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Abstract— This study proposes the creation of a
multi-modal feedback system to guide humans towards
ergonomic poses. A number of studies have tried to
come up with methods where subjects are alerted upon
crossing biomechanical or ergonomic thresholds while
doing a task but not many have tried to successfully
and efficiently guide users to ergonomic positions after
having alerted them. Through this study we propose the
creation of a multi-modal feedback system comprising
of a visual and a speech based audio feedback and
hypothesize that the proposed system will lead to a
better performance as compared to the other feedback
modalities when trying to guide users from one pose to
another. During our study we have conducted two sets of
experiments to carry out a comparative study between
only audio, only visual and the proposed multi-modal
feedback system to try and find the modality most
effective and successful in guiding humans for pose
corrections and a comparative study between two types
of speech based audio feedbacks in joint space and end
point space to motivate our choice for using the more
desired one between the two for our proposed system.

Speech based feedback in joint space came out as
the preferred audio feedback due to its ability to allow
users to carry out efficient and coordinated inter-joint
movements especially in cases of high redundancy
whereas the proposed multi-modal feedback system
successfully shows its superiority over the other feedback
modalities by showing equivalent results against the
benchmark visual feedback when measured objectively
and better results when measured subjectively due to its
ability to successfully combine the advantages of audio
and visual feedback and at the same time, avoid their
limitations.

I. INTRODUCTION
Ever since the advent of the industrial

revolution, the manufacturing sector has become
central to the dependency of people on new
products. This high demand for manufactured
and fabricated goods has in turn led to an
increase in involvement of people in the

manufacturing process. The ever increasing
demand for products with the increasing human
population has in turn subjected people working
in the manufacturing sector to both physical
and mental stress. The continuous presence of
physical stress which involves the application of
force, repetitive execution of tasks or prolonged
periods of unnatural postures has led to a dramatic
increase in work related musculoskeletal disorders
(WMSD). Humans are not designed to be working
in factories or doing repetitive tasks. Hence, it is
inherently unnatural to expect a human to work
for prolonged periods under stressful conditions.
According to a report published by the European
Survey on Working Conditions (ESWC), ”24.7%
of the European workers complain of backache,
22.8% of muscular pains, 45.5% report working in
painful or tiring positions while 35% are required
to handle heavy loads in their work” [11].

Multiple theories have been put forward which
try to explain the cause of an injury. Kumar et
al.,[2] had suggested that causes of injuries are
either idiopathic or traumatic in nature. Feuerstein
et al., [3] put forward a a theory suggesting
that injuries are mostly caused because of a
person’s work style. More such theories have
been mentioned in literature [4],[12],[5] etc which
suggest models and eventually try to establish
causes of musculoskeletal injuries. But what is
interesting to note is that all the theories suggest
that the basic cause of an injury is biomechanical
in nature.

Such work related musculoskeletal injuries can be
prevented by alerting humans whenever they cross
certain biomechanical thresholds (eg. joint torque
overloads) while doing a task. There are numerous



Fig. 1: The figure above shows the entire overview of the proposed study. The subject starts off from a starting pose which
is captured by the camera and the image is used as input for a deep learning frame work (OpenPose[1]) used to detect the
joint keypoints. OpenPose extracts the coordinates of the concerned joints and we use their positions to create a 5 DOF
human body model as shown, to obtain the angular orientations and positions of the joints in real time. The current positions
of the concerned joints are used as input for the different feedback methods. Each feedback method is then responsible
for guiding the subject to efficiently and successfully carry out pose changes. Finally, a performance comparison is made
between the three to try and prove our hypothesis.

studies which have successfully alerted humans
through multiple feedback modalities such as
visual [6], [7], audio[8], haptic and vibrotactile[9].

However, not many studies were found which used
the above mentioned modalities to successfully
and efficiently guide humans from unergonomic
to ergonomic poses after having alerted them. The
existing unimodal systems were found to have the
following limitations :

Visual feedback systems have a major limitation
of causing cognitive overloads to humans while
doing a task as users have to constantly look
elsewhere (eg. at a screen) to receive feedback
regarding pose corrections and additionally, visual
feedback could also be a problem for small error
corrections as minute deviations might not be
easily visible to the users.

Audio feedback systems on the other hand
suffer from problems of habituation, where
continuous presence of sound can very easily

get lost in the background and the user realises
this only when the audio feedback either stops or
changes [15]. Further, transmission of complex
multi-dimensional data for pose correction (name
of joint, direction of movement and magnitude
of movement) through sonification techniques
(mapping of data into the different properties of
sound such as frequency, amplitude, pitch etc.)
or even through simple non-speech based audio
feedback techniques could very easily overwhelm
and confuse users.

Numerous haptic and vibrotactile sensors will
have to be used in order to carry out a direction
based guidance, the large number of sensors might
hinder natural movement. Also, the perception of
the magnitude of movement might differ from
person to person given the subjective nature of
the tactile feedback.

The above stated limitations of existing uni-
modal systems motivated us to propose the
creation of a system which would efficiently



and successfully guide humans from one posture
to another if they were found to be crossing
biomechanical thresholds of joint torque overloads
while doing a task.

We believe that a multi-modal feedback system
made up of a visual and speech based audio
feedback would be best suited to guide humans
from one pose to another. The visual feedback
would very successfully help users with real time
error visualization and position estimation and
they could rely on it to very efficiently carry
out large scale movements. Whereas the speech
feedback could be used to very efficiently guide
humans for minor pose adjustments once they are
close enough to the desired position and no longer
need to rely on visual feedback, thus also helping
to redistribute the cognitive overload visual
feedback systems suffer from. Additionally, the
speech based feedback would also not suffer from
the habituation problem simple audio feedback
has and is known to be the most efficient type
of audio feedback when providing users with
instructions [15].

Based on the above findings we hypothesize
that, A multi-modal system made up visual and
speech based audio feedback will lead to a
better performance as compared to the other
uni-modal feedback modalities when trying to
guide users from one pose to another. To try to
test our hypothesis we carried out an experiment
explained ahead.

II. METHOD

A. Feedback Mechanisms

In this section we explain the multiple feedback
mechanisms created to carry out a comparative
study of performance measures in order to test
our hypothesis. In total, we created four types
of feedbacks. Two types of speech based audio
feedback methods, a visual feedback system and
finally, the proposed multi-modal feedback system.

