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Abstract

There are multiple numerical methods for analysing the stability of slopes. Commonly usedmethods for assessing
the slope stability are the slip surface method, strength reduction methods or methods based on load increments.
What those methods have in common is that the stability of a slope is assessed by a factor of safety or critical
stability number. These dimensionless factors give an indication of the global stability of a slope. A critical
stability number is computed through load increments while a factor of safety is based on the strength parameters
of the soil.

A relatively new XFEMbased method for analysing slope stability is being implemented in the finite element
software of Diana FEA. Unique with respect to the other methods is that this method detects onset of localisation
and captures the propagation of the slip surface. Therefore, this method is referred to as the propagation method
in this work.

The propagation method consist of three main procedure steps. First, onset of localisation is detected during
incremental loading of the model and the direction of the localisation plain is obtained. In step two, enrichment
elements are implemented at the location of localisation, which are able to reproduce a jump in the displacement
field. This is followed by a search algorithm for detection of localisation in adjacent elements. From here on,
the implementation of the enrichment elements continues till a fully developed slip surface is present, resulting
in global failure of the slope.

Those procedure steps need to be tested and verified. The objective of this thesis is to verify onset of locali
sation on element level and to provide a method for verification of the point of global failure in analyses with the
propagation method.

Onset of localisation is verified with analytical expressions and with numerical results. A critical stability
number is used to assess the slope stability in analyses with the propagation method. A relation between the
critical stability number and the factor of safety is needed, to be able to compute a factor of safety with the
propagation method which is similar to a factor of safety of the slip surface method and a strength reduction
method.

This relation is obtained through the definitions of those factors. This creates possibilities to asses the stability
of a slope with the propagation method by a factor of safety and this factor of safety can be verified with the results
of a strength reduction method and a slip surface method.

In addition, benchmarks are generated with the aforementioned slope stability analysis methods, which can
be used for verification of the factor of safety of the propagation method. The benchmarks are the result of
parameter and convergence studies. In the parameter studies, the effect of the Poisson ratio and the dilatancy
angle on the factor of safety is studied. This is done by computing the maximum vertical displacements during
stability analyses with various values of the Poisson ratio and the dilatancy angle. Those displacements are plotted
versus the corresponding factor of safety. The resulting plots provide characteristic information which can be used
for verification of the propagation method.

The convergence studies are performed in order to obtain reliable factors of safety that can serve as a bench
mark. The factors of safety are computed for various mesh sizes and different convergence criteria. From the
results, a reliable factor of safety is obtained that can be used as a benchmark for the corresponding finite element
model.

In the end, a development version of the propagation method is tested and the results are verified with a
benchmark which is generated with a finite element model containing interface elements.
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1
Introduction

1.1. Background
Stability of a slope is lost when a part of the slope is failing along a slip surface. This process is the result of
localisation. Localisation is the process where a smooth displacement field suddenly gives rise to large strains
which are localised in narrow bands [26]. As the word implies, localisation starts locally, which is called onset of
localisation. The onset of localisation is a well understood phenomena and can be derived mathematically. The
progression of localisation may eventually result in global failure along a slip surface.

There aremultiple numerical methods for analysing the stability of a slope. These numerical methods compute
a factor of safety (FOS) and this FOS gives an indication of the stability of a slope. When the value is equal or
larger than one, the slope is stable and when the value is smaller than one, the slope is unstable.

The software of Diana FEA has two builtin functions for analysing slope stability. One of thosemethods is the
slip surfacemethod (SSM). The slip surfacemethod computes a robust estimate of the FOS and is relatively simple
to implement, but the method is only based on postprocessing of the stresses. Therefore, the method provides
no information about the kinematics after failure of the slope. The other method is the strength reduction method
(SRM), which computes the FOS by reducing the internal friction angle of the soil and the cohesion by a factor
in an iterative procedure. The FOS is obtained if the model cannot converge in a certain amount of iterations and
if a user specified norm for the FOS is reached. An advantage of the SRM is that nonuniform stress situations
can be used as an initial loading stage of the ground. However, the analysis is computationally expensive due to
this iterative procedure for computing the FOS.

Manzari and Nour [17] applied a third method for assessing slope stability. This method is based on load
increments instead of reducing the strength parameters of the soil. The unit weight of the soil is incremented till
excessive displacements are detected in a part of the slope that is sliding with respect to the stable part of the
slope. The stability of the slope is then assessed with a critical stability number (CSN), which is similar to a FOS.

Diana FEA is developing a new method for analysing slope stability. This new method is based on the
extended finite element method (XFEM). XFEM is a mesh independent method for modeling discontinuities.
Unique with respect to the aforementioned slope stability analysis methods is that this method detects onset of
localisation and computes the propagation of the slip surface. Hence, this XFEMbased analysis method will in
this work be referred to as the propagation method (PM).

The numerical procedure of the PM can be divided into three main steps. The first step is detecting onset of
localisation. The requirement for onset of localisation is that the determinant of a so called acoustic tensor must
be zero. Leroy and Ortiz [29] described a numerical algorithm for detecting onset of localisation for associative
plasticity models. Sanborn and Prévost [26] expanded this to a more general algorithm for nonassociative plas
ticity. Onset of localisation is detected in the integration points of the finite elements, since onset of localisation
is dependent on the stress state. Rudnicki and Rice [13] derived analytical solutions for onset of localisation for a
DruckerPrager material model for 2D cases. Ottoson and Runesson [18] concluded that the solutions of Rudnicki
and Rice are a special case of a more general solution. They derived solutions for 3D cases and other material
models, such as MohrCoulomb and Rankine. Runesson et al. [14] provide solutions for explicitly plane strain
and plane stress models. The analytical solutions of these papers are derived from the same requirement for onset
of localisation. With these solutions it can be determined whether onset of localisation occurs for a given stress
state in an arbitrary point. Also the direction normal to the plane of localisation is obtained in this point.
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2 1. Introduction

The second step is to implement enrichment elements at the location of localisation. These enrichment el
ements can reproduce a jump in the displacement field. Therefore, these elements represent a part of the slip
surface. In the last step, a search algorithm captures the progression of localisation till the slip surface is fully
developed. Global failure of the slope occurs when the slip surface is fully developed.

These steps were implemented by Sanborn and Prévost [26], who combined the detection of onset of locali
sation with XFEM such that the progression of a slip surface can be captured. Liu [20] proposed a linear cohe
sive/friction coupled model for the frictional contact interface based on the MohrCoulomb frictional law. Wang
et al. [28] computed the propagation mode and propagation direction by the stress state of specific propagation
control areas.

The steps of the PM need to be tested and verified, since the method is being developed for the software of
Diana FEA. The objective of this work is to verify onset of localisation and to provide a method for verification
of the point of global failure in an analysis with the PM.

1.2. Thesis objective
The objective of this work is to verify onset of localisation and to provide a method for verification of the point
of global failure in analyses with the PM. To be able to accomplish these objectives, the following questions have
to be answered

• How to verify a numerical computation of onset of localisation?

• How to verify the point of global failure in an analysis with the PM?

Onset of localisation can be verified with the analytical solutions from Rudnicki and Rice [13] and Runesson et
al. [14] and with the numerical results of Leroy and Ortiz [29].

An answer to the second question is to verify the point of global failure with use of the FOS of other analysis
methods, since the FOS gives an indication of the global stability of a slope. The other analysis methods are the
SSM and the SRM. However, the current research about the PM [26], [20], [28] does not provide a method for
computing the FOS with the PM. Now the following question arises

• How to compute a FOS with the PM which can be compared with the FOS of the SSM and the SRM?

The PM is based on incremental loading of the weight, while the SSM and the SRM are based on the strength
parameters of the soil and not on load increments. Manzari and Nour [17] analyse the stability of a slope by
incrementing the unit weight till failure of the slope occurs. Then the CSN is obtained. Since this method is also
based on load increments, it is perfectly suitable for computing a CSN with the PM. The problem left is to find
a relation between the CSN and the FOS, such that the point of global failure in an analysis with the PM can
be verified with the SSM and the SRM. Hence, the last question to be answered in order to achieve the thesis
objectives is

• What is the relation between the CSN and the FOS?

The objectives of the thesis are summarised below

• Verification of onset of localisation on elements level with analytical expressions and numerical results.
This means that onset of localisation must occur for the correct stress state and the correct localisation
direction must be obtained.

• Finding a relation between the CSN and the FOS.

• Obtaining reliable benchmarks with numerical slope stability analysis methods, which can be used for
verification of the point of global failure of a slope in analyses with the PM.

• Testing a development version of the PM on a FEmodel of a slope.
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1.3. Scope of the thesis
• The benchmarks are generated for linear and quadratic 2D FEelements.

• Two FEmodels of a slope are used for the parameter study and the convergence study. These models are
based on the models of Griffiths and Lane [9] and Manzari and Nour [17] and the results of these papers
serve as a reference.

• In the parameter studies, the effect of the Poisson ratio and the dilatancy angle on the FOS and CSN is
studied respectively.

• The convergence studies are performed with mesh sizes of 0.25m, 0.5m, 1m and 2m.

• The results of the studies are only valid for the FEmodels used in this work. Therefore, the exact same
models should be used, when verifying the PM with the benchmarks of this thesis.

• Only plane strain elements are used, which is common for modeling soil. The elements obey a Mohr
Coulomb plasticity law if the model contains nonlinear material behaviour. The interfaces, modeled with
interface elements or with enrichment elements obey a MohrCoulomb friction law.

• The soil is homogeneous.

• The load on the soil elements are uniformly distributed.

• Onset of localisation is verified on element level. Plane strain elements obeying DruckerPrager yield
criteria are used for the verification of onset of localisation.

• The behaviour of the enrichment elements is verified with the results of the FEmodel with interface ele
ments.

• The derivations and analyses are based on small strains and displacements.

1.4. Derivation of initiation conditions of localisation
This section gives a mathematical derivation of onset of localisation, since the initiation condition of localisation
is an important aspect of the PM method. Tensor notation is used for the derivation.

Localisation is the process where a smooth displacement field suddenly gives rise to large strains, localised
in narrow bands [26]. This is an important failure mechanism of ground slopes. Onset of localisation is the be
ginning of this failure mechanism. The onset of localisation coincides with the loss of ellipticity of the governing
equilibrium equations, which means that suddenly discontinuities in the solution are possible [5]. The conditions
for onset of localisation can be derived for strong discontinuities and for weak discontinuities. A weak disconti
nuity is a jump in the gradient of the solution field (C0 continuity). This jump is across a point in 1D, a line in 2D,
or a surface in 3D which from now on will be named the interface. A strong discontinuity is a discontinuity in the
solution field itself across an interface [11] (C−1 continuity). Requirements for onset of localisation are derived
for both weak and strong discontinuities to show the differences and similarities between these conditions.

At local level a material is stable when the product of the the strain rate ϵ̇ and stress rate σ̇ is positive [21]

ϵ̇ : σ̇ > 0 (1.1)

Equation 1.1 holds for geometrical linear models. The relation between the strain and stress tensor can be written
as

σ̇ = D : ϵ̇ (1.2)

with D the material tangential stiffness matrix. Substitution in equation 1.1 gives

ϵ̇ : D : ϵ̇ > 0 (1.3)

When the unequal sign becomes an equal sign, material stability is lost. This is called loss of positive definiteness
and happens when the determinant of the material tangential stiffness matrix becomes zero.

det(D) = 0 (1.4)
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An example of loss of material stability is when the slope of the stressstrain curve becomes negative during
an uniaxial compression or tension test. This is called strain softening. However, there are materials for which
the scalar value of equation 1.1 may become negative without the occurrence of strain softening [6]. This holds
for soils and rocks. Constitutive relations of these materials often result in nonsymmetric tangential stiffness
matrices. The nonsymmetry may lead to unstable material behaviour, even in the hardening regime [13]. When
equation 1.1 is violated, nothing in general can be said about the continuity of the solution. When positive
definiteness is lost, it can result in loss of ellipticity of the governing equations. This means in mathematical
terms that discontinuities in the solution are possible [5]. So material instability is not equal to loss of ellipticity,
which is the point of interest. Hence, the question is when ellipticity is lost and discontinuities in the solution are
possible.

For the derivation of loss of ellipticity the following assumptions are made

• small deformations

• at current state of equilibrium the displacements ui , stresses σi j and strains ϵi j are continuous

• no thermal effects are taken into account

• rate independent elastoplastic solids are considered

• quasistatic loading conditions

The following derivations are based on the work from [5], [11], [14], [18], [22], [26], [29]. For elastoplastic
solids the definition of the tangential material stiffness matrix is given by

D =
De (E)

De − 1

A
De : g ⊗ f : De (P)

(1.5)

where (E) and (P) stands for elastic and plastic loading respectively. De is the elastic tangential stiffness matrix
which is assumed constant and symmetric, while it may represent isotropic as well as anisotropic behavior. The
tensors f and g are given by

f = ∂F

∂σ
, g = ∂G

∂σ
(1.6)

Where F andG are the yield function and the plastic potential respectively. If F = G , the plastic flow is associated
and when F 6= G the plastic flow is nonassociated. The yield function F is a function of stress and an internal
variable κ. ∂σF is the outer normal to the yield surface and ∂σG is the direction of the plastic flow. The positive
parameter A is defined as

A = H + f : De : g > 0 (1.7)

with H the plastic modulus, which is positive, zero or negative for hardening, perfect or softening plasticity
respectively. Plastic yielding will take place whenever the following conditions are satisfied

F (σ, κ) = 0 and Ḟ (σ, κ) = ∂F

∂σ
: σ̇ + ∂F

∂κ
κ̇ = 0 (1.8)

The condition Ḟ = 0 is Prager’s consistency condition. Now consider that within a body a (possible curved) plane
S emerges (see Figure 1.1). If this band has a finite width across which the velocity field u̇ is continuous, but the
gradient of the velocity field ∇u̇ is not, it is called a weak discontinuity. If the width of the band is taken to zero in
the limit, the velocity field becomes discontinuous also. This is called a strong discontinuity. First localisation in
the form of a weak discontinuity is considered. As stated before, a jump in the gradient of the velocity is assumed
to exist.

�∇u̇� = ∇u̇+ − ∇u̇− 6= 0 (1.9)

It is assumed that the jump in the velocity field �u̇� along the surface S is constant. Now let the position vector
along S be denoted as x , then the following holds

d�u̇� = �∇u̇�dx = 0 (1.10)
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Figure 1.1: A body with a discontinuity, S, and a continuous displacement field at each side of the discontinuity.

where dx is an arbitrary differential vector tangential to S. The general solution to equation 1.11 is [18] [26]

�∇u̇� = ġ ⊗nS (1.11)

with nS the normal to the discontinuity surface S. The jump in the strain rate follows as

�ϵ̇� = 1

2

(
ġ ⊗nS + nS ⊗ ġ

)
(1.12)

where g could be interpreted as the relative displacement of points at + side of the discontinuity with respect to
points at the − side of the discontinuity [29]. Equilibrium across the surface requires that the traction must be
continuous. This means that the jump in the traction is zero.

�ṫ� = nS · �σ̇� = 0 (1.13)

There are two types of bifurcations possible. Both sides of the surface S can respond plastically (plastic/plastic
bifurcation) or one side responds elastically while the other side responds plastically (elastic/plastic bifurcation).
Plastic/plastic bifurcation always occurs before elastic/plastic bifurcation [18]. Hence, only plastic/plastic bifur
cation is considered. This means that the material tangential stiffness matrix D takes the same value at both sides
of the surface S. Substitution of equation 1.2 and 1.12 in equation 1.13 gives

nS ·D : (ġ ⊗nS ) = 0 (1.14)

where the symmetry property of D is used. For a weak discontinuity to occur, equation 1.14 must be satisfied.
A nontrivial solution is only possible when the determinant of the elastoplastic acoustic tensor A = nS ·D ·nS

vanishes.

det(nS ·D ·nS ) = det(A) = 0 (1.15)

Thus, when equation 1.15 is satisfied, discontinuities in the gradient of the velocity field can emerge. For strong
discontinuities a jump in the displacement field u is possible. This can be represented as

u = ū + HS (x)�u� (1.16)

with HS (x) the Heaviside function at the discontinuity. Differentiation of equation 1.16 gives the strain field as

ϵ = ϵ̄ + HS (x)∇sym�u� + δS (�u�⊗nS )sym (1.17)

with ∇sym the symmetric gradient operator, ∇sym(·) = 1
2 (∇⊗(·)+ (·)⊗∇), (·)sym the symmetric operator, (·)sym =

1
2 ((·)+ (·)T ) , δ the Dirac delta function and ϵ̄ is ∇symū. Differentiating equation 1.17 with respect to time gives
the strain rate field as

ϵ̇ = ˙̄ϵ + HS (x)∇sym�u̇� + δS (�u̇�⊗nS )sym (1.18)

The gradient of the displacement rate jump is much smaller than the jump in the velocity field due to the assump
tion of infinitesimal displacements. Therefore, the second term in equation 1.18 can be neglected and the strain
rate can be written as
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ϵ̇ = ˙̄ϵ + δS (�u̇�⊗nS )sym (1.19)

In elastoplastic material models, the total strain is expressed as a sum of the elastic strain and the plastic strain
as ϵ = ϵe + ϵp . Rewriting this as ϵe = ϵ − ϵp and substitution of this expression in equation 1.2 together with
equation 1.19 gives

σ̇ = De :

(
˙̄ϵ + δS (�u̇�⊗nS )sym − λ̇

∂G

∂σ

)
(1.20)

where λ̇∂G/∂σ is ϵ̇p , with λ̇ the plastic consistency parameter, which determines the magnitude of the plastic
flow. The traction rate can be written as

ṫ = σ̇ ·nS = De :

(
˙̄ϵ + δS (�u̇�⊗nS )sym︸ ︷︷ ︸

unbounded

− λ̇
∂G

∂σ

)
·nS (1.21)

As stated before, the jump in the traction across the surface S must be zero. For this to be true, the unbounded
term in equation 1.21 must be canceled out by the plastic strain [26]. This implies that the plastic parameter must
be in the form of λ̇ = λ̇δδS [11]. To be able to solve for the positive number λ̇δ, the consistency condition from
equation 1.8 is used. Substitution of the unbounded form of the plastic parameter in the stress rate of equation
1.20 and substituting equation 1.20 in the consistency condition gives

Ḟ (σ, κ) = ∂F

∂σ
: De :

(
˙̄ϵ + δS (�u̇�⊗nS )sym − λ̇δδS

∂G

∂σ

)
+ ∂F

∂κ
κ̇ = 0 (1.22)

For the consistency condition in equation 1.22 to be satisfied, the bounded terms must sum to zero as well as the
unbounded terms [11]. This gives the following two equations

∂F

∂σ
: De : ˙̄ϵ + ∂F

∂κ
κ̇ = 0

∂F

∂σ
: De : δS (�u̇�⊗nS )sym − ∂F

∂σ
: De : λ̇δδS

∂G

∂σ
= 0

(1.23)

From the second equation in 1.23 and using equation 1.6, λ̇δ can be determined as

λ̇δ = f : De : (�u̇�⊗nS )sym

f : De : g
(1.24)

Substituting equation 1.24 with λ̇ = λ̇δδS in equation 1.21 and using again that the jump in the traction rate �ṫ�
is equal to zero leads to

�ṫ� = De :

(
(�u̇�⊗nS )sym − f : De : (�u̇�⊗nS )sym

f : De : g
g
)
·nS = 0 (1.25)

It can be noted that only the unbounded terms are left, since the continuous part cancels out. Rewriting equation
1.25 leads to

�ṫ� = De :

(
(�u̇�⊗nS )sym − f : De : (�u̇�⊗nS )sym

f : De : g
g
)
·nS = 0

= De :

(
I − g ⊗ f : De

f : De : g

)
: (�u̇�⊗nS )sym ·nS = 0

=
(

De − De : g ⊗ f : De

f : De : g

)
: (�u̇�⊗nS )sym ·nS = 0

= nS ·
(

De − De : g ⊗ f : De

f : De : g

)
·nS · �u̇� = 0

(1.26)

With I the fourthorder identity tensor. Now lets define the elasticperfect plastic tangent stiffness matrix as



1.5. Analysis methods 7

Depp = De − De : g ⊗ f : De

f : De : g
(1.27)

The last equation in 1.26 is a result of minor symmetries in Depp [26]. A nontrivial solution is only possible
when the determinant of the elasticperfect plastic acoustic tensor Aepp = nS ·Depp ·nS is zero.

det(nS ·Depp ·nS ) = det(Aepp) = 0 (1.28)

Equation 1.28 is the initiation condition for localisation of strong discontinuities. This condition is almost the
same as the initiation condition for weak discontinuities in equation 1.15. The difference is between the elasto
plastic and elasticperfect plastic tensor D and Depp. The tensor D contains the plastic modulus H , while the Depp

tensor does not. For perfect plasticity the plastic modulus H is zero. This is why Depp is called the elasticperfect
plastic tensor. Hence, for perfect plasticity the conditions in equation 1.15 and 1.28 become the same.

