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Abstract—Demonstrative results of a probabilistic 
constraint handling approach that is exclusively using 
evolutionary computation are presented. In contrast to other 
works involving the same probabilistic considerations, in this 
study local search has been omitted, in order to assess the 
necessity of this deterministic local search procedure in 
connection with the evolutionary one. The precision stems 
from the non-linear probabilistic distance measure that 
maintains stable evolutionary selection pressure towards the 
feasible region throughout the search, up to micro level in the 
range of 10-10 or beyond. The details of the theory are revealed 
in another paper [1]. In this paper the implementation results 
are presented, where the non-linear distance measure is used in 
the ranking of the solutions for effective tournament selection. 
The test problems used are selected from the existing 
literature. The evolutionary implementation without local 
search turns out to be already competitively accurate with 
sophisticated and accurate state-of-the-art constrained 
optimization algorithms. This indicates the potential for 
enhancement of the sophisticated algorithms, as to their 
precision and accuracy, by the integration of the proposed 
approach. 

Keywords—evolutionary algorithm; multiobjective 
optimization; constrained optimization; probabilistic modeling 

I. INTRODUCTION 

Evolutionary algorithms have become the most 
prominent approach for solving optimization problems 
during the three decades of their emergence. The 
advancements have been surprisingly rapid, presumably due 
to the simplicity of the original concept and its broad 
applicability that includes situations where insight into a 
problem is minimal. Today the evolutionary computation 
literature encompasses many advanced optimization 
algorithms having the spirit of genetic algorithms in 
essence. Updated surveys are reported in the literature from 
time to time, e.g. [2, 3]. The development process of the 
methodology may be broadly categorized as follows. The 
hallmarks of the first half are the developments along single 
objective optimization, and those of the second half were 
multiobjective optimizations in Pareto sense. As to the latter 
there are a number of excellent text books contributing to 
the advancement of evolutionary multiobjective 
optimization [4-6]. During both periods the main focus was 
on solving unconstrained problems; however, within each 
period, gradually more and more attention was paid to 
constrained optimization. Since multiobjective optimization 

can be formulated as a single objective with constraints, 
where the constraints are the rest of the objectives subject to 
minimization, constrained optimization with a single 
objective function in some sense is a general case, and this 
is the case in this work. A widely used method for 
constrained optimization is the penalty function method. 
Penalty function method penalizes a solution, which 
deteriorates the fitness of a solution when it violates 
constraints. This penalization is accomplished by adding a 
value to the objective function value in proportion to the 
amount of constraint violation, where the proportionality 
factor is known as the penalty parameter.  A strategy that 
did not require a penalty parameter in evolutionary 
constrained optimization was proposed by Deb in 2000 [7], 
which is superseded by another research with the penalty 
parameter [8]. In this approach during the tournament 
selection process an infeasible solution is always treated as 
inferior compared to a feasible one, or as inferior to a 
solution that violates the constraints to a lesser extent. 
Coello [9] proposed a self-adaptive penalty approach by 
using a co-evolutionary model to adapt the penalty factors. 
However, in general determination of a right penalty 
parameter still remained an issue. 

Within the methodological framework of the penalty 
parameter approach, local search in combination with 
evolutionary computation (EC) has shown to be effective 
for solving constrained optimization problems [8]. In this 
combination the local search is an alternative for selection 
pressure in precision demanding problems. The role of EC 
in the joint evolutionary-classical approach is not the search 
for a feasible solution, but to produce a suitable starting 
condition for the effective execution of the local search, so 
that the actual reaching of feasible solution is essentially due 
to the local search and not due to the evolutionary 
computation. In an earlier study the effectiveness of local-
search based evolutionary constrained optimization was 
enhanced by introducing a probabilistic distance metric into 
the evolutionary component of the method [10]. From the 
mentioned joint-evolutionary works, as their effectiveness is 
essentially due to local search, one can get the impression 
that a deterministic procedure, such as local search, is rather 
imperative in order to enable EC for constrained 
optimization. 
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The motivation of this work is to assess the necessity of 
local search in connection with EC for constrained 
optimization by studying if EC without any deterministic 
component alone can be used for precision optimization. 
The hypothesis is that the probabilistic treatment used to 
enhance the local-search based algorithm in [10] might by 
itself be sufficient to enable evolutionary algorithm to reach 
feasible solutions, which would make usage of local search 
unnecessary. Such finding would exemplify that EC is not 
inevitably forced to take a subordinate role to a 
deterministic procedure for precision demanding 
optimization, and this novel insight might stimulate new EC 
centered research in the constrained optimization area. 
Accordingly, in this paper the probabilistic approach is 
implemented without local search and its convergence in 
this basic form is investigated. The approach is based on a 
probabilistic model of the random solutions that serves to 
derive a nonlinear distance measure for grading the 
constraint satisfaction performance of every population 
member. While the details of the probabilistic distance 
measure are revealed in another paper [1], this paper 
presents the implementation results in order to verify the 
theoretical considerations. In the present work the non-
linear distance measure is used to rank the genetic 
population members for effective tournament selection. The 
exponential ranking procedure ensures the same high 
selection pressure towards the feasible region throughout the 
search process, up to micro level in the range of 10-10 or 
beyond. This implies precision in the algorithm’s 
convergence behavior. The exponential nonlinear ranking 
(NR) procedure itself does involve the non-dominated 
sorting technique for the tournament selection, and this 
integrated procedure has been used in the local-search based 
method in [10]. In contrast to this, in the present 
implementation without local search, NR is used in 
alternating sequence with the conventional, namely non-
probabilistic ranking, as it is used in the original non- 
dominated sorting (NS) technique of the well-known 
NSGA-II algorithm [11]. For this reason the algorithm 
developed for this paper is named NS-NR algorithm.  