1) Audio Feedback in Joint Space: Speech
based audio feedback in joint space involves
a feedback method where the user is asked to
manipulate his pose in a joint specific manner

through speech based commands. The commands
are limited to the shoulder and elbow joints for
our case. The commands are in English and are
output at a rate of 180 words per minute which
is slightly higher than the average of 140-160
words per minute worldwide. The direction and
magnitude of movement are relative to the current
position of the joints.

Once the user has oriented his/her joints in
the desired pose, the system alerts users by raising
a beeping noise. The table below ( See Table:I)
shows the list of commands users receive for this
particular modality.

TABLE I: List of speech based audio commands in Joint
Space feedback

Command Joint Meaning
”Move arm up by xxx degrees” Shoulder Shoulder flexion
”Move arm down by xxx degrees” Shoulder Shoulder extension
”Flex elbow by xxx degrees” Elbow Elbow flexion
”Extend elbow by xxx degrees” Elbow Elbow extension

2) Audio Feedback in End point Space:
Another speech based audio feedback mechanism
was created which carried out arm manipulations
in end point (Cartesian) space. The wrist joint
was assumed to be the end point for our study.
Thus, subjects no longer received joint specific
commands but rather received commands which
asked them to manipulate their end point to a
desired coordinate position.

The commands were in English and are output
at 180 words per minute, same as the previously
mentioned audio feedback method. The direction
and magnitude of movement was relative to the
current position of the end point and the unit of
movement was in centimeters. The table below
(See Table:II) shows the list of commands subjects
received for this particular modality.

TABLE II: List of speech based audio commands in End
Point Space feedback

Command Meaning
”Move arm back by xxx” Move EP towards the body
”Move arm forward by xxx” Move EP away from body
”Move arm down by xxx” Move EP vertically down
”Move arm up by xxx” Move EP vertically up



3) Visual Feedback: Visual feedback system
was assumed to be the benchmark feedback
modality when it comes to performance
measurement. This is due to a number of
reasons - firstly, concurrent visual feedback is
the easiest and most natural form of feedback
modality[10]. Secondly, visual feedback is
superior to other senses when it comes to
understanding spatial information[10] and finally,
humans usually rely on visual feedback when it
comes to following trajectories and interacting
with the environment[16].

In visual feedback, subjects were able to see
a real time, stick figure representation of
themselves (in red) and the target position (in
white). The blue circles represented the five joints
of the human body namely ankle, knee, hip,
shoulder and elbow and the larger blue circle at
the end represents the wrist (See Fig: 2)

The subjects through this feedback were asked
to manipulate their position and try to reach the
desired pose in white and upon successfully doing
so, the colour of the screen would change to
green.

Fig. 2: The image above shows visual feedback which was
provided to the subjects. The current pose of the subject is
shown in real time in red and the desired pose is shown
in white. Subjects are tasked to reach the desired pose and
upon successfully doing so, the colour of the screen changes
to green.

4) Multi-modal Feedback: The proposed multi-
modal system interactively combines the two
modalities of visual and the speech based audio
feedback in joint space as mentioned before. The
proposed system can be used by users to first

carry out larger displacements by relying on the
visual feedback modality and once they are close
enough to the desired pose(± 5 degrees) they can
then rely completely on audio feedback to carry
out minor adjustments. This way users will not
have to constantly look up at the screen to receive
visual feedback regarding their pose and can
instead concentrate on the task while receiving
audio feedback for minor adjustments and only
switch to visual feedback in case they displace
their joints by a large amount. Upon reaching the
desired pose, the user is alerted by receiving a
beeping noise.

B. Participants

The study was carried out with 14 participants
(10 male, 4 female). The participants were between
23 and 27 years old (mean = 25.14 years; std
deviation = 0.989 years) with none/or corrected
vision and/or hearing impairment.

C. Experimental Design

Two within subject experiments were conducted
to try and prove the need for a multi-modal feed-
back system for ergonomic pose estimation by
comparing user performance between only audio
feedback, only visual feedback and the proposed
multi-modal feedback system and another, to moti-
vate our choice of using joint space audio feedback
in the proposed multi-modal system. For each
case, the performance results (obtained through
the chosen metrics explained in the next section)
for the audio and multi-modal feedback system
were compared against the visual feedback system,
which we have assumed to be a benchmark. We
believe that by carrying out a performance com-
parison between the three feedback techniques we
will be able to find the modality which was most
effective and successful in carrying out guided
pose correction and this in turn would help us test
our previously mentioned hypothesis.

D. Dependent Variables

To judge user performance we decided to use
both objective and subjective measures for each
experiment.



1) Objective Measures:
• TASK COMPLETION TIME - Task completion

time (TCT) measures the time taken to
complete the task which is indicated by the
start time till the time when a user holds the
desired position for 10 seconds. A smaller
TCT would indicate good performance as
it would mean that the user was able to
understand the feedback properly and could
thus complete the task quicker (See Fig:3).

• TOTAL DISTANCE MOVED - Total distance
Moved refers to the sum of the differences
of every joint angular position for every
time step which is measured until the user
is successfully able to orient both his joints
(shoulder and elbow) within the threshold (±
5 degrees) of the desired angular position. A
larger distance moved would be an indication
of bad performance as it would show the
user’s inability to understand the feedback
properly causing them to make multiple
adjustments (due to repetitive overshooting)
to their pose before reaching the desired
position.(See Fig:3)

2) Subjective Measures:
• NASA-TLX - The NASA-TLX was one of

the subjective measures used to evaluate the
overall task load by calculating a weighted
average of 6 different measures namely
mental demand, physical demand, temporal
demand, performance, effort and frustration
[14]. A final task load score would be
achieved by taking a weighted average of
the above mentioned metrics and a low score
would be an indication of low task load
and would help us in judging the feedback
mechanism from a subjective point of view.

• VAN DER LAAN - This subjective question-
naire was used to check the acceptance of
the desired feedback modality by getting a
usefulness and satisfaction score [13]. Each
score ranges between -2 to +2 and finally
a plot between the scores would help make
a case for the acceptability of the feedback
mechanism. A final score in the upper right

Fig. 3: The image above shows the filtered sensor data for
the shoulder and elbow joint for a single task. The final
pose angles have been subtracted from both joints so that
they converge to zero. Task Completion Time (TCT) is a
measure of the time taken to complete the task whereas Total
Distance Moved (TDM) measures the sum of the difference
between the angular positions between every time step. TDM
is measured until the end of the highlighted line as beyond
that the user is tasked to try and hold their position.

quadrant would indicate user acceptability.

