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ABSTRACT
We consider the problem of jointly estimating the states and sparse
inputs of a linear dynamical system using noisy low-dimensional
observations. We exploit the underlying sparsity in the inputs us-
ing fictitious sparsity-promoting Gaussian priors with unknown
variances (as hyperparameters). We develop two Bayesian learning-
based techniques to estimate states and inputs: sparse Bayesian
learning and variational Bayesian inference. Through numerical
simulations, we illustrate that our algorithms outperform the con-
ventional Kalman filtering based algorithm and other state-of-the-art
sparsity-driven algorithms, especially in the low-dimensional mea-
surement regime.

Index Terms— Kalman smoothing, robust filtering, sparse
Bayesian learning, variational Bayesian inference, Gaussian prior

1. INTRODUCTION

Sparse control of linear dynamical systems (LDS) has recently
gained considerable research interest [1–5]. This new research area
deals with the optimum control of an LDS with sparsity constraints
on the control inputs, i.e., the number of nonzero entries in the inputs
(active input elements) is small compared to their lengths. Such con-
straints arise in networked control systems [1, 2], opinion dynamics
manipulation [6], computer vision [7, 8], and cyber-physical sys-
tems [9,10]. In such systems, an important goal is to jointly estimate
the states and sparse inputs of the LDS from its measurements or
output. For example, owing to their compact representations, sparse
control inputs are desirable in networked control systems where
the controller and plant communicate over a bandwidth-limited
channel [11]. Similarly, recovery of malicious attacks on cyber-
physical systems, modeled as sparse inputs, is crucial in detecting
and mitigating the attacks [9, 10].

Motivated by the above applications, this paper focuses on de-
veloping state and input recovery algorithms for observable LDSs
with sparse control inputs. Specifically, we consider a discrete-time
LDS with state transition matrix Ak ∈ Rn×n, input matrix Bk ∈
Rn×m, and the measurement matrices Ck ∈ Rp×n and Dk ∈
Rp×m at discrete time k,

xk+1 = Akxk +Bkuk +wk (1)
yk = Ckxk +Dkuk + vk. (2)

Here, uk ∈ Rm is the input, xk ∈ Rn is the state, and yk ∈ Rp is
the measurement at time k. Also, wk and vk are noise terms. We
aim to simultaneously estimate the states and sparse inputs {xk,uk :
∥uk∥0 ≪ n}Kk=1 from the low dimensional measurements {yk}Kk=1

with p < m, for a given K > 0. Here, ∥ · ∥0 denotes the ℓ0-norm.

Joint recovery of states and input without assuming any specific
structure on the inputs or states has been studied extensively, and
several algorithms exist in the control literature [12–16]. How-
ever, these algorithms do not account for any underlying sparsity
structure that may exist in the inputs. Exploiting sparsity can po-
tentially facilitate the recovery of states and inputs with far fewer
measurements than conventional approaches. The limited existing
works have solved the problem of jointly recovering the state and
sparse input sequences as one of ℓ1 minimization using convex
optimization methods [17]. The necessary and sufficient condi-
tions for observability of sparse control inputs and the initial state
for a noiseless LDS have also been investigated [18]. However,
the ℓ1 minimization-based methods involve solving for a large di-
mensional unknown sparse vector obtained by concatenating the
state/input vectors and do not exploit the temporal correlation, for
example, in the state evolution model. To address the above gaps
in the literature, this paper presents new sparsity-driven estimators
with better recovery performance and reduced complexity.

The specific contributions of the paper are as follows: We de-
velop an approach called the sparse robust Kalman smoothing (RKS)
that imposes sparsity on the estimated control inputs using the ex-
ponential family of prior distributions. We present two techniques
to solve the resulting estimation problem: sparse Bayesian learning
(SBL)-RKS and variational Bayesian (VB)-RKS. In the first tech-
nique, inspired by the SBL framework, we rely on the type-II max-
imum likelihood estimation combined with Kalman smoothing to
determine the states and sparse inputs. In the second technique, we
develop a VB-based approach to group the prior parameters and un-
known states and inputs as unobserved variables, which are inferred
via their posterior distributions. We analyze and derive the time
and memory complexities of both approaches. Further, we extend
the two approaches to the case of jointly sparse control inputs and
present a similar analysis.

