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iv Abstract

Abstract
Our ageing, numerous, and increasingly overweight population demands better implant designs and
testing methods, reducing the amount of total revision surgeries. To achieve this, more realistic finite
element method (FEM) assessment models are a great approach to reduce time and costs of the implant
design process. FEM models could be used to evaluate implant performance against several of the
main causes of revision, such as lack of bone ingrowth and medial tibial collapse. Failed bone ingrowth
of the tibial component can result in early loosening, suggested to occur due to high micromotions
at the implant interface. Additionally, post operative misalignment, high patient BMI, and stumbling
accidents can cause medial tibial collapse. These phenomena have been assessed via FEM, for which
having realistic simulations is important to obtain reliable results. For a realistic simulation, adequate
constitutive model, activity loads, and boundary conditions need to be selected. Also, the implantation
process must be included to account for intra-surgical bone deformations and softening. The purpose
of this study was to investigate which constitutive model better predicts bone deformations during
implantation and their effect on subsequent micromotions, bone ingrowth, and medial collapse. Extent
of ingrowth results were compared to retrieval data, and the collapse results to risk threshold values.

A FEM model was created from a CT-scanned tibia implanted with a Monoblock and a Persona (Zimmer,
Inc., Warsaw, IN) trabecular metal tibial components. Four activities were considered: gait, sitting,
stair walking, and cycling. Additionally, four different heterogeneous isotropic material models were
used: A linear elastic (LE), a softening Von Mises (sVM) model, an ideal isotropic crushable foam (iICF)
model, and a hardening isotropic crushable foam Model (hICF) model. The volumetric plastic strain
based hardening function of the latter model was mathematically demonstrated and validated against
existing data. For the three plastic models, implantation was performed prior to the micromotion
and medial collapse analysis. The resulting micromotions were compared to an ingrowth threshold of
40𝜇𝑚 to estimate extent of ingrowth. The same material models were used to evaluate medial collapse
under stumbling conditions. The ingrowth results of the Monoblock were compared to retrieval data
on ingrowth to assess equivalences between the simulations and reality. The results of the Persona
implant were compared to those of the NexGen to observe differences in implant performance.

The hardening function was able to predict yield surface growth when compared to experimental data.
For the implantation simulations, the sVM model presented the most volume of plastic elements around
the implant when compared to both the iICF and the hICF models. Different patterns of ingrowth were
observed when comparing the simulation results with the retrieval data. The hICF and the sVM models
were the best to predict ingrowth when compared to the retrieval data, where the latter under-predicted
ingrowth and the former over-predicted it. The LE model results were incapable of predicting ingrowth,
especially in the regions where press-fit conditions should be present. For medial tibial collapse, the
sVM model results presented structural instabilities at relatively low loading thresholds. The iICF model
results were incapable to predict medial collapse due to material instabilities. The hICF model was able
to predict collapse without sudden structural and material instabilities.

Implantation results demonstrate the importance of using ICF plastic models in cementless implant
analysis, as it provides the necessary contact stresses and adequate concentration of plasticised bone
around the implant interface. Although overall tray ingrowth results remained inside the standard
deviation of the retrieval data, differences in the ingrowth pattern suggest it is better to use loads
obtained from musculoskeletal models rather than patient recordings. Bone ingrowth results of every
material model were not fully equivalent to the retrieval data, suggesting extra modelling considerations
are required. Using a sVM or a hICF model is suggested for further micromotions and ingrowth research.
Ingrowth results show that the added complexity between the LE and the plastic models was enough
to predict that the Persona implant was not going to outperform the NexGen, but not enough to predict
its failure. Differences in collapse behaviour between material models showed important material and
structural instabilities that must be considered in future medial collapse studies. Although progress
was achieved, further research is required to realistically simulate the studied phenomena.
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1. Introduction
1.1. Total knee arthroplasty: Revision andmechanisms of failure
Functional impairment of the knee leads to a procedure known as primary total knee arthroplasty (TKA)
[1]. Among its many variations, TKA has a success rate of 97% five and ten years after the surgery
[2]. However, between 2009 and 2013, 337,597 TKA revisions occurred in the U.S.A. [3]. That sums
to a cost of $2.7 billion (USD), which is expected to increase to $13 billion (USD) by 2030. Further,
revision survival rate drops to 60% after the second surgery [4]. This means a higher risk of continuous
surgeries after failure of primary arthroplasty, which increases patient morbidity and burden. These
are reasons to optimise implant performance and decrease revision rates.

According to Sharkey et al. [5], loosening (39.9%) was the main reason for TKA revision, followed
by infection (27.4%), instability (7.5%), and periprosthetic fracture (4.7%). In this study of 2014,
polyethylene (PE) wear was only present in 3.5% of revisions, compared with 25% in 2002 [6]. Wear
decreased by high cross linking and vitamin E doping the PE matrix. Although infection is still a relevant
problem, it is caused by biological factors. Therefore, PE wear and infection are not included in the
present study.

The remaining main failure mechanisms are loosening and instability, which are closely interlinked.
Loosening is defined as ”extensive localised bone debonding or resorption, resulting in failed fixation
without infection” (Harris et al., 1976) [7]. Additionally, instability was defined as ”every failure
caused by component loosening, bone loss, wear, prosthetic breakage, component sizing, fracture,
and collateral ligament failure” (Vince et al., 2006) [8]. Thus, loosening means that the implant will fail
to remain fixated, while instability means high and non-functional movement of the implant relative to
the bone. Therefore, it can be assumed that both phenomena can be studied together, as the latter
can be considered a consequence of the former.

Most biomechanical studies focus on evaluating one specific type of implant. An implant can be
classified by its fixation method as cemented, cementless, and hybrid cemented [9]. While cemented
implants achieve fixation by inserting a layer of cement around the interface, cementless implants
achieve fixation by press-fitting the implant into the bone [9]. A cementless implant success depends
on the ingrowth capability of bone into the surface of the implant [10]. Patients who get these implants
are generally younger, more active, and with better bone quality than patients with cemented implants
[11].

1.2. Biomechanical failure mechanisms in cementless TKA
The success rate of cemented and cementless implants after ten years is 95.3% and 95.6% respectively
[12], but their failure mechanisms are different. For cementless implants, there are three main
biomechanical mechanisms of failure that involve instability and loosening. 1) Early instability caused
by lack of bone ingrowth; 2) Failure by medial tibial collapse and excessive migration; 3) Long term
loosening and instability due to remodelling. These mechanisms are introduced below.

1.2.1. Early instability and lack of bone ingrowth
Radiolucent lines between the implant and the bone were first observed in X-rays by Charnley et al.
[13], mostly appearing in the tibial component (Figure 1.1). In 1977, Lotke et al. [14] discovered
that these lines were areas in which fibrocartilaginous connective tissue has grown in the bone-
implant interface. When radiolucent lines were not present, complete healing and successful ingrowth
of the bone with the implant occurred. In 1974, Willert et al. [15] found that fibrocartilaginous
tissue is induced by relative movements between the implant and the component in the order of
microns. These micromotions were formally defined as ”small movements between a prosthesis and
the surrounding bone, that are not detectable with conventional radiographic methods”. (Goodman,
1994) [16]. Therefore, it is necessary to reduce peri-prosthetic micromotions through an adequate
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Figure 1.1: The red arrow points towards radiolucent lines in the bone-implant interface present in TKA x-ray scan, which are
commonly associated with lack of ingrowth and presence of fibrocartilaginous tissue (figure obtained from [21]).

implant design to secure ingrowth and prevent early instability.

Micromotions are related to bone ingrowth by a threshold value. In 1992, Engh et al. [17] reported
motions up to 40 𝜇m in areas where bone ingrowth occurred, and 150𝜇m of micromotions in areas
were fibrous tissue was present. Jasty et al. [18] found the same threshold for ingrowth after an in vivo
micromotions study. Another study shows that just a few cycles of micromotions per day are enough
to interrupt bone ingrowth [19]. Also, the process of fibrocartilaginous growth into the interface can
be reversed if the micromotions are interrupted [16]. The low Young’s modulus of fibrous tissue and
the simple lack of ingrowth in the interface explains early implant loosening and motion [20].

1.2.2. Medial tibial collapse
The second biomechanical reason of failure involves mechanical overload. It is described as failure
due to loosening on the medial side of the tibial component, followed by medial sinking and lateral
liftoff due to high compression and torsion [22] (Figure 1.2). There are two main factors correlated
to medial tibial collapse. The first is post operative varus alignment, which was correlated with medial
tibial collapse in early retrieval studies [23, 24]. This misalignment may come from post-surgical errors
or excessive early migration, and explains how strains significantly increase when post-operative varus
angle is higher than 5∘ [25]. Besides misalignment, medial collapse is also correlated with a high body
mass index (BMI) [26–28]. Also, higher migration and loosening rates were found in patients with
higher body mass index (BMI) [29], suggesting that fatigue and sinking of the medial bone can occur
after a specific stresses limit.

It can be assumed that medial collapse is mainly influenced by a combination of higher stresses due to
increased varus alignment. This can be further increased if the patient has a high BMI. Surprisingly, no
correlation between age and collapse risk was found. Therefore, it can be assumed that high BMI leads
to higher loads and stresses, leading to higher post operative varus alignment, which in turn increases
medial stresses. This positive feedback loop leads to medial collapse at 8∘ of varus alignment, threshold
defined by Berend et al. [26].