E. Procedure

For the experiment, the subjects underwent
5 trials of each of the three conditions. To
familiarize the subjects to the feedback conditions
each subject underwent two or more practice
trials and once the subject was comfortable with
the feedback, the experiment was started.

The subjects were asked to stand opposite
to a camera system which was responsible for
capturing their poses and joint positions. We
used an open source pose estimation software,
OpenPose [1] to capture and evaluate these joint
angles (Refer to Appendix A for details). All
angular measurements were done in the saggital
plane for the right side only. The subjects were
asked to stand in a neutral starting pose which
was either standing with their arm stretched out
(shoulder at 90 degrees and elbow at 0 degrees)
or their arm stretched over their head (shoulder
and elbow both at 0 degrees). These two positions
were chosen because it was easiest to estimate



the starting angles of the joints with the naked
eye. They were then asked to follow the feedback
commands and try to reach the desired pose.
Their main objective was to try and complete the
task as quickly as possible but at the same time
avoid unnecessary errors and thus achieve good
performance. In order to minimize learning effect,
different starting and end poses were selected
for the 5 repetitions which were shuffled across
different conditions.

After finishing the 5 trials for each condition, the
subjects were asked to fill in the NASA-TLX and
Van der Laan questionnaires.

III. RESULTS
A. Task Completion Time

Fig. 4: Box plot of the total time to task completion for
each condition can be seen above. The proposed multi-
modal feedback system shows similar task completion time
as compared to the benchmark visual feedback while audio
feedback can be seen to have the highest TCT.

Audio feedback can be seen to have the highest
task completion time (mean = 40.971 seconds,
std deviation = 8.038 seconds) when compared
to visual feedback (See Fig: 4)(mean = 22.485
seconds, std deviation = 3.615 seconds) (p <
0.05).
The multi-modal feedback system on the other
hand can be seen to have a similar task completion
time (mean = 22.285 seconds, std deviation =
3.857 seconds) when averaged for the 14
participants and compared to visual (p=0.89)(See

Fig: 4).

B. Total Distance Moved

Fig. 5: A box plot showing the total distance moved by the
individual joints during the task for every condition. Similar
results can again be seen between the visual and multi-modal
feedback systems.

Only audio feedback can be seen to have a
higher overall movement for shoulder (mean =
134.533 degrees, std deviation = 42.462 degrees)
and elbow (mean = 172.311 degrees, std deviation
= 54.801 degrees) when compared to visual
feedback for shoulder (mean = 108.396 degrees,
std deviation = 7.854 degrees) and elbow (mean =
106.419 degrees, std deviation = 14.856 degrees)
(p<0.05 for each joint)
Multi-modal feedback on the other hand can be
seen to have a slightly larger overall movement
for either joint (shoulder - mean = 119.627
degrees, std deviation = 16.339 || elbow - mean =
119.512 degrees, std deviation = 24.205 degrees)
when compared to visual (p<0.05 for shoulder
and p=0.1 for elbow). (See Fig: 5)

C. Subjective Measures
Audio feedback can be seen to have an average

overall task load index of 42.162 and visual
feedback can be seen to have an average overall
task load index of 41.496 making both feed backs
almost equally demanding with no significant



Fig. 6: The figure above shows the results for the three
subjective measures used to evaluate task performance. The
proposed multi-modal feedback system can be clearly seen
to have better subjective experience compared to the other
feedback modalities in terms of overall task load, acceptance
and user preference.

difference (p=0.90). Multi-modal feedback shows
an average overall task load index of 28.996
which is significantly lower as compared to visual
feedback (p<0.05).

When comparing the results of the Van der
Laan questionnaire to see which feedback system
is deemed to be most acceptable by users, the
multi-modal system stands out to be a clear
favourite by having higher scores on both
usefulness and satisfaction scales.

We also asked users to rank the systems
between 1-3 (1 being the best and 3 being the
worst) to further corroborate the results of the
subjective measures and know their preference.
The multi-modal feedback system stood out to be
the clear favourite with 9 out of 14 people voting
it to be their most preferred form of feedback for
a guidance task. (See Fig:6)

IV. DISCUSSION

A. Task Completion Time

Audio based feedback can be seen to have the
highest task completion time among the three,
when averaged for the 14 participants. This was
an expected result as subjects took more time
because of two main reasons firstly, information

transmission through audio in a speech based
format is slow and thus subjects had to wait
and listen to the entire command and only then
could they carry out the movement. Secondly,
users did not know how far or close they were to
the desired position and the added difficulty of
approximating angles mentally, led to a constant
over or undershooting of the target position. These
two reasons together were responsible for a large
task completion time for audio feedback. Visual
feedback on the other hand allowed users to be
aware of their current positions at all times and at
the same time made users aware of the difference
between their current and desired pose. This way
users did not overshoot their mark and were able
to control their movements as soon as they got
close to the desired pose.

The multi-modal feedback system on the
other hand can be seen to have a similar TCT
when averaged for 14 participants and compared
to visual even though subjects had to switch
from one modality to another. This again was an
expected result since in the Multi-modal feedback,
the subjects relied on the visual feedback to carry
out larger movements and could thus visualize
their position differences making them move
quicker. The audio feedback was activated only
when the subject was +- 5 degrees away from the
desired position, thus limiting the comparatively
slower audio feedback to only a small portion
of the task. Given that we had assumed visual
feedback to be a benchmark, a similar TCT does
show that the new feedback modality is equally
efficient for the current metric.

B. Total Distance Moved

Audio based feedback can be very clearly seen
to have a significantly larger distance travelled for
both the shoulder and the elbow when compared to
visual feedback. This was an expected result since
subjects could not visualize or know their current
position as in the case of visual feedback and thus
kept overshooting or undershooting their mark
and had to compensate for their extra movement
leading to an overall higher total displacement.
As in the case of visual feedback, the users



TABLE III: The table below shows the mean results for the objective and subjective metrics. The audio and Multi-modal
systems are individually compared to the Visual system to check for statistical significance. The values highlighted in green
indicate a p value of < 0.05 which was obtained after carrying out a two tailed Student’s T test.