2. SPARSE ROBUST KALMAN SMOOTHING

In this section, we present algorithms to estimate state and sparse in-
puts {xk,uk}Kk=1 from {yk}Kk=1 in (1) and (2). We assume that
noise wk ∼ N (0,Qk) and vk ∼ N (0,Rk) are independent,
where Qk ∈ Rn×n and Rk ∈ Rp×p are positive definite matrices.

We use a Gaussian prior to promote sparsity in the inputs,
uk ∼ N (0 Diag(γk)), for k = 1, 2, . . . ,K where γk ∈ Rm is
the unknown hyperparameter. We learn the unknown hyperparam-
eters, states, and sparse inputs from the measurements using two
approaches: SBL-RKS and VB-RKS, which are described next.
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2.1. Sparse Bayesian Learning-based RKS

SBL-RKS first computes the estimate γ̂ML
k of the hyperparameter as

γ̂ML
k = argmax

γ∈Rm×1
+

p
(
{yk}Kk=1;γ

)
. (3)

Using γ̂ML
k , we can estimate the states and inputs using a Kalman

filtering and smoothing algorithm. For this, we note that (1) and (2)
are equivalent to the following system:

ξk+1 =

[
Ak Bk

0 0

]
ξk+

[
wk

zk

]
and yk =

[
Ck Dk

]
ξk+vk, (4)

where zk = uk+1 is an auxiliary variable and we define

ξk =
[
xT

k uT
k

]T
. (5)

Also, using the noise covariance Qk and Gaussian prior on the in-
puts, we have

[
wT

k zT
k

]T ∼ N (
0, Q̄k

)
, where

Q̄k =

[
Qk 0
0 Diag {γk+1}

]
, (6)

for k = 1, 2, . . . ,K. Hence, estimating the states and inputs is
equivalent to estimating {ξk}Kk=1 using {yk}Kk=1 via the standard
Kalman filtering and smoothing due to the Gaussian assumptions.
Next, we complete the derivation of SBL-RKS by solving (3).

The optimization problem in (3) does not admit a closed-form
solution, so we employ the expectation-maximization (EM) algo-
rithm to solve it. The EM algorithm is an iterative method with E
and M steps. In the rth iteration, the E-step computes the expected
log-likelihood function Q(r) of {γk}Kk=1 with respect to the cur-
rent distribution of the measurements {yk}Kk=1 and the hidden data
{ξk}Kk=1, given the previous estimate γ

(r−1)
k of the hyperparameter

γk. The M-step maximizesQ(r) to obtain the new estimate γ(r)
k . To

computeQ(r), we use the state space model in (4) to get

p
(
{yk, ξk}Kk=1; {γk}Kk=1

)
=

K∏
k=1

p(yk|ξk)p (ξk | ξk−1;γk) , (7)

where ξ0 = 0. Since ξk =
[
xT

k uT
k

]T, the E-step is given by

Q(r)
(
{γk}Kk=1

)
=

K∑
k=1

E
ξk,ξk−1|{yk}Kk=1

;γ
(r−1)
k

{log(p(yk|ξk)

×p (xk | ξk−1) p (uk;γk))} . (8)

From the above relation, the M-step that maximizes Q(r) with re-
spect to {γk}Kk=1 is separable and simplifies to

γ
(r)
k = argmax

γ
E
uk|{yk}Kk=1

;γ
(r−1)
k

{p (uk;γ)} . (9)

Using the Gaussian assumption on uk, we derive the M-step as

γ
(r)
k = argmin

γ:Γ=Diag{γ}
log |Γ|+Tr

{
Γ−1(ûk|KûT

k|K + Pu
k|K)

}
(10)

= Diag
{
ûk|KûT

k|K + Pu
k|K

}
. (11)

Here, ût|k ∈ Rp and Pu
t|k ∈ Rp×p are the mean and covariance of

posterior Gaussian distribution of ut given {yk}Kk=1, for any t and k.
They can be computed by applying Kalman filtering and smoothing
on the modified state space model in (4). The overall SBL-RKS
algorithm is summarized in Algorithm 1.