1.2.3. Long term instability and loosening due to bone remodelling
Remodelling was first explained by Julius Wolff and his bone adaptation law of 1870 [31]. The law helps
to explain how the implant geometry and stiffer material properties provoke new loading conditions
upon the bone after primary surgery [32]. This results in remodelling and bone resorption around
the implant [7], commonly referred to as stress shielding. Several theories have been developed to
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Figure 1.2: A) Immediate post-operative neutral alignment. B) Medial collapse caused by excessive varus tilt. The Figure was
obtained from [30].

numerically describe stress shielding. These theories have taken different variables to describe the
remodelling phenomenon: A poroelastic strain theory by Cowin and Hegedus [33, 34]; a stress based
theory by Beaupre, Orr and Carter [35]; an orientation and density based theory by Jacobs [36]; a
damage anisotropic repair model by Doblare and Garcia [37]; and a strain energy density (SED) based
isotropic remodelling theory by Huiskes et al. [38].

For the previous listed theories, the SED theory of Huiskes et al. [38] appears to be one of the
most studied. It proposes a numerical representation of remodelling, where the rate of bone density
change depends on the SED at implanted conditions. A reference SED value (SED of the intact bone),
and a ”threshold” dead zone value (a proportion of the reference SED) are required to define the bone
density change function. When the SED is below the dead zone, bone resorption occurs, when it is
inside the dead zone, the density rate will be zero (known as lazy zone), and beyond the dead zone
the rate increases (bone deposition).

1.3. FEM in instability and loosening analysis
Finite element method (FEM) has been used to study the previously described failure mechanisms
since the early days of total joint arthroplasty. FEM helps to computationally assess the state of
bone tissue and its response to implant stimuli [39]. In an early review of FEM state of the art in
orthopaedics, Huiskes et al. [40] concluded that simulations must become more realistic to satisfy
the market requirements. A realistic simulation should be able to reduce implant design times and
limit the number of revisions, requirements which are still relevant today. As the problems involving
TKA failure increase, a more realistic FEM model allows further fine tuning and comparison between
different implant designs.

To be able to develop such a realistic FEM model for a cementless implant, it is necessary to understand
the evolution and state of the art of TKA implants as well as its biomechanical analysis. FEM models
can be classified by the failure mechanism they study. These studies are introduced below and in
the following order: 1) Lack of bone ingrowth and micromotions; 2) Medial tibial collapse due to
misalignment and overloading; 3) Bone resorption and loosening.
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1.3.1. Micromotions and bone ingrowth analysis
Micromotions algorithm
Van der Ploeg et al. [41] demonstrated that using a node-to-face algorithm leads to a better correlation
with experimental data. The algorithm considers the implant and bone as separate meshes in contact
via linear Coulomb friction. This study introduced the concept of incremental and resulting micromotions.
The method consists of four steps. First, an implant contact node is projected into the closest bone
element face. Then, the initial position of the node before applying any load is stored. Subsequently,
displacements with respect to the bone face for every load increment are tracked (known as incremental
micromotions). Finally, after the activity cycle finished, the resulting micromotion of that node is defined
as the longest distance between all incremental micromotions.

Forces and loading cycles
In a computational study on micromotions, Chong et al. [42] concluded that full activity loading cycles
affect micromotion results the most. Thus, using the full loading cycles is required to have an adequate
estimation of bone ingrowth. Beramahni et al. [43] also performed micromotion studies to evaluate
the effects of full cycles versus using peak forces only. When using full activity loading cycles, large
micromotions occurred at both low and peak forces. This study suggests that micromotions depend
on the total force direction changes as much as the magnitude of the force, recommending to use full
loading cycles to have more realistic results.

Additionally, the use of patello-femoral tendon forces drastically decreased the amount of micromotions
[43]. To include patello-femoral tendon forces it is necessary to have a fully validated musculoskeletal
model of every ligament. When a musculoskeletal model is not available, the use of forces obtained
from patient recordings via reverse kinematics can be used. These loads can be found in Bergmann et
al. [44], which includes recordings from several activities, patients, and implant types. Van der Ploeg
et al. [41] also observed that changing the boundary conditions does not influence the micromotion
results. Therefore, it is possible to use a small section of the proximal tibia for analysis to save
computation time and memory.

Material models
Most of the FEM studies conducted to assess micromotions use linear elastic (LE) models. Studying
a cementless implant requires an interference fit in millimetre scale. It is physically impossible for
a surgeon to insert an implant with a hammer and achieve a fit in the order of micrometres. A
micro-metric interference fit may be estimated by resembling the yield limit of the bone when using
a homogeneous model [45]. This interference fit is not valid for a heterogeneous model because the
yield is not the same for every bone element. This makes the use of a LE model unrealistic. When
trying to accurately predict whether a patient is prone to get a revision surgery due to mechanical
failure, a more realistic material model that includes effects of high strains is necessary.

Two isotropic heterogeneous elastic material models characterised for the human tibia are depicted
in Keyak et al. [46] and Morgan et al. [47]. Both material models use ash density in an exponential
regression system as a mean to obtain the Young’s Modulus of every element (𝐸 = 𝑎𝜌ፚ፬፡). The models
distinguish between trabecular and cortical bone by a threshold value that defines constants 𝑎 and 𝑏.
Also, similar studies provide equations to obtain heterogeneous yield stress values. These can be used
to create a simple ideal plastic model [48, 49]. In these cases, yield stress is also obtained from power
regression equations that depend on the element’s ash density and bone type (𝑆 = 𝑐𝜌፝ፚ፬፡).

A more complex elastoplastic model validated for the tibia that depends entirely on ash density is
found in Keyak et al. [50]. Bone mechanical behaviour starts with a linear elastic section with a Young
Modulus (𝐸 = 𝑎𝜌ፚ፬፡). The linear elastic section continues until the yield stress (𝑆 = 𝑐𝜌፝ፚ፬፡) is reached
under a Von Mises criterion. Then, an ideally plastic region follows until a specific strain 𝜖ፀፁ occurs.
Next, a softening region with a negative slope (𝐸፩) is considered until a minimal stress value (𝜎፦።፧) is
reached. Finally, a second ideally plastic region is considered, which represents bone failure.

The latter material model was characterised for the femur in Keyak et al. [51]. This was used by
Berahmani et al. [52] in an ex vivo femoral micromotions experiment on fresh bone samples. More
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specifically, a post-mortem implantation of TKA femoral components was performed. This was followed
by a micromotions assessment in several regions of interest (ROI) and comparing them to micromotion
FEM analyses. Both the Keyak et al. LE model [46] as well as the softening Von Mises (sVM) model
[51] were used in Berahmani et al.’s FEM analyses. They found that the plastic sVM model predicts
micromotions better than the LE model, as its results correlated better with the experimental data.
However, the use of a sVM criterion was not realistic enough to fully predict experimental micromotions.
The study also concluded that it is necessary to simulate implant insertion prior to micromotion analysis.
This allows to compensate for the early excessive deformations that reduce the strength limit of the
tissue and affect micromotions.

It can be argued that the use of a Von Mises criterion is not realistic enough because bone is pressure
dependent. Kelly et al. [53] demonstrated that an isotropic crushable foam (ICF) constitutive model
predicts post-yield bone behaviour more accurately than a Von Mises criterion, as it can also reach yield
under confined compression conditions. This is a situation that occurs in the tibial implant interface,
as the porous trabecular bone is surrounded by the stiffer cortical bone. The ICF model was later
validated for a bovine vertebra during an indentation test [54]. This post-yield behaviour could be
used for human research, as the properties of bovine trabecular bone are similar to those of a human
[55].

There are two considerations that can be taken from the post-yield behaviour of the ICF model. The
first is to consider an ideal hardening behaviour. That is, the yield surface will not grow under plastic
conditions. This approach can be considered when there is no data on the hardening behaviour of
the chosen material. The second and most realistic consideration is to use a hardening/softening
function obtained from experimental data on the material. Since there is no information regarding bone
hardening for ICF tibial models, a hardening function was obtained based on the permanent volumetric
changes of bone. Such function was mathematically demonstrated in this study and validated using
bovine trabecular bone hardening plots available in Kelly et al. [54].

Micromotion analyses in tibial components
The previously introduced experiments regarding the use of full loading cycles and complex material
models have only been performed in femoral components, but not in tibial components. Most of the
tibial component micromotion experiments are outdated and do not have enough complexity to be
compared to retrieval or experimental data [45, 56, 57]. Only Fitzpatrick et al. [58] and Hanzlik et al.
[59] have performed studies on tibial micromotions by using LE models only. Additionally, they have
not been able to accurately simulate ingrowth and compare it with retrieval data.

Simulating implantation before micromotion analysis has only been performed in femoral component
studies [52]. As discussed above, it is important to consider implantation before micromotion analysis to
account for tissue deformation and softening. Bone tissue deformation produces the press-fit contact
stresses for the cementless implant to remain in its position. Bone softening can lead to negative
consequences, as surgeons may allow patients to walk home right after surgery, meaning they become
active when bone has not healed yet. This can result in more micromotions and less bone ingrowth.
Elastoplastic material constitutive models are necessary for this type of analysis, which could potentially
predict how much interference fit is enough to have an optimal bone-implant bonding [60].

The previously described work has set the standard for micromotion experiments. To summarise,
a face-node algorithm should be used and the simulations should include full activity loading cycles.
The consequences of hammering the implant into the bone should be considered to account for post-
surgical tissue softening and high deformations. Finally, using an adequate bone material model is
necessary. This standard has not yet been validated for tibial components, for which either retrieval or
experimental studies could be used.

1.3.2. Medial tibial collapse
Roentgen stereophotogrammetry (RSA) [61] is the preferred method to predict an implant’s migration
rate. Li et al. [62] compared cemented against cementless implant migration using RSA, observing
that the latter reached 80% of their final migration within one month after surgery. Other studies have
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compared migration rates among cementless implants [63–66], finding that most of them reached their
final position six weeks after surgery. They also found that the final position is mostly accompanied by
an increase in varus alignment.