Metric Audio Visual Multi-modal
Task Completion Time (seconds) 40.97 22.48 22.28

Shoulder = 134.53 Shoulder = 108.39 Shoulder = 119.62Total Distance Travelled
(degrees) Elbow = 172.31 Elbow = 106.31 Elbow = 119.51

NASA - TLX Task load Index 42.16 41.49 28.99
Usefulness = 1.27 Usefulness = 1.15 Usefulness = 1.54Van der Laan Satisfaction = 0.66 Satisfaction = 1.03 Satisfaction = 1.28

started off by moving their arms quickly to carry
out large movements and as soon as they were
close to desired position, their movements became
controlled and careful. But with audio feedback,
given the difficultly one has to process and
implement angles mentally, users tended to move
by larger angles even when they were very close
to position leading to additional overall movement.

Multi-modal feedback on the other hand can
be seen to have a slightly larger overall movement
for either joint when compared to visual. One
must keep in mind that in the Multi-modal
feedback case, the audio feedback was activated
only when the user was +- 5 degrees away from
the desired position. However, users were seen
to move by larger amounts because they found
it a little difficult to approximate the angles. The
additional adjustments one had to make attributed
to the slightly larger angular displacements. One
can however argue and say that with continued
usage and practice, small angle approximation will
get better for a user and this overall movement
could further be reduced.

Another interesting thing that we can see
from the graph (See Fig: 5) is that in the case of
audio feedback, users can be seen to move their
elbows more than their shoulders. This could be
because of a number of reasons. Firstly, since
the elbow is connected to the shoulder, while
changing the relative position of the shoulder
subjects unknowingly also changed the position
of their elbow as well. Thus, when a user moves
his/her shoulder by the said amount he/she also
tends to move the elbow joint by a small amount

without having received any command for elbow
movement. This way subjects had to compensate
for the extra elbow movement leading to a
higher displacement of the elbow as compared
to the shoulder. Thus, if subjects tried to keep
the relative position of one joint constant while
moving the other, this error could be avoided.

This problem cannot be seen in either of
the other cases. This could be because in both
visual and multi-modal the users rely on visual
feedback more and thus can move both joints
simultaneously in a coordinated manner while
trying to reach the desired position and also they
have constant real time feedback and this way
they can approximate their errors better.

C. NASA-TLX

Audio and visual feedback seem to be almost
equally demanding with no significant difference.
The higher workload for audio can be attributed
to frustration. Users reported extremely high
ratings for this metric in particular as a constant
audio feedback, while carrying out a task can
be annoying, leading to a high frustration score
across almost all participants. While in visual
feedback, the effort metric was deemed the
most challenging as users had to constantly look
towards a screen while carrying out a task to
check whether they were in the right position or
not, leading to a larger effort to complete the task.

Multi-modal feedback on the other hand was seen
to have a significantly lower overall workload
as compared to visual. This was an expected



result since the multi-modal feedback specifically
reduced the effort metric as users no longer had to
look towards a screen to receive feedback but they
could now concentrate on the task after having
reached close enough to the desired position and
carry out minute changes by only paying attention
to the audio based feedback and had to shift focus
to the screen only when larger position changes
were needed. Further, the multi-modal system
also significantly reduced the frustration scores
as audio feedback was limited to only a small
portion of the trial rather than be present at all
times.

However, a large variance can be seen in
the multi-modal feedback as compared to the
other two because some users found the feedback
to be slightly more demanding because there
wasn’t any alert mechanism to let them know
when they needed to switch from one feedback
modality to another. There were certain cases
where subjects while receiving audio feedback
overshot their mark and deviated from the ± 5
degree threshold and there was no way for them
to know that they now had to switch to visual
feedback to check and see by how far they had
deviated. This led to them rating the Multi-modal
feedback slightly higher as compared to the
other participants and in turn leading to a larger
variance in the overall results.

D. Van der Laan

All feedback modalities can be seen to be in
the upper right quadrant indicating that they are
acceptable to the users. However the multi-modal
feedback was indicated to be more useful and
satisfying as compared to the other two. The
usefulness could be higher given that it helped
redistribute the mental task workload by allowing
users to concentrate more on the task rather
than the feedback unlike visual feedback where
users could either concentrate on the task or on
the feedback. The satisfaction rating was also
the highest because the system presented audio
feedback only when users were close enough
to the desired pose and not throughout the trial
which was the case for the only audio based

feedback which can be seen to have the lowest
satisfaction rating as compared to the others.

Based on the above findings we can come
to some important conclusions. Multi-modal
feedback took almost the same amount of time
for task completion as compared to visual and
given that visual was considered to be the
benchmark, multi-modal feedback was successful
in objectively saying that it did not take users
longer time to complete the task even though
they had to shift focus from one modality to
another. Secondly, when comparing the overall
shoulder and elbow movement, multi-modal
feedback had a slightly higher overall movement
as compared to visual. But we also suggested that
this performance could be greatly improved with
a little bit of practice and familiarization. Finally,
multi-modal feedback provided a significantly
lower overall task load index as compared to
visual and also provided a higher acceptance
rating given that it has the advantages of visual
feedback that is, real time error approximation
for large scale movements and additionally it
also incorporates the advantage audio has of
redistributing mental task load by allowing users
to concentrate more on the task while receiving
the desired feedback. Keeping these results in
mind and carrying out a few design modifications
(alerts to let users know when to switch from one
modality to another and a slightly more pleasant
and natural voice command) we can say that
multi-modal feedback comprising of audio and
visual will greatly help improve task performance
and user satisfaction for ergonomic applications.

V. EXPERIMENT 2

A second experiment was also conducted
which would help motivate our choice for using
audio feedback in joint space for our multi-modal
feedback system. For this experiment we decided
to compare user performance between audio
feedback in joint space and audio feedback
in endpoint space using the same metrics as
mentioned above.

Through the experiment we did find that
users took significantly lesser time to complete



the task in end point space and at the same time
also had an overall lesser movement of either
joint as compared to joint space feedback (Refer
to Appendix D for details) however we also
found one major limitation end point space had
which made us choose joint space feedback over it.

End Point space feedback has a major drawback.