The organization of the paper is as follows. In section 
two, formulation of general multiobjective optimization 
problem as constraint single objective problem by weighting 
method are presented. In section three, probabilistic 
modeling of the random solutions for exponential ranking 
implementation in evolutionary algorithm is described. In 
section four, several implications of the exponential ranking 
are highlighted. In section five a demonstrative computer 
experiment is given and it is followed by discussion and 
conclusions. 

II. WEIGHTING METHOD FOR MULTIOBJECTIVE 
OPTIMIZATION 

A. Problem Formulation 

Although some basic information about the probabilistic 
treatment used in the NS-NR approach is given in [1], some 
basic information is also included here for the stand-alone 
representation and completeness of this paper. 

The formulation in this research stems from the 
considerations known as weighting method [12-14]. In this 
method each objective is associated with a weighting 
coefficient and the weighting sum of the objectives is 
minimized. In this way, the multiple objective functions are 
transformed into a single objective function. We assume that 
the weighting coefficients wi are real numbers such that 0  
wi for all objectives i=1,….,k so that a weighting problem 

can be stated as 

1

min ( )
k

i i
i

w f subject to S


  x x
  (1)

In the constraint handling presented in this work a single 
objective is involved which is subject to minimization. 
Therefore the problem can be stated as  

1 2min ( ) ( [ ( ), ( ),..., ( )] 0T
mf subject to g g x g x g x x x) =  (2)

We assume that the feasible region is of the form 

1 2{ | ( [ ( ), ( ),..., ( )] 0}n T
mS x R g g x g x g x  x) =  (3)

One notes that in this formulation every constraint function 
gi(x)=-vi(x) where v denotes the actual degree of violation 
of a constraint, and this degree is a non-negative number for 
a violated constraint. Hence the functions gi(x) have a 
negative value for a violated constraint, whereas ۦgi(x)ۧ, has 
a positive value for a violated constraint, as ۦαۧ is the 
bracket operator that is equal to –α if α<0, and zero 
otherwise. Therefore, the sum of violations ۦgi(x)ۧ is another 
objective subject to minimization. That is, the problem 
formulation becomes a problem of two objective functions 
that are both subject to minimization. In this case, the 
formulation of the problem using weighting method 
becomes 

1 2min ( ) (w G w fx x)  (4)

where G(x)=f1(x) and f(x)=f2(x), and for k number of 
constraints G(x) is given by 

1

( ) ( )
k

i
i

G g


x x  (5)

where μ	are	non‐negative	values	that	are	not	all	zero. 
Thus, the problem definition becomes explicitly,  

1

1 2

min ( ) ( ) ( ) ( )

{ | ( [ ( ) , ( ) ,..., ( ) ] 0}

k

i i
i

n T
m

g f G f

S x R g g g g




  

  

 x x x x

x) = x x x

  (6)

where w1=i, w2i=1. Without deviating from generality, this 
formulation of the problem is equivalent to a single 
objective problem with the objective f(x) and the constraints 
denoted by ۦgj(x)ۧ. Such an approach is known as -
Constraint method [14, 15]. Here one of the objective 
functions is selected to be optimized and all the other 
objective functions are converted into constraints by setting 
an upper bound to each of them. The problem to be solved is 
now of the form 

minimize   fl(x);  subject to fj(x) j for all j=1,2,….,k, 
jl; xS, where l{1,…,k}. Naturally, inequalities can be 
converted to equalities by taking j=0 for all j=1,2,….,k, jl. 
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B. Issues of the penalty function approach 

Conventionally, (6) is written in the form 

1

min ( , ) ( ) ( )
J

j j
j

P R f R g


 x x x
  (7)

where function ۦgj(x)ۧ is considered to be a penalty function 
and the parameters Rj are the associated penalty parameters; 
Since each individual Rj is not known, conventionally a 
common penalty parameter R is defined so that (7) becomes 

1

min ( , ) ( ) ( )
J

j
j

P R f R g


   x x x   (8)

or taking f2(x) =f(x) and the summation of the ۦgj(x)ۧ 
functions as f1(x), we can write 

2 1min{ ( ) ( )}optP f R f x x  (9)

To solve the optimization problem given by (9) with the 
weighting method, one can consider some options as 
follows. 