The use of elastoplastic models is necessary to assess medial tibial collapse, due to their capability to
account for permanent deformations. These deformations could be tracked under potentially dangerous
loadings such as stumbling conditions [67]. Although using such material models should be adequate
to assess collapse, most FEM studies have only focused on post-operative alignment analysis. These
studies have validated the hypothesis of increased risks when a patient has a post-operative varus
alignment, potentially leading to collapse.

Perillo et al. [68] performed a FEM analysis on post-surgical alignment. In this study, they investigated
if varus or valgus alignment affected stress concentrations in the bone. The results showed that stresses
increased up to 22% when varus alignment was higher than 5∘ compared to a neutral varus position.
This experiment was replicated by Liau et al. [69], who included forces coming from the collateral
ligaments. They found 45% higher stresses at 7∘ varus compared to neutral alignment. The same
experiment was conducted by Inoccenti et al. [70], where 6∘ varus led to 38% more stresses on the
medial side and 20% less stresses on the lateral side.

The fact that 80% of migration occurs in early stages after surgery may be explained by post-surgical
softening, bone ingrowth, and remodelling. The other 20% may occur only due to remodelling and
softening of the later stages. An idea to perform a FEM analysis to simulate implantation and migration
might be to include the use of an elastoplastic material model and several different activities to track
migration. The model could have an initial stage were ingrowth is calculated, and then set the contact
conditions to start a remodelling analysis. The results of such a model could then be compared or
validated against RSA studies.

The latter experiment would be the ideal case to study medial tibial collapse mixed with remodelling,
but there is a problem. Among the existing tibial remodelling studies, none has achieved validation
with clinical data [71–73]. These studies have predicted high bone deposition below the implant
stem, a situation that does not occur according to clinical studies [74]. Creating a tibia-specific
remodelling subroutine requires much more time and experiments than available for a master thesis
project. Therefore it was considered out of the scope of the current study. However, developing a
remodelling subroutine for the tibia is necessary to make a model that can predict migration analysis.
Thus, this study focused on a simpler experiment that can predict collapse under stumbling conditions,
which could be used as a basis for future experiments.

In any case, an instability threshold value for collapse could be obtained for a specific implant under
stumbling conditions. Such a collapse threshold could be defined in percentage of body-weight (%BW),
as it is a patient specific unit, commonly used in loading studies such as Bergmann et al. [44]. The
threshold could also be compared to varus alignment, as it gives information about when the knee
becomes unstable. These data could then be used to compare implant performance under collapse
conditions.

1.3.3. Mixing bone ingrowth and medial tibial collapse
To create a FEM model capable of interlinking ingrowth and medial tibial collapse, three experiments
have to be conducted. 1) An implantation experiment in which an adequate plasticity constitutive
material model is validated for the tibia; 2) A micromotion analysis after implantation to obtain bone
ingrowth surface; 3) An overloading analysis after implantation to obtain collapse thresholds, and
compare them to those of the reviewed literature. Also, the bone ingrowth results have to be compared
to retrieval experiments, as in Hanzlik et al. [75].

Nevertheless, even if the previous experiments and FEM simulations could take place, there are still two
important considerations. 1) The loads applied for the different experiments should be representative
of common activities performed by humans, and they should derive from implant design specific
musculoskeletal models. 2) Experimentation via FEM should not only involve one experiment with
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one bone that represents the average mechanical properties of a population. Instead, a set of bones
with different characteristics that average the population of the validation data should be used, as
they give a more accurate representation of what happens in reality [76]. This means that simulations
should not only include variations in the constitutive model chosen, but also from loads and density
qualities. This allows to observe if the added complexity of the material model is enough to validate
retrieval data by using statistical testing. For this, a two one-sided t-test (TOST) can be used, commonly
known as an equivalence test [77].

1.4. The NexGen and Persona case study
To study whether the tool that predicts bone ingrowth works, it needs to be validated against retrieval
data. Such data was obtained from Hanzlik et al. [75]. In this study, information about the extent
of ingrowth (the percentage of the implant surface that presented bone ingrowth) is present for two
Zimmer’s NexGen trabecular metal implants: Monoblock and Modular. The Monoblock design was
chosen for analysis in this thesis, as the number of retrieved knees with this design is higher than
the number of knees implanted with the Modular design. Besides, these retrieved knees were not
obtained from revision cases, but from successful post-mortem cases. That makes them adequate for
corroborating the average case of success.

To compare the FEM model of the NexGen with a second implant, a case study was selected. The design
of the NexGen Monoblock was compared with Zimmer’s Persona trabecular metal tibial component
design. The Persona implant was the new iteration from the NexGen series, and was approved in 2012
[78]. The design remained similar to the NexGen, but the latter was voluntarily removed from the
market by Zimmer in 2015 due to a high number of revisions [79]. The retrieval report explained that
it was recalled due to ”an increase in complaints of loosening and radiolucent lines”. Those conditions
suggest that it failed due to excessive micromotions and lack of bone ingrowth. Therefore, a realistic
model should be equivalent to the Monoblock’s retrieval data, and predict a worse outcome of bone
ingrowth and micromotions for the Persona implant.

1.5. Thesis objective, research questions and hypothesis
For the current study, the thesis objective was to create a finite element model that realistically assesses
bone ingrowth and medial tibial collapse of tibial components in TKA. With the next set of research
questions. 1) Can a volumetric plastic strain based hardening function be mathematically proven and
validated for the tibia? 2) How much does implantation and plastic models affect micromotions and
bone ingrowth estimation and validation? 3) How much is medial tibial collapse affected by implant
design and constitutive model used? 4) Can these tools be used to assess performance between two
similar implants?

Several answers are expected to be obtained from these questions. First, a permanent volumetric strain
based hardening function should be able to predict a yield surface under bone confined compression.
This is because an ICF model bases its yield surface in an ellipse, which allows to form an equation that
relates equivalent Von Mises plastic strain with volumetric plastic strain. Such an equation can then
be inserted in the equivalent yield stress equations from Keyak et al., and therefore be able estimate
compression hardening.

Second, adding complexity to a material model should make the results more equivalent to the retrieval
data, with the most complex staying within the standard deviation. Therefore, the linear elastic model
should have the worst performance when comparing with retrieval data, followed by the Von Mises
criterion model, the ideal ICF model, and finally the hardening ICF should perform closest to the
retrieval data. There is also the possibility that the Von Mises criterion model performs the best. This
is because the Von Mises model was specifically developed for the tibia, whereas the ICF models were
developed for bovine spines.

For implantation and collapse, high strains should be better described by the ICF models. This is
because the ICF takes into account the effects of high compression that happen between the tibial
component and the bones, a situation that the softening Von Mises model cannot replicate as it depends
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entirely on shear. Further, the plasticity levels (large strain deformations) should concentrate in a thin
layer as in previous implantation and indentation experiments [52, 54]. To investigate how realistic a
material model is, the plasticity layer thickness around the implant needs to be measured.

The third hypothesis involves the individual activity results. In previous tibial component experiments
from Hanzlik et al. [59], the expected micromotions and ingrowth varied depending on the load’s
maximal magnitude and the changes of orientation of the cycles. These force peaks and orientation
varied by activity. Therefore, according to loading cycles obtained from patient recordings [44], stair
walking should be the worst activity to be performed, followed by gait. If other activities such as cycling
and sitting are also studied, cycling results will most probably show the most ingrowth. This is because
its maximal force is pretty small, and is not accompanied by high moments.

Regarding collapse risk thresholds, Zimmerman et al. [80] suggested that a slight stumble involves
a force between 700% and 900%BW when falling and landing on one leg. In that case, a stumbling
condition that leads to a catastrophic structural instability should occur beyond the threshold of 900%BW.
Additionally, any material model that is capable of predicting medial tibial collapse should not show
material instabilities before the collapse threshold, as the model should be able to simulate the whole
collapse process.

Finally, it is expected that the NexGen Monoblock results show better ingrowth performance than the
Persona implant. This is because the Persona implant recall report stated that radiolucent lines were
presented in too many patients, which means that the Persona had lower overall ingrowth and possibly
larger micromotions. Two reasons might explain why this Persona failure occurred. First, the new tray
geometry of the Persona might have provoked the lower performance when comparing to the NexGen.
Second, changes in the insert surface geometry changed the kinematics of the implant so that the new
loads transmitted to the trabecular tibia would cause higher micromotions. Although the study of both
cases is necessary, the latter requires implant specific loads obtained from a musculoskeletal model.
As this was not available in this project, the current study focused on studying the first possibility.
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2. Methods
The selected implant models for FEM analysis are the Zimmer’s NexGen Monoblock and Zimmer’s
Persona trabecular metal tibial components. Every simulation was performed with Marc Mentat 2015
software. Medial tibial collapse and bone ingrowth were analysed separately. Both analyses were
preceded by a computational implantation process in the simulations that used elastoplastic models.
The implants were analysed in a set of ten different bone density qualities. Four different material
models and four different activities were considered. These 320 different simulations were later
combined to obtain the total extent of ingrowth of a population. Ingrowth results were compared
to data from Hanzlik et al. [75] via an equivalence test (two one-sided t-tests) [77]. For the medial
tibial collapse simulations, the same combination of implant designs, density values, and materials was
used. However, the loads were different, as stumbling conditions were applied with increasing total
magnitude until structural instability was reached. The 60 simulations were later combined to obtain a
mean body weight threshold for collapse. For both bone ingrowth and medial tibial collapse simulations,
equivalence tests were performed for the Persona with the NexGen as control. This allowed to observe
if there were significant differences in performance between both implants. The details for each step
of the process are described below.

2.1. Implant geometries and material properties
NexGen Monoblock implant
As its name implies, the NexGen Monoblock tibial component [81] (Figure 2.1 top) consists of only one
permanently assembled part made of different materials. Distally, the implant is composed of 80%
porous trabecular tantalum. It contains two 20 mm long hexagonal pegs, which provide press-fit and
allow bone ingrowth. A composite of porous tantalum and vitamin E doped highly cross-linked ultra
high molecular weight PE layer is proximal to the tantalum. The most proximal part is the PE insert,
which was machined from the extension of the composite. An implant size C was selected for the
current bone geometry [82].