Fig. 7: The major drawback of using End-Point feedback can
be very clearly seen from the figure above. The highlighted
portion indicates the last 10 seconds of the trial where is user
is asked to try and hold his position after having reached the
desired pose. In Joint-Space feedback the user is successfully
able to converge his joints to the desired pose whereas in
End-Point feedback case, the user is far away from the
desired joint position even though the endpoint (wrist) has
successfully reached its desired position. This clearly shows
its limitation for being used in an ergonomic guidance task
in cases involving very high redundancy.

It cannot be used in cases where redundancy is
high as it only focuses on the positioning of the
endpoint and completely disregards the individual
joint positions (See Fig:7). In other words, the
users when receiving end point feedback can
orient their joints in multiple ways to reach the
same end point position. Thus, completely failing
for an ergonomic guidance task which happens
to be the main application of such a feedback
modality. Joint Space feedback alone can be quite
challenging for users but it does not suffer from
redundancy problems. Thus, for cases of high
redundancy one might prefer to receive audio
commands in Joint Space making it the preferred
audio feedback type for our multi-modal feedback
system. End Point space feedback could be more
useful and efficient for low redundancy movement

cases such as movements limited to the lower
body where one might assume the hip to the end
point and the ankle joint to be the base.

VI. LIMITATIONS AND FUTURE WORK
A number of limitations were identified during

our study. The pose estimation was carried out
with a pre-trained model and thus had a lot of
noise. This could be reduced by training the model
further to suit our needs and in turn providing us
with more accurate angular measurements. Some
users reported the speech based feedback to be
slightly unnatural and thus with continued usage
this could lead to higher annoyance. The system
is currently limited to carrying out pose estimation
for only the right arm and thus further research
needs to be done to expand its application to the
whole body. Finally, the proposed feedback system
is limited to quasi-static tasks such as drilling,
polishing, grinding etc. where users have to hold
their position for a few seconds to do the task. It
would be of great interest to check the applicability
of such feedback methods to real time dynamic
tasks to further promote their need to prevent
unnecessary musculoskeletal injuries.

VII. CONCLUSION
In this study we have successfully created a

multi-modal feedback system for pose correction
for an ergonomic task and tried to bridge the
gap of a lack of direction based pose correction
feedback mechanisms. The proposed feedback
system was made up of a visual feedback which
was used to carry out large range body movements
and a speech based audio feedback system which
was used for minor pose adjustments once
the human was close enough to the desired
pose. Through this feedback system we were
successfully able to combine the advantages of
visual and audio feedback namely, real time error
approximation and redistribution of mental task
load along with muti-dimensional information
transmission which was done through the help of
the speech based feedback. We had hypothesized
that the proposed system would provide better
performance as compared to the existing uni-
modal feedback systems.

Our system showed equivalent performance



results when compared to the benchmark results
of visual feedback when measured objectively
through two metrics of task completion time
and total distance moved. However, subjective
results showed significantly lower overall task
load index and better acceptance across users.
Thus making a strong case for the need of a
multi-modal feedback system for guiding humans
from unergonomic to ergonomic poses.

Each modality was responsible for a particular
perception and we believe that the proposed
multi-modal system successfully combined these
and we in turn created a more reliable and easy
to use feedback method for position guidance.
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Appendix A

This section explains the techniques used for estimating the pose and joint angular orienta-
tions in real time.

1.1 Pose Estimation

To carry out the pose estimation it was important to select a technique which would help
us keep track of the kinematic positions of the joints while the human was doing the task.
In order to successfully do so we decided to make use of an open source deep learning based
pose estimation software, OpenPose [1].

OpenPose is an application that allows real time human pose estimation. It uses an RGB
image as input for its multi-stage convolutional neural network. The neural network in turn
produces a set of confidence maps and part affinity fields which are processed to give the
2D joint key points of the humans in the image based on the type of human body model used.

It currently has 3 types of body models Body-25, COCO and MPII. For our purposes,
we have made use of the Body-25 model as it was the model with the best balance between
accuracy and speed. The system outputs the coordinates of 25 joints of the human body
based on the Body 25 model as shown in the figure below (See Fig: 1.1).

Since our experiments are limited to the right hand side of the body only, we were only
concerned with the key points mentioned in the table below (See Table: 1.1).

Table 1.1: Extracted keypoints from the Body-25 human model

Key Point Joint Name
2 Right Shoulder
3 Right Elbow
4 Right Wrist
9 Right Hip
10 Right Knee
11 Right Ankle

1



Figure 1.1: Body-25 model used for pose estimation.

1.1.1 Using a markerless motion capture technique for pose esti-
mation

Traditional techniques of pose estimation or motion capture such as sensor based tracking
(eg. using IMus) or marker based optical tracking (eg. using commercially available VICON
or Optotrack) have not been used for our study. The reasons behind this have been explained
ahead.

Use of a marker based optical tracking technique was rejected because such systems suf-
fer from problems of (1) occlusion - where if a marker is covered by an object or other
body part, the system is unable to detect the marker and this in turn leads to errors during
data generation and (2) these systems also require a controlled laboratory environment in-
volving fixed and calibrated camera setups, thus limiting their use in a dynamic environment.

Sensor based tracking techniques on the other hand involve attachment of multiple sen-
sors on different anatomical key points which might hinder natural motion.

Based on the above mentioned limitations it was decided to make use of a markerless optical
tracking technique to carry out pose estimation for our study as such systems do not suffer
from problems of occlusion, controlled laboratory environments and also do not hinder nat-
ural motion. Further, studies such as Dutta[2],Clark et al.[3],Schmitz et al.[4] and Nakano
et al. [5] also suggest that markerless optical tracking techniques are almost as accurate as
the traditional techniques of motion capture.

Thus, based on the findings and conclusions a markerless optical tracking technique was
made use of to carry out pose estimation for our study.
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1.2 Body Model

After successfully extracting the real time key points coordinates it was important to find the
real time angular positions of the joints since our feedback system was carrying out position
guidance through angle based commands. In order to do so, a 5 degree of freedom human
body model was created using the extracted joint key point coordinates. The body model is
a stick figure representation of the human’s right hand side viewed in the saggital plane.

The angular measurements of joints are found with respect to the previous joint as seen
in the figure (See Fig: 1.2). We decided to treat each limb as a vector and found the angle
made by one segment, relative to the previous segment.