Algorithm 1 RKS with Sparse Bayesian Learning

Inputs: {yk,Ak,Bk,Ck,Dk,Qk,Rk}Kk=1

Parameters: ϵthres and rmax

Initialization: γ(0)
k = 1 for k = 1, 2, . . . ,K, r = 1, ϵ = 2ϵthres

1: Āk =

[
Ak Bk

0 0

]
∈ R(n+m)×(n+m), C̄k =

[
Ck Dk

]
2: while ϵ > ϵthres and r < rmax do
3: Compute Q̄k using (6), for k = 1, 2, . . . ,K

#E-Step:
4: ξ̂0|0 = 0, P ξ

0|0 = I
#Filtering:

5: for k = 1, 2, . . . ,K do
6: ξ̂k|k−1 = Āk−1ξ̂k−1|k−1

7: P ξ
k|k−1 = Āk−1P

ξ
k−1|k−1Ā

T
k−1 + Q̄k−1

8: Gk = P ξ
k|k−1C̄

T
k

(
Rk + C̄kP

ξ
k|k−1C̄

T
k

)−1

9: ξ̂k|k = ξ̂k|k−1 +Gk

(
yk − C̄kξ̂k|k−1

)
10: P ξ

k|k =
(
I −GkC̄k

)
P ξ

k|k−1

11: end for
#Smoothing:

12: for k = K − 1,K − 2, . . . , 1 do
13: Kk = P ξ

k|kĀ
T
k

(
P ξ

k+1|k

)−1

14: P ξ
k|K = P ξ

k|k +Kk

(
P ξ

k+1|K − P ξ
k+1|k

)
KT

k

15: ξ̂k|K = ξ̂k|k +Kk

(
ξ̂k+1|K − Ākξ̂k|k

)
16: P ξ

k+1,k|K =
[
P x

k+1|K P xu
k+1|K

]T
KT

k

17: Compute ûk|K and Pu
k|K from ξ̂k|K and P ξ

k|K using (5)
18: end for

#M-step:
19: γ

(r)
k = Diag

{
ûk|KûT

k|K + Pu
k|K

}
, for k = 1, 2, . . . ,K

20: ϵ =
∑K

k=1

∥∥∥γ(r)
k − γ

(r−1)
k

∥∥∥2

, r ← r + 1

21: end while
22: Compute {x̂k|K , ûk|K}Kk=1 from ξ̂k|K using (5)
Ensure: {x̂k|K}Kk=1 and {ûk|K}Kk=1

When the inputs are jointly sparse, we can use a common prior
uk ∼ N (0,Diag {γ}), i.e., γk = γ. The resulting algorithm,
called multiple measurement vector SBL-RKS (MSBL-RKS), is
identical to Algorithm 1 except for Steps 3 and 19, which change to

Q̄k =

[
Qk 0
0 Diag {γ}

]
, k = 1, 2, . . . ,K (12)

γ(r) =
1

K

K∑
k=1

Diag
{
ûk|KûT

k|K + Pu
k|K

}
. (13)

2.2. Variational Bayesian-RKS

In the variational Bayesian approach, we employ a two-stage hier-
archical prior. Specifically, we assume uk ∼ N (0 Diag(γk)),
and βk(i) ∼ Gamma(a, b), where the precision hyperparameter