Persona implant
The Persona model is a modular component and shows several geometrical differences when compared
to the Monoblock [83] (Figure 2.1 bottom). It is non-symmetric with respect to the medio-lateral plane
(Figure 2.1 bottom). The medial side of the implant is larger than the lateral side and occupies more
posterior surface than the Monoblock. The most distal part of the component maintains the two
hexagonal pegs, with the medial peg leaning more posterior with respect to the lateral [84]. The
properties of the pegs and the most distal part of the tray consist of 80% porous tantalum. The
porous tantalum is bonded with a layer of titanium. The insert is assembled into the tray via a locking
mechanism. As for the Monoblock, a size C was used for the model.

Table 2.1: Linear elastic material properties used for the simulations of the NexGen and Persona implants.

NexGen Persona
Material 𝜈 E [GPa] Material 𝜈 E [GPa]

Bone 0.3 𝑎𝜌ፚ፬፡[46] Bone 0.3 𝑎𝜌ፚ፬፡[46]
Porous Ta 0.31 3.3 Porous Ta 0.31 3.3
Ta-PE 0.35 4.26 Titanium 0.3 110
PE 0.33 1.17 PE 0.33 1.17

2.2. Bone geometry and mesh creation
The primary geometry of the simulated bone was taken from a CT scan of an 81 year-old patient’s right
knee. The CT scan was obtained with a resolution of 4 ።፭፬

፦፦ , and a plane offset of 6
፥ፚ፲፞፫፬
፦፦ . The bone



10 Chapter 2. Methods

Figure 2.1: Implant geometries and general dimensions for the Zimmer NexGen (top), and Zimmer Persona (bottom) trabecular
metal tibial components.

volume was created using Mimics software and different surface meshes with different element sizes of
the bone geometry were obtained with Hypermesh using the auto-mesh tool. Both implant geometries
were created with Solidworks and the respective surface meshes were created using Hypermesh auto-
mesh tool. Ten different meshes were created using four-node tetrahedral elements sized from 0.75
mm to 2.75 mm (Figure 2.2), with steps of 0.20 mm between each mesh.

The surface of the implant meshes were used to virtually resect the tray and peg geometries from the
bone via plane intersections. Two different resections were considered: The first one was hexagonal as
a perfect fit for the pegs, which was used for LE models (Figure 2.3 A); the second had a cylindrical hole
for the hexagonal pegs to be inserted during the simulation, which was used for the plastic material
models. The cylindrical hole represents the result of the surgeon’s drilling process during the surgical
procedures [81, 83] before inserting the implant with a hammer (Figure 2.3 B).

The implants were assembled into the bone using Marc Mentat. Then, a simple simulation was prepared
for every perfect fit mesh to evaluate proximal stress convergence. Fixed boundary conditions were
assigned into the most distal section of the tibia. A simple load of 1000 Newtons was applied into the PE
insert condyles perpendicular to the tibial tray (Figure 2.4 A). The ash bone density values were taken
from the original CT scan grey-scale via a Houndsfield unit regression. The Young’s modulus values of
the bone were obtained from the ash density values using Keyak et al.’s [46] LE model (𝐸 = 𝑎𝜌ፚ፬፡).
The chosen Poisson’s ratio was 𝜈 = 0.3. After the simulations were performed, the average Von Mises
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Figure 2.2: Examples of two different NexGen Monoblock tibial component meshes of different size tested for convergence. A)
Mesh with element size of 1.65mm. B) Mesh with element size of 2.75mm.

Figure 2.3: Superior view of both bone meshes before implantation. A) Mesh used for elastic material models that had a perfect
implant fit. B) Mesh used for elastoplastic models that had a circular hole that represents the drill of the surgeon, which allows
the bone to adapt to excessive deformations after implant insertion.

stress of the most proximal part of the bone (2 cm) was plotted against the total number of elements
(Figure 2.4 B). The mesh with the least elements that had less than 5% absolute error was selected.

When an element has lower stiffness relative to its neighbours, a material instability can occur [85].
When most stresses occur under compression, instabilities may cause compliant elements to flip inside-
out. FEM software usually crash instantly when this situation occurs. To prevent this, the best solution is
to have elements large enough so that the compliant elements do not turn inside-out. To further prevent
material instabilities, a second mesh test was performed. For this, the same meshes were tested for
implantation as this process deforms the bone up to 0.8 mm during the insertion process. Every
elastoplastic material model was considered for this test. The mesh that was capable to successfully
converge into implantation and passed the stress convergence test was selected. For both implant
designs, the final selected element size for the mesh was 2.15 mm.

2.3. Bone density mapping and extrapolation
The bone mineral density (𝜌፭) was obtained from the original bone via the micro CT grey-scale
Houndsfield values. This function was defined as 𝜌፭ = 𝑝ኻ ∗𝐻𝑈፯ፚ፥፮፞+𝑝ኼ, with 𝑝ኻ = 1.5 and 𝑝ኼ = 0.006,
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Figure 2.4: Left: Boundary conditions for every mesh convergence test. Right: Mesh stress convergence test results where
most mesh sizes passed. The 2.15 mm element size mesh was chosen for analyses.

with 𝜌፭ in 𝐾𝑔/𝑚ኽ, and 𝐻𝑈፯ፚ፥፮፞ in 𝐻𝑜𝑢𝑛𝑠𝑓𝑖𝑒𝑙𝑑. 𝜌፭ was converted to 𝜌ፚ፬፡, as it is the variable
used by all Keyak material models. For that purpose, a linear regression was used with the form
𝜌ፚ፬፡ = 0.682 ∗ 𝜌፭ + 0.060, with 𝜌፭ in

፠
፦Ꮅ .

A density extrapolation was performed to model a population that represents the statistical data of
Hanzlik et al. [75]. This was necessary for two reasons. First, the bone conditions in the analyses
should be equivalent to those of the retrieval data [76]. Second, the extrapolation was chosen because
only one bone geometry and its density values were available for the current study. As Hanzlik et
al. provides information on the age of the retrieved knees, an equation that correlated age with
average tibial bone density was used [86]. The equation was obtained from correlations between
healthy tibial trabecular bone from deceased humans of different ages, expressed as: 𝜌ፚ፬፡[

፠
፦Ꮅ ] =

−5.5𝑥10ዅ𝐴𝐺𝐸ኼ + 3.8𝑥10ዅኽ𝐴𝐺𝐸 + 0.28. To use the equation, it was necessary to obtain equivalent
samples from the available bone, just as in Ding et al. [86] experiments. MATLAB was used to isolate
four cylinders of trabecular bone from the condyles of the tibia (Figure 2.5).

The cylinder’s density was averaged and inserted into the age versus ash density plot (Figure 2.6
step 1). A constant density value 𝑏፨ = 0.103

፠
፦Ꮅ was added to every bone element to fit Ding’s curve

(Figure 2.6 step 2). This correction represents a step from osteoporotic bone to a healthy bone, as
the equation was obtained from healthy bone samples. Once the original density was adjusted, Ding’s
equation was used to extrapolate to ten different densities that represent different patients. For the
population age (N = 10) the same statistical values as in Hanzlik et al. data were considered (𝑀 = 57.7
years, 𝑆𝐷 = 10.45 years). The ten density values were then divided by the corrected bone value. The
resulting multiplier (𝐴። =

ᑡᑒᑥᑚᑖᑟᑥ,ᑚ
ᑔᑠᑣᑣᑖᑔᑥᑖᑕ

) was used to extrapolate the original healthy bone to every 𝑖 patient
(Figure 2.6 step 3). The result was again corrected to be osteoporotic by subtracting 𝑏፨ (Figure 2.6
step 4), as the equation is based on healthy bone and the patients who receive an implant should be
osteoporotic.

The whole extrapolation process can be expressed as: 𝜌ፚ፬፡,። = (𝜌ፚ፬፡,ፂፓ + 𝑏፨)𝐴። − 𝑏፨. Where 𝜌ፚ፬፡,።
are the density values of each patient 𝑖, 𝐴። is the multiplier for every patient, 𝑏፨ is the osteoporosis
correction constant from the original CT scanned bone, and 𝜌ፚ፬፡,ፂፓ is the original ash density of the
CT scanned bone. This equation was applied to every element of the CT scanned mesh for every
multiplier, which results in the ten patients population. After both the mesh and the ten different sets
of densities were defined, the next step was to define the material models.
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Figure 2.5: Cylinder shaped sections marked in red of the tibia CT scan that were isolated as sample data to extrapolate the
whole bone density. Left: anterior view of the DEXA scan. Right: Superior view of the DEXA scan.

Figure 2.6: Steps performed for extrapolating the original ash density values to the ten osteoporotic sets based on the data of
Ding et al. [86]. 1) The CT-scanned average bone density values (green point). 2) CT-scanned ash density corrected to fit Ding
et al.’s curve (blue point). 3) Average density points of the chosen population that fits Hanzlik et al.’s data [75] (magenta points).
4) Corrected average density values used in the simulations of the current study (purple points).
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Figure 2.7: Softening Von Mises (sVM) criterion elastoplastic model based on Keyak et al.’s bone model under confined conditions
[50]. Left: Apparent stress versus strain plot. Centre: Equivalent Von Mises stress versus strain plot. Right: Equivalent Von
Mises versus hydrostatic pressure plot, which shows the model’s yield surface behaviour.

2.4. Material models
The four chosen isotropic heterogeneous material models were: The linear elastic (LE) model from
Keyak et al. [46], the softening Von Mises (sVM) criterion elastoplastic model from Keyak et al. [50],
an ideal crushable foam (iICF) model from Kelly et al. [54], and a hardening version of the previous
model (hICF). Ash density values were used to define most of the properties of every material model
which are described in detail below.