 
 Approach to the final optimal solution by means of constant Fig. 1. 

penalty parameter R.  

a)  R is a constant. In this case, the development of the 
optimal front is illustrated in figure 1. The final 
development is the theoretical front and the solution is 
denoted with the point T which is far from the optimal 
point denoted by Popt. As result of this option some 
gradient-based search algorithm is necessary that tails up 
evolutionary computation to reach the optimal point if it 
is realizable at all due to the chance of getting trapped in 
some local optima. During the Pareto front formation the 
most of the attention of the chromosomes goes to the 
penalty function rather than the objective function. As 
result of this, the convergence is essentially due to the 
constraints and therefore there is a significant progress 
along that line, while the single objective is de facto 
subsumed under the constraints. This situation makes 
determination of R very critical and precarious at the 
same time. 

b)  To determine the penalty parameter with adaptation by 
means of an extrapolation polynomial. In this case, a 
polynomial is fitted to the optimal front and its 
extrapolated intersection with the objective function axis 
is used for the slope of the tangent which is the 
reasonable estimation of the penalty parameter R. 
However, in this case, search algorithm tends to move to 
the straightforward solution, which is the gradual 
diminishing of the slope as illustrated in figure 2. As 
result of this option the penalty parameter takes smaller 
values during the search and may eventually vanish. In 

the extreme, R goes to zero and problem turns out to be a 
single objective optimization omitting the constraints.  

 
 Approach to the final optimal solution by means of penalty Fig. 2. 
function approach, where R is the penalty parameter being 

estimated through curve fitting 

C. Analysis of penalty function parameter 

Let us assume that optimal theoretical front 
compromises the solutions for the objectives f1(x) and f2(x), 
where objective f1(x) admits to be minimally zero. For the 
analysis viewpoint we assume that Pareto front is 
symmetrical with respect to f1(x) and f2(x), and the front is 
an envelope of a line crossing the f1(x) axis at the point t and 
crossing the f2(x) axis at the point Popt-t; t is a parameter 
related to parametric representation of a line tangent to the 
Pareto front, and it is represented by 

2 1( ) ( )
1

opt

f f

t P t
 


x x   (10)

In (10), Popt is the optimum solution, where f2(x )=Popt =t 
and  f1(x ) =0, which represents the satisfaction of the 
constraint. From (10), we obtain 

2 1( ) ( )
( )opt

t
f f t

t P
 


x x

x
  (11)

We can define the slope 

( )opt

t
r

t P


 x
  (12)

as a kernel penalty parameter representing the varying part  

 
 The envelope of tangent and the new penalty parameter r Fig. 3. 

of the general penalty parameter R in (8), and for each 
constraint we consider r=rj . The envelope of the tangent in 
(10) is shown in figure 3. In words, r is the gain in f2(x) per 
unit decrease in f1(x) at the point of tangent F and within 
infinitesimally small interval of f1(x). Incidentally, the 
envelope of the tangent is determined by the following 
condition [1] 

2 2 1( ) ( ) ( )t f x f x f x   (13)
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And substitution of (13) in (11) yields the Pareto front 
expression as  

2
2 1 1 2[ ( ) ( )] 2[ ( ) ( )] 0optf x f x f x f x P      (14)

Variation of r during the minimization process for a given 
constraint j is shown in figure 4. 

 
 Nondominated Sorting-Nonlinear Ranking (NS-NR) approach to Fig. 4. 

the final optimal solution by means of penalty function approach; r is the 
penalty parameter. 

As shown in the figure, as the process approaches to the 
minimum, the slope tends to approach infinity. Therefore, in 
this work penalty parameter R in (7) is not a constant, but it 
is a varying parameter, adapted during the search process, 
which is peculiar to this work. 

The kernel penalty parameter r is zero for t=0 and it 
monotonically increases as t increases, as seen in (12), and t 
is given by (13). As Popt is reached, at this point f2(x)=0, and 
t=f2(x) where t=Popt. For t=Popt the kernel penalty parameter 
r goes to infinity, as seen in (11). Alternatively, this work 
shows that the kernel parameter r is a function of the 
objective functions f1 and f2, and at the end of the search 
process the intersection of the tangent given by (10) is the 
minimum being sought for, where f1=0 and f2 is the 
minimum. At that point Pareto front and tangent disappear, 
and they reduce to the point Popt. A convergence approach 
complying with (12) exhibits two gains: 

 Approach to optimum is systematic and therefore 
robust without precarious tangent slope 
computations 

 No local search for Popt is necessary. 

Implementation of the approach is due to a probabilistic 
modeling of the random solutions in the evolutionary 
computation and ensuing nonlinear ranking. These are 
presented in the following section 

III. PROBABILISTIC MODELING FOR EXPONENTIAL 
RANKING 

Referring to (6), in a general constrained optimization 
problem the problem formulation is written as 