13432
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βk(i) = 1/γk(i). Here, Gamma(a, b) is the Gamma distribu-
tion with shape parameter a > 0 and rate parameter b > 0. Un-
like the two-step estimation in SBL-RKS (hyperparameter estima-
tion followed by the state-input estimation), VB-RKS estimates the
unknowns Z =

{
XK

1 ,UK
1 , {βk}Kk=1

}
jointly as the mean of their

posterior distribution. However, the posterior computation is in-
tractable, and we approximate it using factorized distributions,

p(Z|{yk}Kk=1) ≈ q(Z) =
K∏

k=1

qxk (xk)q
u
k (uk)q

β
k (βk), (14)

where qxk (·), quk (·), and qβk (·) are the marginal distributions of the
latent variables xk,uk, and βk, respectively.

The optimal marginal distribution that minimizes the Kullback-
Leibler divergence between the true and factorized posteriors is [19]

log qxk (xk) ∝ Eq(Z\xk)

{
log p

(
Z, {yk}Kk=1

)}
, (15)

where ∝ denotes equivalence up to an additive constant, and the ex-
pectation is with respect to all the latent variables except xk. Further,

p(Z, {yk}Kk=1)=

K∏
k=1

p(yk|xk,uk)p(xk|xk−1,uk−1)

× p(uk|βk)p(βk), (16)

where p(uk|βk) is Gaussian and p(βk) is Gamma distributed. Con-
sequently, we arrive at

ln qxk (xk) ∝ ∥yk −Ckxk −Dk⟨uk⟩∥2Rk

+ ∥⟨xk+1⟩ −Akxk −Bk⟨uk⟩∥2Qk

+ ∥xk −Ak−1⟨xk−1⟩ −Bk−1⟨uk−1⟩∥2Qk−1
, (17)

where ⟨·⟩ denotes the mean of a random variable following the
marginal distribution derived from q(·). Hence, the marginal distri-
bution qxk (xk) is Gaussian whose mean is given by

⟨xk⟩ = P x
k

[
CT

k R−1
k yk +Q−1

k−1Bk−1⟨uk−1⟩

−
(
CT

k R−1
k Dk +AT

k Q
−1
k Bk

)
⟨uk⟩

+Q−1
k−1Ak−1⟨xk−1⟩+AT

k Q
−1
k ⟨xk+1⟩

]
, (18)

where P x
k =

(
CT

k R−1
k Ck +Q−1

k−1 +AT
k Q

−1
k Ak

)−1
. Similarly,

the marginal distribution of uk is also Gaussian whose mean in

⟨uk⟩ = Pu
k

[
DT

k R
−1
k yk −

(
DT

k R
−1
k Ck +BT

k Q
−1
k Ak

)
× ⟨xk⟩ +BT

k Q
−1
k ⟨xk+1⟩

]
, (19)

where Pu
k =

(
DT

k R
−1
k Dk +BT

k Q
−1
k Bk + ⟨diag {βk}⟩

)−1
. We

use xK+1 = 0 for k = K and x0 = 0 for k = 1 in (18) and (19).
Finally, q(βk) =

∏m
i=1 q(βk(i)) is Gamma distributed with mean

⟨βk(i)⟩ =
a+ 0.5

b+ 0.5⟨u2
k(i)⟩

=
a+ 0.5

b+ 0.5 [⟨uk(i)⟩2 + Pu
k (i, i)]

.

(20)
Using (18), (19), and (20), the marginal distribution parameters are
iteratively updated until convergence to obtain the approximate pos-
terior distribution. The pseudocode is summarized in Algorithm 2.