Linear Elastic (LE) model
In this heterogeneous model, the Young’s modulus 𝐸 is obtained from 𝐸 = 𝑎𝜌ፚ፬፡, where 𝑎 and 𝑏 depend
on the ash density 𝜌ፚ፬፡. Additionally, 𝑎 and 𝑏 constants change its value when the bone element is
trabecular, cortical, or in a state of transformation. This material model was also used for the elastic
part of the other material models. The chosen Poisson’s ratio was 𝜈 = 0.3. Formally, it can be written
as:

𝐸(𝜌ፚ፬፡) = {
33900𝜌ኼ.ኼፚ፬፡ for ∈ 𝜌ፚ፬፡ ≤ 0.27

፠
፦Ꮅ

10200𝜌ኼ.ኺኻፚ፬፡ for ∈ 𝜌ፚ፬፡ ≥ 0.6
፠
፦Ꮅ

5307𝜌ፚ፬፡ + 469 for ∈ 0.27 ፠
፦Ꮅ < 𝜌ፚ፬፡ < 0.6

፠
፦Ꮅ

(2.1)

Softening Von Mises (sVM) elastoplastic model
Developed by Keyak et al. [50] (Figure 2.7), the model is an elastoplastic material model where yield
is defined by an associative flow rule. The yield criterion (𝑓ፕፌ) depends on the second deviatoric stress
invariant (𝑞 = √ኽ

ኼ(𝑆 ∶ 𝑆)), and takes the form 𝑓ፕፌ = 𝑞 − 𝜎፲, with 𝜎፲ as the equivalent yield stress.
Similar to the Young’s modulus, 𝜎፲ is defined by an exponential ash density regression (𝜎፲ = 𝑐𝜌፝ፚ፬፡).
Constants 𝑐 and 𝑑 also depend on the bone type, defined as:

𝜎፲(𝜌ፚ፬፡) = {
137𝜌ኻ.ዂዂፚ፬፡ for ∈ 𝜌ፚ፬፡ ≤ 0.317

፠
፦Ꮅ

114𝜌ኻ.ኼፚ፬፡ for ∈ 𝜌ፚ፬፡ > 0.317
፠
፦Ꮅ

(2.2)

After the equivalent yield stress is reached, a stage of ideal plasticity begins with the expression 𝜖ፀፁ =
0.0728𝜌ፚ፬፡ − 3.15𝑥10ዅኽ. A softening section follows with plastic softening module 𝐸፩ = −4000𝜌ኼ.ኺፚ፬፡ .
The softening continues until a failure stress is reached, which takes the form 𝜎፦።፧ = 65.1𝜌ኻ.ዃኽፚ፬፡ . Failure
stress follows by an ideal plastic state.

Ideal Isotropic Crushable Foam (iICF) elastoplastic model
For this model, the post-yield behaviour of the ICF model defined for bovine trabeculae in Kelly et
al. [54] was adapted for the knee (Figure 2.8). The ICF model was chosen because Kelly et al.
demonstrated to reflect the most realistic behaviour when comparing FEM results of different material
models to experimental data (among Von Mises and Mohr Coulomb bone models). The model was
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Figure 2.8: Above: Graphical representation of the ideal isotropic crushable foam (ICF) model based on Kelly et al. [54] constants
for bovine trabecular bone. Below: Hardening ICF model with the same constants and hardening function demonstrated in this
work.

originally created for metallic foams by Deshpande and Fleck [87]. It adds a pressure dependence
(first stress tensor invariant 𝑝 = −ኻ

ኽ 𝑡𝑟(𝜎)), and a non-associative flow rule (flow vector and yield
gradient are not parallel) to the Von Mises yield criterion. The yield function 𝑓ፈፂፅ forms an ellipse with
the expression:

𝑓ፈፂፅ = √𝑞ኼ + 𝛼ኼ𝑝ኼ − 𝑞፲ (2.3)

𝛼 = 3𝐾
√9 − 𝐾ኼ

𝐾 =
𝜎፲፨
𝑝፲፨

𝑞፲ = 𝜎፲√1 + (
𝛼
3 )

ኼ (2.4)

Here, 𝛼 is the shape of the ellipse, 𝐾 is the compression yield stress ratio, 𝜎፲፨ the initial yield strength
in uniaxial compression, 𝑝፲፨ the initial yield stress in hydrostatic compression, 𝑞፲ the yield stress in
pure shear, and 𝜎፲ the uniaxial yield strength. For the non-associative part, it follows a flow potential
function 𝑔ፈፂፅ with the form:

𝑔ፈፂፅ = √𝑞ኼ + 𝛽ኼ𝑝ኼ 𝛽 = 3
√2
√1 − 2𝜈፩1 + 𝜈፩

(2.5)

Here, 𝛽 is the shape of the ellipse of the potential function, and 𝜈፩ is the plastic Poisson’s ratio. This
model can be reduced to the Von Mises criterion model when the shape constants 𝛼 and 𝛽 are equal to
zero. The initial uniaxial yield strength was obtained using the yield strength equations from Keyak et
al. [50] (equation 2.2). According to Kelly et al. [53], the constants to model bovine trabecular bone
are 𝐾 = 0.95 and 𝜈፩ = 0.29. These constants were selected for the current model for two reasons.
First, an equivalent study for the human tibia was not found. Second, the time available for this project
to perform the experiments and obtain a characterised ICF model for the knee was not sufficient.

This model was considered ideal (without hardening) due to the lack of information about its behaviour
for the tibia. Ideal behaviour is achieved by maintaining the yield strength constant throughout the
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simulation (𝜎፲ = 𝜎፲፨). Although this is valid from the mathematical and computational perspective, not
considering hardening (or softening) is too simplistic. Kelly et al. experiments show that the bovine
trabecular bone hardens in confined tests. Normally, several experiments are required to obtain a
hardening function (ℎ) in terms of equivalent plastic strain (𝜖፩). However, this was not possible
within the time frame of the present study. Therefore, hardening simulations were approached via
a mathematical model. This was considered as the fourth material model and is described below.

Hardening Isotropic Crushable Foam (hICF) elastoplastic model
To compensate for the lack of experimental data on hardening, a mathematical expression that describes
the phenomenon was required. This expression had to replicate Kelly et al.’s data and to be demonstrated
mathematically. For this, an equation was developed that is based on volumetric plastic strain (𝜖፩፯፨፥)
changes, which permanently change the ash density of every element. Changes of 𝜖፩፯፨፥ lead to changes
in the uniaxial yield strength equations. Further, when using an ICF model it is possible to correlate
the equivalent plastic strain 𝜖፩ with volumetric plastic strain 𝜖፩፯፨፥ as:

𝜖፯፨፥ =
𝛼ኼ
𝑅 𝜖፩ (2.6)

This allows to define uniaxial yield strength (𝜎፲) and the hardening slope (
Ꭷᑪ
ᎧᎨᑡ ) in terms of equivalent

plastic strain as:

𝜎፲ =
𝜎፲፨

(1 − 𝜖፩ ᎎ
Ꮄ

ፑᎴ )
፝

(2.7)

𝜕𝜎፲
𝜕𝜖፩ =

𝛼ኼ𝑑𝜎፲፨
(𝑅 − 𝛼ኼ𝜖፩)፝ዄኻ (2.8)

Here, 𝑐 and 𝑑 are defined as in 2.2. The full demonstration of the process to obtain the hardening
function is presented in the appendix B. To validate the equation, the computational experiment from
Kelly et al. in an 8 mm cube of trabecular bone [54] was replicated. The cube was considered
heterogeneous with ash density values 0.01 < 𝜌ፚ፬፡ < 0.73[

፠
፦Ꮅ ], meaning that the final uniaxial yield

strength was 𝜎፲፨ = 66[𝑀𝑝𝑎] as in Kelly et al.’s experiments. The cube was strained to 5% compression
in both uniaxial and confined conditions, similar to Kelly et al.’s experiment. The stresses were then
plotted together to observe if the hardening equation could replicate Kelly et al.’s experimental data.
The same experiment was performed for the other material models to use them as comparison for
the hardening results. It was also necessary to develop a compatible subroutine for both ICF models
because they are not incorporated in Marc Mentat 2015’s software. The subroutine creation process is
presented in appendix C.

2.5. Loading definition
Four common activities were selected to evaluate micromotions to answer which activities cause the
major impact for bone ingrowth. These activities were walking, stair climbing, cycling, and chair sitting
and standing up. The loads were obtained from the Bergmann et al. [44] database. As each loading
dataset had too many points, MATLAB was used to extract the representative points for every loading
cycle. Exact data points used for each activity are available in appendix A.

To select the loading conditions for medial tibial collapse, a musculoskeletal model that can predict
stumbling or a patient recorded stumbling case would be ideal. As this was unavailable, the medial
tibial collapse loading conditions were also taken from the Bergmann et al. data. The assumption
was that a stumbling patient would land with only one leg stepping towards the front. Therefore, the
equivalent ”one leg stance” peak load was used. Further, this loading case seems adequate because it
has a high normal force and high medial moments (table 2.2), potentially overloading the medial side
of the tibia.

For both simulations, the loads were applied in an additional node located in the centre and most
distal part of the insert. This was chosen because it is the point in which Bergman et al. defined their
loading data. The additional node is connected by rigid links to the upper nodes of each side of the
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insert’s condyles. This allows transfer of the applied loads into the implant (Figure 2.9 left). The chosen
body weight (𝐵𝑊) for every simulation was 96.81𝑘𝑔, as it is the mean value from the retrieved knees
found in Hanzlik et al.’s data. For implantation, displacement boundary conditions were also applied in
the node to achieve implant insertion.