The material tangential stiffness matrix of the model is described in equation 1.5, which is a function of the
plastic modulus H . This means that even though the condition in equation 1.28 does not contain the plastic
modulus H , it still depends on the stress state, which is dependent on H [26]. The determinants of the acoustic
tensors A and Aepp approach zero from the positive side [29] [14], which will be shown in Chapter 6.1. Also, in
general the plastic modulus H initially has a (large) positive value and decreases during loading. The value of
H for which the determinant of the acoustic tensor becomes zero is called the critical plastic modulus Hcr. For
nonassociated plasticity the, critical plastic modulus may be larger than zero [13]. This means that even in the
hardening regime, onset of localisation can take place. The critical plastic modulus is less than or equal to zero for
associated plasticity [13]. If localisation takes place in the hardening regime, a strong discontinuity will precede a
weak discontinuity. Conversely, if localisation takes place in the softening regime, a weak discontinuity precedes
a strong discontinuity [25].

1.5. Analysis methods
This section gives a concise description of all the analysis methods used in this work. Besides the PM, two
methods were mentioned explicitly. The strength reduction method (SRM) and the slip surface method (SSM),
which are two builtin methods in Diana FEA. The FEmodels used in this thesis are based on models from the
work of Griffiths and Lane [9] and Manzari and Nour [17] and the results of those works are used as reference.
The methods for assessing slope stability used in these papers differ from the SSM and the SRM. Hence, the
methods used in these works are also applied for generation of the benchmarks.

A strength reduction analysis is based on the reduction of the cohesion and the friction angle, which are the
strength parameters of the soil. With these two parameters the MohrCoulomb envelope can be described (see
Figure 1.2). In the SRM of Diana FEA, this reduction is done automatically in an iterative procedure. Griffiths
and Lane used [9] a SRM, which is closely related to the SRM of Diana FEA. They applied a single step gravity
turn on and the strength parameters are reduced by a factor if the model does converge within a certain amount
of equilibrium iterations. The factor used for reducing the strength parameters is called the strength reduction
factor (SRF). Then the analysis is run again for the same load. This procedure is repeated till the model does
not converge within the user specified amount of iterations. Griffiths and Lane [9] state that global failure of the
slope occurs if this nonconvergence occurs. At this point, the FOS can be computed, which takes the value of
the SRF at this point. This type of analysis is called the manual strength reduction method (MSRM) in this work.

Another method is the SSM, which is a postprocessing method. This is a postprocessing method because
the FOS is computed from the stress state after convergence is reached in a FEanalysis. The FOS is computed
from various slip surfaces, by integrating the shear stresses along the slip surfaces. The critical slip surface is the
one which attains the smallest FOS.

Manzari and Nour [17] used a different approach for assessing the stability of a slope. Instead of reducing
the strength parameters, the unit weight is increased till failure of the slope occurs. Therefore, this method lends
itself perfectly for verification of the PM, since the load is also incremented in the PM. When failure occurs
the CSN is computed, which is similar to a FOS. In the work of Manzari and Nour it is not mentioned what load
increments are used. Therefore, the choice is made to perform analyses with incremental loading and with a single
step gravity turn on. The former provides a method for computing the CSN with a single analysis and therefore
directly applicable to the PM. The latter is analogous to the single gravity turn on method used by Griffiths and
Lane [9]. By utilising both methods, it will be clear whether or not there will be a (big) difference in the CSN
due to those loading methods. An analysis applied with incremental loading is called the multiple load increment



8 1. Introduction

Figure 1.2: Mohr’s stress circle of an arbitrary stress state and the envelopes that bound the possible stress states,
characterized by the internal friction angle, φ, and the cohesion, c. Local failure occurs if the stress state of a point is

outside the shear envelope.

method (MLIM) and an analysis performed with a single step gravity turn on is called the single load increment
method (SLIM).

As mentioned before, the new method for assessing slope stability which is being developed in Diana FEA,
is called the propagation method (PM). The propagation method can be described with the following procedures.
First, onset of localisation is detected in elastoplastic finite elements. Next, enrichment elements are inserted
at the location of the instabilities. These elements can exhibit a jump in the displacement field. Then this dis
continuous behaviour is governed by a MohrCoulomb friction law. Progression of this discontinuity results in a
(critical) slip surface. To detect onset of localisation and to capture the progression of this slip surface makes this
third method unique with respect to the other two methods. The procedure is described in more detail in Chapter
2.5.

In this work a development version of the PM is tested on a FEmodel of a slope. The development version
is restricted to a predefined slip surface in the FEmodel, modeled by enrichment elements. The objective is to
verify the behaviour of the enrichment elements in this FEmodel. The enrichment elements are able to reproduce
a jump in the displacement field according to a MohrCoulomb friction law. Hence, the best way for verification
of the enrichment elements is to compare the results of this development version with the results of a model
with interface elements. The results should be approximately the same, since the interface elements are also
able to reproduce a jump in the displacement field according to a MohrCoulomb friction law. The models with
interface elements and enrichment elements are analysed with load increment methods in order to obtain a CSN.
An overview of the methods for assessing slope stability and its abbreviations is given in Table 1.1.

Strength reduction Load increments
Method SRM MSRM MLIM SLIM SSM
Variables φ ,c φ ,c γ γ σ

Result FOS FOS CSN CSN FOS

Table 1.1: Table with all analysis methods for assessing slope stability used in the thesis. There are the strength
reduction methods based on reduction of the friction angle φ and/or the cohesion c and there are the methods based on

the increment of the unit weight γ. The SSM is based on post-processing the stresses.

1.6. Solution procedure
In Section 1.2 four main objectives were given. These objectives are shown in the top of the diagram of Figure 1.3.
This diagram gives an overview of the solution procedures used for achieving the objectives, the corresponding
FEmodels, the analysis methods used on those FEmodels and the (expected) results. The objectives and the
solutions procedures are explained in the following.

The first objective is to find a relation between the FOS and the CSN. Through this relation, a FOS can be
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Objective

Solution
procedure

FE-model

Analysis methods

(expected)
Results

Relation CSN & FOS
Verification onset

of localisation

Verification devel-
opment version PM

Benchmarks for
verification PM

Mathmatical/physical
explanation

Verification with
analytical and

numerical solutions

Utilising results
convergence study

Parameter and
convergence study

Griffiths & Lane
Q4 plane

strain element
Manzari & Nour

+ interface elements
Griffiths
& Lane

Manzari
& Nour

MSRM, SLIM Displacement control MLIM
SRM,

MSRM,
SSM

SLIM,
MLIM

Mathematical/physical
explanation and
numerical proof

Correct point and
direction onset
of localisation

Correct point of
global failure

and correct behaviour
enrichment elements

Reliable
FOS

Reliable
CSN

Figure 1.3: Overview of procedure steps of the thesis from the four main objectives to the (expected) results.

computed with the PMwhich is similar to the FOS of a SSM and a SRM. Then, the FOS of the SSM and the SRM
can be used as a benchmark for verification of the PM. A mathematical relation is made through the definitions
of the FOS 1 and the CSN and the relation can be physically interpreted by the MohrCoulomb shear envelope.
Numerical proof is given by results of MSRM and SLIM analyses of the FEmodel of Griffiths and Lane [9].

The next objective in the diagram is verification of onset of localisation in a FEanalysis on element level. To
verify onset of localisation, the determinant of the acoustic tensor is monitored during a numerical analysis of a
planestrain element. The element is loaded by displacementcontrol in order to capture plastic behaviour. Onset
of localisation must occur for the correct stress state and the right angle of the vector normal to the localisation
plane must be obtained. This is verified by numerical results and analytical expressions.

A third objective is to verify a development version of the PM. Here, the behaviour of the enrichment elements
have to be tested in a FEmodel of a slope. The model of Manzari and Nour [17] is used for this verification.
Interface elements are applied, which behave similar to enrichment elements. The interface elements model a
predefined slip surface. A convergence study of this model should result in a reliable CSN, which can be used as
benchmark for verification of the FEmodel containing enrichment elements. In the convergence study, a reliable
CSN should be obtained by reducing the mesh size in the analyses. The CSN of the model with enrichment
elements should be very close to this benchmark. If this is true, the point of global failure is computed correctly
in the analysis with the development version of the PM for the corresponding FEmodel. More information for
conclusions about the correct behaviour of the enrichment elements is provided by the kinematics and the values
of the stresses of the enrichment elements.

The last objective is to generate benchmarks, which can be used for the verification of the PM. A convergence
and parameter study will be applied on the FEmodels of Griffiths and Lane [9] and Manzari and Nour [17]. The
convergence study should result in reliable FOSs and the parameter studies will provide information which can
be used for for verification of the PM.

1.7. Thesis outline
Chapter 2 describes more extensively the different analysis methods for assessing slope stability and the defini
tions of the FOS and the CSN. In chapter 3 it is explained how the analysis methods are applied for creating the
benchmarks. In the end of Chapter 3 a relation is established between methods based on strength reduction and
methods based on load increments. Analogous to this, a method is provided for computing the FOS with the PM

1The definition of the FOS of the SRM.
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method.
The benchmarks generated with methods based on strength reduction and the SSM are given in Chapter 4.

The benchmarks are obtained through a convergence study of the FOS and by a study of the effect of the Poisson
ratio on the FOS. Chapter 5 gives the benchmarks, obtained with the analyses based on load increments, of a
model with and without interface elements. This chapter provides convergence studies and a study of the effect
of the dilatancy angle on the CSN.

Next, the verification of onset of localisation is given in chapter 6. Onset of localisation is verified with
numerical and analytical results. Then, the results of an analysis of a slope with a development version of the PM
method are presented and compared with the results of a model with interface elements.

Finally, Chapter 7 gives the conclusions and recommendations of the thesis.



Figure 2.1: FE-model analysed with the slip surface method. The critical slip surface with a corresponding FOS of 1.4 is
indicated by the blue line. The center of the circle is indicated by the blue dot in the grid above the slope.

2
Analysis methods

2.1. The slip surface method
With the slip surface method a FOS is computed from the effective stresses in the model. This means that the
FOS is computed during the postprocessing. The slip surface method works as follows. First a grid is drawn
above the soil in the FEmodel, as shown in Figure 2.1. Various slip surface circles are generated from the grid
points and the intersections with the plane strain soil elements are computed. The slip surface circles are divided
in 2node line elements if the soil is modeled with quadrilateral (Q4) or triangular (T3) elements. The circles
are divided in 3node elements if the soil elements are modeled with higher order elements. These line elements
contain integration points, which is shown in Figure 2.2. The stresses are computed in the integration points
of the soil elements and are extrapolated to the nodes of the element. Next, the stresses are interpolated in the
integration points of the line elements. The stresses in these integration points are transformed such that the stress

Figure 2.2: Q8-element intersecting with a 3-node slip surface line element (CL3SL). The reduced amount of Gauss
points of the Q8 element are only shown for clarification.

11
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components are normal and tangential to the line elements. The FOS can now be computed from the obtained
shear stresses with the following integral

FOS = 1

l

∫
τMC
τ

dξ (2.1)

where l is the length of the slip surface, τ is the shear stress in the slip surface and τMC is the MohrCoulomb
critical shear stress, defined as

τMC = c + σn tan(φ) (2.2)

with c the cohesion, φ the internal friction angle and σn the normal stress. The envelope of Figure 1.2 gives a
geometrical interpretation of possible values of the maximum MohrCoulomb shear stress. The FOS of equation
2.1 is a summation over the shear stresses in the integration points of the line elements, due to the discretization.

FOS = 1

lT

n∑
i=1

τMCi
τi

(2.3)

Where lT the total length of the slip surface elements and i the integration points of the slip surface elements.
Equation 2.1 and 2.3 can be interpreted as an average normalised shear stress. The slip surface is stable if the
FOS is equal or larger than 1 and unstable if the FOS is smaller than 1. It may be noted that the reduction of
the cohesion and the friction angle during the SRM is based on the MohrCoulomb shear strength envelope of
equation 2.2 [24]. An advantage of the slip surface method is that it gives a good approximation of the FOS of
the slope in its current stress state. However, the method provides no information about the progression of the
slip surface. The slip surface method is also only applied for circular slip surfaces.

2.2. The strength reduction method and the manual strength reduction
method

An analysis with the SRM consist of two phases. In phase one, the current stress state of a soil can be simulated
by a standard nonlinear analysis using load increments. The resulting stress state is used as a (initial) loading
condition of the soil in phase 2. In phase 2, the values of the friction angle φ and/or the cohesion c are reduced
iteratively by a factor, which is the FOS (this is not the final FOS). First, an initial FOS is set, which is 1 by default.
Then the analysis is run until equilibrium is computed, followed by a reduction of the strength parameters φ and
c according to

cn+1 = c

FOSn+1

tan(φn+1) =
tan(φ)

FOSn+1

(2.4)

where FOSn+1 is computed as

FOSn+1 = FOSn + ∆FOS (2.5)

Figure 2.3: Typical result of a strength reduction analysis. The figure shows the mode of the slope at the final factor of
safety. The colour indicates the equivalent Von Mises strain.
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with ∆FOS a user specified FOS increment. At a certain point during the analysis, no equilibrium can be found
within the user specified iteration limit. Then the FOS increment is divided by 2 and the new FOS becomes

FOSn+1 = FOSn + ∆FOS
2

(2.6)

This procedure is repeated till a user specified tolerance of the FOS is reached. The corresponding FOS is the final
FOS, indicating the stability of a slope. The slope is stable if the FOS is larger then 1 and the slope is unstable if
the FOS is smaller then 1. The reduced stresses are computed from the stresses obtained in the previous reduction
step during the nonlinear analysis. First the total strains of the previous reduction step are computed as

ϵ0 = C : σ0 (2.7)

where C is the compliance stiffness matrix. The new stress is computed from the total strains ϵ0. A return
mapping scheme is used to compute the new stresses, if the stress is outside the yield contour due to the reduced
strength parameters. Next, the residual force vector is computed as

r =
∫

BT(σ0 − σ) (2.8)

From here on, equilibrium is sought with a standard nonlinear iteration procedure. A typical failure mode,
obtained with a SRM analysis is shown in Figure 2.3. The colours represent the equivalent Von Mises strain 1.

In the MSRM the reduction of the friction angle and the cohesion is done manually. A single step gravity turn
on (single load step of the self weight) is applied on a FEmodel, with initial (nonreduced) values of the friction
angle and the cohesion. Then equilibrium iterations are performed. If the analysis does converge within a user
specified amount of iterations, the strength parameters are reduced and the analysis is run again. This reduction
is done until the model does not converge within a certain amount of iterations, just as in the SRM. The main
difference with the SRM is that the user has to reduce the strength parameters themselves (strength parameters are
not reduced automatically) and initial stresses (loading history) are not considered. This is the strength reduction
method applied by Griffiths and Lane [9]. As stated before, a single step gravity turn on is applied, followed
by equilibrium iterations and no initial stress situation is used as in the SRM. The factor of safety is computed
from equation 2.4 at the moment of nonconvergence. The results of Griffiths and Lane are used as reference and
therefore it is chosen to apply the same method, along with the SRM.

2.3. The single load increment method and the multiple load increment
method

Manzari and Nour [17] use another method for assessing the stability of a slope. They assess the stability of a
slope with a critical stability number (CSN) instead of a FOS. However, the FOS and the stability number can be
related, which will be explained later in Section 3.4. The stability number is defined as

Ns = γH

c
(2.9)

where γ is the unit weight of the soil, H is the height of the slope and c is the cohesion. The unit weight is
increased during an analysis instead of reducing the friction angle or the cohesion. Global failure of the slope
occurs if large vertical displacements take place in a part of the slope that is sliding with respect to the stable part
of the slope. It is stated that the slope fails when this happens and the corresponding stability number is the CSN.

The results from the research of Manzari and Nour [17] are used as reference. However, it is not mentioned
in their paper how many load increments are used during an analysis. It could be that they used multiple load
increments or they used a gravity turn on (single load step) followed by equilibrium iterations (as applied in the
research of Griffiths and Lane [9]). Therefore, it is chosen to do analyses with multiple load increments and with
a gravity turn on procedure. The former is called the multiple load increment method (MLIM) and the latter the
single load increment method (SLIM).

1Appendix B gives the definition of the equivalent Von-Mises strain.
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Figure 2.4: 4-node interface element. Figure is taken from [2].

Figure 2.5: 6-node interface element. Figure is taken from [2].

2.4. Models with interface elements
This section gives information of interface elements, utilised for modeling a slip surface. The interface elements
can exhibit a jump in the displacement field. Therefore, the models with interface elements are perfectly suited
for verification of the enrichment elements in a FEmodel of a slope, since both elements can reproduce the same
kinematic behaviour. The models with interface elements are analysed with the SLIM and the MLIM in order
to obtain a CSN. This CSN is used as a benchmark for verification of the development version of the PM. The
remainder of this section provides information about the interface elements.

There are two categories of interface elements [23]. The first category is the zero thickness elements and the
second category is the tiny thickness or open interface elements. Interface elements with zero thickness are used
in this report, so the nodes are lying on top of each other. If the model is generated with 4node quadrilaterals, then
4node line interface elements are used to model the slip surface (see Figure 2.4). 6node line interface elements
are used if the model is run with 8node quadrilaterals (see Figure 2.5). In this way, compatibility is guaranteed.
A normal and shear stiffness modulus have to be defined, which are the elastic material properties. The value of
the normal stiffness modulus is based on the following rule of thumb.

dn ≈ E · 1000

h
(2.10)

with E the Young’s modulus, and h the element size. Evaluating this rule of thumb results in a relatively large
stiffness, which is needed to keep the displacements of the nodes of the interface elements small in the linear
elastic stage. Therefore, these stiffnesses are also called penalty or dummy stiffnesses. The assumption is made
that the shear stiffness modulus, ds , is smaller by a factor of 1000. The dimension of the stiffness moduli is
force per area per length, i.e., stress per length, for instance N/m3. The interface elements obey a MohrCoulomb
friction law. This means that failure in the interface elements occurs if a critical MohrCoulomb shear traction is
reached. A NewtonCotes quadrature scheme is used for numerical integration of the stiffness matrix to prevent
possible traction oscillations [7].

2.5. The extended finite element method (XFEM)
The extended finite element method (XFEM) is the basically the same as the generalized finite element method
(GFEM) [27]. XFEM is GFEM specifically applied to the analysis of discontinuities. GFEM originated from the
partition of unity finite element method (PUFEM) [12]. From here on, only the name XFEM will be used.

With standard FEM, it is only possible tomodel strong discontinuities or weak discontinuities with conforming
or matching meshes [16], in which the element edges align with the discontinuities. A strong discontinuity is a
jump in the solution field, where a weak discontinuity is a jump in the gradient. The weak discontinuities are
reproduced due to the C0 continuity of the mesh. Elements with double nodes, like interface elements, are needed
to be able to represent strong discontinuities like cracks. This means that the representation of the discontinuity is
dependent on the location of the elements. For example, in a nonlinear analysis a crack must propagate through
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interface elements. Hence, the result is not very accurate (when the exact location is not known on forehand) and
the elements must be modeled around the discontinuities, which may be a tedious and time consuming job. A
solution to this problem is to use adaptive meshes, however this is very computationally expensive [16].

With XFEM it is possible to reproduce discontinuities in the solution field, independent of the mesh. This is
possible for strong and weak discontinuities. The down side is that the complexity is moved inside the elements
containing the discontinuities (these elements are called enrichment or representing elements in XFEM). Now
algorithms are needed for detecting which elements contain the discontinuities and where the discontinuities
cross the element edges. Also, numerical integration is more complex, since the element has to be divided into
integration elements to be able to numerically integrate the enrichment functions exactly. However, XFEM is
performing better than the standard FEM in solving problems with evolving geometric features, such as crack
propagation [3].

2.5.1. FEM formulations
The information in this section and Section 2.5.2 is based on the book ”Fundamentals of Enriched Finite Element
Methods” written by Duarte, Simone and Aragón [8] (to be published in 2022) and on the lecture notes from the
course ”Enriched Finite Element Methods, ME46080” given by Alejandro M. Aragón.

The standard test/trial FEM space is given by the set of all functions that can be written as a linear combination
of finite element shape functions as

Sh =
{

uh |uh = ∑
α∈Ih

φα(x)ûα, ûα ∈R

}
(2.11)

where φα are the standard FEM shape functions, associated with nodes xα, α ∈ Ih , where Ih = {1,...,n} is the
set of nodes in the mesh. ûα are the degrees of freedom (DOFs) and R is the set of all real numbers.