Algorithm 2 Variational Bayesian RKS

Require: {yk,Ak,Bk,Ck,Dk,Qk,Rk}Kk=1

Parameters: rmax and r̃max

Initialization:⟨xk⟩ = 0, ⟨uk⟩ = 0, ⟨βk⟩ = 1 for k = 1, . . . ,K

1: for r = 1, 2, . . . , rmax do
2: for r̃ = 1, 2, . . . , r̃max do
3: Compute x

(r,r̃)
k = ⟨xk⟩ using (18) for k = 1, . . . ,K

4: Compute u
(r,r̃)
k = ⟨uk⟩ using (19) for k = 1, . . . ,K

5: end for
6: Compute β

(r)
k = ⟨βk⟩ using (20) for k = 1, . . . ,K

7: end for
Ensure:

{
x

(r,r̃)
k

}K

k=1
and

{
u

(r,r̃)
k

}K

k=1

When all the inputs are jointly sparse, similar to SBL-RKS, we
use a common prior uk ∼ N (0,Diag{β}), i.e., βk = β for k =
1, 2, . . . ,K. The VB-RKS for joint sparse input recovery, called
multiple measurement vector VB-RKS (MVB-RKS), is identical to
Algorithm 2 except that (20) in Step 6 changes as

⟨β(i)⟩ = a+ 0.5

b+ 0.5
K

∑K
k=1⟨u2

k(i)⟩
. (21)

2.3. Complexity Analysis

The SBL-RKS, and VB-RKS are iterative, and each iteration of both
the algorithms has time complexity O(K(n3 + m3 + p3)) which
scales linearly with K for the versions with and without the joint
sparsity assumption. Since the sparsity-driven algorithms consider
low-dimensional measurements where m ≥ p, the time complex-
ity reduces to O(K(n3 + m3)). For comparison, we consider the
state-of-the-art ℓ1 minimization-based algorithm, referred to as ba-
sis pursuit (BP)-RKS (group BP-RKS for the joint support case).
We have derived BP-RKS and group BP-RKS by extending the algo-
rithm in [17] to handle noise and joint support recovery. BP-RKS is a
non-iterative algorithm whose complexity scales as O(K

7
2m

3
2 p2 +

K(n3 + p3)) due to the convex programming optimization using
the interior point method. So, our algorithms have low complex-
ity order when the number of iterations is small. The auxiliary
space complexity of SBL-RKS, VB-RKS, and BP-RKS algorithms
areO(p2+K(n2+m2)), which reduces toO(K(n2+m2)) when
m ≥ p. We omit the details due to space constraints.

3. SIMULATION RESULTS

In this section, we present the empirical results that illustrate the per-
formance of the proposed algorithms. Our setting is as follows. We
choose the state dimension n = 30, the input dimension m = 100,
and the number of time steps K = 30. The sparsity level of the
input is s = 5, and the locations of s nonzero entries are chosen
uniformly at random from {1, 2, . . . ,m}. Further, the nonzero en-
tries are drawn independently from a normal distribution N (0, σ2

u)
with σu = 5. For the time-varying support case, we choose different
support for each time instant k, and for the jointly sparse case, we
use the same support for all values of k. The entries of system ma-
trices, A, B, C, and D, and the initial state x1 are independently
drawn from the standard normal distribution. Also, the process noise
covariance Q and the measurement noise covariance R are chosen

13433

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2025 at 09:04:30 UTC from IEEE Xplore.  Restrictions apply. 



0 50 100 150 200

Measurement dimension (p)

10
-4

10
-3

10
-2

10
-1

10
0

S
ta

te
 N

M
S

E

[15]

SBL-RKS

VB-RKS

BP-RKS

(a) NMSE in state estimation

0 50 100 150 200

Measurement dimension (p)

10
-3

10
-2

10
-1

10
0

In
p
u
t 
N

M
S

E

[15]

SBL-RKS

VB-RKS

BP-RKS

(b) NMSE in input estimation

0 50 100 150 200

Measurement dimension (p)

0

0.5

1

1.5

2

2.5

3

3.5

F
S

R
R

[15]

SBL-RKS

VB-RKS

BP-RKS

(c) Percentage of false support recovery

Fig. 1: Performance comparison of our sparse recovery algorithms and RKS as a function of measurement dimension p when the support of
control inputs are time-varying, with n = 30, m = 100, K = 30, s = 5. The SNR is 20 dB.