Figure 2.9: Left: Boundary conditions applied in every linear elastic experiment. The loads were referred to an additional node
in the implant which is connected to the PE condyles via rigid links. For the plastic experiments, the implant was also separated
20 mm to prepare for implantation. Right: Example of gait loading data applied into the additional node (data for every activity
is presented in appendix A).

Table 2.2: Initial loading applied for stumbling conditions in body weight times (BW).

Axis Lateral/Medial (X) Superior/Inferior (Y) Anterior/Posterior (Z)
Force [BW] 0.121 -3.257 -0.123
Moment [BWmm] -23.948 -3.22 -60.485

2.6. Subroutine processing
The next step was to pre-process the combination of 400 micromotion experiments and 60 medial
tibial collapse experiments into the Marc Mentat 2015 software. It was necessary to define the
processing of each experiment, including the implantation prelude, and the micromotions and medial
tibial collapse subroutines. All pre-processing steps that combine each variable were performed in
MATLAB, eliminating possible human errors if done manually. In the next sections, implantation,
micromotions, and medial collapse processing algorithms are defined.

Implantation algorithm
All the simulations including a plastic analysis went through an implantation process. To simulate
implant insertion in a realistic way is computationally challenging. Controlling insertion via displacement
boundary conditions may cause too much buckling, leading to a non-converging process. To be able
to insert the implant and adapt the bone to its shape, an interference fit gradient was applied.

An interference fit gradient means that the implant was first negatively fit (shrunk) one centimetre
during insertion. This fit was linearly released until implantation was complete. To secure Newton-
Raphson convergence, insertion was applied in a set of a hundred increments (Figure 2.10). Therefore,
by the end of insertion, the negative interference disappeared and most of the buckling was prevented.
Although this definitely does not happen in real life, the pegs still force a fit with the drill hole. This
process is more realistic than just assuming a perfect fit with some interference on its contact.
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Figure 2.10: Graphical representation of the insertion process with the implantation distance ፝ᑚᑞᑡ, and the interference fit
፝ᑗᑚᑥ values applied per increment. To prevent buckling, ፝ᑗᑚᑥ was applied in the pegs. The insertion process lasted a hundred
increments to ensure convergence.

Figure 2.11: Graphical representation of the micromotions algorithm for a hypothetical case of nine increments in the bone-
implant contact interface. First, the contact node position is projected into the bone element face during increment 0 . Then,
the incremental shear and normal micromotions (᎙ፌ) are tracked for every implant contact node on each increment. By the
end of the cycle (increment 9 ), the resulting shear micromotions ᎙ፌ are obtained from the longest distance between all the

incremental shear micromotions path (e.g. increment 5 ).
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The previously described process is possible in plastic models because they allow high strains. In
the case of an elastic model, implantation is not necessary as the strains should remain below 0.2%.
There was no interference fit applied in the linear elastic models, as it is impossible to know which
interference fit value would be adequate.

Micromotions algorithm
The micromotion analysis was performed by an in-house made subroutine. It follows the node-face
algorithm explained in Van der Ploeg et al. [41] (Figure 2.11). At the beginning of a loading cycle,
the contact nodes of the implant with the bone surface are projected onto the closest contact element
face of the bone. The projection position is then tracked for each increment, where shear (parallel to
the contact surface) and normal (gap) incremental micromotions are obtained. After an activity cycle
is finished, the longest shear and gap distances along the total path are obtained. These distances
are called resulting micromotions. Tracking occurs for every implant contact node, where a full block
diagram of the micromotions subroutine is presented in appendix D.

Once the total shear micromotions have been obtained for each node, the equivalent surface area
of that node with respect of the nearest nodes is obtained. This information is used later during each
simulation’s post-processing. The resulting shear micromotions are compared against a bone ingrowth
threshold of 40𝜇𝑚 [17, 18]. If a node’s micromotions were below the threshold, then ingrowth was
assumed for that node. If the micromotions were above threshold, no ingrowth was assumed.

A node was only considered fully ingrown when its shear micromotions were below the threshold
for all the activities (Figure 2.12). The ingrowth nodes were multiplied by the total surface area they
represented. Individual ingrowth surfaces were summed to obtain the implant total ingrowth surface,
which was then divided by the interface area to obtain the extent of ingrowth (in percentage). The
mean and standard deviation of the extension of ingrowth was obtained for every density group and
each material model.

The results were compared to the retrieval data with the aid of a two one-sided t-test (TOST), commonly
named equivalence test [77]. This test shows whether two data sets are significantly equivalent.
Contrary to normal t-tests, it is initially assumed that both groups are different. Then, two one sided
t-tests are performed with a confidence interval (𝐶𝐼 = 95%) approach (𝛼 = 0.05, 𝛿 = 5%) to observe if
the null hypothesis holds true. If the difference between the means with respect to 𝛿 is contained within
the CI of the experiment (|𝜇ኻ−𝜇ኼ| < 𝛿), the tests are considered equivalent. If that holds true for this
experiment, it means that the simulations of a specific material model are realistic enough to represent
Hanzlik et al.’s retrieval data. A second equivalence test was performed for the Persona implant, with
the NexGen simulation results as the control group. The second test would give information on how
much implant performance changed between both designs, where the Persona is expected to under-
perform.

Medial tibial collapse algorithm
The second set of simulations consisted of a combination of three plastic material models, ten patients,
and two implants to study medial tibial collapse. Implant insertion was performed first to obtain the
”realistic” interference fit and to account for implantation softening of the peri-implant surface. Then,
the implant was linearly loaded with the stumbling condition in a span of ten increments. After that,
the subroutine added 10% of its total 𝐵𝑊 value for every new increment until collapse was reached.
Continuously increasing the stumble load is equivalent to an increasingly worse accident. The chosen
body weight of every patient was the mean of Hanzlik et al.’s data (96.81 Kg).

After the load converged in every increment, the positions of the implant’s most medial contact node
and the most lateral contact node were obtained (Figure 2.13). These were used to calculate the total
varus angle. The incremental varus alignment was compared to the collapse threshold of 8∘ [26].
The simulation stoped when the threshold was reached, as medial tibial collapse has occurred. The
simulation was also considered as finished if it crashed due to material instabilities. In that case, the
material model was considered incapable of reproducing medial tibial collapse.
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Figure 2.12: Example of the post processing algorithm to combine the ingrowth results for all activities across every patient and
material model.

For post-processing, varus alignment was plotted against percentage of body weight under stumbling
conditions. The mean and standard deviation were obtained for every density quality of the same
material model. The collapse curve of every material model was compared to observe differences
in critical instability and failure. Finally, this critical percentage of body weight was compared to the
700% to 900% common stumble threshold (Zimmerman et al. [80]), and to the 5∘ varus alignment risk
threshold (Green et al. [25]). Finally, a medial tibial collapse equivalence test was performed on the
Persona implant with the NexGen as control group, similar to the second equivalence test performed
in the ingrowth analyses.

Figure 2.13: Selected nodes for varus alignment measurement within the subroutine. The medial and lateral nodes were used
for varus alignment.
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3. Results
3.1. Isotropic Crushable Foam model validation
The trabecular cube simulations used to validate the hardening equation showed different behaviour
for every material model (Figure 3.1). For the sVM model, the strains were uniformly distributed
throughout the cube. For the hICF model, the strains concentrated in areas were the cube density
was the lowest. Also, the overall shape of plastic deformation formed a horizontal layer. For the iICF
model, the strain concentration in a horizontal line was higher than that observed for the hICF. The
plastic strain concentration is also close to the horizontal centre line of the cube, demonstrating the
pressure dependency of the ICF plastic models.

For confined test results, the hICF model precisely replicated apparent yield stress at 5% strain (Figure
3.2). A big difference was found in the transition curve between the elastic and the elastoplastic part.
The sVM model showed no pressure dependency as expected from the confined test, as it remained
almost linear. The iICF model did show yield under confined tests, but was not capable of reproducing
the hardening observed in both Kelly et al. data sets. The hICF model was capable of reproducing the
hardening behaviour at 5% strain, with almost the same final yield stress when compared with Kelly
et al.’s data.

3.2. Material model implantation deformation
For the three plastic models, implantation caused a layer of large plastic strain. These strains allowed
the circular drill holes in the bone to adapt to the shape of the implant pegs. Plastic strain concentration
differed by material model and by the density quality of the bone. The thickness of the plastic layer
was measured to observe the amount of extreme deformations after implantation (Figure 3.3).

The layer of excessive deformations remained relatively constant when the average ash density increased
for every material model (Figure 3.4 A-B). Contrary to plastic thickness, the peg’s contact stresses were
higher for the younger patients (Figure 3.4 D-E). The highest contact stresses and plastic thickness
were observed in the sVM model, followed by the hICF model. The iICF model demonstrated the lowest
contact stresses and plastic thickness. The NexGen results show a bigger plastic layer (Figure 3.4 C),
but the Persona had higher contact stresses (Figure 3.4 F).

After implantation, the shape of the bone adapted differently to the shape of the implant pegs. These
changes depend on the material model used (Figure 3.5 A-D). The best adaptation to the implant peg
shape was achieved by the iICF model, followed by the hICF model. The sVM model showed the worst
adaptation to the implant geometry. The Persona implant showed more surface in contact than the
NexGen implant for every material model used (Figure 3.5 E).

3.3. Micromotions and ingrowth analysis
For both implants, different ingrowth patterns occurred when considering different activities and material
models (Figures 3.6 and 3.7). The left side of the Figure shows that cycling considers most of the nodes
as ingrown for every material model. This is followed by sitting and standing, gait (walking), and finally
stair walking. For every material model, the medial posterior side of the implant and around the pegs
was estimated to have most bone ingrowth. For gait and stair walking, the anterior side demonstrated
almost no ingrowth in both the NexGen and Persona.