(a) 5 DOF human body model where each joint
angle is calculated in reference to the previous joint.

(b) Stick figure representation of the model
visualized as a human with the labelled joints.

Figure 1.2: Body model
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Appendix B

This section explains the methods used to create the different types of feedback systems used
for our study.

2.1 Audio Feedback

Two types of Speech based audio feedbacks were created and used for this study. Both
feedbacks were created using the Text-to-speech module in-built in the Python library.

2.1.1 Joint Space Feedback

In this type of feedback, commands were provided in a joint specific manner where the di-
rection and magnitude of movement was provided. Since our study was limited to the the
manipulation of the arms, only elbow and shoulder joint manipulations were carried out.
At each iteration of the loop we checked the current and desired angular position of each of
the joints and accordingly asked the users to move the joint by the differing amount. We
assumed a threshold of ± 5 degrees for the joint angle positions. Thus the feedback always
guided the user to positions within the defined threshold of the target position.

To calculate the angular orientation of a particular joint the coordinates of the current
joint, and the joint preceding and proceeding it were found. The vector length between
three segments was found using (See equations: 2.1, 2.2 and 2.3). Upon successfully ob-
taining the vector lengths between the three segments the angular orientation of the middle
joint (current joint) was found with respect to the other two joints. And since we wanted
the angular orientations of joints with respect to the previous joint, the final orientation was
obtained by using (See equations: 2.4 and 2.5) .

p1 =
√

(x1 − x2)2 + (y1 − y2)2 (2.1)

p2 =
√

(x2 − x3)2 + (y2 − y3)2 (2.2)

p3 =
√

(x1 − x3)2 + (y1 − y3)2 (2.3)
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Where p refers to the length of the vector and x and y are the joint keypoint coordinates.

z =
(p2

1 + p2
2 − p2

3)

(2 ∗ p1 ∗ p2)
(2.4)

θ = π − cos−1(z) (2.5)

Where z is the angle made by the current joint with respect to the other two joints and θ
denotes the final angular orientation of the current joint with respect to the previous joint.

2.1.2 End Point Space

When giving feedback in end point (Cartesian) space we assumed the wrist to be our end
point and used the angular positions of the joints as inputs to a kinematic equation to receive
the X and Y cartesian coordinates (See equations: 2.6 and 2.7) of our endpoint. The subject
received speech commands which tried to guide them towards the desired coordinates of the
end point and the unit of movement was in centimeters. The ankle joint was assumed to
be the base and it was also assumed that the subject stands upright at all times, thus the
ankle, knee and hip angles were assumed to be 90,0 and 0 degrees respectively (based on
the human body model as explained before) whereas the shoulder and elbow angles were
estimated in real time and continuously updated during the trial.

X = l1.cosθ1+l2.cos(θ1+θ2)+l3.cos(θ1+θ2+θ3)+l4.cos(θ1+θ2+θ3+θ4)+l5.cos(θ1+θ2+θ3+θ4+θ5)
(2.6)

Y = l1.sinθ1+l2.sin(θ1+θ2)+l3.sin(θ1+θ2+θ3)+l4.sin(θ1+θ2+θ3+θ4)+l5.sin(θ1+θ2+θ3+θ4+θ5)
(2.7)

Table 2.1: Symbols used for finding the kinematic coordinates of the end point and their meaning. Please also refer to Figure
1.2.

Symbol Meaning
θ1 Ankle Angle
θ2 Knee Angle
θ3 Hip Angle
θ4 Shoulder Angle
θ5 Elbow Angle
l1 Distance between knee and ankle
l2 Distance between knee and hip
l3 Distance between hip and shoulder
l4 Distance between shoulder and elbow
l5 Distance between elbow and wrist

Since we had previously assumed a threshold of ± 5 degrees for each joint, we first
calculated the end point coordinate positions for the upper and lower limits defined by these
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thresholds. The feedback mechanism guided the subjects by instructing them to stay within
the space bound by these coordinates.

2.1.3 Why use a speech based audio feedback?

Unlike the norm, where most feedback systems employing auditory feedback use non-speech
auditory feedback techniques such as earcons, sonification etc., we decided to make use of
a speech based feedback method. One of the main reasons for making such a choice is
the ability of speech based feedback to provide a dynamic range of instructions. Given the
multi-dimensional nature of the feedback commands needed to be provided for our study
namely, joint name, direction of motion and magnitude of movement, using a speech based
audio feedback technique seemed to be the preferred choice. Speech based feedback is also
superior to other non-speech feedback techniques in cases where absolute values need to be
transmitted [7] which happens to the magnitude of movement of the arm and its joints in
our case. Speech based feedback is also free from the problem of habituation [7] which other
non-speech audio feedbacks suffer from, where users get lost in the background because of
the continuous presence of sound and are alerted only when the sound changes or stops.

2.2 Visual Feedback

To carry out visual feedback a stick figure representation of the human was made using
OpenCV [6]. The desired pose was shown in white and the real time pose was shown in red.
Since, the feedback was limited to the arm, we assumed that the subject would be standing
upright throughout and thus the angles of the ankle, knee and hip were assumed to be such
that the figure seemed upright.

The angular joint positions for the elbow and shoulder were used to plot lines using the
equations shown below,

X(i+1) = Xi − cosθi (2.8)

Y(i+1) = Yi − sinθi (2.9)

Where i refers to the joint previous (or below) to the current joint. Thus, the ankle an-
gle would be used to find the coordinates of the knee and the knee angle would be used
to find the coordinates of the hip and so on. Additionally, X and Y represent the pixel
coordinates of the specified joints.
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2.3 Multi-modal Feedback System

A multi-modal feedback system is one which has the ability to respond to a single input in
multiple ways. For our study, the multi-modal system uses joint angle orientations as input
and outputs direction based guidance through either visual or a speech based audio feedback
in joint space.

Multi-modal systems have numerous advantages over other uni-modal systems [?] such as:
increasing system robustness, increasing communication bandwidth between human and ma-
chine, increase the user’s ability to correct errors, etc.

Our proposed multi-modal system processes each information channel of visual and audio
separately and thus does not increase the cognitive load by providing both feedbacks in a
concurrent manner. We believe that by processing these channels separately and using each
channel to solve a different type of problem will in turn improve the quality of the solutions
as compared to the solutions provided by uni-modal systems.