XFEM can be interpreted as a FEM method with an enriched test/trial space. The standard finite element
approximation space, Sh from 2.11, is augmented with the enrichment space, Se as

Se =
uh |uh = ∑

α∈I e
h

mα∑
j=1

ũα jϕα j (x) = ∑
α∈I e

h

φα(x)
mα∑
j=1

ũα j Eα j (x), ũα j ∈R

 (2.12)

where ũα j are the enriched DOFs, I e
h are the enriched nodes, ϕα j (x) are the generalized FEM shape functions,

which are the basis functions of a XFEM enrichment space. These generalized FEM functions are a product of
Lagrangian finite element shape functions, φα(x), and an enrichment function Eα j (x). α is the index of the node
in the mesh and j is the index of the enrichment functions at that node. This means that there are mα enrichment
functions at a node.

The enrichment functions Eα j are chosen such that they can reproduce the unknown solution appropriately.
This function selection is based on a priori knowledge about the problem. This can be the existence of strong
and weak discontinuities, or any other phenomenon which can be described by a function.

The total XFEM approximation space is a superposition of the standard FEM space and the XFEM enrichment
space

SX F E M =
{

uh |uh = ∑
α∈Ih

ûαφα(x)︸ ︷︷ ︸
std. FEM

+ ∑
α∈I e

h

φα(x)
mα∑
j=1

ũα j Eα j (x)

︸ ︷︷ ︸
enriched XFEM

, ûα, ũα j ∈R

}
(2.13)

Just as with standard FEM, this expression can be substituted in the weak form of the governing equations,
obtained through the Galerkin weighted residual method. The enriched DOFs, ũα j , can be added anywhere in
the system matrix. Probably, the most practical way is to first add the standard FEMDOFs in the system and next
the enriched DOFs per node.

In the enriched space from 2.12, the Lagrangian shape functions φα(x) are present. These shape functions
form a partition of unity (PoU). The result of this PoU is that the enrichment is exactly represented within the
support of the node (group of elements around an enriched node).

2.5.2. Enrichment functions for discontinuities
To model weak discontinuities, the following level set function can be used

ϕ(x) = ||x−xmi n ||sign ((x−xmi n) ·nmi n) (2.14)
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Figure 2.6: Absolute sign distance function with a
discontinuity at ζ. The blending elements are

indicated by a B and the enrichment element by an E.

Figure 2.7: Construction of the Möes enrichment
function, Ê.

This function represents the shortest distance from a certain point xi to the discontinuity. The sign function states
whether the distance is positive or negative.

The absolute value of this sign distance function can be used as enrichment function, which was explored by
Sukumar et al. Therefore, this enrichment function is called the Sukumar enrichment function, also known as the
ramp enrichment function. An example of the absolute distance function is shown in Figure 2.6.

Because this enrichment function is nonzero in the blending elements (elements next to the enrichment ele
ments), some strange behaviour of the approximation may occur and it degrades the convergence rates. This is
why it is better to use enrichment functions which are exactly zero in the blending elements.

An enrichment function which is exactly zero in the blending elements is the enrichment function proposed
by Möes et al., given in equation 2.15 and shown in Figure 2.7. This enrichment function is called the Möes
enrichment function, also known as shifted ramp function. The Möes enrichment function is only active in the
enrichment elements and therefore only represented in the enrichment elements. Hence, the DOFs at the nodes
retain their physical meaning. Further information about the XFEM method and examples are given in appendix
A.

M(x) = ∑
i∈ih

|ϕ(xi )|φ(x)︸ ︷︷ ︸
(A)

−
∣∣∣∣∣ ∑
i∈ih

ϕ(xi )φ(x)

∣∣∣∣∣︸ ︷︷ ︸
(B)

(2.15)

2.5.3. XFEM applied in the PM
XFEM is a useful method when a priori knowledge about the physical problem is available. This is also the case
for models with interface elements. This knowledge may be the location of a weak or strong discontinuity and
this discontinuity must be predefined in the model. This makes the method not very flexible and creating the
FEmodels is still a tedious job. However, this a priori knowledge is not needed in the PM, since enrichment
functions are added in elements when onset of localisation is detected in those elements.

Figure 2.8 shows a localisation band with normal vector n and slip vector m (direction of the plastic flow).
Across this localisation band the gradient of the displacement field is discontinuous. This is a weak discontinuity.

The width of the localisation band is relatively small compared with the rest of the geometry. Therefore, it is
allowed to set the width of the shear band to zero, which still gives a good approximation of the shear band [26]
and simplifies the method. When taking the width of the band to zero in the limit, the displacement field itself
becomes discontinuous, and thus becomes a strong discontinuity. The shear band becomes a surface in 3D or a
curve in 2D.
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Figure 2.8: Geometry of a weak discontinuity with the normal vector n and the slip vector m.

The onset of localisation in elastoplastic solids is detected by a search algorithm described by Leroy and
Ortiz [29] for associated plastic flow. Sanborn and Prévost [26] expanded the search algorithm for nonassociated
plasticity. When the yield criteria are reached (detected in the integration points) in an element, an algorithm for
detecting onset of localisation starts. This algorithm is described in Chapter 6.1. In Chapter 1.4, it was shown that
the determinant of an acoustic tensor must be zero for onset of localisation to occur. This acoustic tensor is the
tangential material stiffness matrix pre and postmultiplied with the vector normal (vector n in Figure 2.8) to the
discontinuity. When the determinant is zero, ellipticity of the governing equations is lost. At this point, onset of
localisation occurs. By solving this eigen value problem, the direction θ of the normal vector n is obtained as is
the direction of the plastic flow (vector m in Figure 2.8). The vectors m are the eigen vectors of the corresponding
singular acoustic tensor.

For soils and rocks dilatant behaviour is observed on the cracks and this is why the the slip direction is not
perpendicular to the normal of the discontinuity [22]. The solution of this eigen value problem contains multiple
directions for the onset of localisation. To choose the appropriate direction, the method of Regueiro et al. [22] is
adopted. In this paper the direction of the maximum displacement gradient is chosen by max(∇u : m ⊗n). After
detection of onset of localisation, another algorithm searches for localisation in adjacent elements. Sanborn and
Prévost [26] guarantee continuity of the localisation band as follows. If localisation is detected in tip elements,
then the shear band is extended by applying enrichment functions to those elements. Of the possible direction
vectors n, the direction is chosen that is closest to previous direction in the shear band. The band is extended
slightly past the edge of the next element.

When localisation in an element is detected, enrichment functions are added to the nodes of the element. This
means that extra degrees of freedom (DOFs) are added to the system. These extra enrichment functions augment
the standard finite element (FE) space. Shifted Heaviside functions are chosen as enrichment functions. Once
inserted, the discontinuities obey a MohrCoulomb friction law, which is enforced by a penalty method.

The PM for analysing slope stability can be summarized as follows. Initially, the model contains only standard
plane strain continuum elements. This may be 4 or 8node quadrilaterals for example. Then a load is applied on
the system. The load is incremented until an algorithm detects onset of localisation inside an elastoplastic solid.
At this moment, XFEM enrichment functions are added to the localised elements, which are able to reproduce
a jump in the displacement field. Then an algorithm searches for onset of localisation in adjacent elements.
The procedure of adding enrichment functions to the localised elements continues. These elements are now
enrichment elements, which obey aMohrCoulomb friction law and may exhibit a jump in the displacement field.
Global failure of the slope occurs when the slip surface (localisation band of zero thickness) is fully developed.
At this moment, a CSN can be computed according to 2.9. Chapter 3.4 explains the relation between the FOS
(equation 2.4) and the CSN (equation 2.9).





Figure 3.1: Plane strain FE model of a slope with no foundation. The angle of the slope is 26.57° (2 : 1). Rollers on the
left constrain the displacement in x-direction and the supports at the bottom constrain displacements in x- and

y-direction. The slip surface grid is shown in the top right corner.

3
Application of the analysis methods

In Chapter 1.2 it was stated that reliable benchmarks must be obtained with numerical slope stability analysis
methods, which can be used for verification of the point of global failure of a slope in analyses with the PM.
This chapter explains how these benchmarks are generated with the analysis methods described in the previous
chapter.

In the previous chapters is was explained that the stability of a slope is assessed by a FOS or a similar CSN.
Therefore, the FOS and CSN give an indication of the point of global failure of a slope. Hence, the FOS and
CSN are used as benchmarks for verification of the point of global failure in analyses with the PM. In Chapter
1.2 it was stated that the slope stability analysis method of Manzari and Nour [17] (SLIM/MLIM) can be used
for computing a CSN with the PM. In the following it will be explained which FEmodels and corresponding
analyses are used for obtaining the benchmarks and how the results are presented.

The first section describes how the results are obtained and displayed for methods based on strength reduction
and the SSM. The second section describes the same formethods based on load increments. Both sections describe
the FEmodels, the material properties and the analysis settings. Then a sections follows about the convergence
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Figure 3.2: FE model of homogeneous slope with foundation layer. Rollers on the left constrain the displacement in
x-direction and the supports at the bottom constrain displacements in x- and y-direction. The slip surface grid is shown

in the top right corner.

and parameter studies. The last section in this chapter explains the relation between analysis methods based on
strength reduction and methods based on load increments. Verification of onset of localisation on local level is
discussed in Chapter 6.

3.1. Application of methods based on strength reduction
The FEmodels used for computing the FOS and failure modes with the analyses based on strength reduction are
based on the models of Griffiths and Lane [9]. The models are shown in Figure 3.1 and 3.2. These models are
chosen because the results of Griffiths and Lane serve as a reference. The only difference between the models in
Figure 3.1 and 3.2 is the foundation layer.

The soil is modeled with plane strain elements, which obey the following MohrCoulomb plasticity rule.

F (σ) = 1

2
(σ1 − σ3) + 1

2
(σ1 + σ3)sinφ − c cosφ = 0 (3.1)

The properties of the soil are

ψ = 0 [°], φ = 20 [°],
γH

c
= 20 [−], E = 2 ·108 [N/m2], ν = 0.3 [−] (3.2)

where ψ is the dilatancy angle, φ is the friction angle, E the Young’s modulus and ν the Poisson ratio. γH /c is
the stability number (see Chapter 2.3), which is a dimensionless value. c is the cohesion, γ is the unit weight of
the soil and the dimensions of the model are expressed in H . A value of 10 meter is chosen for H , the value of γ is
20000 N/m3 and the cohesion is 10000 N/m2. It may be noted that the value of the friction angle and the cohesion
are initial values, which are reduced during the analysis. All analyses are run with bilinear quadrilateral (Q4)
and quadratic quadrilateral (Q8) elements 1. Q4 elements are chosen, because the PM will initially be developed
for Q4 and T3 elements. Q8 elements are applied because Griffiths and Lane [9] used Q8 elements and therefore
a better comparison with their results can be made. Also, Q8 elements will give better results for a given mesh
size, since the rate of convergence in the energy norm of quadratic elements is approximately 1 and 0.5 for linear
elements [19].

The SRM requires an initial stress state to be able to run the analysis. This stress state may represent the
loading history of the soil. The stresses in the soil elements are computed due to the self weight and are used as
an initial stress state of the soil elements in the next step. The FOS is computed after every reduction as described
1Due to the meshing a few T3 or T6 elements may be present in the mesh. However, by far the most elements are Q4 or
Q8 elements and therefore reference will be made to Q4 or Q8 elements in the results.



3.1. Application of methods based on strength reduction 21

0.8 1 1.2 1.4
0

0.5

1

1.5

SSM

FOS [−]

E
δ
m

ax
/γ

H
2

[−
]

SRM
MSRM

Figure 3.3: Dimensionless maximum displacement versus the FOS. A rapid increase of displacements indicate failure of
the slope. The FOS of the SSM is indicated by the vertical line.

in Chapter 2.2. The initial FOS of the models is 1, the initial increment of the FOS is 0.1 and the FOS tolerance
is 0.0125. The equilibrium iterations are executed with a secant QuasiNewton scheme 2 with an iteration limit
of 1000. The MSRM does not require an initial stress state and the load is applied with a single load step per
analysis. The displacement field is computed during the analyses and the maximum vertical displacement, δmax,
is normalised according to

Eδmax
γH 2 [−] (3.3)

which is a dimensionless quantity. This dimensionless displacement is plotted versus the FOS. An example is
shown in Figure 3.3. The results are generated with the SRM and the MSRM. Those plots capture the kinematic
behaviour of the soil with respect to the FOS. Failure of the slope is indicated by a rapid increase in displacements.
Griffiths and Lane [9] state that this rapid increase in displacements is analogous to nonconvergence of the
analysis and therefore they choose to use this nonconvergence as failure criterion. The corresponding value of
the FOS is the final FOS.

The FOS obtained with the SSM is only computed in the first analysis, i.e., during the analysis with the initial
values of the soil parameters. This is because the SSM computes the FOS from the stresses in the soil (see Chapter
2.1). Hence, the displacements are not plotted versus the FOS for the SSM. The FOS computed with the SSM
will be indicated by a vertical line, as shown in Figure 3.3, or is given in a table. A slip surface grid is shown in
the top right corner of Figure 3.1 and 3.2. Slip surfaces are generated from the grid points with radii of 15 to 22
meters, with increments of a 0.5 meter.
2Better results were obtained with this iteration scheme than a standard Newton-Raphson scheme.

Figure 3.4: A critical slip surface computed with the
SSM.

Figure 3.5: Failure mode of the slope with computed
with the MSRM.
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Figure 3.6: FE model of a homogeneous slope with no foundation. The angle of the slope is 45° (1 : 1). The vertical
displacement is computed at the tip of the slope, denoted by T.

The plots with the normalised displacement versus the FOS and the final FOSs will serve as benchmark for the
PM. However, the PM falls in the category of analysis methods based on load increments. Section 3.4 explains
how the two categories are related.

Additional verification of the PM can be done with benchmarks based on the geometry of the critical slip
surfaces and localisation bands. An example is shown in Figure 3.4 and 3.5. Figure 3.4 shows the critical slip
surface, computed with the SSM. The center point of the circle is indicated by the blue dot in the grid. Figure
3.5 shows the failure mode of a slope, computed with the MSRM. The light blue colour indicates the localisation
band (with finite width). The critical slip surface is inside this band. Those critical slip surfaces, localisation
bands and failure modes can be compared with the slip surfaces computed with the PM. Appendix B provides
additional information about verification of the slip surface geometry.

3.2. Application of methods based on load increments
The SLIM and MLIM are analysis methods based on load increments and the results of those methods is a CSN.
The methods are applied on the FEmodel of Figure 3.6. This model is based on the model of Manzari and Nour
[17] and the results of their research will serve as reference. In Chapter 5.3 a slip surface is predefined in the
slope of Figure 3.6, modeled with interface elements. The results of the model with interface elements are used
for verification of a development version of the PM.

φ = 30 [°], H = 10[m], c = 10000[N/m2], E = 2 ·108 [N/m2], ν = 0.3 [−] (3.4)

The MohrCoulomb plasticity rule of equation 3.1 is used. The unit weight, γ, is increased in analyses with the
SLIM and the MLIM. A secant QuasiNewton scheme is used for the equilibrium iterations with a ceiling of 1000
iterations.

The benchmarks generated with methods based on load increments are in the form of dimensionless displace
ment versus stability number (SN) plots. The vertical displacements at the tip of the slope, indicated by a T in
Figure 3.6, are used for generating the plots. An example of an normalised displacement versus SN plot is shown
in Figure 3.7. A rapid increase of displacements indicate global failure of the slope and the corresponding SN is
the CSN of the slope. Manzari and Nour [17] applied the following dimensionless displacement

Gδ

Hc
[−] (3.5)

withG the shear modulus, which attains a value of 8.846 · 107 N/m2, and is computed from the Young’s modulus.



3.3. Convergence and parameter studies 23

0 10 20 30 40
0

2

4

6

γH/c [−]

G
δ

/
H

c
[−

]

SLIM
MLIM
Int.

Figure 3.7: Example of a benchmark generated with the MLIM, SLIM and a model with interface elements (Int.). A
dimensionless vertical displacement is plotted versus the stability number. A rapid increase of displacements indicate

global failure of the slope and the corresponding SN is the CSN of the slope.

3.3. Convergence and parameter studies
In Chapter 4 and 5, convergence studies are performed in order to obtain reliable values of the FOS and CSN
which can be used as benchmarks. In those studies, four different mesh sizes of 0.25m, 0.5m, 1m and 2m are
used for the aforementioned FEmodels. The resulting FOSs and CSNs of the analysis of those models should
converge to a certain value if the mesh size is reduced. These (converged) values serve as reliable benchmarks,
applicable for verification of the PM.

Griffiths and Lane [9] and Manzari and Nour [17] did not mention which convergence criteria is used in the
FEanalyses and therefore it is chosen to use a force vector based convergence criteria. Then convergence occurs
if the following criterion is met

√
g T

i g i√
g T

0 g 0

<= c (3.6)

where g 0 is the initial residual force vector and g i are the residual force vectors obtained in the next iterations
(i = 1, ...,n). A value of 0.01 and 0.001 is taken for c, which is the threshold value of the criterion.

Parameter studies are performed, additional to the convergence studies. In Chapter 4.1 the effect of the Poisson
ratio on the FOS is studied and Chapter 5.1 provides studies of the effect of the dilatancy angle on the CSN.
Various values are used for the Poisson ratio and dilatancy angle in the FEanalyses. The results are presented
in the aforementioned displacement versus FOS/CSN plots. The objective is to obtain characteristic behaviour
from those plots, which can be related to the variation of the soil parameters. Then this characteristic behaviour
can be used to verify whether the variations of the soil parameters have the same effect on the results of the PM.

3.4. Relation between methods based on strength reduction and methods
based on load increment

This section explains the relation between methods based on strength reduction and methods based on load in
crements. This relation is needed in order to be able to verify the point of global failure of the PM, indicated by
the CSN, with the FOS of the SRM and the SSM. First, the relation is demonstrated with numerical examples,
followed by a physical explanation.

The model of the slope without foundation layer in Figure 3.1 is analysed with the SRM and the MSRM. The
material and analysis properties are given in Chapter 3.1. In every analysis, a stability number with an initial value
of 20 is used, but with a different combination of γ, H and c. This will demonstrate that a different combination
of those parameters does not have any influence on the FOS if the initial value of the stability number is the same
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(b) Results of FE analyses with Q4 elements.

Figure 3.8: FOS versus dimensionless displacement of a slope without a foundation. Different values for c, γ and H are
taken, but such that the initial value of the stability number, γH /c, is 20.

in every analysis 3. First, analyses are done with γ = 20000N/m3, H = 10m and c = 10000N/m2. Then, analyses
are run with γ = 1000N/m3, H = 100m and c = 5000N/m2.

Figure 3.8 shows that a different combination of γ, H and c, does not result in a different dimensionless
displacement and thus the final FOS is the same. This gives the opportunity to establish a relation between
methods based on strength reduction and methods based on load increments. With this relation it is possible to
compare the CSN, computed with methods based on load increments, with the FOS computed with methods based
on strength reduction. The relation can be established through the definition of the stability number, Ns = γH/c
and the definition of the FOS of the SRM, cn+1 = c /FOSn+1 and tan(φn+1) = tan(φ)/FOSn+1. Now, lets say that
only the cohesion is reduced during a SRM and that the final FOS is equal to a factor λ. Then the reduced value
of the cohesion is

cn+1 = c

FOSn+1
= c

λ
(3.7)

Substitution of this reduction in the definition of the stability number gives

Ns = γH

(c /λ)
= λ · γH

c
(3.8)

This shows that reduction of the cohesion with a factor λ has the same result as increasing the unit weight with this
factor λ. Another explanation can be given with use of the MohrCoulomb envelope shown in Figure 3.9. Lets
assume that a point in the soil has an initial stress situation, represented by the stress point (σ1,τ1) (red dot) and
this stress point is initially inside the MohrCoulomb stress envelope. Then due to reduction of the cohesion by a
factor 2, the stress point (σ1,τ1) suddenly lies on the MohrCoulomb envelope. Now lets increase the stress state
by a factor 2, by doubling the unit weight instead of reducing the cohesion. Then the new stress point (σ2,τ2)
also lies on the edge of the MohrCoulomb envelope. Therefore, decreasing the cohesion by a certain factor
has the same effect on the stress point as increasing the unit weight by this factor, with respect to the maximum
MohrCoulomb shear stress.

Now a relation is established between strength reduction methods and load increment methods. However,
this relation is only based on a reduction of the cohesion. Figure 3.10 gives numerical proof to substantiate those
statements. Two analyses are run with Q8 elements. The cohesion is reduced in one analysis, while the unit
weight is increased in the other and the resulting curves in Figure 3.10 are the same.