For the NexGen results, the extent of ingrowth estimated for the tray was 34.34±16.71% when using a
LE model, 11.84±4.10% for a sVM model, 29.85±3.52% for the hICF model, and 42.83±4.88% for the
iICF model. For the pegs, the extent of ingrowth was 10.98 ± 0.86% for the LE model, 51.14 ± 7.21%
for the sVM, 63.83 ± 0.71% for the hICF model, and 65.26 ± 0.92% for the iICF (Figure 3.8 A). When
comparing the results with retrieval data from Hanzlik et al. [75], three out of four models overestimate
ingrowth in the tray (Figure 3.9 A). Here, the equivalence test results fell into the right side of the CI,



22 Chapter 3. Results

Figure 3.1: Total equivalent plastic strain for the validation cubes for every plastic material model under confined compression.
Excessive strains (light grey) were considered beyond 10% as a measure on how much the strains concentrate. A) The Young’s
Modulus values of the cube. B) Results for the Von Mises softening (sVM) criterion. C) Results of the hardening isotropic
crushable foam (hICF) model. D) Results of the ideal isotropic crushable foam (iICF) model.

Figure 3.2: Hardening equation validation results for uniaxial and confined stress tests. In black, the ICF curve obtained from
Kelly et al. [54]; in red, the curve of the hardening ICF model; in green, the curve for a Von Mises ideal model based on Keyak
et al.’s [50] uniaxial yield stress; in blue, the ideal ICF model results.
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Figure 3.3: Total equivalent plastic strain after implantation. A) The Young’s Modulus values of the cube. B) Results for the Von
Mises softening (sVM) criterion. C) Results for the hardening isotropic crushable foam (hICF) model. D) Results for the ideal
isotropic crushable foam (iICF) model.

Figure 3.4: A-B) Thickness of plasticity layers around the implants for all the different bone densities and material models. C)
Comparison of thickness between implants across all density groups. D-E) Average contact stresses around the pegs, which
represent the average fixation stresses between the implant and the bone for each material model. F) Comparison of contact
stresses between implants across all density groups.
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Figure 3.5: Total equivalent plastic strain plot of the shape of the bone peg holes after implantation in every material model used.
A) Original drill shape before implantation. B) sVM model post-implantation shape. C) hICF post-implantation shape. D) iICF
post-implantation shape. E) Percentage of implant peg surface in contact with the bone after insertion between both implants.

which means the simulations overestimated ingrowth. Also for the tray, the sVM model under-predicted
the ingrowth results, as its equivalence test values fell to the left of the CI. For the pegs, both ICF
models over-predicted ingrowth. The sVM model was the most accurate in predicting peg ingrowth,
but it cannot be considered equivalent to the retrieval data, as its equivalence test values fall outside
the CI. The LE model under-predicted peg ingrowth the most, as the equivalence test results were far
left from the CI.

When dividing the tray area in medial, lateral, and central zones, the NexGen implant showed a
different pattern of ingrowth than the retrieval data (Figure 3.8 C). According to Hanzlik et al. [75],
the medial, lateral, and central zones should have almost the same ingrowth, with a slight increase
in the medial side. All the material models used showed a different pattern of ingrowth. The medial
ingrowth is overestimated when compared to the central and lateral side in every model. The iICF also
overestimates the lateral side. A similar pattern emerges for the Persona implant (Figure 3.8 D). No
micromotions higher than 150𝜇𝑚 were observed in any experiment. Also, the highest shear strains
observed were in the order of 2.17%.

When comparing the NexGen with the Persona implant (Figure 3.8 B), the estimated overall bone
ingrowth surface of the NexGen was 25.04 ± 10.8% when using a LE model, 27.49 ± 4.43% with a
sVM model, 43.38± 2.67% with a hICF model, and 51.76± 3.09% when considering an iICF model. In
the case of the Persona implant, the estimated bone ingrowth surface was 36.06 ± 1.59% for the LE
model, 27.17 ± 4.19% for the sVM model, 44.77 ± 4.18% for the hICF, and 54.17 ± 4.22% for the iICF
model. The Persona implant performed better than the NexGen in three out of four material models.
The NexGen implant only performed better when using a SVM model. According to the equivalence
test between implant performance (Figure 3.9 B), the Persona was only significantly better than the
NexGen when using a LE model. When using any plastic material model, both implants were found
significantly equivalent, without apparent improvement between designs.

3.4. Medial tibial collapse
For every sVM simulation, the total equivalent plastic strain was more dispersed in the surroundings
of the medial peg compared to the hICF model at the point of collapse (Figure 3.10). For the sVM
results, plastic strains can be observed 2 cm below the medial peg, reaching until the cortical bone of
the most medial side. For the hICF model, the strains were concentrated around and below the peg
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Figure 3.6: Bone ingrowth for every activity and the total ingrowth in every material model for NexGen implant and the bone
with the lowest density quality. Left: Ingrowth contact nodes (coloured) for every activity. Right: Final ingrowth nodes after
activity combination. (LE = Linear Elastic; sVM= softening Von Mises; hICF= hardening Isotropic Crushable Foam; iICF= ideal
Isotropic Crushable Foam.)
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Figure 3.7: Bone ingrowth for every activity and the total ingrowth in every material model for Persona implant and the bone
with the lowest density quality. Left: Ingrowth contact nodes (coloured) for every activity. Right: Final ingrowth nodes after
activity combination. (LE = Linear Elastic; sVM= softening Von Mises; hICF= hardening Isotropic Crushable Foam; iICF= ideal
Isotropic Crushable Foam.)
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Figure 3.8: A) Extension of ingrowth (EoI) of the NexGen implant compared to material model used and retrieval data obtained
from Hanzlik et al. [75]. B) EoI of the Persona and NexGen implants between material model. C) EoI of the NexGen for all
surface areas, where medial, lateral and center are tray regions. D) EoI of the Persona for all surface areas, where medial,
lateral and center are tray regions. (LE = Linear Elastic; sVM= softening Von Mises; hICF= hardening Isotropic Crushable Foam;
iICF= ideal Isotropic Crushable Foam.)

Figure 3.9: A) Confidence interval (CI) of the equivalence test between the simulations and the retrieval data by material model
and implant region. B) Equivalence test between the implants performance. Positive difference in performance means that the
Persona outperformed the NexGen.
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Figure 3.10: Front plane section of three different final results for medial tibial collapse. A) The Young’s Modulus values of the
bone. B) Equivalent plastic strain Ꭸᑡ results for the Von Mises softening (sVM). C) Ꭸᑡ results for the hardening isotropic crushable
foam (hICF). D) Ꭸᑡ results for the ideal isotropic crushable foam (iICF) model.

Figure 3.11: A) Mean collapse curves for the NexGen implant for each material model, shaded area shows standard deviation.
B) Mean collapse curves for the Persona implant for each material model, shaded area shows standard deviation. C) Persona’s
medial tibial collapse equivalence test results with the NexGen simulations as control group. (sVM= softening Von Mises; hICF=
hardening Isotropic Crushable Foam; iICF= ideal Isotropic Crushable Foam.)
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while reaching the collapse angle of 8∘ without material instabilities, as intended. Lateral side lift-off
was present in every simulation of the sVM and hICF model. No simulation converged to collapse for
the iICF, as material instabilities appeared before reaching the collapse threshold.

A varus angle of 8∘ was used as a threshold for medial tibial collapse. Not every simulation converged
until the desired collapse angle (Figures 3.11 A and B) as several simulations resulted in inside-out
elements. No simulation presented inside-out elements for the sVM model, while three simulations
presented inside-out elements for the hICF model, and twenty (all) simulations for the iICF model.

For the NexGen, the average percentage of body weight at collapse was 1209%𝐵𝑊 ± 268.1 for the
sVM model simulations and 1729%𝐵𝑊 ± 343.2 for the hICF. It is unknown for the iICF, as none of
the simulations was able to reach the collapse threshold. For the Persona, the average percentage of
body weight of collapse was 1251%𝐵𝑊±272.3 for the sVM model simulations and 1737%𝐵𝑊±420.8
for the hICF. Just as in the NexGen iICF simulations, the values for the Persona iICF simulations are
unknown. For every material model, sudden structural instabilities occurred at different points.

The iICF model showed a higher decline in structural instability when compared to the hICF model,
as the curves behaved similarly prior to the structural instability. The equivalence test between the
implants (Figure 3.11 C) determined an almost equivalent performance between the implant designs.
The Persona slightly over-performed the NexGen implant design, but not enough to be considered
significantly different.
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4. Discussion
4.1. Validation of hardening function for the ICF model
Both the uniaxial and confined yield stress tests adequately fit the experiment from Kelly et al. [54] at
5% strain when using a hICF model (Figure 3.2). Differences observed in the linear part of the curves
are due to a different choice for Young’s Modulus in the current study. The current study used the ash
density equations from Keyak et al., which lead to an average Young’s Modulus for the cube of 5.2 MPa.
In contrast, Kelly et al. simply considered a Young’s modulus of 4 MPa for the trabecular bone cube.

The cube validation tests help to explain the main difference between the Von Mises and the isotropic
crushable foam criteria. Under confined compression, the Von Mises criterion is not capable to account
for changes in pressure, as it draws a line that extends almost linearly. A similar situation occurs under
implantation conditions, where the shear to pressure ratio 𝑅 is around 1.26. To compare, under uniaxial
conditions 𝑅 = 3, and lowers to 𝑅 = 0.92 under confined stress conditions, meaning that implantation
conditions are more related to confined compression than uniaxial compression. On the other hand,
the crushable foam model demonstrates adequate yielding in both uniaxial and confined tests. The fact
that plastic strains distribute around the whole cube when using the sVM criterion is also explained by
its lack of pressure dependence (Figure 3.1), as only changes in shape led to yield. This is especially
clear in both ICF model cube results. Here, the concentration of strains in a horizontal line shows how
yielding occurs in the areas with more concentration of pressure and low Young’s modulus.