Our multi-modal system uses the visual channel to guide users to carry out large pose
correction movements since providing real time error visualization is easiest to understand
through a visual system and the audio system is activated only when users are close enough
to the desired position and no longer need the help of a visual tool. This way, the cognitive
overload that could be caused through a visual feedback system is avoided as users no longer
need to look elsewhere for feedback and can concentrate on the task at hand.
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Appendix C

This section explains the two subjective measures used to evaluate task performance for each
of the experiments.

3.1 NASA Task Load Index

Subjects were asked to fill in a NASA-TLX questionnaire after undergoing 5 trials of the
same condition in order to obtain the overload task load index. The questionnaire is used to
evaluate the overall task load by taking a weighted average of six sub-scales namely, mental
demand, physical demand, temporal demand, frustration, effort and performance. Out of
these, the first three relate to the demands forced by the task on the subject and the latter
three relate to the demands imposed due to the interaction between the task and subject[?].

The questionnaire is a two part form made up of weightings and ratings. Subjects are
initially asked to fill in the weightings form (See Fig: 3.1a) which includes 15 pair wise com-
parisons of the six previously mentioned sub-scales. Subjects are asked to circle the metric
which was more demanding for them between the two while doing the task. After receiving
feedback for the 15 pairs, the frequency of the number of times a particular sub-scale is
selected is noted which acts as a weighting factor for the overall task load evaluation. Each
sub-scale can receive a weight between 0 to 5.

Subjects are then asked to fill in the ratings form (See Fig: 3.1b) where they are asked
to approximate the workload contribution of each individual sub-scale while doing the task.
The ratings are between 0 (not demanding at all) to 100 (extremely demanding).

After obtaining the weighting and the rating for each sub-scale, the weight is multiplied
to the rating to obtain the adjusted rating for each sub-scale. The adjusted ratings of the
six sub-scales are summed together and divided by 15 to obtain the overall task load index.

3.2 Van Der Laan Questionnaire

Subjects were also asked to fill in the Van der Laan questionnaire to assess the acceptability
of the feedback method through a two dimensional scaling system made up of Usefulness and
Satisfaction [?]. The questionnaire involves a list of nine likert scaled questions (See Fig:
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(a) 15 pair wise comparison of the six sub-scales
to obtain weights of individual sub-scales towards
overall task load.

(b) Form to obtain raw ratings of each sub-scale
while doing the task.

Figure 3.1: Paper-pencil version of the NASA-TLX

3.2) rated between -2 to +2. Usefulness is measured by summing the scores of questions
1,3,5,7 and 9 and dividing the total by 5 (end score between -2 to +2) whereas Satisfaction
is measured by summing the scores of questions 2,4,6 and 8 and dividing the total by 4 (end
score between -2 to +2). A graph can be plot between the usefulness and satisfaction scores
and if the point lies in the top right quadrant, the system is deemed acceptable.

Figure 3.2: Nine likert scaled questions from the Van der Laan questionnaire.

3.3 Data Filtering

Before analysing the results of the experiments it was important to filter the data and remove
any outliers which might have occured due to noise or sensor errors. We used a Savitsky-
Golay filter having a window size of 11 and order 3 to make our data more readable and free
off outliers (See Fig: 3.3).
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Figure 3.3: Plot showing the raw unfiltered v/s filtered data of all feedback modalities for one random subject. Each subject
underwent 5 trials of the same condition.
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Appendix D

This section explains the results of the experiment conducted to motivate our choice of using
a speech based audio feedback in joint space.

4.1 Experiment 2

The goal of this experiment was to motivate our choice of using a speech based audio feed-
back in joint space for our proposed multi-modal feedback system.

4.1.1 Method

Subjects were asked to stand opposite to a camera system with their right hand side saggital
plane facing the camera. Subjects were asked to stand in a neutral position (arm stretched
out or arm straight over the head) and had to follow the instructions provided by the feed-
back mechanism to reach the desired pose. Upon successfully doing so a beeping noise was
heard and subjects had to try and hold the end position for 10 seconds.

Subjects underwent 2-3 trial runs to familiarize themselves to the feedback method and
were asked to complete the task as quickly as possible with minimum errors.

4.1.2 Results

Task Completion Time

Audio feedback in end point space (mean = 29.41 seconds, std deviation = 3.831 seconds)
can be seen to have a significantly lower (p<0.05) task completion time as compared to joint
space feedback (mean = 40.97 seconds, std deviation = 8.038 seconds)(See Fig: 4.1).

Total Distance Moved

No significant difference(p=0.6) in overall joint movement can be seen for either joint in
either conditions. For end point space feedback (shoulder - mean = 126.66 degrees, std
deviation = 34.13 degrees; elbow - mean = 161.169 degrees, std deviation = 64.377 degrees)
a slightly lower overall average for either joint can be seen as compared to joint space feedback
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Figure 4.1: Box plot of the total task completion time for each audio based feedback condition can be seen above. Joint space
feedback can be seen to have a higher task completion time as compared to audio feedback in end point space.

(shoulder - mean = 134.533 degrees, std deviation = 42.462 degrees; elbow - mean = 172.315
degrees, std deviation = 54.803 degrees)(See Fig: 4.2).

Subjective Measures

Audio feedback in joint space can be seen to have a mean overall task load index of 40.235
as compared to 43.996 for end point space feedback(p=0.53)

The results of the Van der Laan questionnaire show that the scores for both feedback mech-
anisms lie in the upper right quadrant, making them acceptable by users.

Additionally, we also asked subjects to rank their preferred feedback mechanism to further
corroborate the results of the subjective questionnaires. Surprisingly, 10 out of 14 subjects
preferred the audio commands in joint space (See Fig: 4.3).

Table 4.1: The table below shows the mean results for the objective and subjective metrics. The results of the audio feedback
systems in joint space and end point space are compared through Student’s T Test to check for statistical significance. The
values highlighted in green indicate a p value of < 0.05.

Metric Joint Space EndPoint Space
Task Completion Time (seconds) 40.97 29.41

Shoulder = 134.53 Shoulder = 126.66Total Distance Moved
(degrees) Elbow = 172.31 Elbow = 161.17

NASA TLX 40.235 43.996
Usefulness = 1.27 Usefulness = 1.13

Van der Laan
Satisfaction = 0.77 Satisfaction = 0.86
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Figure 4.2: A box plot showing the total distance moved by the individual joints during the different audio feedback conditions.