The next objective is to find a relation between methods with a full strength reduction (reduction of the
cohesion and of the friction angle) and methods based on load increments. The only addition to a full strength
reduction analysis is that the friction angle is also reduced besides reduction of the cohesion. This means that the

3The value of the stability number changes, due to reduction of the cohesion during the analyses.
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Figure 3.9: Change of the Mohr-Coulomb envelope due to reduction of the cohesion by a factor 2 or change of the stress
state due to increasing the unit weight by a factor 2.
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Figure 3.10: Dimensionless maximum displacement versus the stability number of a slope. The cohesion is reduced in
one analysis, while the unit weight is increased in the other. The results are generated with 8-node quadrilaterals.

same results can be obtained with a method based on load increments if the friction angle is decreased during the
increments of the unit weight. Hence, the following relations are valid

γn+1 = FOSn+1
γ

tan(φn+1) =
tan(φ)

FOSn+1

(3.9)

The model in Figure 3.1 is analysed with the MSRM and with the SLIM. The friction angle is reduced during
the SLIM. Therefore, this method is now not purely based on load increments, but also on reduction of the friction
angle. Hence, the resulting method is a hybrid method. Figure 3.11 shows that the results of the MSRM are
exactly the same as the SLIM with reduction of the friction angle. In this hybrid method, the load is incremented
manually and the friction angle is reduced manually, which is a tedious job. However, the analyses can be made
more efficient if the load is applied with automatic increments, just as in the MLIM. The only modification
would be that the friction angle should be a function of the load increment (or FOS). The relation between the
friction angle and the unit weight is obtained by substitution of FOSn+1 = γ ·γn+1 in equation 3.9 and rewriting
the equation, which gives

φn+1 = tan(φ) ·γn+1
γ

(3.10)

In accordance with the results of this section the following conclusions are given.
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Figure 3.11: FOS versus a dimensionless displacement. Results are generated with the MSRM and with the SLIM. The
friction angle is reduced during the SLIM analysis and therefore this method is a hybrid method.

• It is possible to assess the slope stability with the PM by computing a CSN. The CSN is obtained when the
slip surface is fully developed. This CSN can be verified with the CSN obtained by the SLIM or MLIM.

• A (hybrid) method is proposed for computing a FOS with the PM, which is similar to a FOS of strength
reductionmethods and the SSM. Therefore it is possible to utilise the FOS of the strength reductionmethods
and the SSM as a benchmark for verification of the FOS of the PM.

The last step is to show how the definition of the FOS of the SSM is related to the definition of the FOS of
strength reduction methods. For convenience, the definitions are shown again. The definition of the FOS of the
SSM is

FOS = 1

l

∫
τMC
τ

dξ (3.11)

which contains the critical MohrCoulomb shear stress, which is defined as

τMC = c + σn tan(φ) (3.12)

In a SRM the FOS is computed from

cn+1 = c

FOSn+1

tan(φn+1) =
tan(φ)

FOSn+1

(3.13)

Note the similarities between the critical MohrCoulomb stress, equation 3.12, and the reduction of the cohesion
and the friction angle in equation 3.13. The reduction of the strength parameters in equation 3.13 is based on
the reduction of the cohesion and the tangent of the friction angle of the MohrCoulomb envelope [24]. The
SSM gives an approximation of the most critical slip surface, based on the initial soil situation, i.e., based on the
nonreduced soil properties. The method integrates the critical shear stress over the slip surfaces divided by the
computed shear stress (local FOS) and the length of the slip surface. This gives a FOS which tells how much
capacity is left on this slip surface. The capacity is a factor between the critical MohrCoulomb shear stress and
the active shear stress on average over the slip circle. This takes into account that locally material failure may
occur, but that the system is not failing on global level. Failure of the system only occurs when the average shear
stress in the critical slip surface is large enough.

It is expected that the FOS of the SSM is close to the FOS of strength reduction methods, since this is observed
in Figure 3.3. Also, there are only relatively small deformations in a SRMuntil global failure occurs and the excess
shear stresses, due to local plasticity, will follow the path of the least resistance. This is similar to finding the
critical slip surface with the SSM.



4
Benchmarks generated with analyses based

on strength reduction

The results in this chapter can be used for verification of the FOS of the PM. The results may serve as a benchmark
if the FOS of the PM is computed according to the hybrid method, i.e., if the unit weight is incremented and the
friction angle reduced in the PM. The FEmodel and the material properties are given in Chapter 3.1.

First, the effect of the Poisson ratio on the FOS is studied. The FEmodel is analysed with the SRM, the
MSRM and with the SSM. The analyses are run with various values of the Poisson ratio. The maximum vertical
displacement is plotted versus the FOS and the characteristics of these plots can be used for verification of the
propagation method.

Next, a convergence study is done in order to obtain a reliable benchmark for verification of the FOS of the
PM. The convergence study is performed with the MSRM and in the study four different mesh sizes and two
force norms are used.

4.1. Effect of the Poisson ratio on the FOS
The effect of different Poisson ratios on the FOS are shown in Figure 4.1 and 4.2. The results in Figure 4.1 are
generated with the MSRM and the results of Figure 4.2 are generated with the SRM. A force norm of 0.01 is used
with a maximum of 1000 equilibrium iterations. The FOS is computed with a precision of 0.0125. The values
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Figure 4.1: Influence of the Poisson ratio on the FOS. The results are generated with the MSRM for the FE-model with
foundation layer 3.2. Results are shown for Q4 elements (left figure) and for Q8 elements (right figure).
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Figure 4.2: Influence of the Poisson ratio on the FOS. The results are generated with the MSRM for the FE-model with
foundation layer 3.2. Results are shown for Q4 elements (left figure) and for Q8 elements (right figure).

0.2, 0.3 and 0.4 are used for the Poisson ratio and a mesh size of 0.5 m is used. Both figures show results for Q4
and Q8 elements. A rapid increase in displacements indicate failure of the slope and the corresponding critical
FOS can be obtained from the horizontal axis. Table 4.1 gives an overview of the FOS computed with the SRM,
MSRM and the SSM.

The results in Figure 4.1a are computed with Q4 elements. From this figure it can be observed that the FOS
increases if the Poisson ratio increases. However, from Table 4.1 it can be observed that the differences between
the FOS is only 0.025. Figure 4.1b shows results computed with Q8 elements. This figure shows that the FOS,
with a value of 1.3625, is equal for a Poisson ratio of 0.2 and 0.3. A Poisson ratio of 0.4 results in a FOS of 1.4,
which is larger. Since Q8 elements converge faster to the true solution, it can be concluded that the difference in
the FOS of the Q4 elements is probably caused by the poor solution approximation of the Q4 elements for the
given mesh size of 0.5 m.

What the figures have in common is the difference in the magnitude of the displacements. The maximum
displacements are increasing if the Poisson ratio is decreasing. Thus, the model is acting stiffer if the Poisson
ratio is increasing. This is because the elements tend to expand more in the outofplane direction if the Poisson
ratio becomes larger, but this expansion is constrained by the the plane strain model. Less expansion in outof
plane direction means less expansion in the inplane directions due to the constitutive relations. It can also be
observed that the failure of the slope is more abrupt if the Poisson ratio is larger and the displacements increase
more smoothly for lower values of the Poisson ratio.

The results in Figure 4.2, generated with the SRM, are similar to the results of the MSRM in Figure 4.1. The
largest difference is the magnitude of the displacement in the phase before failure of the slope. The displacements
of the SRM are smaller because the SRM uses an initial stress state as loading condition on the soil. Therefore,
there are almost no displacements before failure of the slope. The MSRM uses an external load on the soil, which
results in larger displacements. However, Table 4.1 shows that the final FOS, computed with the SRM, is almost
the same as the FOS computed with the MSRM.

Poisson element SRM MSRM SSM

0.2 Q4 1.4125 1.4 1.41
Q8 1.3625 1.3625 1.4

0.3 Q4 1.425 1.425 1.39
Q8 1.3625 1.3625 1.39

0.4 Q4 1.45 1.45 1.41
Q8 1.3875 1.4 1.41

Table 4.1: FOS for different values of the Poisson ratio computed with the SRM the MSRM and the SSM.
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Figure 4.3: FOS versus mesh size h for Q4 and Q8 elements. The analyses are done with a maximum of 1000 iterations
and with a force norm of 0.001 and 0.01 respectively. A log scale is used for the horizontal axis.

The results of the SSM are shown in Table 4.1. It can be observed that the FOS with a value of 1.41 is equal
for a Poisson ratio of 0.2 and 0.4. The FOS of a Poisson ratio of 0.3 is 1.39. This is contradictory to the results
of the SRM and the MSRM. However, the difference between the values of the FOS is only 0.02 and there are
no differences between the FOS computed with Q8 and Q4 elements. This means that for this model, the FOS
computed with the SSM is very robust, but the FOS of the SSM does not show characteristic behaviour which
can be used for verification of the PM. The SSM also results in a larger FOS than the FOS computed with the
SRM and the MSRMwith Q8 elements. For this situation, the SRM and the MSRM result in a more conservative
FOS than the SSM.

The graphs in Figure 4.1 and 4.2 can be used for verification of the PM. If the propagation method is being
tested, the same FEmodel with the same analysis properties should be used. The propagation method should be
performed with the three values of the Poisson ratio. Then the displacements are computed and plotted versus
the FOS. Now, graphs are obtained which must be similar to the graphs in Figure 4.1 and 4.2. If the propagation
method is combined with a reduction of the internal friction angle (hybrid method) as described in Chapter 3.4,
then also the FOS should be approximately equal. In the next section a convergence study is performed in order
to obtain a reliable FOS which can be used as a benchmark.

4.2. Convergence study
In this section a convergence study of the FOS is done with the MSRM and the SSM. The FEmodel used is given
in Figure 3.2 in Chapter 3.1. The model is based on a model in the paper of Griffiths and Lane [9] and the results
obtained in this paper are used as a reference. Four different mesh sizes of 0.25 m, 0.5 m, 1 m and 2 m are used.
Griffiths and Lane [9] state that failure of the slope and numerical nonconvergence occur simultaneously and
that this is accompanied by a vast increase in the displacements within the mesh. The same maximum number of
1000 iterations is used.

The FOS is computed with the MSRM and the SRM for models with Q4 and Q8 elements and plotted versus
the mesh size. The results are shown in Figure 4.3 and in Table 4.2. It must be noted that the SSM was not able to
compute a FOS for a mesh size of 2 m and Q4 elements. Looking at the plot with a convergence criterion of 0.01,
it can be observed that the FOS of the Q4 elements seem to converge to a value of 1.4. However, the FOS of the
Q8 elements seem to not converge to a certain value. The results are even worse for the convergence criterion of
0.001. The FOS of the SSM on the other hand, is with an average value of 1.4 and a maximum deviation of 0.2
very stable.

The nonconvergence of the FOS is the result of the maximum number of iterations in combination with the
mesh size and the convergence criterion. First, in general an analysis with a convergence criteria of 0.001 needs
more iterations to find equilibrium than an analysis with a criterion of 0.01, simply because the requirement of the
norm of the residual force vector is more strict. For the mesh size it holds that the system of equations becomes
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FOS

CC MS SSM MSRM
Q4 Q8 Q4 Q8

0.01

2 - 1.38 1.6 1.4125
1 1.4 1.39 1.475 1.375

0.5 1.39 1.39 1.425 1.3625
0.25 1.41 1.39 1.4125 1.35

0.001

2 - 1.4 1.45 1.4
1 1.41 1.4 1.3875 1.325

0.5 1.4 1.4 1.3625 1.2625
0.25 1.4 1.4 1.3125 1.2

Table 4.2: FOS for different mesh sizes (MS) and different convergence criteria (CC). The FOS is computed with the
SSM and the MSRM.
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Figure 4.4: FOS versus dimensionless displacement for different convergence norms. The FOS is computed with the
MSRM and Q8 elements. The rapid increase in displacements indicates slope failure. The results of Griffiths and Lane

[9] are plotted as is the FOS computed by Bishop and Morgenstern [1] indicated by B&M.

larger when the mesh size reduces and a larger system of equations means that more iterations are needed to find
equilibrium. As a consequence, the analysis cannot find equilibrium within the specified 1000 iterations for small
mesh sizes and a convergence criterion of 0.001. However, this nonconvergence may not coincide with slope
failure. This is because the displacements, obtained at 1000 iterations, are still equal to the displacements of a
converged model with a convergence criterion of 0.01. This is shown in Figure 4.4. The plots are generated with
a mesh size of 1 m and 0.5 m. The red dots in these figures indicate nonconvergence of the analyses with a 0.001
convergence criterion. It can be observed that this point of nonconvergence is still on the graph of the analyses
with a convergence criterion of 0.01 1 and that this point is before excessive displacements in the slope occur.
Figure 4.4b also shows that the displacements, obtained after the first point of nonconvergence, are equal to the
displacements of the analyses with a criterion of 0.01. The initiation point of a rapid increase in displacements is
also almost the same. From these observations it can be concluded that the analyses with a criterion of 0.001 are
converging, but themaximum amount of iterations is too small to find equilibriumwhich satisfies the convergence
criterion. This statement is verified with a model containing Q8 elements and a mesh size of 1 m. The analysis
did not converge in 1000 iterations for a strength reduction factor of 1.325. The corresponding maximum vertical
displacement is 0.0246 m. Then the maximum amount of iterations is set to 10000. Now the analysis did converge
in 6109 iterations and the corresponding maximum vertical displacement is 0.0245 m.

Then there is another situation observed during the study of the effect of Poisson ratio on the FOS. The
analysis is done with Q4 elements, a Poisson ratio of 0.4, a mesh size of 0.5 m and a convergence criterion of
0.01. The results are shown in Figure 4.5. A rapid increase of displacements occurred for a strength reduction
1The analyses with a convergence criterion of 0.01 did converge until excessive displacements occurred.
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Figure 4.5: The red dot is corresponding to non-convergence of the analysis. The results are generated with Q4
elements, a Poisson ratio of 0.4, a mesh size of 0.5 m and a convergence criterion of 0.01.
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Figure 4.6: FOS versus dimensionless displacement for different convergence norms. The FOS is computed with the
MSRM and Q8 elements. The rapid increase in displacements indicates slope failure. The results of Griffiths and Lane
[9] are plotted as is the FOS computed by Bishop and Morgenstern [1] indicated by B&M. The FOS of Griffiths and

Lane is 1.4 and the FOS of Bishop and Morgenstern is 1.380.

factor of 1.45, however the model converged in 790 iterations. Only for the next strength reduction factor of
1.4625, nonconvergence did occur (indicated by the red dot).

In Figure 4.6, the results of Griffiths and Lane [9] and Bishop and Morgenstern [1] are added. Bishop and
Morgenstern [1] provide a document with a chart containing the FOS of the concerning slope. The value of
this FOS is 1.380 and is computed with a limit equilibrium method. Griffiths and Lane computed a FOS of 1.4
and it can be observed that excessive displacements coincide with nonconvergence (indicated by the red dot).
However, Griffiths and Lane [9] searched for nonconvergence with relatively large increments of the FOS of
0.05. In this work, nonconvergence is found with a 0.0125 precision of the FOS. Due to this relatively large
jump in FOS, nonconvergence coincides with excessive displacements and this also results in a larger FOS than
the FOS obtained by Bishop and Morgenstern and obtained in this work.

It can be concluded that the assumption of Griffiths and Lane [9] for slope failure only holds for a certain
combination of convergence criterion, maximum number of iterations mesh size and increment of the strength
reduction factor.

In the end a convergence study is done for the various mesh sizes and convergence criteria, presented in
displacement versus FOS plots. The results are shown in Figure 4.7 and 4.8. It was observed that nonconvergence
in general coincides with excessive displacements for a convergence criterion of 0.01. A maximum of 1000
iterations is far too small to find equilibrium for a convergence criteria of 0.001. However, as explained earlier
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Figure 4.7: Displacement versus FOS for various mesh sizes of Q4 and Q8 elements. A convergence criterion of 0.01 is
used.
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Figure 4.8: Displacement versus FOS for various mesh sizes of Q4 and Q8 elements. A convergence criterion of 0.001 is
used.

the displacement versus FOS plots give a good indication of the critical FOS. Table 4.3 gives another overview of
the FOSs, but now the FOSs are computed at the moment when excessive displacements occur. Figure 4.9 shows
the corresponding convergence plots. Now the FOS seems to converge also for a convergence criterion of 0.001.
For both criteria, the FOS computed with the MSRM is 1.35 for the Q8 elements. Since Q8 elements converge
faster to the true solution than Q4 elements, this value will be the benchmark representing strength reduction
methods for this FEmodel.

On the other hand there is the average FOS of the SSM with a value of 1.4 and the FOS obtained by Bishop
and Morgenstern [1] of 1.38. Now lets say that the PM is tested and the FOS is between 1.35 and 1.4, then it
can be concluded that the point of global failure computed with the PM is correct. If the FOS is just outside this
domain, for example 1.34 or 1.41, it can be reconsidered whether this is acceptable or not. The FOS of the PM is
probably not correct, if the FOS is far outside this domain.

4.3. Conclusions
In this section, the effect of the Poisson ratio on the FOS is studied. A value of 0.2, 0.3 and 0.4 for the Poisson
ratio is used. The study is done with the SSM, MSRM and SRM and the results are in the form of a dimensionless
maximum vertical displacement versus FOS plots. The characteristics of the displacements in the graphs can be
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FOS

CC MS SSM MSRM
Q4 Q8 Q4 Q8

0.01

2 - 1.38 1.55 1.4125
1 1.4 1.39 1.45 1.375

0.5 1.39 1.39 1.425 1.3625
0.25 1.41 1.39 1.4125 1.35

0.001

2 - 1.4 1.45 1.4
1 1.41 1.4 1.3875 1.375

0.5 1.4 1.4 1.375 1.3625
0.25 1.4 1.4 1.3625 1.35

Table 4.3: FOS for different mesh sizes (MS) and different convergence criteria (CC). The FOS is computed with the
SSM and the MSRM. The FOS is obtained at the moment when excessive displacements occur.
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Figure 4.9: FOS versus mesh size h for Q4 and Q8 elements. The FOS is obtained when excessive displacements occur.
A log scale is used for the horizontal axis.

used for verification of the PM. If the PM is tested, the same FEmodel and analysis properties should be used.
Then the PM is run with the three Poisson ratios and the following characteristics should be observed.

• If the Poisson ratio becomes larger, the maximum vertical displacements become smaller. This holds for
an arbitrary strength reduction factor.

• In general, the FOS is the same for a Poisson ratio of 0.2 and 0.3. This holds for the SRM and the MSRM.

• A Poisson ratio of 0.4 results in the largest FOS. This holds for analyses with the SRM and the MSRM.

• Failure of the slope is more abrupt if the Poisson ratio increases.

The results of the SSM do not provide very useful information, because only the final FOS is computed and the
value is approximately the same for every SSM analysis. The value of the FOS for a Poisson ratio of 0.3 is 1.39,
which is smaller than the FOS obtained by a Poisson ratio of 0.2 and 0.4, which is 1.41. This is contradictory to
the results of the SRM and the MSRM.

Next, a convergence study is performed with the MSRM and the SSM in order to obtain a reliable FOS which
can be used as a benchmark. The study is done with four different mesh sizes of 0.25 m, 0.5 m, 1 m and 2 m and
two convergence criteria of 0.01 and 0.001 are used. After the study the following conclusions can be made

• A ceiling of 1000 iterations does not always result in a nonconvergence of the model which coincides with
excessive maximum vertical displacements in the mesh. This holds for small mesh sizes of 0.5 m and 0.25
m and a convergence criterion of 0.001.

• Nonconvergence can also occur after initiation of excessive vertical displacements. However, this is only
observed in two analyses, both containing Q4 elements. One analysis with a mesh size of 2 m and a Poisson
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ratio of 0.3. The other analysis with a mesh size of 0.5 m and a Poisson ratio of 0.4. Both analyses used a
convergence criterion of 0.01.

• The FOS converges to a value of 1.35 for the MSRM.

• The FOS, computed with the SSM, is very robust since the values are almost always equal for every mesh
size. The average FOS of the SSM is 1.39 for a convergence criterion of 0.01 and the maximum deviation
is 0.1. The average FOS is 1.40 for a convergence criterion of 0.001 and the maximum deviation is 0.1.

Based on these conclusions, the following recommendations are given.

• If a convergence criterion of 0.001 is used in combination with a mesh size of 0.5 or smaller, the maximum
amount of iterations should be significantly increased (probablymore than 10 times). Therefore it is advised
to use a convergence criterion of 0.01 if mesh sizes of 0.5 m or smaller are used.

• The FOS should be determined based on initiation of an excessive increase in maximum vertical displace
ments, rather than on nonconvergence of the model.

• The resulting FOS should be between 1.35 and 1.4 if the concerning FEmodel is tested with the PM. This
range is based on the converged values of the FOS from the MSRM and on the maximum FOS obtained
by the SSM. If the FOS is outside this range, some revisiting of the implementation may be needed.



5
Benchmarks generated with analyses based

on load increments

In this chapter, analyses are run with the SLIM and the MLIM in order to obtain results which can be used for
verification of the CSN computed with the PM. The FEmodel is given in Figure 3.6, which is based on the model
of Manzari and Nour [17]. First, a study is performed of the effect of the dilatancy angle on the stability of a
slope. The characteristics of the results can be used for verification of the PM. Then a convergence study is done
to obtain a reliable CSN. The results of Manzari and Nour serve as reference.

Then, results are given for FEmodels containing interface elements. These results are used in Chapter 6 for
verification of a development version of the PM.

