenign- We wanted to know whether that area will turn dark blue as we increase the
bandwidth parameter. But that does not seem the case, instead, those smaller yellow areas start to
dissappear as we increase a.

Additionally, we observe that as a is increased, the average accuracy does not change by a lot. This
might be explained in the following way. Recall that we have to compute y := (y—ji,,) sty - 1, to
be able to apply KDE for one-dimensional dataset. This is then used to estimate the generator and it
is subsequently used to estimate the density function of the dataset. Since the average accuracy does
not change drastically, it might means that there are too few data points around the mean in the test
set. If the influence of a is investigated, we would need more points around the centre of the data
points.

There are other results where we show the sensitivity rate and specificity rate of the classifier. For
these results, the whole Wisconsin dataset serves as both the train and test set. If the reader wishes
to see how the these two rates change when the parameters in Liebscher’s estimator vary, we refer to
Appendix C.






Conclusion

In this thesis, we use Liebscher’s estimator to estimate the generator of some elliptical distribution.
We study the estimator by varying the bandwidth and the tuning parameter, and measure its perfor-
mance. At first, we are interested in the particular case where the simulated data is sampled from the
standard multivariate normal distribution.

From the simulations results, we conclude that the parameter a plays a smaller role in influenc-
ing the performance of the estimator as the dimension of the dataset becomes large. However, the
importance of choosing # is high and independent from the dimension, i.e. choosing 4 is less flexible
than choosing a. This makes an estimation of the generator become easier when we have a high-
dimensional data, because we only need to make sure that the bandwidth parameter is correctly cho-
sen.

Interestingly, we have seen how the logarithmic error linearly decreases with the sample size for
different choice of dimension. It appears that, for a sufficiently large sample size, we can use Stute
and Werner’s estimator to get a performance as good as Liebscher’s estimator. Unfortunately, there is
a trade-off with computational time for high-dimensional data. We have seen that the computational
time increases linearly with the dimension and the sample size.

Next, we simulate datasets that are sampled from elliptical distributions with other generators.
We first observe that Stute and Werner’s estimator has indeed difficulty in estimating the points around
the boundary, even when the sample size is large. Though, the estimator performs quite well away
from the boundary, even when the generator has multiple bumps. In this part of simulation studies,
we further learn that the robust version of Silverman’s rule of thumb method is not an ideal band-
width selection. It depends on the generator and the sample size, which is why we find this method
unreliable. So, we do not recommend the use of this bandwidth selection method in general practice,
which is also what [17] has mentioned.

Further, we conclude that finding the optimal a and & is a hard problem. This is because, for
small-dimensional data, the location of the area where the error is the smallest differs for each gener-
ator. Though we did not investigate the high-dimensional case for different generator, we conjecture
that the previous statement is also true for larger dimension.

Lastly, we study an application of these non-parametric estimation techniques to a real life clas-
sification problem. We use a Bayes’ classifier based on the estimated posterior probabilities. In this
study, we find that the parameter a has smaller role in influencing the accuracy of the classifier. How-
ever, it seems to influence the choice of the bandwidth parameter. For a larger a, we might want to
choose smaller £ for a better accuracy.
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Figure A.1: Contour plots of MISE and MSAE as a function of (a, k). The dimensions that are shown in each sub-figure are
(from left to right) 3,7,15 and 31. In (a) and (b), the sample size is 100. As for (c) and (d), we choose n = 500. Darker green
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Comparing The Rate of Decrease of
log,,(MISE)

In Section 3.2.4, we would like to know the relationship between the error and the sample size. The
error is obtained by two different estimators: one with a = 0 and h = hyy (i.e. a0 & S’) and the other
one is the 'best’ a and h (best a & h). In Figure 3.7, we see that the data points fit quite well with the
fitted line. However, we cannot see from the figures fast the error decreases for each estimator. In this
appendix, we will answer this question by applying ordinary linear regression.

For each dimension d = 3,7,15,31,63 and 127, we use the following linear model.

logw(WS\E) =ag+ fq-log,,(n) +yzParameter Choice + 6 ;log;,(n) - Parameter Choice +¢, (B.1)

where ¢ is the residual. The variable 'Parameter Choice’ is a dummy variable with two factors defined
in the following manner:

. 1, if the i-th observation belong to 'best a & h’,
Parameter Choice = . (B.2)
0, otherwise.

This means that we set the factor 'a0 & S’ as the baseline factor. Further, the interaction term log,,(n)-
Parameter Choice is included in the model, because the slope of the line seems to be different for
different parameter choice (see Figure 3.7).

Using Equation (B.1), (B.2) and least-squares method, we get two linear models for each d. Those
are

a0 & S:log, o (MISE) = &y + B4 -log,o(n),
best a & h:log,,(MISE) = (@g +Ta) + (Bg +64) -log, (1),

where @, Bd, Y4 and 5 4 are the estimated coefficients in (B.1). For’a0 & S, the intercept and the slope
are @y and Bd respectively. As for the factor 'best a & /', the terms & ;+7 4 and [Aid +6, 4 are the intercept
and the slope respectively.