Figure 4.3: The figure above shows the results for the three subjective measures used to evaluate task performance. Both
feedback types seem to be equally demanding but when asked to rank their preferences, more users seem to prefer audio
feedback in joint space over endpoint space

4.1.3 Discussion

Task Completion Time

Audio feedback in endpoint space can be seen to have a significantly lower task completion
time as compared to audio feedback in joint space. This was an expected result, as in joint
space the user receives joint specific commands one after another and has to wait individually
for every joint specific command to finish before carrying out the desired movement. Whereas
in endpoint space, the user is asked to manipulate only his end point (wrist, in our case) and
thus carries out coordinated movement of his other joints without having to wait for specific
commands for them. Additionally, it is also easier to manipulate the arm as a whole rather
than manipulate individual joints leading to smaller overshoots and thus lesser compensatory
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corrective movements leading to an overall lesser time.

Total Distance Moved

No significant difference can be seen between the two conditions when comparing the total
movement for each individual joint. Endpoint manipulation did show slightly lesser average
movement when compared to joint space for each joint. This could be attributed to the
fact that in end point space feedback asked the users to manipulate their entire arm and
focused on positioning the endpoint making it easier for the user to carry out coordinated
movements with lower over/under –shoots as they no longer had to carefully position and
manipulate each joint individually.

One can also see a larger distance moved by the elbow as compared to the shoulder for
either condition. This can be explained by the fact that when receiving joint space com-
mands users tend to move their elbow along with their shoulders when receiving shoulder
commands and in turn had to compensate for the extra movement leading to an overall
larger displacement for the elbow. Whereas when subjects received endpoint space feedback,
the elbow joint was moved along with the shoulder joint at all times and in particular to
carry out minor adjustments or moving the forearm up or down. Thus leading to an overall
higher displacement for the elbow.

Subjective Measures

A NASA-TLX was used to measure the overall task load index while performing the trials
in the two types of audio based feedbacks. No statistically significant difference was found
between the task load. Both tasks seemed to be equally taxing to the user. Based on the
above results one might say that receiving only speech based audio feedback is probably not
preferred by users and can be annoying or frustrating. Joint space feedback was seen to
have higher scores for the mental demand and effort metrics as users found it difficult to
carry out individual joint manipulations while having to approximate angles during move-
ment while for endpoint feedback users reported higher frustration scores. Overall higher
task load scores for endpoint feedback could be attributed to the fact that users found it
less efficient as compared to joint space feedback as they now they were asked to manipulate
both their joints in order to reach the desired endpoint position as compared to specific and
efficient joint movements in the case of joint space feedback.

When comparing the user acceptability for both feedbacks, we can see that both present
themselves in the upper right quadrant making each one acceptable to users. However, there
seems to be no statistical difference between the scores for either scales. End Point feedback
was seen to be slightly more satisfying to users probably because of having less specific and
mentally taxing commands whereas Joint Space feedback seemed to be more useful due to
its efficient joint specific movement commands.
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4.1.4 Conclusions

From the above objective and subjective measures we can draw some conclusions. Joint
Space feedback took a significantly longer time to complete the task and also had a slightly
higher overall movement while being rated equally demanding on the NASA-TLX. Despite
the above shortcomings, users still preferred to receive Joint Space commands simply because
of the fact that they are much more efficient. However, one major limitation of end point
feedback was also identified during the study, it cannot be used in cases where redundancy
is high as it only focuses on the positioning of the endpoint and completely disregards the
individual joint positions (See Fig: 4.4). Meaning, it fails to be successful in cases where
multiple joint positions are possible to reach the same end point. Thus, completely failing
for an ergonomic guidance task which happens to be the main application of such a feedback
modality. Joint Space feedback alone can be quite challenging for users but it does not suffer
from redundancy problems. Thus, for cases of high redundancy one might prefer to receive
audio commands in Joint Space making it the preferred audio feedback type for our proposed
Multi-modal feedback mechanism. End Point feedback could be more useful and efficient for
low redundancy movement cases such as movements limited to the lower body.

Figure 4.4: The major drawback of using End-Point feedback can be very clearly seen from the figure above. The highlighted
portion indicates the last 10 seconds of the trial where is user is asked to try and hold his position after having reached the
desired pose. In Joint-Space feedback the user is successfully able to converge his joints to the desired pose whereas in End-Point
feedback case, the user is far away from the desired joint position even though the endpoint (wrist) has successfully reached
its desired position. This clearly shows its limitation for being used in an ergonomic guidance task in cases involving very high
redundancy.
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Appendix E

5.1 Proposed Real Life Application

The main application of the proposed multi-modal system is to guide humans from uner-
gonomic to ergonomic poses. A pose can be classified as unergonomic if during the pose
certain biomechanical thresholds of joint torque overloads are crossed. Joint torques of indi-
vidual joints can be found by making use of a human model similar to that used by [8] and
further used by [9],[10],[11],[12], etc. The main objective of using such a model is to calculate
the overloading joint torques when an external object was being handled by the human (eg.
drilling machine, polishing machine, etc.). The model eliminates the use of any external
sensors such as force plates to find ground reaction forces and calculates the overloading
torques by finding the difference between the estimated Center of Pressure (CoP) between
the human model with and without an external load.

The model uses angular orientation of the joints as an input to calculate the overloading
torques. These orientations can be obtained by placing a stereo vision camera which will
capture RGB images and use them as input for a deep learning based pose estimation soft-
ware (eg. OpenPose [1]) which will provide the coordinates of the joint key points. The
disparity of the stereo vision camera can further be used to calculate the 3D positions of the
joint key points. Once joint key point positions are obtained one can use those to calculate
the angular orientations.

Once the angular orientations are available, real time estimation of joint torque overloads
can be obtained. Whenever certain thresholds are crossed, users can be alerted and guided
to optimized positions where their torques are minimized using the proposed multi-modal
system. The current system is for now limited to quasi-static tasks such as drilling, polishing,
grinding, etc. where one needs to hold a pose for 5-10 seconds.

Provided certain design modifications are made to the feedback system to include real time
position optimization and other changes as mentioned in the paper previously, we believe that
the system will be extremely beneficial in preventing work related musculoskeletal injuries.
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