1

min ( ) ( ) ( )
J

j j
j

P f g


  x x x   (15)

where f(x) is the single objective function to be minimized; 
 is the violation of the gi-th constraint, namely penalty	gj(x)ۧۦ
function, µi is the associated parameter of the penalty 
function. Since ۦgj(x)ۧ is at each generation continually tried 
to be vanishing during the evolutionary minimization 

process, considering the population density of solutions, the 
probability density of ۦgj(x)ۧ is highest about zero 
violations, and its value gradually diminishes proportional 
with the degree of violation. Based on the randomly 
generated population of the evolutionary algorithm, we can 
model the violations as a random variable, where the 
violations are independent due to random population 
formation by the random composition of chromosomes at 
each generation. The number of violations per unit violation 
gradually decreases with the degree of violation conforming 
to the commensurate number of chromosomes created by 
the elitism and sorting strategy in the genetic algorithm. 
This probabilistic pattern continues in the same way without 
change throughout the generations. The probabilistic 
description of this process can be modeled by the 
exponential probability density (pdf), because of its 
memorylessness property. That is the form of the density 
remains the same being independent of the range it models, 
while the exponential pdf is a unique density having this 
property. With this information peculiar to the subject 
matter of this research, we can confidently apply the 
exponential pdf, which is given by 

( ) yf y e 
    (16)

where  is the decay parameter. Denoting  

( )jy g x  (17)

the pdf in (16) becomes 

( ) j j

j

g

j jg
f g e

    (18)

The mean value of the exponential pdf function is equal to 
j

-1. During the evolutionary search ۦgj(x)ۧ is a general form 
of violation which applies to any member s of the 
population although s is not explicitly denoted. However, in 
explicit form, we can write 

,

,( ) j j s

j

g

j s jg
f g e

    (19)

where s denotes a population member. We can characterize 
the exponential pdf function according to the constraint j 
simply by equating the mean value of the violations ۦgjۧ to 
the mean of the exponential pdf, namely  

1/j jg


   (20)

One should note that the mean of the exponential 
probability density of ۦgjۧ is equivalent to the mean of a 
uniform probability density applied to the violations ۦgjۧ. 
Therefore the mean of the exponential density function is 
estimated by taking the mean of the violations which are 
from a uniform probability density and they are 
independent. 

Since a violation ۦgjۧ	 spans all the violations starting 
from zero up to the point ۦgjۧ, the probability of the 
violation is expressed as cumulative distribution function 
whose implication is easy to comprehend by considering the 
extremes. The cumulative distribution function of (16) is 
given by 
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0

1
( ) 1

j j

j j j

g g

g g g

j j

j

p g e dg e
g

 

     (21)

For ۦgjۧ=0 violation is zero and for ۦgjۧ=, violation is 1, 
i.e., 100% for a finite mean value of ۦgj(x)ۧ. Explicitly 
p(ۦgjۧ) is the probability of a violation in the range between 
zero and ۦgjۧ. It is a monotonically increasing function 
complying with the boundary conditions of ۦgj(x)ۧ which 
varies between zero and infinity. It is interesting to note that 
for zero constraint violation the exponential probability 
density is at its maximum and probability of violation at its 
minimum. The probability p(ۦgjۧ) is an appropriate measure 
for the magnitude or effectiveness of a violation, and it can 
be considered as a probabilistic distance function or a 
metric  measuring the distance from the zero violation, 
fulfilling all the conditions to be a distance measure [16, 
17]. The important implication of the premise (21) will be 
seen shortly. 

The optimization problem with constraints is formulated 
in this work as follows.  

1

( ) ( ) ) ( )
J

j j j j
j

P f c r ( g g


 x x x   (22)

where cj is a penalty parameter belonging to the constraints 
and is a constant during the search process. rj(ۦgjۧ) is a 
penalty parameter also varying during the search process 
and belonging to each constraint. Therefore rj is called as 
convergence parameter, being related to the convergence 
properties of the search, which in general means that it is a 
function of ۦgj(x)ۧ. For each constraint, separately, we can 
write 

 1 ( ) ( )j j j j jf c r g gx x   (23)

and from (12) and (13)  

2 2 1

2 2 1

( ) ( ) ( )

( ) ( ) ( ) ( )

j

j

j opt

f f f
r

f f f P




 

x x x

x x x x
  (24)

In (23) rj(ۦgjۧ)ۦgjۧ is replaced by pj(ۦgjۧ), in the form  

   j j j j jr g g p g  (25)

Hence (22) becomes 

 
1

( ) ( ) ( )
J

j j j
j

P f c p g


 x x x   (26)

The absolute value of rj in (25) is due to the bracket 
operator mentioned with respect to (7). Justification of (25) 
can be seen by the limiting values, as follows. For ۦgjۧ goes 
to infinity, then pj(ۦgjۧ) is indeterminate due to (21) where 
the mean value of ۦgjۧ	 goes	 to	 infinity	 also. The product 
pj=rj(ۦgjۧ)ۦgjۧ is computed using (12), noting that ۦgjۧ is 
equal to f2j , and as ۦgjۧ goes to infinity Popt also goes to 
infinity. Therefore taking Popt=ۦgjۧ	in	ሺ12ሻ and from (25) 

 lim lim
j j

j j j j
g g

j

t
r g g g

t g 




  (27)

Due to (13), t is finite and therefore 

 lim lim
j j

j

j j j
g g

j

g
r g g

g 
   (28)

which is indeterminate. Then (27)  

 lim
j

j j j
g

r g g


  (29)

becomes indeterminate too. It is to note that cj in (22) could 
be varying and a balanced strategy could be ௝ܿ ൌ ݂ሺݔሻ/̅݃ۦ௝ۧ.  