The estimated coefficients are summarised in Table B.2 - B.7, which is done by using the stargazer
package [14]. The values in parenthesis underneath the estimated coefficients are the standard error
of the estimation. Using the estimated coefficients in these tables, we can then compute the slopes
and the intercept of each line in Figure 3.7 (see Table B.1).

From Table B.1, we see that the slope with parameter choice 'a0 & S’ is steeper than 'best a & /’.
The rate in which the error decreases seems to be faster in 'a0 & S’ in comparison to 'best a & h’ (e.g.
d = 31,63). In Table B.2 - Table B.7, we see that the estimated coefficient for the interaction term is
statistically significant for d = 3,31,63 and 127.
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B. Comparing The Rate of Decrease of log,,(MISE)

Dimension | Parameter Choice | Intercept | Slope

3 a0 &S -2.715 | —-0.830
besta & h -3.371 —-0.748

7 a0 &S -7.737 -0.794
besta & h -8.709 | —0.683

15 a0 &S -17.595 | —0.786
besta & h —18.475 | —0.585

31 a0 &S —-37.123 | —0.875
besta & h -38.348 | —0.528

63 a0 &S -76.732 | —0.788
besta& h —78.837 | —0.421

127 a0 &S —155.615 | -0.774
besta & h —-156.395 | —0.627

Table B.1: The slope and the intercept of each line in Figure 3.7, obtained by using ordinary linear regression.

Dependent variable:
log,,(MISE)
Ba —0.830***
(0.012)
Ya —0.656***
(0.041)
54 0.082***
(0.017)
@y —2.715%**
(0.029)
Observations 8
R? 1.000
Adjusted R? 0.999
Residual Std. Error 0.015 (df =4)

F Statistic

3,400.052*** (df = 3; 4)

Note: *p<0.1; **p<0.05; ***p<0.01

Table B.2: The estimated coefficients for d = 3
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Dependent variable:
loglo(mS\E)
Ba —0.794***
(0.069)
Ya -0.972**
(0.232)
0a 0.111
(0.098)
@y —7.737***
(0.164)
Observations 8
R? 0.989
Adjusted R? 0.981
Residual Std. Error 0.087 (df =4)
F Statistic 121.747*** (df = 3; 4)
Note: *p<0.1; **p<0.05; ***p<0.01

Table B.3: The estimated coefficients for d =7

Dependent variable:
logm(m)
Ba —0.786***
(0.067)
Ya ~0.880**
(0.222)
54 0.201
(0.094)
@y —17.595%**
(0.157)
Observations 8
R? 0.985
Adjusted R? 0.974
Residual Std. Error 0.083 (df =4)
F Statistic 89.259*** (df = 3; 4)
Note: *p<0.1; **p<0.05; ***p<0.01

Table B.4: The estimated coefficients for d = 15
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B. Comparing The Rate of Decrease of log,,(MISE)

Dependent variable:
logw(m)
Ba —0.875***
(0.028)
Ya —1.225%**
(0.092)
54 0.347***
(0.039)
@y —37.123***
(0.065)
Observations 8
R? 0.998
Adjusted R? 0.996
Residual Std. Error 0.034 (df =4)
F Statistic 560.913*** (df = 3; 4)
Note: *p<0.1; **p<0.05; ***p<0.01
Table B.5: The estimated coefficients for d = 31
Dependent variable:
logw(m)
Ba —0.788***
(0.069)
Ya —2.105%**
(0.229)
54 0.366**
(0.097)
@y —76.733***
(0.162)
Observations 8
R? 0.993
Adjusted R? 0.989
Residual Std. Error 0.086 (df = 4)

F Statistic

202.950*** (df = 3; 4)

Note:

*p<0.1; **p<0.05; ***p<0.01

Table B.6: The estimated coefficients for d = 63



Dependent variable:

log,,(MISE)
Ba —0.774***
(0.017)
Ya —0.780***
(0.056)
54 0.147***
(0.024)
Qg ~155.615***
(0.040)
Observations 8
R? 0.999
Adjusted R? 0.998
Residual Std. Error 0.021 (df =4)
F Statistic 1,478.149*** (df = 3; 4)
Note: *p<0.1; **p<0.05; ***p<0.01

Table B.7: The estimated coefficients for d = 127
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Wisconsin Dataset
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(b) The sensitivity rate (left) and the specificity (right) of the 3-dimensional dataset.
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C. Extra Classification Results from The Wisconsin Dataset
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Figure C.1: The sensitivity rate (left) and the specificity (right) of the dataset using the characteristics of the worst nuclei of
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(a) The sensitivity rate (left) and the specificity (right) of the 3-dimensional dataset, with additional parameter a.
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Figure C.2: The plots showing how the rates change when we vary both the bandwidth and the tuning parameter.
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