5.1. Effect of the dilatancy angle on the CSN
The soil and model properties are given in Chapter 3.2. The friction angle is kept at a constant value of 30° and
values of 0°, 10°, 20° and 30° are taken for the dilatancy angle. A mesh size of 0.5 m is applied.

It is possible to only reduce the cohesion with the SRM in Diana FEA. Therefore, the model is also analysed
with the SRM, which will result in a FOS which can be compared with the CSN of the SLIM and the MLIM. This
provides additional numerical proof for the relation between methods based on strength reduction and methods
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Figure 5.1: Influence of the dilatancy angle on the FOS. Stability of the slope is lost at initiation of excessive
displacements. The analyses are run with the SLIM. Results are shown for Q4 elements (left figure) and for Q8 elements

(right figure). The friction angle used is φ = 30°.
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Figure 5.2: Influence of the dilatancy angle on the stability of the slope in the form of a dimensionless displacement
plotted versus the SN. The displacements are the vertical displacements of the tip of the slope. The analyses are run

with the MLIM. Initiation of a rapid increase in displacements indicates slope failure. The gravity is incremented with
steps of 1000 N/m3. Results are shown for Q4 elements (left figure) and for Q8 elements (right figure).

based on load increments, obtained in chapter 3.4. The value of the unit weight, γ, for the SRM is 1000 N/m3,
corresponding to a stability number (SN) of 1.

The normalised vertical displacement at the tip of the slope is computed with the SLIM and plotted versus the
SN which is shown in Figure 5.1. The results of Manzari and Nour [17] are also shown in the figures. Figure 5.2
shows the same results for the analyses computed with the MLIM. An overview of the SN at failure of the slope
is given in Table 5.1.

In Figure 5.1 it can clearly be seen that the CSN is increasing if the dilatancy angle is increasing. This holds
for both Q4 and Q8 elements. From Table 5.1 it can be observed that the CSN of the Q4 elements is larger
than the CSN of the Q8 elements. This is also observed in the previous chapter and is the result of the stiffer
response of the Q4 elements. The results of Manzari and Nour differ from the results obtained in this work. The
displacements they obtained in the phase before failure of the slope are larger. Most likely a smaller value for the
Young’s modulus is used, but the applied value is not given in their research. Although the Young’s modulus has
little influence on the FOS (and thus the CSN) [9], the difference in the Young’s modulus could be the reason for
the small difference in the CSN. Other reasons could be differences in loading steps, convergence criterion and in
mesh size. These properties were also not given. Hence, the only valuable information from the paper of Manzari
and Nour for this thesis is the conclusion that the CSN becomes larger if the dilatancy angle is increasing. The
same is observed in the analyses of this work.

Figure 5.2 shows similar results for the MLIM. From Table 5.1 it can be observed that the CSNs are almost
equal for every analysis method. This also holds for the SRM. The result of a SRM is the FOS and does not

ψ element SRM SLIM MLIM M & N

0° Q4 29.13 29.5 28.8 −
Q8 27.06 27.75 26.8 −

10° Q4 33.88 34 34.5 −
Q8 31.88 32 32.6 −

20° Q4 37.25 37.25 37.2 −
Q8 35.55 35.75 35.8 34.12

30° Q4 − − − −
Q8 36.75 36.75 36.9 35.25

Table 5.1: SN for different values of the dilatancy angle, ψ, at failure of the slope. The SN is given for the SRM, the
models with 1 load step (SLIM), the models with multiple loading steps (MLIM) and of Manzari and Nour (M & N).
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Figure 5.3: Displacement versus CSN for various mesh sizes of Q4 and Q8 elements. A convergence criterion of 0.001 is
used.

compute the CSN directly, since the cohesion is reduced during the SRM and the unit weight is not increased as
in the SLIM and MLIM. However, as discussed in section 3.4, the combination of γ, H and c does not have any
influence on the stability of a slope, as long as the (initial) quotient preserves the same value. This means that
increasing γ with a certain factor has the same effect on the stability of the slope as reducing the cohesion with
the same factor. Thus, lets say that the FOS obtained with the SRM of a slope has a value of 30. This means that
the cohesion is reduced by a factor of 30 before the slope fails and the CSN of the SRM is also 30. Therefore,
Table 5.1 provides a numerical proof for the relation between methods based on strength reduction and methods
based on load increments. The largest absolute difference between the CSN of the methods is 0.95 and relatively
this is 3.4%.

5.2. Convergence study
In this section a convergence study of the same FEmodel is performed in order to obtain a reliable CSN. The
only difference is that a foundation layer of 0.25H is added (see Figure 5.5 and 5.6). Four mesh sizes of 0.25 m,
0.5 m, 1 m and 2 m are applied in the analyses. The value of the convergence criterion is 0.001 with a maximum
of 1000 iterations. This results in a rapid increase of displacements of the tip of the slope, coinciding with non
convergence for most of the analyses. For some analyses, nonconvergence occurs after initiation of excessive
displacements of the tip of the slope. In this case, the initiation of excessive displacements are used as indication
for the CSN. The unit weight is increased with 1000 N/m3 per load step. Just before failure, the increment is set
to 100 N/m3 in order to obtain a more accurate CSN. The following soil properties are used

φ = 30 [°], ψ = 0 [°], γ = 1000[N/m3], c = 10000[N/m2], E = 2 ·108 [N/m2], ν = 0.3 [−] (5.1)

The displacement versus SN plots for various mesh sizes is shown in Figure 5.3. An overview of the CSNs
is shown in Table 5.2 and Figure 5.4 gives convergence plots of the CSN versus mesh size for the Q4 and Q8

MS Q4 Q8
2 40.4 34.9
1 35.8 31.3

0.5 31.0 29.3
0.25 28.9 28.3

Table 5.2: CSN for different mesh sizes (MS). The CSN is computed with the MLIM and is obtained at the initiation of
excessive displacement.
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Figure 5.4: CSN versus mesh size h for Q4 and Q8 elements. The CSN is obtained when excessive displacements occur.
A log scale is used for the horizontal axis.

elements. A log scale is used for the horizontal axis. It can be observed that there is a big difference in CSNs
between the mesh sizes. The difference in CSN between a mesh size of 2 m and 0.25 m is 11.5 for Q4 elements
and 6.6 for Q8 elements. It seems that the CSN converges to a value of 28, which can be seen from Table 5.2 and
Figure 5.4. Amesh size of 0.25m results in a CSN of 28.9 and 28.3 for Q4 elements and Q8 elements respectively.

Now the objective is to choose a reliable CSN from the values obtained in this study. Since the PM is still
dependent on the mesh size [26] [20] it is not realistic to state that the CSN must be 28 when testing the PM.
Instead of having a fixed value, the range 28 − 34 is given as benchmark for testing the PM. The lower bound
of 28 takes into account the convergence of the CSN. The upper bound is based on the standard deviation of the
CSNs of Table 5.2, with 28 taken as the mean value. This range could be used as a guideline if the PM is being
tested with an arbitrary mesh size. However, the recommendation is to test the PM for the different mesh sizes
and the resulting CSN should also converge to a value of 28.

5.3. Interface models with linear continuum elements
In this section, the FEmodel in Figure 5.5 and 5.6 is analysed again 1. Interface elements are used to model the
critical slip surface. With these interface elements it is possible to compute strong discontinuities. The develop
ment version of the PM is restricted to a predefined slip surface, just like a model with interface elements. Thus
both the development version of the PM and a model with interface elements have to predefine a slip surface
in the model and both methods can reproduce a jump in the displacement field. Therefore it is expected that the
results of the development version of the PM are very close to the results of the model with interface elements.
1The foundation layer of 2.5H = 2.5 m was added to the FE-model in Figure 3.6 to prevent some issues with the development
version of the PM due to the boundary conditions. More information about this issue is given in Chapter 6

Figure 5.5: FE-model of a slope with interface elements
at the location of a slip surface. The location of this
slip surface is computed with a load increment method.

Figure 5.6: Mesh of the FE-model of a slope with in-
terface elements at the location of a slip surface.
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element γ [N/m3] E [N/m2] ν [−] c [N/m2] φ [°] ψ [°]
Q4/Q8 1000 2 ·108 0.3 - - -

Interface 1000 2 ·108 0.3 10000 30 0

Table 5.3: Material properties of the linear continuum elements and the interface elements.

MS dn [N/m3] ds [N/m3]

2 0.5 ·1011 0.5 ·108

1 1 ·1011 1 ·108

0.5 2 ·1011 2 ·108

0.25 4 ·1011 4 ·108

Table 5.4: Shear moduli used for the different mesh sizes in the analyses with interface elements.

Hence, the results of the FEmodel in this section are used in Chapter 6 to verify the results of the development
version of the PM. The computations are done with linear continuum elements, since the objective is to verify
the behaviour of the enrichment elements.

The FEmodel is shown in Figures 5.5 and 5.6 and the material properties of the continuum and interface
elements are given in Table 5.3 and 5.4. Table 5.4 gives the shear moduli used for the various mesh sizes. These
shear moduli are the linear interface properties. The analyses are done with the MLIM and it may be noted that
the initial value of the SN is 1. Just as in the previous section, four different mesh sizes of 0.25 m, 0.5 m, 1 m
and 2 m are used to obtain a reliable CSN. A convergence criterion of 0.001 is used with a maximum of 1000
iterations.

The interface elements obey a MohrCoulomb friction law. Figure 5.5 shows the slip surface along which the
interface elements are modeled. The location of this slip surface is computed with a load increment method in
order to obtain a realistic slip surface for the model with interface elements. First, an analysis is done with the
MLIM on a model without interface elements. Then the location of the critical slip surface is approximated by
a curve through the resulting shear band of this analysis. The word approximation is used, because the critical
slip surface is somewhere in the shear band, which has a finite width in a model consisting of only continuum
elements. The interface elements are modeled along the coordinates of this slip surface. The approximation of
the critical slip surface (for the location of the interface elements) results in a more realistic FEmodel, but is not
necessary in the process for verification of the enrichment elements of the PM. However, as will be explained
later, it is very critical to use exactly the same predefined slip surface in the verification process.

The failure mode of the slope is shown in Figure 5.7 and the colours indicate the displacement norm. The
figure gives an impression of the strong discontinuity in the displacement field. Figure 5.8 shows that the Mohr
Coulomb shear capacity is reached in every point in the slip surface. This capacity is stress based and the values
indicate how far the stress state in the interface elements is from the critical MohrCoulomb stress. A value of 1
means that the critical stress is reached in an interface element and no more capacity is left. A value of 0 means
that a capacity of 100% is left. Global failure of the slope occurs if the shear capacity is reached in all interface
elements, as shown in Figure 5.8.

The dimensionless vertical displacement of the tip of the slope is plotted versus the SN for the different mesh
sizes and shown in Figure 5.9. An overview of the CSNs of the different analyses is given in Table 5.5. From

Figure 5.7: Failure mode of the Q8 FE model computed
with the SLIM. The colours represent the displacement
norm.

Figure 5.8: Mohr-Coulomb shear capacity in the inter-
face elements.
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Figure 5.9: Displacement versus CSN for various mesh sizes of Q4 and Q8 elements. A convergence criterion of 0.001 is
used.

Figure 5.9a and 5.9b it can be observed that the CSNs are almost equal for all mesh sizes and the analyses with
Q4 and Q8 elements. The moment when the full shear capacity in the interface elements is reached is coinciding
with the initiation of excessive displacements, i.e., at the kinks in the plots of Figure 5.9. Nonconvergence of
the analysis happens far beyond the point of a fully reached shear capacity in all analyses and therefore non
convergence is not a good indication for global failure of the slope. From Table 5.5 it can be observed that the
CSN is 45.2 for almost every analysis. Therefore, a value of 45.2 will serve as a benchmark when testing the
development version of the PM.

It may be noted that there is a big difference in the CSNbetweenmodels consisting of only continuum elements
(Table 5.2) and models containing interface elements (Table 5.5). It seems that the CSNs of the model consisting
of interface elements and linear continuum elements is much larger than the model without interface elements.
The reason for this gap is the difference between the material models of the continuum elements. The continuum
elements in the model with interface elements behave only elastically. Therefore, the continuum elements in the
interface model cannot fail according toMohrCoulomb plasticity and there will be no redistribution of stresses in
the continuum elements. Hence, the failure of the slope is only dependent on the stresses in the interface elements.
The load needs to be larger for all interface elements to fail, since there is no local failure in surrounding continuum
elements.

The last item to be discussed about the model with interface elements, is the high sensitivity of the CSN to a
small change in the geometry of the slip surface. Figure 5.10 shows two slip surfaces. The blue slip surface is
the slip surface from the model in Figure 5.5 and resulted in a CSN of 45.2. Now, analyses are run with interface
elements along the red slip surface. This is done for a model with Q8 elements and a mesh size of 0.25 m and 0.5
m. The resulting CSNs are 40.1 for both analyses and this means that the absolute difference in the CSN is 5.1
for the red and blue slip surface. Since a small difference in the geometry has such a large impact on the CSN,
it is very important to use exactly the same slip surface in the process of testing and verifying the development
version of the PM.

MS Q4 Q8
2 45.2 44.5
1 45.2 45.3

0.5 45.5 45.2
0.25 45.2 45.2

Table 5.5: CSN for different mesh sizes (MS) computed with the MLIM for a model consisting of linear continuum
elements and interface elements. The CSN is obtained when the Mohr-Coulomb shear capacity is reached in all interface

elements.
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Figure 5.10: Location of two slip surfaces for the model with interface elements. The blue curve is the slip surface of
Figure 5.5 and the red curve is the position of a second slip surface.

5.4. Conclusions
In this section, the CSN of a FEmodel is computed with an analysis based on load increments. This CSN is
equivalent to a FOS of a SRM with a reduction of only the cohesion. First, the effect of the dilatancy angle on
the CSN is studied with the MLIM, SLIM and the SRM with only a reduction of the cohesion. The results are
plotted in displacement versus SN plots and the characteristics of those plots can be used for verification of the
PM.

Then a convergence study is done with the MLIM in order to obtain a reliable CSN. This CSN can be used
for verification of the CSN computed with the PM.

Finally, a convergence study is performed of the CSN of a FEmodel containing interface elements. The
interface elements represent the slip surface and the results of this study are used in the next chapter for verification
of the development version of the PM. The following conclusions are made based on those studies.

• First, it can be concluded that the CSN is increased if the dilatancy angle is increased. The largest observed
relative difference is 16.52% for an increase of the dilatancy angle of 10°.

• The CSN is almost equal for the SRM, the SLIM and the MLIM in the study of the effect of the dilatancy
angle. Therefore, it is recommended to use the MLIM in similar analyses, since those analyses are less
computationally expensive and less time consuming.

• If the PM is tested on the FEmodel of this chapter, then the resulting CSN should converge to a value of
28 when the mesh size is reduced.

• The convergence study of the CSN of the model with interface elements results in a robust CSN of 45.2.
This value is obtained when the shear capacity in all interface elements is reached. Hence, the value of
45.2 serves as a benchmark when testing the development version of the PM.

• A small change in the geometry of the predefined slip surface in the model with interface elements has a
large impact on the value of the CSN. Therefore it is important to use exactly the same slip surface when
verifying the development version of the PM with the results of a model containing interface elements.





6
Verification of the propagation method

In this chapter, onset of localisation is verified numerically and analytically on element level. Then the FEmodel
of Chapter 5.3 is analysed with the development version of the PM. The objective is to verify if the behaviour
of the enrichment elements in a FEmodel of a slope is correct. This is done by computing the point of global
failure of the slope, which is represented by the CSN. Global failure occurs when the shear capacity is reached
in all enrichment elements. The corresponding CSN is then compared with the CSN of the model with interface
elements from the previous chapter, which serves as a benchmark. The enrichment elements work properly if the
CSN is close to the value of the benchmark.

6.1. Verification of onset of localisation
The objective of this section is to verify onset of localisation. This means that onset of localisation must occur
in the appropriate load step and that the correct direction of the localisation plane is obtained. First, the FE plane
strain model which is used to obtain the angle of the vector normal to the localisation plane is given. Then, the
numerical results are given and discussed, followed by verification of localisation with numerical results and with
analytical equations. Three analytical expressions are used for verification of the results. Two are from the paper
of Runesson et al. [14] and one is from the paper of Rudnicki and Rice [13]. The results of the three expressions
are compared with each other, to make sure that the expressions are used correctly.

6.1.1. Finite element model
A nonlinear FE analysis of a single quadrilateral (Q4) element is executed. The purpose of this model is to
compute the determinant of the acoustic tensor in every load increment and to monitor when this determinant
becomes zero. When the determinant becomes zero, the possible directions of the vector normal to the localisation
plain are obtained (see Chapter 1.4). For 2D FEmodels, two directions of the normal vector are obtained, which
are orthogonal. Sanborn and Prévost [26] choose the direction of the maximum displacement gradient for the
direction of the normal vector, i.e., the normal vector is chosen which is closest to the direction of the maximum
displacement gradient. A computation of this maximum displacement gradient is not included in this work. The
model is shown in Figure 6.1. The width and height of the element are 1 meter. Translation in xdirection is
constrained for the left edge and bottom edge is constrained in ydirection. The Young’s modulus is E = 2.0×108

N/m2 and the Poisson ratio is ν = 0.2.
The analysis is run with a full NewtonRaphson scheme. Displacement control is applied on node 3 and 4.

A displacement of 4×10−4 meter is applied per load increment on these nodes. The model obeys the following
DruckerPrager yield criterion

F (σ) ≤
√

3J2 + αp − βc = 0 (6.1)

with J2 the second invariant of the deviatoric Cauchy stress tensor σ, with p = 1
3σi i , the hydraustatic stress and

c is the cohesion. The expressions for α and β are

α = 6 sinφ
3− sinφ , β = 6 cosφ

3− sinφ (6.2)

where φ is the friction angle. The plastic potential takes the following form

43
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Figure 6.1: Plane strain model with single Q4 element.

G(σ) =
√

3J2 + γp (6.3)

where the term γ can be expressed as

γ = 6 sinψ
3− sinψ (6.4)

With ψ the dilatancy angle. The analysis is run with four different combinations of φ and ψ, which are given in
Table 6.1.

Leroy and Ortiz [29] proposed an analytical solution for computing the determinant of the acoustic tensor for
2D cases, which is used to compute the determinants. The determinant can be computed explicitly by solving the
following quartic equation [29]

det(A) = a0n4
1 + a1n3

1n2 + a2n2
1n2

2 + a3n1n3
2 + a4n4

2 (6.5)

where n1 = cos(θ) and n2 = sin(θ), which are the two components of the normal vector nS . The angle θ is relative
to the largest principal stress where σ1 <= σ2 <= σ3 and σ1 the largest compressive stress. The coefficients ai

are computed from components of the material tangent stiffness modulus D as

a0 = D1111D1212 − D1112D1211

a1 = D1111D1222 + D1111D2212 − D1112D2211 − D1122D1211

a2 = D1111D2222 + D1112D1222 + D1211D2212 − D1122D1212 − D1122D2211 − D1212D2211

a3 = D1112D2222 + D1211D2222 − D1122D2212 − D1222D2211

a4 = D1212D2222 − D2212D1222

(6.6)

With these formulas, the determinant is computed in every load increment for different angles of θ, from −90
to 90 degrees, by means of a loop. The angle is incremented with 1 degree. A pseudo code for computation of
the localisation angle is shown in Algorithm 1. This algorithm is run in every load increment (when equilibrium
is found) in a loop over the integration points and when plastic loading is detected in the concerning integration
point.

6.1.2. Numerical results
In this section, the results are represented by three plot types, shown in Figure 6.2, 6.3 and 6.4. Two graphs are
shown in each figure. The graphs on the left represent the results obtained in this work and the graphs on the

model 1 2 3 4

φ 20° 20° 25° 30°
ψ 0° 20° 0° 0°

Table 6.1: Combinations of φ and ψ for the FE analysis.
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Algorithm 1 Algorithm localisation angle

1: ai ←D . compute ai from components D
2: for θ ← −90 to 90 do . loop over localisation angles
3: n1 ← cos(θ) . compute normal vector components
4: n2 ← sin(θ)
5: det(A) = a0n

4
1 + a1n

3
1n2 + a2n

2
1n

2
2 + a3n1n

3
2 + a4n

4
2

6: if det(A) ≤ 0 then
7: n← cos(θ), sin(θ) . compute localisation angle
8: end if
9: end for
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Figure 6.2: Stress-strain diagram of the Q4-element in compression for various values of φ and ψ. Onset of
localisation is indicated by the grey dots.

right are from the research of Leroy and Ortiz [29] 1, which are used for verification of the numerical results of
this work. The original figures of Leroy and Ortiz can be found in Appendix C.