For ۦgjۧ is equal to zero, pj(ۦgjۧ) in (21) goes to zero. In 
this case, the penalty term rj(ۦgjۧ)ۦgjۧ becomes zero, as it 
should be. 

In view of (25), rj is given by  

    /j j j j jr f g p g g   (30)

The new formulation (30) yields favourable, far reaching 
implications which are presented below. From (6), where 
we define  

 
1 1

J J

j j j
j

g G p g


     (31)

where μ is the weighting parameter. J is the number of 
constraints; The probability p(ۦgjۧ) controls the penalty 
parameter R in (8); namely the penalty parameter is 
absorbed in p(ۦgjۧ) in the form cjrj while cj is a constant 
being dependent on the associated  constraint. The 
importance of this nonlinear transformation, namely p(ۦgjۧ) 
is mainly due to its use for ranking the population members 
during the genetic search. In (26), p(ۦgjۧ) can admit several 
interpretations as follows. 

 On one hand it is a penalty function obtained by a 
nonlinear interpolation applied to ۦgjۧ. In this 
process, the probabilistic considerations apparently 
are exercised as a nonlinear transformation to the 
penalty function ۦg(xj)ۧ to obtain another penalty 
function p(ۦgjۧ) in order to bring ۦg(xj)ۧ from an 
infinite range to a finite range namely, between 
zero and unity. 

 As another interpretation, the penalty function 
p(ۦgjۧ) is the probability of a random variable G, 
namely cumulative probability of an exponentially 
distributed random variable.  

 Yet another interpretation is to consider p(ۦgjۧ) as 
another stochastic variable Yj obtained from a 
function of stochastic variable Xj=gj. 

The last interpretation is highlighted in this work so that 
several essential implications can be derived. For this aim 
first we consider the premise given by (21). The implication 
of this premise can be seen as follows. 

Let us define 

   j jp g H g   (32)

where H(ۦgjۧ) is a function of random variable given by 
 .gjۧ being the random variable in questionۦ ,(21)

   
0

1

j

j j

j j

g
g

j j j j

g

p g H g e d g

e





 



 

 

   (33)
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where 
1

j

j
g

 
 

 (34)

The probability density of this random variable is 
exponential density function given by (16). The probability 
density fp(p) of a new random variable p is given by 

 
 

1 ( )
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that gives the obvious result 

( ) 1 0 1pf p p    (36)

which is a uniform pdf. That is, (21) implies the uniform 
probability density of p. The important implication of this 
result will be presented in the following section. 

IV. IMPLICATIONS OF THE PROBABILISTIC MODELING 

A. Adaptive Zooming for Ranking with Precision 

Adaptive zooming for ranking with precision is 
accomplished by accurate computation of p(ۦgjۧ) in the 
range zero and unity as probabilistic distances, even though 
the actual constraint ۦgj(x)ۧ	 values may be close to the 
minimal point as much as the computer precision can allow, 
say at the range of 10-10. To illustrate this, a sketch  

   
 (a) (b) 

 Sketch of formation of the Pareto front at the early stage (a); Fig. 5. 
at the last stage of the GA search (b). 

of the Pareto front at the early stage of the genetic search is 
shown in figure 5a. A sketch of the Pareto front at the last 
stage of the genetic search is given in figure 5b. The shape 
of the curves is because of the log scale. 

The probabilistic distance to the minimum is illustrated as 
a typical example in figure 6a by the indicated area where 
the computation of the shaded area is very precarious at the 
tournament selection process due to the issue of both exact 
parameterization of the exponential pdf in the existing range 
and the finite machine precision as well as the finite 
genotype coding. This situation is circumvented in figure 6b 

by taking simply p(ۦgjۧ) as the probability distance to the 
minimum. The indicated shaded areas in  

   
         (a) (b)  

 Mathematical lense; pdf of the violations in the objective functions Fig. 6. 
space (a); in the probabilistic space (b) 

figures 6a and 6b are the same. This means if the constraint 
 can be close to the optimal point in a micro scale, say	g j(x)ۧۦ
in the range of 10-10, as shown in figure 6a the penalty 
function  p(ۦgjۧ) takes place always in a macro scale in the 
range of between 0 and unity, as shown in figure 6b. This 
situation is equivalent to applying a commensurate 
magnifying glass to the space formed by actual objective 
function and the constraints functions to carry out the 
convergence process without being effected by any scale of 
convergence happening in this ۦgjۧ space.  

B. Effective Tournament Selection  

Following the non-dominated sorting procedure as 
described in [11], an adaptive threshold of productive 
chromosomes is devised both in the non-dominated sorting 
(NS) stage as well as non-linear ranking (NR) stage of the 
NS-NR algorithm. It is based on the sum of the mean of the 
constraint violations ۦgTۧ given by 

1 1

j

j

J J
b

T b j
j j j

n
g n g




 

     (37)

where nbj=ln2/j  which is a constant. Referring to figure 7, 
the tournament selection, i.e., productive chromosomes 
selection is accomplished as follows. 

a)  If the violations of a pair of population members are 
larger than the threshold, then the solution which has 
smaller violation wins the competition 

b)  If the violations of a pair of population members are 
smaller than the threshold, then the solution with rank 
properties in terms of Pareto rank and crowding during 
the NS stage, or in terms of P(ۦgjۧ, x) rank during NR 
stage, wins the tournament. 
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c)  If the violations of a pair of population members are at 
either side of the threshold, then the elite population 
member that is the chromosome with violation lower 
than the threshold is selected irrespective to its rank in 
the NS or NR procedures. 

