

Delft University of Technology

The scent of a smell: an extensive comparison between textual and structural smells

Palomba, Fabio; Panichella, Annibale; Zaidman, Andy; Oliveto, Rocco; De Lucia, Andrea

DOI
10.1145/3180155
Publication date
2018
Document Version
Final published version
Published in
Proceedings of the 40th International Conference on Software Engineering (ICSE)

Citation (APA)
Palomba, F., Panichella, A., Zaidman, A., Oliveto, R., & De Lucia, A. (2018). The scent of a smell: an
extensive comparison between textual and structural smells. In Proceedings of the 40th International
Conference on Software Engineering (ICSE) (pp. 740). ACM DL. https://doi.org/10.1145/3180155

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3180155
https://doi.org/10.1145/3180155

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

The Scent of a Smell: An Extensive Comparison between Textual
and Structural Smells

Fabio Palomba1, Annibale Panichella2, Andy Zaidman2, Rocco Oliveto3, Andrea De Lucia4
1University of Zurich, Switzerland – 2Delft University of Technology, The Netherlands

3University of Molise, Italy – 4University of Salerno, Italy

palomba@ifi.uzh.ch,a.panichella@tudelft.nl,a.e.zaidman@tudelft.nl

rocco.oliveto@unimol.it,adelucia@unisa.it

ABSTRACT

Code smells, i.e., symptoms of poor design and implementation

choices applied by programmers during the development of a soft-

ware project [2], represent an important factor contributing to

technical debt [3]. The research community spent a lot of effort

studying the extent to which code smells tend to remain in a soft-

ware project for long periods of time [9], as well as their negative

impact on non-functional properties of source code [4, 7]. As a

consequence, several tools and techniques have been proposed to

help developers in detecting code smells and to suggest refactoring

opportunities (e.g., [5, 6, 8]).

So far, almost all detectors identify code smells using structural

properties of source code. However, recent studies have indicated

that code smells detected by existing tools are generally ignored

(and thus not refactored) by the developers [1]. A possible reason

is that developers do not perceive the code smells identified by

the tool as actual design problems or, if they do, they are not able

to practically work on such code smells. In other words, there is

misalignment between what is considered smelly by the tool and

what is actually refactorable by developers.

In a previous paper [6], we introduced a tool named TACO that

uses textual analysis to detect code smells. The results indicated

that textual and structural techniques are complementary: while

some code smell instances in a software system can be correctly

identified by both TACO and the alternative structural approaches,

other instances can be only detected by one of the two [6].

In this paper, we investigate whether code smells detected us-

ing textual information are as difficult to identify and refactor as

structural smells or if they follow a different pattern during soft-

ware evolution. We firstly performed a repository mining study

considering 301 releases and 183,514 commits from 20 open source

projects (i) to verify whether textually and structurally detected

code smells are treated differently, and (ii) to analyze their like-

lihood of being resolved with regards to different types of code

changes, e.g., refactoring operations. Since our quantitative study

cannot explain relation and causation between code smell types

and maintenance activities, we perform a qualitative study with

19 industrial developers and 5 software quality experts in order to

understand (i) how code smells identified using different sources

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5638-1/18/05.
https://doi.org/10.1145/3180155.3182530

of information are perceived, and (ii) whether textually or struc-

turally detected code smells are easier to refactor. In both studies,

we focused on five code smell types, i.e., Blob, Feature Envy, Long

Method, Misplaced Class, and Promiscuous Package.

The results of our studies indicate that textually detected code

smells are perceived as harmful as the structural ones, even though

they do not exceed any typical software metrics’ value (e.g., lines

of code in a method). Moreover, design problems in source code

affected by textual-based code smells are easier to identify and

refactor. As a consequence, developers’ activities tend to decrease

the intensity of textual code smells, positively impacting their likeli-

hood of being resolved. Vice versa, structural code smells typically

increase in intensity over time, indicating that maintenance oper-

ations are not aimed at removing or limiting them. Indeed, while

developers perceive source code affected by structural-based code

smells as harmful, they face more problems in correctly identifying

the actual design problems affecting these code components and/or

the right refactoring operation to apply to remove them.

ACM Reference Format:

Fabio Palomba1, Annibale Panichella2, Andy Zaidman2, Rocco Oliveto3,

Andrea De Lucia4. 2018. The Scent of a Smell: An Extensive Comparison

between Textual and Structural Smells. In ICSE ’18: ICSE ’18: 40th Interna-

tional Conference on Software Engineering , May 27-June 3, 2018, Gothenburg,

Sweden. ACM, New York, NY, USA, 1 page. https://doi.org/10.1145/3180155.

3182530

REFERENCES

[1] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba. An experimental
investigation on the innate relationship between quality and refactoring. Journal
of Systems and Software, 107(9):1–14, Sept. 2015.

[2] M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley,
1999.

[3] P. Kruchten, R. L. Nord, and I. Ozkaya. Technical debt: From metaphor to theory
and practice. IEEE Software, 29(6):18–21, 2012.

[4] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A. De Lucia. On
the diffuseness and the impact on maintainability of code smells: a large scale
empirical investigation. Empirical Software Engineering, pages 1–34, 2017.

[5] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and A. De Lucia.
Mining version histories for detecting code smells. IEEE Transactions on Software
Engineering, 41(5):462–489, May 2015.

[6] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, and A. Zaidman. A textual-
based technique for smell detection. In International Conference on Program
Comprehension, pages 1–10, May 2016.

[7] D. I. K. Sjøberg, A. F. Yamashita, B. C. D. Anda, A.Mockus, and T. Dybå. Quantifying
the effect of code smells on maintenance effort. IEEE Transactions on Software
Engineering, 39(8):1144–1156, 2013.

[8] N. Tsantalis and A. Chatzigeorgiou. Identification of move method refactoring
opportunities. IEEE Transactions on Software Engineering, 35(3):347–367, 2009.

[9] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and
D. Poshyvanyk. When and why your code starts to smell bad (and whether the
smells go away). IEEE Transactions on Software Engineering, 43(11):1063–1088,
2017.

740

2018 ACM/IEEE 40th International Conference on Software Engineering