The stressstrain diagram in the ydirection is given in Figure 6.2 for various combinations of the friction
angle φ and dilantancy angle ψ. The difference between elastic and plastic loading is clearly visible in Figure
6.2a. The values of the determinant of the acoustic tensor is plotted versus the localisation angle theta and is
shown in Figure 6.3 for load step 1, 5 and 10 and a friction angle φ = 20° and a dilatancy angle ψ = 0°. The
values of the determinants are normalised with the value of the determinant of the elastic acoustic tensor, which
is the acoustic tensor during elastic loading. The value of the determinant reaches a value below zero for the
first time in load step 10, for which the strain attains a value of ϵ = 0.004. Figure 6.4 shows the evolution of
the minima of the determinant during loading for various values of φ and ψ. In the elastic stage, the normalised
value attains a value of 1.

The stressstrain diagrams in Figure 6.2a and 6.2b show similar results. The points of onset of localisation
are marked with a grey dot and are approximately the same for both figures. Also, both figures show about the
same loading pattern, except for the elastic loading branch. The difference between elastic and plastic loading is
clearly visible in Figure 6.2a while Figure 6.2b shows a smooth transition. This smooth transition is due to the
friction hardening Leroy and Ortiz [29] applied, which is a function of equivalent plastic strain. The definition
of the hardening parameter of the friction angle is described in a model from de Borst [4], which is defined such
that a smooth transition between elastic and plastic loading takes place and such that plastic loading starts at the
same loading point. At a critical value of the plastic strain, ϵ̄p

c , the friction angle attains its maximum value, φ f .
These maximum values of the friction angle, shown in Figure C.1, are the same as the values of the friction angle
used in the model of section 6.1.1.

The yield function of equation 6.1, used for the FEmodel in section 6.1.1, does not contain friction hardening
and the values of the friction angle are fixed. Therefore, the difference between elastic loading and plastic loading
1The results of Leroy and Ortiz are extracted with WebPlotDigitizer.
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Figure 6.3: Evolution of the determinant of the acoustic tensor A(n) during loading, up to onset of localization.
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Figure 6.4: Evolution of the minima of the determinant during loading.

is visible in Figure 6.2a. Also, yielding does occur at different loading points, because the yield functions are
dependent on the values of φ. The strains at the localisation points are larger in Figure 6.2a than in Figure 6.2b,
which is also the result of the difference in the definition of the friction angle.

Looking at the evolution of the determinant of the acoustic tensor A in Figure 6.3, it can be noticed that both
models show similar results. In the FE analysis with φ = 20° and ψ = 0° (Figure 6.3a), the determinant of the
acoustic tensor reaches a value just below zero corresponding to a localisation angle of 50°. This is the same result
as is obtained by Leroy and Ortiz (Figure 6.3b). Results of the localisation angle for all combinations of φ and
ψ are given in Table 6.2, together with the results of Leroy and Ortiz. The table shows similar outcomes for all
FEanalyses. Only a small difference can be observed for load case 3 and 4. A plausible reason for this difference
is that Leroy and Ortiz used smaller angle increments of 0.5°. Figure 6.4 shows the evolution of the minima of
the determinants during compressive loading and the results of the two graphs in this figure are also similar. The
difference in smoothness is caused by the difference in the definition of the friction angle as is described earlier.
The normalised minima of the determinants adopt a value of 1 during elastic loading.

model φ ψ FE-model Leroy & Ortiz
1 20° 0° 50° 50°
2 20° 20° 59° 59°
3 25° 0° 51° 51.5°
4 30° 0° 52° 53°

Table 6.2: Angle of the vector normal to the localisation plane, with respect to the first principal stress.
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6.1.3. Analytical solutions

Figure 6.5: Orientation of the
normal vector n.

There are several papers in which the direction of the vector nor
mal to the localisation surface is derived analytically as is the crit
ical value of the corresponding plastic modulus, Hcr. Those solu
tions are derived from the requirement of the determinant of the
acoustic tensor (see Chapter 1.4).

Rudnicki and Rice [13] give analytical solutions for 2D stress
situations, but the DruckerPrager yield function used, is differ
ent from the one used in Diana FEA. Ottosen and Runesson [18]
give more general solutions for 3D stress cases and for more yield
criteria. Runesson et al. [14] give analytical solutions, explicitly
for plane stress and plane strain situations. In the latter, the same
DruckerPrager yield criteria is used as in the software of Diana
FEA and therefore this work is used for further verification of
the numerical results. Runesson et al. [14] derived analytical so
lutions for the direction of localisation and for Hcr with use of
spectral properties of the acoustic tensor. First, the expressions
of the localisation angle and Hcr are given and subsequently it
will be explained how to used those expressions. For plane strain models, the general expression for the angle of
the normal vector is given as

tan2θ = n2
1

n2
2

=−c1

c2
(6.7)

This equation holds for the case f1 > f2, g1 > g2, with fi and gi the principal components of the gradient of the
yield function and the gradient of the plastic potential respectively as given as in equation 1.6. Orientation of the
vector components is given in Figure 6.5. This case is valid for the loading conditions of the model in section
6.1.1. Furthermore, the components c1 and c2 are given as

c1 = f1(g1 − g2) + g1( f1 − f2) +νh ≥ 0

c2 = f2(g1 − g2) + g2( f1 − f2) +νh ≤ 0
(6.8)

with ν the Poisson ratio. For h, the following expression holds

h = f3(g1 − g2) + g3( f1 − f2) (6.9)

For the same loading conditions, Runesson et al. derived a general expression for the critical plastic modulus as

Hcr

2G
= ( f1g2 − f2g1)2 + ν2h2 +2ν( f1g2 − f2g1)(g3( f1 − f2) − f3(g1 − g2))

4(1 − ν)( f1 − f2)(g1 − g2)
− f3g3

1 − ν
(6.10)

where G is the shear modulus. Runesson et al. also derived expressions for the localisation angle and the critical
plastic modulus explicitly for the DruckerPrager yield criteria of equation 6.1. Then, the expression for c1 and
c2 are

c1 = 9(s1 + νs3)+ (1 + ν)q(m + n) ≥ 0

c2 = 9(s2 + νs3)+ (1 + ν)q(m + n) ≤ 0
(6.11)

where si are the principal deviatoric stress tensor components, q = p
3J2, m and n are given as

m = 6 sinφ
3− sinφ , n = 6 cosψ

3− sinψ (6.12)
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Figure 6.6: Angle θ [°] plotted against hydraustatic stress p [N/m2]. The grey dots indicate the load step for which the
value of Hcr becomes positive.

Now θ can be calculated with equation 6.7. The expression for the critical plastic modulus is

Hcr

2G
= 1 + ν

36(1 − ν)

(
2(m − n)2 − (1 − ν)

(
9s3

q
+ m + n)

)2)
(6.13)

Equation 6.7 contains a general expression for computing the angle θ of the vector normal to the localisation
plane and equation 6.8 contains general expressions for the ci terms, which need to be substituted in equation
6.7. Those ci terms are functions of the Poisson ratio and of the principal components of the gradients of the
yield function and the plastic potential, which are functions of stress. Equation 6.8 is general, because every
yield function can be used in these expressions. The same generalisation holds for equation 6.10, which is an
expression for Hcr. Equation 6.8 and 6.10 are used as follows. First, the gradients of the yield function and
the plastic potential are computed. Next, a relevant stress state is substituted in those gradients and now the
expressions in those equations can be evaluated. Now, onset of localisation occurs when the plastic modulus
of the corresponding stress state is smaller than or equal to the value of Hcr. Thus, at a certain moment during
(plastic) loading of the FEmodel, there may be a stress state for which this requirement is met and the localisation
angle can then be computed for this stress state.
Equation 6.11 and 6.13 are the result of a substitution of the DruckerPrager yield function (equation 6.1) and
plastic potential (equation 6.3) in equations 6.8 and 6.10 and are therefore only valid for this DruckerPrager yield
function and plastic potential. Both the general equations 6.8 and 6.10 and the equations 6.11 and 6.13 are used
in the verification process, since the expressions for θ and Hcr are very extensive and an error is easily made.

Rudnicki and Rice [13] also derived formulas for θ and Hcr, but they applied a different DruckerPrager
yield function. However, the analytical solutions of this research are also used to verify the solutions of the
general expressions for θ and Hcr in equation 6.7 and 6.10. This is done by substitution of the DruckerPrager
yield function of Rudnicki and Rice [13] in the general equations 6.7, 6.8 and 6.10 and evaluating the resulting
equations for the concerning stress states. The outcomes for θ and Hcr are then compared with the results of the
evaluated expressions from Rudnicki and Rice [13].

θ and Hcr are plotted against the hydraustatic stress, which is shown in Figure 6.6 and 6.7 respectively. The
stresses are obtained from the nonlinear FEanalysis of the model in section 6.1.1. From Figures 6.6 and 6.7 it
can be observed that the expressions of Rudnicki and Rice [13] result in solutions which are exactly equal to the
solutions obtained with the general equation 6.7 of Runesson et al. [14]. The same holds for (the explicit Drucker
Prager) equations 6.11 and 6.13 of Runesson et al.. Hence, it can be concluded that the general expressions for
θ (eq. 6.7) and Hcr (eq. 6.10) give good results for certain stress states after substitution of the required yield
function. The numerical results can now be compared with the analytical results. The grey dots in the graphs
indicate the load step for which the value of Hcr becomes positive. At this point, localisation (may) occurs. From
Figure 6.7 it can be observed that due to the discrete load increments, a value of 0 for Hcr is slightly exceeded.
Table 6.3 shows analytical solutions of θ and Hcr for different load cases at different load steps. The load steps
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Figure 6.7: Plastic modulus Hcr [−] plotted against hydraustatic stress p [N/m2]. The grey dots indicate the load step
for which the value of Hcr becomes positive.

shown, are chosen such that the value of Hcr changes of sign. As stated before, when Hcr becomes positive, onset
of localisation can occur, since the plastic modulus of the FEmodel has a constant value of zero. Hcr does not
become positive for load case 2. The reason for this will be explained later on.

Sanborn and Prévost [26] state that for localisation to occur, the value of the plastic modulus must be below
the value of Hcr and plastic loading must take place. From Figure 6.2a it can be observed that the material
is yielding at the points of onset of localisation. The value of the plastic modulus of the FEmodel in section
6.1.1 has a constant value of zero (no hardening). For load case 1, the value of Hcr becomes positive in load
step 10 (ϵy y = 4.0× 10−3). This is exactly the same load step as when the determinant becomes zero in the
numerical calculation. The same holds for load case 3 and 4, for which the determinant becomes zero in load
step 13 and 19 respectively. An overview of analytical and numerical results of θ at the load step when the
determinant of the acoustic tensor becomes negative is given in Table 6.4. It can be observed that the analytical
and numerical solutions are approximately the same. The small difference is probably due to the precision of the
loop for computing the value of the determinant in the numerical analyses. As stated before, the loop computes
the determinant with a precision of 1° and when the analytical solutions are rounded, the same values are obtained

load case
1 θ [°] 49.13 49.35 49.53 49.67 49.77

φ= 20° Hcr/G -0.0284 -0.0044 0.0128 0.0251 0.0337
ψ= 0° F (σ) [N/m2] 19.6 −3.36 −5.70 −32.9 15.5

−ϵy y 3.2×10−3 3.6×10−3 4.0×10−3 4.4×10−3 4.8×10−3

2 θ [°] 58.53 58.61 58.66 58.67 58.70
φ= 20° Hcr/G −4.13×10−4 −1.68×10−4 −6.23×10−5 −2.28×10−5 −8.87×10−6

ψ= 20° F (σ) [N/m2] −5.4 17.1 22.4 −9.24 −18.2
−ϵy y 5.2×10−3 5.6×10−3 6.0×10−3 6.4×10−3 6.8×10−3

3 θ [°] 50.33 50.50 50.64 50.77 50.88
φ= 25° Hcr/G -0.0404 -0.0168 0.0024 0.0180 0.0307
ψ= 0° F (σ) [N/m2] −10.8 −14.1 −6.15 −9.05 3.92

−ϵy y 4.4×10−3 4.8×10−3 5.2×10−3 5.6×10−3 6.0×10−3

4 θ [°] 51.76 51.86 51.95 52.03 52.12
φ= 30° Hcr/G -0.0233 -0.0068 0.0078 0.0208 0.0324
ψ= 0° F (σ) [N/m2] 1.87 8.52 −24.1 −7.18 −2.31

−ϵy y 6.8×10−3 7.2×10−3 7.6×10−3 8.0×10−3 8.4×10−3

Table 6.3: Analytical solutions of θ and Hcr at different load steps, for various values of φ and ψ.
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load case analytical numerical load step ϵ

1 49.5° 50° 10 4.0×10−3

2 58.7° 59° 15 4.0×10−3

3 50.6° 51° 13 5.2×10−3

4 51.9° 52° 19 7.6×10−3

Table 6.4: Analytical and numerical solutions of θ at the load step when the determinant of the acoustic tensor
becomes zero.
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Figure 6.8: Plastic modulus Hcr [−], plotted against the hydraustatic stress p for associated and non-associated plastic
flows.

as for the numerical results.

The results of load case 2 will be elucidated in this last part of the discussion. The determinant of the acoustic
tensor never becomes bigger than or equal to zero during the nonlinear FEanalysis of load case 2. This is
analogous with the analytical results. When φ = ψ, the plastic flow is associated and when the plastic flow is
associated, Hcr never becomes bigger than zero [13]. Figure 6.8 shows the value of Hcr/G versus the hydraustatic
stress for associated and nonassociated plastic flows. The stress state is chosen such that it varies from axially
symmetric extension to axiallysymmetric compression. It can be observed that the value of Hcr only becomes
zero for exactly one stress state when the plastic flow is associated. During a nonlinear FEanalysis modeled
with perfect plasticity, this stress state will not be reached due to the discrete load increments. This stress state
can only be approached, as is the case for load case 2 (see Table 6.4). Therefore, onset of localisation can only
occur for a model with an associated plastic flow if an tolerance is set for the minimal value of the determinant.
For load case 2, a tolerance of 1×10−4 is used. The result is that onset of localisation occurs in load step 15 for
load case 2.

6.1.4. Conclusions
Nonlinear FEanalyses of a single Q4 plane strain element are executed for different combinations of the fric
tion angle and the dilatancy angle. The objective is to obtain the correct point of onset of localisation and the
corresponding localisation angle. The determinant of the acoustic tensor is computed during the numerical anal
yses, since onset of localisation occurs if the value of the determinant becomes smaller than zero. The results are
verified with the numerical results of Leroy and Ortiz [29] and with the analytical results of Runesson et al. [14]
and Rudnicki and Rice [13]. It can be concluded that the determinants and the localisation angles are computed
correctly for plane strain models obeying a DruckerPrager yield criteria with perfect plasticity. Special care
must be taken when the plastic flow is associated and if the value of the plastic modulus is zero, because in this
case, onset of localisation cannot occur during a numerical computation. A solution for this problem is to use a
tolerance for the determinant of the acoustic tensor. In this work, a tolerance of 1×10−4 is used.
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Figure 6.9: FE-model of a slope. The white coloured elements are the enrichment elements and the dark coloured
elements are the blending elements. The red line is the mesh independent interface (slip surface) crossing the enrichment

elements.

6.2. Verification of the propagation method on global level
In this section a development version of the PM is tested. The development version is restricted to Q4 elements
and a predefined slip surface, modeled with enrichment elements which can reproduce a jump in the displacement
field. The objective is to verify if the behaviour of the enrichment elements is correct in a FEmodel of a slope
during a nonlinear analysis. The value of the CSN of the model with interface elements from Chapter 5.3 is used
as a benchmark. This value gives an indication of the stability of the slope and it is required that the CSN of the
PM is more or less equal to the benchmark. First, the FEmodel is given, followed by the results of the PM. Some
issues did arise in the analyses with the PM due to the enrichment elements. It is explained why these issues arise
and how they are solved. Then, a discussion of the results follows and the chapter ends with the conclusions.

6.2.1. FEmodel
The FEmodel of the slope is shown in Figure 6.9. This is the same model as the model with interface elements
and linear continuum elements fromChapter 5.3 (Figure 5.5). The only difference is that enrichment and blending
elements are used instead of interface elements. The elements with the white colour are the enrichment elements
and the elements with the dark colour are the blending elements. It can be observed that the slip surface is crossing
the enrichment elements. The material properties of the linear continuum elements and the enrichment elements
are given in Table 6.5. The blending elements have the samematerial properties as the linear continuum elements.

Just like the interface elements, the enrichment elements obey a MohrCoulomb friction law and failure in the
enrichment elements occurs when the critical shear stress in the enrichment elements is reached. The analyses are
run with a convergence criterion of 0.001, with a ceiling of 1000 iterations and the unit weight γ is incremented
till nonconvergence occurs. The enrichment elements have a normal stiffness modulus, dn , of 1.11 · 1011N/m3

and a shear stiffness modulus, ds , of 1.11 · 108N/m3, which are the linear material properties of the interface in
the enrichment elements.

6.2.2. Testing the development version of the propagation method
The analysis of the FEmodel with enrichment elements was not able to converge in the first load increment. The
displacement norm is shown in Figure 6.10 and the shear traction in the interface of the enrichment elements is
shown in Figure 6.11. From the latter it can be observed that the shear traction is only large in a single corner of
an enrichment element (blue dot). This enrichment element is also strongly deformed. Hence, the reason for this
analysis error can be found in the modeling of this enrichment element.

In Figure 6.9 it can be seen that the interface in the concerning enrichment element is very close to the node of

element γ [N/m3] E [N/m2] ν [−] c [N/m2] φ [°] ψ [°]
Q4/Q8 1000 2 ·108 0.3 - - -

Enrichment el. 1000 2 ·108 0.3 10000 30 0

Table 6.5: Material properties of the linear continuum elements and the enrichment elements.
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Figure 6.10: Displacement norm of the XFEM model.
The model did not converge in the first load increment.

Figure 6.11: Mohr-Coulomb shear traction in the in-
terface.

the element. Therefore, the corresponding integration element becomes very small. In the XFEM, the integration
elements are needed to be able to properly integrate the enrichment functions. Figure 6.12 shows an enrichment
element, crossed by an interface (red line). The enrichment functions in the element, in this case Heaviside
functions, are nonsmooth. Numerical quadrature is based on smooth polynomials. In order to exactly integrate
nonsmooth functions numerically, the nonsmooth functions have to be made smooth again. Therefore, the
enrichment element is divided in triangular integration elements, as shown in Figure 6.12. This way, the non
smooth Heaviside function is divided into smooth functions in those integration elements. Now, the Heaviside
function can be properly integrated with Gauss quadrature.

However, numerical issues arise when the interface is too close to the nodes of the element, such as in the
concerning element in Figure 6.11. If the interface becomes closer to the nodes, then the integration elements
become smaller. And if the integration elements become smaller, the values in the corresponding stiffnessmatrices
become smaller. The result is an illconditioned system of equations and the system cannot be solved. This is the
reason for the nonconvergence of the analysis of the model in Figure 6.9 in the first load increment. A remedy
would be to create a FEmodel with enrichment elements, which do not contain interfaces close to the nodes 2.

Therefore, the model in Figure 6.9 is generated again, with a manually generated mesh around the interface.
The mesh is generated such that the integration elements are large enough to prevent an illconditioned system
of equations. The updated mesh is shown in Figure 6.13. The load on the slope is applied again, until failure
occurs. Figure 6.14 shows the displacement norm of the slope at the moment of failure. It is clearly visible that
failure of the slope occurs in the interface of the enrichment elements and that the results are similar to those of the
model with interface elements (see Figure 5.7). It must be noted that the discontinuity seems a weak discontinuity,
instead of a strong discontinuity, but this is the result of the linear interpolation of the displacements inside the
enrichment elements during the postprocessing of the displacements.

The dimensionless displacement is plotted versus the SN and shown in Figure 6.16, together with the results
of the model with interface elements.

2The purpose of XFEM is that it should not be dependent on the orientation of the mesh. However, the integration
elements must not be too small to prevent singularities. When the XFEM method is fully developed, this issue is solved
in a more elegant way.

Figure 6.12: Enrichment element, divided in integration elements.
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Figure 6.13: XFEM model of a slope with a manually generated mesh around the interface. The white coloured
elements are the enrichment elements and the dark coloured elements are the blending elements. The red line is the

mesh independent interface (slip surface) crossing the enrichment elements.

6.2.3. Discussion
There are some issues regarding to the integration elements of the enrichment elements used in the PM. As seen
from the results in Section 6.2.2, the analyses did not converge when the interfaces are too close to the nodes
of the elements, i.e., when the interface cuts the element in two parts with significantly different sizes. This
leads to illconditioning of the system matrix and the system of equations becomes near singular. Hence, the
analysis is not able to convergence and locally spurious modes occur as was observed in Figure 6.10 and 6.11.
This illconditioning problem of the XFEM is well known. Fries [10] mentions three solutions to circumvent the
issues. The first solution is simply blocking the enriched degrees of freedom in the elements with small integration
elements. However, this probably interrupts the continuity of the slip surface which is unwanted. The second
solution is to move the nodes near the interfaces. This solution is effective, but not simple to implement and also
restricts a fully mesh independent interface. The third solution is a stabilisation technique provided by Loehnert
[15], although this is limited to symmetric matrices and is not applicable to problems with instability phenomena
on element level. Both limitations are valid for this work, since onset of localisation is an instability on element
level and the dilatant behaviour results in nonsymmetric matrices.