The case illustrated in figure 7 where horizontal axis refers 
to NS (non-dominated sorting) procedures and vertical axis 
refers to NR (nonlinear ranking) procedures; nbj=ln2/j is 
the median of the exponential pdf as shown in figure 7b. For 
nbj=ln2/j, its counterpart in terms of the probabilistic 
distance is npj=0.5 which is, in contrast to nbj, a constant. 
Thus, the constant probabilistic distance measure provides 
an adaptive threshold for productive chromosomes 
throughout the generations, in any scale permitted by the 
machine or genotype precision. By means of this particular 
tournament selection procedure, the dominance of the 
average violation by the stiff constraints, that is, by the 
members with high violations, is prevented; namely, during 
two consecutive generations the progressive diminishing of  

  
         (a) (b) 

   Illustration of the threshold assessment for the Fig. 7. 
tournament selection in both NS and NR procedures. 

 the average is aimed against the contingent average 
increase that may occur especially during the advanced 

stages of the convergence. In the tournament selection, the 
domains considered separately are illustrated in figure 7b. 
The smaller total mean of the constraint violations implies 
improved convergence to the optimum. Referring to figure 
7b, the probability Pj of the event relevant to the case (c) 
above is given by 

2( ) ( 1 ) ( 2 ) j bj j bjn n

j j j jP P g P X P X e e        (38)

The variation of Pj with respect to nbj is illustrated in 
figure 8, in terms of its counterpart pj which has a maximum 
at npj=0.5 for nbj=ln2/j.  

 
 Plot of the probability that two solutions occur on different sides Fig. 8. 

of the threshold nbj vs npj 

It is to note that, the plot remains the same throughout the 
generations, although the same plot  

in the actual violations domain, that is, in the	  gjۧ domainۦ
corresponds to a family of plots with respect to the 
parameter j. Implementation of (35) in the NS-NR 
algorithm is as follows. Should the case (c) arise, the 
chromosome at the productive domain wins in the 
tournament selection.  

C. Fast and robust convergence 

With the probabilistic distance providing nonlinear 
ranking we obtain robust progress for convergence at each  

p(X1)p(X2),    X2<nb<X1 
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TABLE I
RESULTS FROM THE NS-NR APPROACH DESCRIBED IN THIS WORK FOR 30 RUNS ON THE BENCHMARK PROBLEMS DESCRIBED IN [1] 

fcn optimal best   median  mean    st. dev. worst    feas. runs    gen 
g1 -15.00000 -14.99992 -14.99942 -14.99889 1.15E-03 -14.99550 30 560 
g2 -0.803619 -0.803489 -0.792984 -0.794303 7.46E-03 -0.772063 30 760 
g3 -1.000500 -1.000499 -1.000492 -1.000492 3.02E-06 -1.000486 30 420 
g4 -30665.539 -30665.539 -30665.539 -31665.538 2.72E-04 -30525.789 30 540 
g5 5126.498 5126.568 5177.187 5257.630 1.70E+02 5681.150 21 390 
g6 -6961.814 -6961.8138 -6881.8553 -6781.8316 2.27E+02 -6028.6813 30 300 
g7 24.306209 24.317060 24.734179 24.806833 4.32E-01 25.905036     30 1140 
g8 -0.095825 -0.0958224 -0.0956730 -0.0929779 1.19E-02 -0.0291209 30 390 
g9 680.63006 680.63497 680.65640 680.66532 2.67E-02 680.73702 30 540 

 

TABLE II 
COMPARISON OF THE BEST VALUES OF SOLUTIONS OBTAINED BY THE NS-NR APPROACH, AND FOUR EXISTING STATE OF THE ART APPROACHES 

fcn optimal          B E S T      
  NS-NR SR HM    ASCHEA  SMES  
g1 -15.00000 -15.000 -15.000 -14.7886 -15.0 -15.000 
g2 -0.803619 -0.803489 -0.803515 -0.7995 -0.785   -0.803601 
g3 -1.000500 -1.000499 -1.000* -0.9997 -1.0* -1.000* 
g4 -30665.539 -30665.539 -30665.539 -30664.5* -30665.5* -30665.539 
g5 5126.498 5126.568 5126.497  −   5126.5   5126.599 
g6 -6961.814 -6961.8138 -6961.814  -6952.1 -6961.81   -6961.814 
g7 24.306209 24.317060 24.307 24.620   24.3323 24.327    
g8 -0.095825 -0.0958224 -0.095825 -0.0958250 -0.095825 -0.095825 
g9 680.63006 680.63497 680.630 680.91  680.630 680.632 