Table 1: Run time comparison of the algorithms with n = 30, p =
20, m = 100, K = 30, s = 5. The SNR is 20 dB.

Support Algorithm Runtime
Number of
iterations

Time
varying

BP-RKS 73.94 s -
SBL-RKS 14.5 s rmax=30

VB-RKS ∼5 min
rmax=200
r̃max=200

Jointly
sparse

Group BP-RKS 52 s -
MSBL-RKS 13.5 s rmax=30

MVB-RKS ∼5 min
rmax=200
r̃max=200

to be identity matrix and σ2
vI respectively. Finally, σv is computed

from the measurement SNR using the relation SNR = sσ2
u/σ

2
v .

For this setting, we compare the performance of our algorithms
with two benchmark algorithms: (BP)-RKS (group BP-RKS for the
joint support case) [17], and the state-of-the-art algorithm in [15],
which is a minimum variance unbiased estimator of states and (non-
sparse) inputs. We use three metrics for comparison: normalized
mean squared error (NMSE) in the state and input estimation, false
support recovery rate (FSRR) for input estimation, and run time.
Here, FSRR is defined as the ratio of the Hamming distance be-
tween the true and estimated supports and the length of the inputs.
We define the support as a binary vector with one corresponding to
the entries greater than 0.8σu and zeros elsewhere. The results are
summarized in Figs. 1 and 2 and Table 1.

From Fig. 1, we infer that the conventional filtering algo-
rithm [15] has poor NMSE performance compared to the sparsity-
driven approaches of SBL-RKS, VB-RKS, and BP-RKS. This un-
derscores the importance of exploiting sparsity for accurate state
and input estimation. Also, the algorithm in [15] operates in the
high-measurement regime as it does not exploit sparsity, and fails
in the low-dimensional measurement regime where p < m. The
NMSE of the filtering algorithm in [15] is comparable to that of the
sparsity-driven algorithms only when p > m, but the latter outper-
form [15] even in that regime. We observe similar results for the
joint support case, which we omit because of space limitations.

Furthermore, it is evident from Fig. 1 that the SBL-RKS and VB-
RKS outperform BP-RKS in terms of NMSE in both state/input es-
timation and FSRR in the low measurement regime. As we increase
the number of measurements, the performances become compara-
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Fig. 2: Phase transition diagram for our sparse recovery algorithms
with n = 30, m = 100, K = 30. The SNR is 20 dB.

ble. This difference is explicitly shown using the phase transition
diagram in Fig. 2, which plots the minimum value of the number
of measurements p required for 90% recovery accuracy (i.e., suc-
cessful recovery of the sparse signals in 90% of the random exper-
iments). Here, a sparse vector is said to be successfully recovered
if the NMSE between the original signal and the recovered signal
is below 0.05. Clearly, the SBL-RKS and VB-RKS algorithms re-
quire fewer measurements compared to BP-RKS. The joint sparsity-
aware counterpart algorithms follow a similar trend: group BP-RKS
requires fewer measurements than the non-joint sparse algorithms;
and MVB-RKS and MSBL-RKS outperform group BP-RKS.

From Table 1, we see that SBL-RKS has the best run time. VB-
RKS has a similar complexity order as that of SBL-RKS and simple
update steps with a shorter run time per iteration. However, it needs
a large number of iterations for convergence, resulting in a longer
overall run time. Thus, SBL-RKS is a better choice compared to VB-
RKS, although both algorithms have a similar recovery performance.

4. CONCLUSION

We studied the joint estimation of the states and sparse inputs of
a linear dynamical system. We developed novel algorithms for the
joint estimation problem using a Gaussian prior-based hierarchical
Bayesian learning approach. We also extended our approaches to
the jointly sparse input case and demonstrated utility of exploiting
the underlying sparsity. The theoretical guarantees and fundamental
limits of sparse recovery algorithms for such linear dynamical sys-
tems are interesting directions for future work.
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