A fourth solution could be to manipulate the indices of the stiffness matrix of the integration elements that
causes the illconditioning. The values of these indices should be kept at a threshold value if the values of the
indices in the stiffness matrix become too small. This threshold value should be large enough, such that (near)
singularity of the global system of equations is avoided. The downside is that locally the stiffness is changed.
Further research is needed to investigate whether this is a realistic and applicable solution.

The failure mode in Figure 6.14 is correct, since the failure mode is similar to that of the model with interface
elements in Figure 5.7. The difference is that the model with interface elements clearly shows a strong discon
tinuity, where Figure 6.14 shows a weak discontinuity. This difference is caused by the postprocessing of the
displacements in the enrichment elements, where the displacements are linearly interpolated. The shear traction
in the slip surface, shown in Figure 6.15, is not correct. The value of the shear traction seems to make random
jumps, while the value should be smooth. Figure 6.16 shows very large values for the CSNs of the PM. A CSN
of 190 is obtained with the SLIM and 200 with the MLIM, while the value of the benchmark is 45.2 (see Chapter

Figure 6.14: Displacement norm of the converged anal-
ysis of the XFEM model.

Figure 6.15: Mohr-Coulomb shear traction in the in-
terface.
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Figure 6.16: Dimensionless displacement versus the stability number. The results of the PM are plotted together with
the results of the model with interface elements. Q4 and Q8 elements and a mesh size of 0.5m are used for the results of

the model with interface elements.

5.3), obtained by the model with linear interface elements. This is more than 4 times larger and means that the
enrichment elements do not work properly in a nonlinear analysis of the FEmodel of the slope. Further investi
gation is needed to be able to solve this problem. Probably, the high value of the CSN is the result of the incorrect
computation of the shear traction in the interface. The displacements in the linear elastic phase are equal, which
means that the linear behaviour of the interface in the enrichment elements is correct.

6.2.4. Conclusions
In this section, a development version of the PM is tested. A nonlinear analysis of a slope with linear continuum
elements and enrichment and blending elements is executed. The objective is to test the enrichment elements,
which are part of the PM. To achieve this, a predefined slip surface is used, and the results are compared with the
results of the FEmodel containing interface elements, which serve as a benchmark.

First it was observed that system of equations becomes singular when the interfaces are too close to the
nodes of the enrichment elements. Therefore, the PM can only be tested properly if the integration elements
are large enough. To overcome this error, the enrichment elements are manually created around the interface.
More pragmatic solutions were proposed by Fries [10]. One of those solutions seems applicable for the PM,
which is to move the nodes near the interfaces. However, this imposes a restriction on the mesh independency
of the interface. A fourth solution is proposed in this work, which is to set a threshold value for the indices of
the stiffness matrix of the integration elements. Further research is needed to investigate what the best solution
would be.

In the end it can be concluded that the CSN, computed with the development version of the PM, is not correct.
A value of 190 is obtained with the SLIM and 200 with the MLIM. This is more than 4 times larger than the value
of the benchmark (45.2). This benchmark was obtained by a convergence study of the FEmodel, containing
interface elements. The shear traction is not computed correctly in the enrichment elements, which is probably
the cause for the large values of the CSN.
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Discussion and conclusions

7.1. Discussion and conclusions
A relatively new XFEMbased method for analysing slope stability is being implemented in the finite element
software of Diana FEA. Unique with respect to other numerical slope stability methods, like the strength reduc
tion method (SRM) or the slip surface method (SSM), is that this method captures onset of localisation and the
progression of the slip surface. Enrichment elements are representing the slip surface and are able to reproduce
a jump in the displacement field. This XFEMbased analysis method is called the propagation method (PM) in
this work. The PM can be applied to FEmodels consisting rate independent elastoplastic solids.

The process of the PM can be divided in three steps. First, onset of localisation is detected during load
increments in the integration points of the elements. Then enrichment elements are implemented at the location
of localisation, which are able to reproduce a jump in the displacement field. In the consecutive load increments an
algorithm searches for detection of localisation in adjacent elements. Continuity of the slip surface is guaranteed
by extending the slip surface slightly past the edge of the elements. From here on, the implementation of the
enrichment elements continues till a fully developed slip surface is present, resulting in global failure of the
slope. The objective of this work is to verify onset of localisation and to provide a method for verification of the
point of global failure in a computation with the propagation method.

The requirement for onset of localisation in a point is that the determinant of an acoustic tensor must be zero.
The acoustic tensor is dependent on the stress state and on the material properties and therefore the onset of
localisation requirement is being monitored at the integration points of the FEelements. If the requirement is
met, onset of localisation occurs and the corresponding vector, normal to the localisation plane, is obtained. In
this work, a plane strain element is analysed in order to verify whether onset of localisation occurs in the correct
load step and if the corresponding localisation angle is correct. The results are verified with the numerical results
of Leroy and Ortiz [29] and with the analytical solutions of Runesson et al. [14] and Rucnicki and Rice [13]. The
plane strain model is tested for associative and nonassociative plastic flows and a DruckerPrager yield function
with perfect plasticity. Since the results are equal to the results of Leroy and Ortiz [29] and to the analytical
solutions, it can be concluded that onset of localisation is detected properly and that the corresponding normal
vector is correct. Special care must be taken when the plastic flow is associated and if the value of the plastic
modulus is zero, because in this case, onset of localisation cannot occur during a numerical computation. A
solution for this problem is to use a tolerance for the determinant of the acoustic tensor.

A critical stability number (CSN) is a dimensionless factor that gives an indication of the stability of a slope.
In order to obtain the CSN, the unit weight of the slope is increased until global failure occurs. It is possible to
directly compute a CSN with the PM, since an analysis with the PM is based on load increments. The CSN is
then computed at global failure of the slope, i.e., when the slip surface is fully developed.

The SRM and the SSM assess the stability of a slope by a factor of safety (FOS). The FOS is similar to a
CSN, but computed differently. A relation between the CSN and the FOS is needed to be able to compute a
CSN with the PM which is equivalent to a FOS of the SRM and the SSM. Then it is possible to verify the CSN
of the PM with the FOS of the SRM and the SSM. The relation between the CSN and the FOS is established
mathematically through the definitions of those factors and by a physical interpretation. The assumptions are
that the soil is homogeneous, the unit weight is uniformly distributed and the soil undergoes no hardening or
softening. A method is proposed for computation of a FOS with the PM, which is equivalent to a FOS of the
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SRM and the SSM. This method combines increments of the unit weight with reduction of the internal friction
angle of the soil. Numerical proof showed that a FOS is obtained by this hybrid method, which is exactly similar
to a FOS of a SRM.

Next, parameter studies and convergence studies were performed in order to obtain benchmarks which can
be used for verification of the CSN and the FOS of the PM. It must be mentioned that the benchmarks are only
valid for the corresponding FEmodels.

The effect of the Poisson ratio on the FOS is studied and the results are presented in displacement versus FOS
plots. The characteristics of these plots can be used for verification of the FOS of the PM. A value of 0.2, 0.3 and
0.4 for the Poisson is used. In general, the FOS obtained for a Poisson ratio of 0.2 and 0.3 is equal and a value of
0.4 results in the largest FOS. Failure of the slope is more abrupt of the Poisson ratio increases. The convergence
study of the FOS with the manual strength reduction method (MSRM) and the SSM resulted in the following
benchmarks. The MSRM converged to a value of 1.35 and with the SSM a value of 1.40 is obtained.

Then the effect of the dilatancy angle on the CSNwas studied in order to obtain characteristic behaviour which
can be used for the verification of the PM. It can be concluded that the CSN increases if the dilatancy angle is
increased. A convergence study of the CSN resulted in a value of 28. Next, a convergence study was performed
of the FOS of a FEmodel with interface elements and linear continuum elements in order to obtain a benchmark
which is used for verification of a development version of the PM. This resulted in a robust value of 45.2 for the
CSN.

In the end, a development version of the PMwas tested and verified. The objective was to verify the behaviour
of the enrichment elements in a FEmodel of a slope. The benchmark of the model with interface elements is used
for the verification. An error occurred in the analysis with the development version of the PMwhen the interfaces
are too close to the nodes of the enrichment elements. When this happens, the system of equations becomes ill
conditioned, which results in nonconvergence of the analysis. To overcome this error, the enrichment elements
are manually created around the interface. A more pragmatic solution is to move the nodes near the interfaces in
an automatic procedure. In the end it can be concluded that the CSN, computed with the development version of
the PM, is not correct. A value of 190 was obtained, which is about 4 times larger than the value of the benchmark
(45.2). The shear traction is not computed correctly in the enrichment elements, which is probably the cause for
the large values of the CSN.

7.2. Expectations and recommendations
• For a FEmodel with an associated plastic flow and perfect plasticity, it is recommended to use a tolerance
for the value of the determinant of the acoustic tensor. Otherwise onset of localisation will not be detected,
since the determinant only approaches a value of zero.

• It is proposed to model the friction angle as a function of the unit weight in order to compute a FOS with
the PM which is similar to a FOS of the SRM and the SSM. It is expected that this reduction of the friction
angle can be integrated in the PM.

• Further investigation is needed to resolve the illconditioning problem of the enrichment elements. The
same holds for the enrichment elements in a FEmodel of a slope. The shear traction in the interface of
the enrichment elements is not computed correctly. Therefore a proper behaviour is expected if the shear
traction is computed correctly.

• The FOS should result in a value between 1.35 and 1.40 when testing the PM on the FEmodel of Griffiths
and Lane [9]. A combination of unit weight increments and friction angle reduction (hybrid method) should
be used.

• If the PM is tested on the model of Manzari and Nour [17] (only increments of the unit weight), the CSN
should converge to a value of 28 when the mesh size is reduced.

• When generating benchmarks for other FEmodels, special care must be taken for the choice of the conver
gence criterion, the maximum number of iterations, mesh size and precision of the FOS. Nonconvergence
of the analyses may occur, while the slope is still stable. Therefore, the advice is given to compute the FOS
or CSN at initiation of excessive vertical displacements in the sliding part of the slope.

• This work provides benchmarks generated withmodels containing interface elements and linear continuum
elements. These benchmarks are used to verify the behaviour of the enrichment elements in a FEmodel
of a slope with linear continuum elements. The next step in the verification process would be to verify
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enrichment elements in a model with nonlinear continuum elements, with results of a model containing
interface elements and nonlinear continuum elements.





A
XFEM examples

In this section an example is given of the application of XFEM on a problem with a weak discontinuity to give
an illustration of the method. This self workedout example is part of an answer on problem 1 from the course
”Enriched Finite Element Methods (ME46080)”, given by Alejandro M. Aragón at the technical university of
Delft. The final project of the course is given at the back of this example. The problem is solved with use of
standard FEM and with XFEM to show that optimal convergence is recovered with XFEM. The convergence
rates are determined with the relative error in the energy norm.

A.1. The problem

Figure A.1: A 1D bar with weak discontinuity in the center, indicated by Γ(x). The Young’s modulus changes value
across the interface.

The 1D bar boundary value problem is (see also Figure A.1)

− d

d x
(E A

du

d x
) = T (x) 0 < x < L, (A.1)

The essential boundary conditions (BCs) are u(0) = 0 and u(L) = 1. The length of the bar = 10 and the cross
sectional area, A = 1. The material interface xΓ is located at L/2. The bar is subjected to a distributed force per
unit length given by:

T (x) = 25x − 15

2
x2 + 1

2
x3 (A.2)

The exact solution to this problem is given by

u(x) =
{

1
E1

(E2B x + g (x) x ≤ xΓ

B(x −L)+1+ 1
E2

(g (x)− g (L)) x ≥ xΓ

(A.3)

where B and g(x) are

B = E1E2 − g (xΓ)(E2 −E1)− g (L)E1

E2((E2 −E1)xΓ+LE1)
, g (x) =−25

6
x3 + 5

8
x4 − 1

40
x5 (A.4)

This analytical solution can easily be obtained by using software like Maple. The Young’s modulus, E1 = 10000
and E2 = 1000. The exact strain energy is U = 92.95522186, which is obtained by evaluating the following
expression
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U =
∫
Ω

1

2
E A

(
du

d x

2)
d x (A.5)

The exact solution and it’s derivative are shown in Figure A.2

Figure A.2: Analytical solution of the boundary value problem and it’s derivative.

A.2. Approximation with standard FEM
First, the problem is solved by using standard FEM (linear shape functions) with 2, 4, 8 16 and 32 elements and
with 3, 5, 9, 17 and 33 elements. The shape functions used are φ1 = 1−x

2 and φ2 = 1+x
2 . The results are shown in

Figure A.3a and Figure A.3b.
It can be observed that the model with an even number of elements gives a good approximation of the exact

solution. The discontinuity is determined by the C 0 continuity of the approximation. The model with an odd
number of elements gives a bad approximation of the exact solution. This is caused by the location of the interface
and the positioning of the elements. The interface is located in the middle of an element and this element can not
reproduce the weak discontinuity.

The relative error in the energy norm is calculated with the following expression

E =
√∣∣∣∣U −Uh

U

∣∣∣∣ (A.6)

where U is the exact strain energy and Uh the strain energy of the approximation. The strain energy of the
approximation, Uh is

Uh = uTK u (A.7)

with u the DOFs and K the system matrix. The relative error in the energy norm is plotted against mesh size
h and shown in Figure A.4. It can be observed that the rate of convergence (ROC) = 1 and algebraic for the even
elements, which is optimal for linear elements in 1D. The ROC for the odd elements is 0.51, which is far from
optimal.

A.3. Approximation with XFEM
In this section, optimal convergence rates are retrieved using XFEM. The Sukumar enrichment function (Figure
2.6) is used to show that spurious behaviour occurs if enrichment functions are chosen which are not of zero value
in the enriched nodes. If the enrichment function is not zero in the enriched nodes, then the enrichment function
is also active in the blending elements (Figure 2.6). The second enrichment function is the Möes enrichment
function (Figure 2.7). This function is constructed in such a way that the function is of zero value in the enriched
nodes. Hence, the enrichment function is not active in the blending elements. The XFEM approximations are
shown in Figure A.5.

In Figure A.5a and A.5c the approximation with the Sukumar enrichment is shown. The standard DOFs are
plotted and it can be noted that these DOFs are not lying on the displacement field at the location of the enriched
nodes. This means that the standard DOFs do not have a physical meaning at the enriched nodes. This is due to the
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(a) Interface at the nodes of the middle elements. (b) Interface in the middle element.

Figure A.3: Displacement field u(x) vs. the length of the bar x.
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Figure A.4: Loglog plot of the relative error in the energy norm against element size of linear approximation.

enrichment function, which is not zero at the enriched nodes. It can also be observed that the displacement field
has a kink inside the representative element, which represents the weak discontinuity. However, the displacement
field acts strange around the discontinuity, which is caused by the active enrichment function inside the blending
elements. Figure 2.7 and A.5d shows the approximation with the Möes enrichment. Now the standard DOFs
preserve their physical meaning, because the enrichment function has a zero value in the nodes. The representative
element shows a perfect kink at the location of the discontinuity.

The relative error in the energy norm of the XFEM approximation is calculated and plotted against the mesh
size. The error and corresponding convergence rates are shown in Figure A.6. Both approximations have alge
braic convergence, but the convergence rate of the Sukumar approximation is 0.50, while the convergence rate of
the Möes approximation is 1. This means that optimal convergence is recovered using XFEM and an appropriate
enrichment function.

A.4. Implementation of XFEM
In this section, the implementation of XFEM with the Möes enrichment function is described for problem A.1
with 3 elements. Figure A.8 shows the 3 bar elements and the standard shape functions φi . The middle element
is the representative element and nodes 2 and 3 are enriched with the Möes enrichment functions E21 and E31.
The enrichment functions are constructed such that they are of zero value at nodes 2 and 3 and in the blending
elements. The interface is at xΓ.

The general approximation field of XFEM is described with the following equation
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(a) Sukumar approximation. (b) Möes approximation.

(c) Sukumar approximation with 3 elements. (d) Möes approximation with 3 elements.

Figure A.5: Displacement field u(x) vs. the length of the bar x of GFEM approximations.

uh(x) = ∑
α∈Ih

ûαφα(x)︸ ︷︷ ︸
std. FEM

+ ∑
α∈I e

h

φα(x)
mα∑
j=1

ũα j Eα j (x)

︸ ︷︷ ︸
enriched XFEM

(A.8)

Only node 2 and 3 are enriched with 1 enrichment function. Hence equation A.8 becomes

uh(x) =
4∑

α=1
ûαφα(x)︸ ︷︷ ︸
std. FEM

+
3∑

α=2
φα(x)ũαEα(x)︸ ︷︷ ︸
enriched XFEM

(A.9)

Note that the summation over the enriched DOFs vanishes, because there is only 1 enrichment per node. Now,
recall that the expression for an element stiffness matrix of a bar in parent coordinates is

Ke =
∫
Ωe

E ABT (ξ)B(ξ) j dξ (A.10)

or in discrete form

Ke =
∑

i
E ABT (ξi )B(ξi ) j Wi (A.11)

whereB(ξi ) the strain displacement matrix, evaluated at the Gauss points ξi , j the determinant of the Jacobian
matrix and Wi the corresponding weights. The standard shape functions in parent coordinates are

φ1 = ξ−1

2
, φ2 = ξ+1

2
(A.12)

Substitution of A.12 in A.13 gives the element stiffness matrices of element 1 and 3

K1 =
[

3000 −3000
−3000 3000

]
, K3 =

[
300 −300
−300 300

]
(A.13)
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Figure A.6: Loglog plot of the relative error in the energy norm against element size of GFEM approximation.

(a) Partition of unity. (b) Möes enrichment functions. (c) Generalized enrichment function.

Figure A.7: Construction of generalized enrichment functions: φα ·Eα =ϕα.

Figure A.8: XFEM approximation of the BV problem with 3 elements.

The values of the indices of the element stiffness matrix K1 are different than the indices of matrix K3, because
the Young’s modulus takes different values at the left and the right of the interface. Note that node 2 and 3 are
enriched, but the enrichment functions are constructed in such a way that they are zero in the blending elements.
That is why only the standard shape functions are acting in elements 1 and 3. If the enrichment functions are not
zero at the nodes, then the enrichment functions are also acting in the blending elements, as is the case with the
Sukumar enrichment. Now for the stiffness matrix of the second element, the complete expression of equation
A.9 is active. In this equation û are the standard DOFs and ũ are the enriched DOFs. The enrichment functions E2

and E3 are specified in parent coordinates. This is possible if the location of the interface is mapped from global
to parent coordinates. It is also possible to specify the enrichment function in global coordinates. The benefit of
specifying the enrichment function in global coordinates is that no coordinate transformation is involved, but the
downside is applying the chain rule when computing the straindisplacement matrix. However, in this example
the enrichment function is in parent coordinates. The enrichment functions E2 and E3 are

E2 = |ξΓ+1|− |ξ−ξΓ|, E3 = |ξΓ−1|− |ξ−ξΓ| (A.14)

where ξΓ is the location of the interface in the parent element. In this example ξΓ = 0. Substitution in equation
A.14 gives

E2 = 1−|ξ|, E3 = 1−|ξ| (A.15)

The result is shown in Figure A.8. Note that the enrichment functions E1 and E2 are on top of each other, since the
interface is in the middle of the element. A graphical illustration of these enrichment functions is shown in Figure
A.7. This Figure shows the construction of the generalized enrichment functions, ϕα. Multiplication of the linear
partition of unity shape functions, φα, with the Möes enrichment functions, Eα gives the generalized enrichment
functions, ϕα, and the second term of equation A.9 is formed. It can be noted that the Möes enrichment functions
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are not zero at the nodes if the interface is not in the middle of the element. This is why the multiplication with
the partition of unity is performed. The multiplication forces the enrichment functions to zero at the other nodes.

The full approximation of the displacement field in the middle element becomes

uh =φ2û2 +φ3û3 +φ2E2ũ21 +φ3E3ũ31 (A.16)

where ũ are the enriched DOF’s, which will be added in the back of the system matrix as DOF 5 and 6. So in
matrix form the displacement field is

uh = [
φ2 φ3 φ2E2 φ3E3

] ·


û2

û3

ũ21

ũ31

 (A.17)

Substitution of equation A.17 in equation A.10 gives

Ke =
∫ ξΓ

−1
E1BT (ξ)B(ξ) j dξ+

∫ 1

ξΓ

E2BT (ξ)B(ξ) j dξ (A.18)

The element stiffness matrix of the middle element is a summation of two definite integrals over integration
elements. This means that the element has to be split in two sub domains. One on the left of the interface and
one on the right. Otherwise the C 0 continuity can not be captured. Numerical integration of these integration
elements involves extra mapping procedures which is not explained in this section.