*the accuracy of the results provided in the literature is restricted to the printed one 
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generation. To see this, from (25) 
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In the limiting case, i.e., convergence to the minimum, rj 
becomes  j  with the implication seen by (34); namely 
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V. COMPUTER EXPERIMENTS 

A. General analyses of the precision convergence 
behavior 

Experiments have been carried out for a number of 
benchmark problems that are due to Michalewicz and 
Schoenauer [18]. The results from 30 runs of the algorithm 
are given in table 1, where the best known optimum is 
indicated as well as the performance of the NS-NR 
algorithm. The results are compared with four other 
algorithms in table 2, namely stochastic ranking [19], 
homomorphous mapping method in [20], adaptive 
segregational Constraint Handling Evolutionary Algorithm 
(ASCHEA) [21], and A Simple Multimembered Evolution 
Strategy to Solve Constrained Optimization Problems 
(SMES) [22]. From tables 2 and 3 it is seen that for the test 
problems considered, the NS-NR approach presented 
performs comparable with the most accurate algorithms in 
the literature, while it does not outperform them. 

B. Detailed analysis of the precision convergence 
behavior 

Computer experiments have been carried out using 
problem g2 in tables 1-3. The problem is due to [18]. The 
problem consists of a single objective with two constraints, 
subject to minimization, as given by (38)-(40). 
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0 10 1,...,20)iwhere x i      (43)

The best known optimum is  

f(x*)=-0.80361910412559,  

and the corresponding best variable values are 

x1
*=3.16246061572185;  x2

*=3.12833142812967; 
x3

*=3.09479212988791;  x4
*=3.06145059523469; 

x5
*=3.02792915885555;  x6

*=2.99382606701730; 
x7

*=2.95866871765285;  x8
*=2.92184227312450; 

x9
*=0.49482511456933;  x10

*=0.48835711005490; 
x11

*=0.48231642711865;  x12
*=0.47664475092742; 

x13
*=0.47129550835493;  x14

*=0.46623099264167; 
x15

*=0.46142004984199;  x16
*=0.45683664767217; 

x17
*=0.45245876903267;  x18

*=0.44826762241853; 
x19

*=0.44424700958760;  x20
*=0.44038285956317. 

The algorithm is executed with the following settings: 
population size=200; amount of generations=150; C=100; 
the ratio of NS-NR procedures=15/1; crossover 
probability=0.95; Simulated Binary Crossover parameter 
nc=1.0 [23]; mutation probability=0.05; polynomial 
mutation parameter nm=30 [24]. The results are shown in 
figures 9-12 using a logarithmic scale for the horizontal 
axis, which shows the total violation G. From the figures it 
is observed how the initial population gradually approaches 
towards the optimal solution. It is emphasized that an 
iteration of the algorithm consists of 15 Pareto-ranking 
based generations, followed by one probabilistic selection 
based generation. After 20 iterations the best feasible 
solution is found to be 

f(x)= -0.78835569614655 

The population is seen in figure 9. The independent 
variables of this solution take: 

x1=3.15921556367926; x2=3.05012203191546; 
x3=2.99548557106111; x4=2.95357956839086; 
x5=2.92853530781215; x6=0.698330997346738; 
x7=0.614737364075027; x8=0.519294561838674; 
x9=0.58315252010638; x10=0.537394783817692; 
x11=3.08268488604599; x12=2.99193702518271; 
x13=0.484713624884173; x14=0.555232075943147; 
x15=0.528189166194421; x16=0.494161231861299; 

TABLE III
COMPARISON OF THE MEAN VALUES OF SOLUTIONS OBTAINED BY THE NS-NR APPROACH, AND FOUR EXISTING STATE OF THE ART APPROACHES 

fcn optimal                        M E A N    
  NS-NR SR HM    ASCHEA  SMES 
g1 -15.00000 -14.99889 -15.000* -14.7082 -14.84 -15.000  
g2 -0.803619 -0.794303 -0.781975 -0.791671 -0.59   -0.785238 
g3 -1.000500 -1.000492 -1.000* -0.9989 -0.99989  -1.000*  
g4 -30665.539 -31665.538 -30665.539 -30655.3  -30665.5  -30665.539 
g5 5126.498 5257.630 5128.881 −    5141.65  5174.492 
g6 -6961.814 -6781.8316 -6875.940 -6342.6 -6961.81  -6961.284 
g7 24.306209 24.806833 24.374 24.826  24.66    24.475*  
g8 -0.095825 -0.0929779 -0.095825 -0.089157 -0.095825 -0.095825 
g9 680.63006  680.66532 680.656 681.16 680.641 680.643 

*the accuracy of the results provided in the literature is restricted to the printed one 
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x17=0.520658955898436; x18=0.481302236763824; 
x19=0.429724286200153; x20=0.622919069113193. 

The peculiarity of the problem is essentially due to being 
highly non-linear, non-polynomial, and non-quadratic, -
cubic, -quartic etc. the case being rather unconventional as 
to the examples subjected to evolutionary optimization and 
reported in the literature. 

 
 Population after 20 iterations; horizontal axis shows Fig. 9. 

the total violation G in (31) on a log scale. 