The element stiffness matrix Ke becomes

K2 =


1650 −1650 −1350 −1350
−1650 1650 1350 1350
−1350 1350 2200 1100
−1350 1350 1100 2200

 (A.19)

Assembly of the element stiffness matrices gives the system stiffness matrix as

K=



3000 −3000 0 0 0 0
−3000 4650 −1650 0 −1350 −1350

0 −1650 1950 −300 1350 1350
0 0 −300 300 0 0
0 −1350 1350 0 2200 1100
0 −1350 1350 0 1100 2200

 (A.20)

After proper sampling of the force vector, the system of equations can be solved. The displacement vector u is

u= [
3000 0.06575009 0.34249906 1 −0.11073523 −0.11569575

]
(A.21)

Evaluating expression A.9 gives the displacement field as shown if Figure A.5d.



Final Project
Enriched Finite Element Methods (ME46080)

In this project we study the performance of GFEM for problems with weak discontinuities. You
must do PROBLEM 1 and choose either PROBLEM 2 or PROBLEM 3.

PROBLEM 1.— MATERIAL DISCONTINUITY [1]
Consider the 1-D boundary value problem

− d
dx

!
EA

du
dx

"
= T (x) 0 < x < L, (1)

with BCs u(0) = 0 and u(L) = 1. The bar consists of two materials with elastic modulus E1 = 10000 and E2 = 1000. The
length of the bar is L = 10 and the cross section A = 1. The material interface is located at xΓ = L/2. The bar is subjected
to a distributed force per unit length given by

T (x) = 25x− 15
2

x2 +
1
2

x3. (2)

The exact solution to this problem is given by

u(x) =

#
1

E1
(E2Bx+g(x)) x ≤ xΓ

B(x−L)+1+ 1
E2

(g(x)−g(L)) x ≥ xΓ
, (3)

where the constant B and the function g(x) are given by

B =
E1E2 −g(xΓ)(E2 −E1)−g(L)E1

E2 ((E2 −E1)xΓ +LE1)
, g(x) =−25

6
x3 +

5
8

x4 − 1
40

x5,

respectively [1]. The exact strain energy for this problem is U = 92.95522186. Figures 1a and 1b show the exact
solution (3) and its derivative, respectively.

0 10

0

1

x

u(
x)

(a)

0 10
0

x

u′
(x
)

(b)

Figure 1: Exact solution (a) and its derivative (b) for problem (1) subjected to load (2).

Project tasks
1. Solve the problem using the h–version of FEM with linear Lagrange elements on uniform meshes consisting of

i) A sequence of meshes with an even number of elements, and thus the material discontinuity is at a node; and
ii) A sequence of meshes with an odd number of elements, and thus the discontinuity is located at the center of an

element. For this case the stiffness matrix of the element containing the material interface must be integrated
using two “integration elements”.

Make a log-log plot of the relative error in the energy norm versus the mesh size h. In all cases, compute the rate of
convergence in the energy norm and indicate it in the plots.

1



2. Solve the problem with the sequence of odd elements using GFEM considering the following enrichments for material
interfaces

(i) Sukumar’s enrichment [2];
(ii) Möes’ enrichment [3]; and

(iii) Propose your own enrichment trying to deliver an optimal rate of convergence. Explain the rationale behind the
proposed enrichment.

3. Repeat the problem above using the p–FEM and p–GFEM on uniform meshes with approximations of orders p =
1, . . . ,5. Use (a) four elements; and (a) five elements. Choose enrichment functions that will deliver exponential
convergence.
Make a log-log plot of the relative error in the energy norm versus the total number of degrees of freedom (DOFs). In
all cases, compute the rate of convergence in the energy norm and indicate it in the plots.

4. Study the stability of all methods above. Make a plot of the condition number of the stiffness matrix as a function of
1/h for h–FEM and as a function of the total number of DOFs for p–FEM and p–GFEM. The condition number of the
reduced matrix Kff is defined as

cond(Kff)≡
λmax

λmin
, (4)

where λmax and λmin are the matrix maximum and minimum eigenvalues. For this problem, study what happens when
an interface approaches a node of the original mesh.

5. Discuss (compare and draw conclusions) your results. One page limit.

PROBLEM 2.— PLATE WITH ELASTIC INCLUSION
Consider the circular linear elastic body Ω = Ω1 ∪Ω2 with radius b = 2 shown in Figure 2. The body is composed of

two materials as illustrated in the figure. The radius of the subdomain Ω1 is a = 0.4. The Lamé constants in Ω1 and Ω2
are λ1 = µ1 = 0.4 and λ2 = 5.7692,µ2 = 3.8461, respectively. These values correspond to E1 = 1, ν1 = 0.25 and E2 = 10,
ν2 = 0.3. Displacements in the radial direction and with magnitude equal to b are prescribed on the boundary ∂Ω of the
domain.

Ω1

Ω2

a b

e1

e2

computational domain

Figure 2: Bi-material boundary value problem. The square computational domain is represented by the dashed lines.

The exact solution of this problem in polar coordinates is given by [2]

ur(r) =

$
%

&

'(
1− b2

a2

)
α + b2

a2

*
r for 0 ≤ r ≤ a,

(
r− b2

r

)
α + b2

r , for a ≤ r ≤ b,

uθ (r) = 0,

(5)

where

α =
(λ1 +µ1 +µ2)b2

(λ2 +µ2)a2 +(λ1 +µ1)(b2 −a2)+µ2b2 .

The radial and hoop strains are given by

εrr(r) =

$
%

&

(
1− b2

a2

)
α + b2

a2 for 0 ≤ r ≤ a,
(

1+ b2

r2

)
α − b2

r2 for a < r ≤ b
(6)
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and

εθθ (r) =

$
%

&

(
1− b2

a2

)
α + b2

a2 for 0 ≤ r ≤ a,
(

1− b2

r2

)
α + b2

r2 for a < r ≤ b
(7)

respectively. The stresses are given by

σrr(r) = 2µεrr +λ (εrr + εθθ ) ,

σθθ (r) = 2µεθθ +λ (εrr + εθθ ) , (8)
σrθ (r) = 0.

where appropriate Lamé constants are used depending on the value on r.
In order to avoid meshing a circular domain, a square domain with edge length L = 2 is used (see dashed lines in

Figure 2). The exact tractions are applied on the boundary of the square domain and point displacement constraints are
applied in order to prevent rigid body motion. The components of the exact tractions t̄ in Cartesian coordinates can be
computed by first transforming (8) and then computing t̄= σn, where n is the unit normal vector to the boundary.

Project tasks
1. Solve the problem using the h–version of FEM and uniform meshes. Use a sequence of meshes with 11×11, 20×20,

40×40, 80×80 elements. Use linear and quadratic Lagrange elements.
2. Add enrichments for material interfaces:

i) Sukumar’s enrichment [2] defined as
LΓ

α(x) = |‖x‖−a| . (9)

Here, we assumed that the origin of the global coordinate system is at the center of the circular domain Ω.
ii) Propose and implement your own enrichment(s) for interfaces like the one in this problem. Try to choose one

that will deliver optimal rate of convergence for linear and quadratic approximations (same rate as in a problem
with a smooth solution). Explain the rationale behind the proposed enrichment.

3. Compute the exact strain energy using the exact solution. Alternatively, you can estimate the exact strain energy using
the procedure based on a posteriori error estimates derived in class.

4. For each element type and enrichment used, make a log-log plot of the relative error in the energy norm versus the
number of DOFs. In all cases, compute the rate of convergence in the energy norm and provide the computed/estimated
exact strain energy.

5. Discuss (compare and draw conclusions) your results. One page limit.

When solving the problem with enrichment functions, we must identify elements cut by the material interface. This
can be done by computing the level set value of all mesh nodes. The level set value Φi for a given node xi is a scalar that
represents the distance from the node to the circular interface, i.e., Φi = ‖x‖−a (again assuming the center of the circle
is at xc = 0). Notice that the level set value is negative for nodes that lie within the circle. Once the level set value for all
mesh nodes is known, we can identify cut elements as follows:
• Loop over all elements Ωe ∈ Ω;
• For each element Ωe, loop over its edges;
• An edge defined by two nodes xi and x j is crossed by the circular interface if ΦiΦ j < 0.

PROBLEM 3.— GFEMGL MULTI-SCALE ANALYSIS OF A HETEROGENEOUS BAR
In this project, we study the application of the Generalized Finite Element Method with global-local enrichments

(GFEMgl) [4] to multi-scale material simulations. Let us consider a 1-D model problem governed by the differential
equation

− d
dx

!
E (x)A

du
dx

"
= 0 0 < x < L, (10)

with boundary conditions

u(0) = 0,

E (L)A
du
dx

++++
x=L

= P.

Eq. (10) represents the equilibrium equation for a bar of length L with cross section A, and Young’s modulus E (x), the
latter which is an oscillatory function given by

E (x) =

$
,%

,&

EH if 0 ≤ x ≤ 3L
8 ,

Ẽ (x) if 3L
8 < x < 5L

8 ,

EH (x) if 5L
8 ≤ x ≤ L,

(11)
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where the homogenized Young modulus, EH , is taken as

EH =
E1E2

E1V̄2 +E2V̄1
, (12)

with volume fractions V̄1 = V̄2 = 0.5 and E1 = 1,E2 = 40. These are the material properties of the white and black phases
shown around the center of the bar in Figure 3.

L
8

L
4

3L
8

L
2

5L
8

3L
4

7L
8 L

P

L
128

L
128

Figure 3: Bar with heterogeneous material. The white and black phases have Young’s modulus E1 = 1 and E2 = 40,
respectively.

Young modulus Ẽ(x) represents a periodic heterogeneous material given by

Ẽ(x) =

#
E1 if x ∈ white phase,
E2 if x ∈ black phase.

(13)

The length of each phase is taken as ∆L = L/128, as illustrated in Figure 3.
It is assumed that the assumptions of the homogenization theory are valid away from the center of the bar. The solution

of the problem in the region where E(x) = Ẽ(x) varies very quickly due to changes in material property. As a result, a
very fine finite element mesh must be used for acceptable accuracy.

Many problems of engineering relevance behave like this model problem: Homogenized material properties can be
used everywhere except at some critical locations near stress risers, cracks, etc. In those regions, the actual material
properties must be used for accurate results. However, this may require extremely fine meshes. In this project we explore
the application of the GFEMgl to this class of problems. Similar 3-D problems are solved in [4] using GFEMgl.

The exact solution of this problem is given by

u(x) = P
! x

0

1
E(x)

dx =

$
,,%

,,&

P
EH

x if 0 ≤ x ≤ 3L
8 ,

P
EH

3L
8 +P

" x
3L
8

1
Ẽ(x)dx if 3L

8 < x < 5L
8 ,

P
EH

3L
8 +P L

8

(
1

E1
+ 1

E2

)
+ P

EH

-
x− 5L

8

.
if 5L

8 ≤ x ≤ L.

(14)

Project tasks
1. Compute the exact strain energy for the problem. Derive it analytically using the expression for the bilinear form,

B(u,u), of the problem and the exact solution. Your solution should have at least 12 significant figures.
2. Solve the problem with the standard FEM and p = 1. Adopt uniform meshes with element size

H =

/
L
8
,

L
16

,
L
32

,
L
64

,
L

128
,

L
256

0
.

Note that the Young modulus is not constant within each finite element (except for the finest mesh). This must be taken
into account when integrating the stiffness matrix. Use a large number of Gauss points (20 or more) or an adaptive
integration scheme. If using Gauss points, show that the rule selected is sufficiently accurate. Plot the FEM solution
for the first five mesh sizes.
Make a log-log plot of the relative error in the energy norm in ordinates, defined as

er =

1
U −Uh

U
,

versus the number of degrees of freedom (DOFs) (1 curve with six data points).
3. Follow the steps below to solve the problem with GFEMgl:

i) Solve the initial global problem using a uniform mesh and element size H = L/8. Let u0
G(x) be the solution of

this problem.
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ii) Define the following local problem in local domain ΩL =
2

x| L
4 < x < 3L

4

3
, as illustrated below in Figure 4.

L
4

3L
8

L
2

5L
8

3L
4

Figure 4: Local problem with heterogeneous material.

Apply the following displacement boundary conditions

uL(
L
4
) = u0

G(
L
4
),

uL(
3L
4
) = u0

G(
3L
4
)

Solve for local solution uL(x) using a uniform mesh with element size h = L/64.
iii) Use the local solution uL(x) as enrichment at nodes of the global mesh in the enrichment zone

IE =

4
3L
8
,

5L
8

5
.

There are only three nodes in IE when a mesh with H = L/8 is used in the global problem.
iv) Solve the enriched global problem on the same mesh used for the initial global problem enriched with the local

solution as described above. Let uE
G(x) be the solution of this problem. Note that the stiffness matrix of the

enriched global problem must be integrated using, for example, the mesh used to solve the local problem or
adaptive integration.

v) Compute the relative error in the energy norm of the solution uE
G(x).

4. Repeat Task 3 for the following element sizes in the global problem: H =
2 L

16 ,
L
32

3
. Adopt in all cases

i) the same element size h = L/64 in the local problem;
ii) the same enrichment zone IE =

6 3L
8 , 5L

8

7
in the enriched global problem. Note that as the mesh of the global

problem is refined, more nodes will be enriched with the local solution uL(x).
Make a log-log plot of the relative error in the energy norm versus the number of DOFs in the enriched global problem
(one curve with three data points).

5. Repeat Tasks 3 and 4 with element size in the local problem h = L/128 and global element sizes H =
2L

8 ,
L
16 ,

L
32 ,

L
64

3
.

Plot in log-log scale er of enriched global problem versus H (one curve with four data points).
6. Repeat Tasks 3 and 4 with element size in the local problem h=L/256 and global element sizes H =

2L
8 ,

L
16 ,

L
32 ,

L
64 ,

L
128

3
.

Plot in log-log scale er of enriched global problem versus H (one curve with five data points).
7. Plot the solution uG

E (x) computed on the global mesh with H = L/8 and local mesh with h = L/64. You need to sample
uE

G(x) at several points, not just at the nodes of the global mesh. Sample it at x = n∆L, n = 0,1, . . . ,128.
Repeat the plot for the cases h = L/128 and h = L/256 (H = L/8 in both cases). Compare with the FEM solution
computed on the global mesh with H = L/8 and the exact solution.

8. Discuss (compare and draw conclusions) about your results. What conclusions can you draw about the performance of
the h–version of the FEM, GFEMgl, for problems with heterogeneous materials? Limit your discussion to one page.

Presentation of results

Each student must submit a final project report. This report should be in the format of a technical
paper. You can consult an ASCE journal (e.g., Journal of Engineering Mechanics) to get an idea of
what is an appropriate format for a technical paper. Handwritten papers are not acceptable. All papers
must be submitted in hardcopy and in pdf. You should make the report as concise as possible, and
thus do not copy material from the course material unless it is really needed. For the report, less is
more! Data generated in your investigation must be presented in an appropriate graphical or tabular
format. Figures should be clear, informative, and well labeled. Source code supporting the project
must be included and documented in an appendix to the report.
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Note on collaboration

The final product (report, code, results and discussion, etc.) must be your own individual work. You
are encouraged to discuss issues pertaining to the understanding of the projects with other students
in the class within reasonable and customary bounds. You must write your own code, you must
select your own parameter values in your studies, and your discussion of results should be completely
independent. You should be able to divide your development into understanding and execution. To
get to understanding of a given topic is generally OK for collaboration, execution steps generally are
not. Certainly, if you are sharing electronic files, you have probably gone too far. If you are unsure of
what constitutes acceptable collaboration, please ask.

Evaluation

Each enumerated item above will be graded and you may get total or partial credit depending on
how you addressed the item. The final grade out of 100 points you obtain for the report (and for the
course), will be the average you get between the two problems. Before submitting the report, consider
the following:
• Technical Execution Have you conquered the technical aspects of your topic well? For example,

have you written your computer program correctly? Are the equations used in your implementation
correct? Do you have a strategy for deciding if your answers are right (verification of implementa-
tion and equations)?

• Communication Have you described what you did and what you found in a manner that I can
appreciate by simply reading your paper? Do you use words well? Have you organized the paper
well? Do you use graphical presentation of data effectively? Does the report have conclusions?

• Technical Insight (Discussion) Have you gone beyond simply calculating something to actually
pondering the outcome of those calculations? Can you shed an interesting light on any computed
results? Your conclusions are just a summary of what you did or actually bring new insight?
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B
Slip surface geometry verification

It is also possible to verify the geometry of a fully developed slip surface of the PM in addition to the verification
of the CSN or FOS. This appendix shows some examples of localisation bands with finite width, computed with
the SRM and the MSRM. Then the critical slip surface, computed with the SSM, is shown and compared width
the localisation bands.

The FEmodels and the material properties are given in Chapter 3.1. Figures B.1 up to and including B.6
show the failure modes and localisation bands of the slope, computed with the SRM and the MSRM, and the
critical slip surfaces computed with the SSM (blue lines). The colours of the continuum elements represent the
equivalent Von Mises strain, computed with the following expression.

ϵeq = 2

3

√
3(e2

xx + e2
y y + e2

zz )

2
+ 3(γ2

x y + γ2
y z + γ2

zx )

4
(B.1)

Where exx , ey y and ezz are the deviatoric strains, defined as

exx = +2

3
ϵxx − 1

3
ϵy y − 1

3
ϵzz

ey y = −1

3
ϵxx + 2

3
ϵy y − 1

3
ϵzz

ezz = −2

3
ϵxx − 1

3
ϵy y + 2

3
ϵzz

(B.2)

and

γi j = 2ϵi j (B.3)

The equivalent VonMises strain is a measure for the amount of shear stress, represented as a scalar value. This
value gives a good impression of the localisation band. The critical slip surface in Figure B.5 is computed for the
initial values of the friction angle and the cohesion and the critical slip surface in Figure B.6 is computed at the
moment of failure of the slope. The moment of failure is computed with a SRM. Then the critical slip surface is
computed from this stress state. This is done to check whether the critical slip surface is different at the moment
of failure, with respect to the nonreduced situation.

The failure modes and localisation bands in Figures B.1 and Figure B.2 are equal. Therefore, the SRM and
the MSRM results in the same localisation band for the corresponding FEmodel. The critical slip surfaces in
Figures B.3 and B.4, computed with the SSM (the blue lines), are plotted on top of the failure modes of Figures
B.1 and B.2. It can be observed that these critical slip surfaces are present in the localisation band. This implies
that the critical slip surface, computed with the SSM in the initial phase, is an accurate approximation for the
localisation bands of the SRM and the MSRM. This also indicates that the stress distribution does not change a
lot until failure of the slope occurs. This last statement is enhanced by the results of Figure B.5 and B.6. The
critical slip surfaces shown in these figures, indicate that the critical slip surface is not affected by the reduction
of the friction angle and the cohesion. This means that the results of the SSM are robust, which is consistent with
the FOSs of the SSM computed in this work.
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72 B. Slip surface geometry verification

Figure B.1: Failure mode of the slope without a founda-
tion layer, computed with the SRM with Q8 elements.
The colors represent the equivalent Von Mises strain.
FOS = 1.35

Figure B.2: Failure mode of the slope without a foun-
dation layer, computed with the MSRM with Q8 ele-
ments. The colors represent the equivalent Von Mises
strain. FOS = 1.375

Figure B.3: The opaque colors represent the equivalent
Von Mises strain at failure of the slope computed with
the SRM. The critical slip surface (blue line) computed
with the SSM is plotted on top. FOS SSM = 1.4.

Figure B.4: The opaque colors represent the equivalent
Von Mises strain at failure of the slope computed with
the MSRM. The critical slip surface (blue line) com-
puted with the SSM is plotted on top. FOS SSM =
1.4.

Figure B.5: The critical slip surface computed with the
SSM for the initial values of φ and c. The FOS = 1.40.

Figure B.6: The critical slip surface computed with the
SSM at failure of the slope. The FOS = 1.03.

The slip surface, resulting from an analysis with the PM (combining unit weight increments with reduction
of the friction angle as described in Chapter 3.4), should be compared with the critical slip surface of a SSM and
with the localisation bands of the MSRM and the SRM in the verification process of the PM. The geometry of
the slip surface of the PM is correct if the slip surface is similar to the critical slip surface and localisation band
of the SSM and SRM/MSRM respectively. The same can be done for analyses with the PM computing a CSN
(increment of the unit weight only). Then the geometry of the resulting slip surface should be verified with the
localisation bands obtained by the MLIM or SLIM.



C
Results Leroy and Ortiz

Figure C.1: Plane strain compression stress-strain
curves for the material model adopted in the numer-
ical simulations. The onset of bifurcation is indicated
on each curve by a circle.

Figure C.2: Evolution of the determinant of the acous-
tic tensor during the plane strain compression test up
to localisation.

Figure C.3: Evolution of the minima of the determinant of the acoustic tensor during the plane strain compression test.
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