After 40 iterations the best feasible solution is found to 
be 

f(x)= -0.792566404183618 

The population is seen in figure 10.  

The independent variables of this solution take: 

x1=3.16743077373371;  x2=3.11153072964855; 
x3=3.01156091583299;  x4=3.00139459382801; 
x5=2.96475180352977;  x6=0.565947284057509; 
x7=0.563461933159754;  x8=0.597508576558864; 
x9=0.543083970329823;  x10=0.540363082224514; 
x11=3.14939132194;  x12=3.06891156366092; 
x13=0.525006033808484;  x14=0.525568247419281; 
x15=0.528180782619807;  x16=0.506898293813612; 
x17=0.519975812107105;  x18=0.486729641493575; 
x19=0.478952387684703;  x20=0.588533808993732. 

 
 Population after 40 iterations; horizontal axis shows Fig. 10. 

the total violation G in (31) on a log scale. 

After 80 iterations the best feasible solution is found to 
be 

f(x)= -0.792890774207573 

The population is seen in figure 11. The independent 
variables of this solution take: 

x1=3.17471604947351;  x2=3.10424069114897; 
x3=3.02171047480553;  x4=2.99308771595274; 
x5=2.956410882173;  x6=0.572505793511525; 
x7=0.578665087235283;  x8=0.554640545448787; 
x9=0.566156238605148;  x10=0.532405930514882; 
x11=3.13679137497742;  x12=3.0736263213087; 
x13=0.528911605332599;  x14=0.524193903602574; 
x15=0.522282107205052;  x16=0.507956068541584; 
x17=0.508096753566494;  x18=0.489204567842735; 
x19=0.496488585809298;  x20=0.587803667973163. 

 
 Population after 80 iterations; horizontal axis shows Fig. 11. 

the total violation G in (31) on a log scale. 

After 150 iterations the best feasible solution is found to 
be 

f(x)= -0.792895505756498 

The population is seen in figure 12. The independent 
variables of this solution take: 

x1=3.16841088942857; x2=3.10424069114897; 
x3=3.02209237383018; x4=2.99311722179003; 
x5=2.96241217056916; x6=0.572505793511525; 
x7=0.578665087235283; x8=0.542375069637347; 
x9=0.566156238605148; x10=0.532405930514882; 
x11=3.13679137497742; x12=3.0749798869538; 
x13=0.528911605332599; x14=0.524715025053636; 
x15=0.522282107205052; x16=0.507956068541584; 
x17=0.508096753566494; x18=0.489204567842735; 
x19=0.496488585809298;  x20=0.599643520402106. 

 
 Population after 150 iterations; horizontal axis shows Fig. 12. 

the total violation G in (31) on a log scale. 

CONCLUSIONS 

Effectiveness of evolutionary optimization for 
constrained optimization is investigated. The results from 
the experiments demonstrate that precision optimization can 
be obtained by evolutionary computation alone without the 
involvement of local search. The feasible solutions are 

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10

G

f

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10

G

f

-0.95

-0.93

-0.91

-0.89

-0.87

-0.85

-0.83

-0.81

-0.79

-0.77

0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10

G

f

-0.95

-0.93

-0.91

-0.89

-0.87

-0.85

-0.83

-0.81

-0.79

-0.77

0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10

G

f

Proc. IEEE World Congress on Computational Intelligence - WCCI 2016, 24-29 July, Vancouver, Canada



reached with precision by a small yet significant 
modification of the ranking procedure of the evolutionary 
algorithm, namely using an exponential ranking. The 
validity of the theoretical considerations has been properly 
demonstrated. Due to the adaptive feature of the 
probabilistic model, in the exponential ranking process, the 
assessment of constraint violation is continuously done in a 
probabilistic scale between zero and unity. This is in 
contrast to conventional penalty parameter approaches, 
where the product of penalty parameter and constraint 
violation becomes precarious as the constraint violation 
tends to vanish. In this way, the same precision of the 
product is preserved, being independent of the level of 
convergence to the optimum. This means the exponential 
ranking method forms a dynamic “lens,” the magnifying 
power of which is commensurate with the scale of 
convergence. As consequence, convergence is accomplished 
accurately and systematically with precision at any range of 
both, the machine, computing and genotype coding 
precision. This is demonstrated from the experimental 
analysis of the convergence progress throughout the 
optimization process, thereby matching of the results with 
the theoretical considerations. Comparison of the results 
from the presented evolutionary precision optimization with 
state of the art algorithms revealed another important 
conclusion. Although the proposed algorithm does not 
outperform the existing researches in the literature, it is to 
note that the algorithm is a very basic one and minimally 
differs from conventional evolutionary algorithm, in 
contrast to the sophisticated algorithms. Strikingly, despite 
its very basic nature it performs competitive with the state 
of the art algorithms. This demonstrates that forming the 
ranking with the probabilistic nonlinearity is an 
outstandingly efficient measure to reach precision 
optimization. This means stable convergence with a 
precision convergence accuracy. This is an important 
conclusion, since it implies that the precision of existing 
constrained evolutionary optimization algorithms can be 
enhanced by inserting the probabilistic distance measure 
approach of this work. 
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