Kelly et al. performed several tests to obtain the necessary information to create a phenomenologically
based hardening equation. The development of the present hardening equation seems to be a good
approach when experimental data is not available. The hardening behaviour may be represented by
an equation that updates ash density after yield when permanent changes in bone volume occur, as
presented in this study. These validation results also indicate that human and bovine trabecular yielding
behaviour may not be so different. Still, more experiments on tri-axial testing machines are necessary
to develop a bone-specific material model.

4.2. Implantation analysis
Depending on which material model was used, the bone adapted differently to the implant after
insertion. Bone adaptation and total contact was best in the iICF model. This is due to the pressure
dependence that caused the shear softening effect (Figure 2.8). Also, the fact that the yield surface
does not grow means there will be higher volumetric plastic strains. This allows plastic strains to remain
concentrated around the closest bone elements (Figure 3.3), allowing the bone to adapt better to the
implant pegs. When adding the hardening function, the shear softening effect dissipates as the yield
surface grows (Figure 2.8 bottom). This caused the contact stresses to rise, so that the plastic strain
dissipated in more elements surrounding the pegs. Strain dissipation reduced material instability risk
while still adapting to the implant shape. The biggest difference was observed when using a sVM model
(Figure 3.4 A), as the sVM model is incapable to account for hydrostatic pressure, plastic strain will
only occur by shear deformations (changes in the element shape). This effect can explain why the
average thickness in plasticity almost doubles the pressure dependent models. Also, as the conditions
are mostly confined, softening does not occur. This increases contact stresses and distributes more
into the surrounding elements, and shape adaptation is limited.

Kelly et al.’s [54] indentation tests on bovine trabecular bone showed that at approximately 2 mm
of indentation a white layer of bone is formed. This layer has approximately the same thickness as
the indentation and is formed of plasticised bone. In the current study, the metal and bone overlap
0.89 mm in the corners of the hexagon. This causes a plastic layer of about 1.2 mm for the hICF, 1.1
mm for the iICF, and 1.4 mm for the sVM model. Thus, the iICF model seems to be a good candidate
to predict plasticity around cementless implants, as its plastic layer thickness was the closest to the
amount of peg overlap. These claims still have to be validated with experimental data, as there is
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no characterised ICF model for the human tibia yet. The use of the 𝜈፩ and 𝐾 values from a bovine
trabeculae should not invalidate these experiments as the compressive yield strength between them
only varies by 2.96% [55].

The contact stresses for the hICF model were higher than those of the iICF model, suggesting that
the hardening function may be overestimating the yield surface growth. This makes sense, as the
consideration for hardening only takes into account the decrease of volume during compression, but
not the micro structure changes of the trabecular bone. Currently there is no limit on how much the
yield surface can grow for the hICF model. Regarding trabecular bone, if the yield surface grows as
density increases, the porosity should decrease. Then, the yield growth under compression should end
when porosity reaches zero, as density changes are not possible anymore. The growth limit of the
yield surface may be controlled by a total free surface function, similar to the one used in the SED
remodelling theory from Weinans et al. [88]. Implementing a free surface function could be performed
in a future study, as adding this variable into the current study would have required more time than
available.

The implantation process is affected by several limitations. First, the implant was inserted with a
negative interference fit, which was linearly reduced during the insertion process. This is equivalent
to priorly shrinking the implant peg and slowly expanding it back to its original shape during insertion.
In reality, no implant peg would be capable to shrink before being inserted. Nevertheless, this
consideration is necessary for the simulation to avoid excessive bone flexion. This would result in
too much buckling, material instabilities, and simulation crashing. A more realistic simulation would
be to just push the implant into the bone. This would then scratch the bone such that small particles
fall below the peg. However, modelling the falling particles would require remeshing in every iteration
with elements of the same size as the bone particles. The latter is almost impossible, as small mesh
elements make it very hard to work with plastic material models. Not considering falling particles may
result in an over-prediction of contact surface and stresses. This especially holds true for the sVM
model, which requires shear deformations to soften the elements.

Another limitation of the model might be using displacement boundary conditions instead of forces
for insertion. This means that the insertion of the pegs was simulated as a constant movement,
whereas in reality it is hammered into place by the surgeon. As such, using displacement boundary
conditions does not take into account vibrations and possible hammering mistakes by the surgeon.
However, as no study that correlates hammering forces during insertion was found, it was necessary
to use displacement boundary conditions. Simulating insertion using forces would make it possible to
account for small alignment errors and vibrations. This would reduce the over-estimation of contact
surface and softening around the bone. Such a study could correlate the required average insertion
force with the average bone ash density, while accounting for small variations of insertion angle and
impact conditions. This could further improve future FEM analyses.

4.3. Micromotions and ingrowth analysis
For every material model, the activity that prevented ingrowth the most was stair walking (Figure
3.6). The lack of ingrowth was caused by high micromotions on the lateral and anterior sides of the
implant. These high micromotions derived from high peak normal forces that were accompanied by
high moments (Figures A.2 and A.2). When high forces and moments combine, the final load tilts
toward the medial posterior side of the implant, explaining why most ingrowth is concentrated in this
area. When using gait loads, the same load distribution towards the medial posterior side of the implant
is observed. However, only one peak force with moments tilts the implant towards the medial posterior
side, which is the reason why gait is the load that prevents ingrowth the second most.

Cycling and sitting/standing up had an overall higher extension of ingrowth than gait and stair walking.
A possible explanation for this is that the peak normal forces in these activities are lower than in gait
and stair walking. For both activities, the extension of ingrowth was higher on the lateral side, with no
ingrowth on the anterior side. Both cases were accompanied by higher moments towards the lateral
side of the implant (positive moment in z-axis). For cycling and sitting/standing up, the final loads tilted
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towards the lateral side, which was the area with higher ingrowth. As most ingrowth occurs where the
final normal forces are higher, the ingrowth pattern seems to be determined by the highest peak force
and the direction of the moments in that peak.

The lack of anterior ingrowth for every activity may be due to the positioning of the pegs. These
are located on the posterior side of the implant tray. There, they provide anchor points for all forces
and prevent movement. The anterior side, however, is unprotected against flexion, leading to more
micromotions. The lack of anterior ingrowth could be prevented by an extra design feature, like the
anterior boss nub of the modular version of the Monoblock implant [89]. Another possibility to promote
anterior ingrowth is to modify the insert surface. This would improve implant kinematics, allowing loads
to better distribute around the tray, and lead to a better ingrowth distribution.

Differences in bone ingrowth around the tray and pegs for both implants and all material models
were observed (Figures 3.8 C and D). For the pegs, when using a LE model, the ingrowth prediction
around the pegs lies below the standard deviation of the retrieval data (Figure 3.9 A). Here, the peg
ingrowth prediction for the LE model was far left of the confidence interval of the retrieval data. The
under-prediction of ingrowth for the LE model can be explained by the lack of contact stresses and
interference fit in the pegs. Simulating a realistic interference fit for a heterogeneous LE model is
difficult because contact stresses would have to be higher than most elements’ yield stress values.
This would complicate the analysis and lead to unreliable results.

The use of plastic material models, on the other hand, leads to a more accurate prediction of ingrowth
when compared to the retrieval data. The average ingrowth of every plastic material model stayed
within the standard deviation of the retrieval data. The better prediction of plastic material models is
due to their capability to simulate more realistic contact stresses, as they are obtained from high strain
interference fits. Both ICF models slightly over-predicted ingrowth beyond the confidence interval of
the retrieval data. The over-prediction might derive from the implantation algorithm, as this does not
account for bone loss and scratch during implant insertion. The sVM model seems to most adequately
predict ingrowth around the pegs. This might derive from the way in which the bone behaves when
using an sVM model, as the bone mesh does not adapt well to the shape of the implant peg. This
results in low surface contact between the bone and the implant, which compensates for the lack of
bone loss due to insertion scratching. Less surface contact increases the total micromotions around
the pegs, leading to a better prediction of ingrowth when comparing to the ICF models.

Comparing bone ingrowth around the tray of the NexGen with the retrieval data shows that the hICF
model predicts ingrowth most accurately, as it is closest to the mean of the retrieval data and almost
within the confidence interval of the equivalence tests (Figure 3.9 A). The model’s hardening effect and
pressure dependence cause both moderate contact stresses and surface contact between the implant
and the bone. This results in a slight over-prediction of the level of ingrowth, but very similar to that of
the retrieval data. The sVM model slightly under-predicted the amount of bone ingrowth. This can be
explained by a lack of total surface contact, which leads to a higher tilting of the implant tray. The use
of an iICF model leads to an over-prediction of ingrowth beyond the standard deviation of the previous
two models. This might derive from high amounts of surface contact. Next to material model and used
loads, micromotion results also seem to be greatly affected by total surface contact as well as press-fit
conditions.

None of the material models was capable to replicate the same ingrowth pattern as observed in the
retrieval data. There, the extension of ingrowth was evenly distributed around the three tray regions.
The simulations, however, predicted more ingrowth on the medial side of the tray than in central and
lateral regions. This uneven distribution of ingrowth around the tray might be due to the activities that
were selected for this study. As stated above, the loads that caused the least ingrowth were gait and
stair walking. These activities have concentrated forces and moments towards the medial and posterior
side, leading to an uneven distribution of ingrowth. The use of implant-specific musculoskeletal models
to obtain activity loads might be required to accurately predict the pattern of ingrowth around the tray.
This is necessary because the shape of the insert plays a big role in load distribution.
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The lack of significant equivalence of the results with the retrieval data might derive from different
reasons. To start, the statistical power of the retrieval data was rather low, as it only consisted of 32
bones. This makes it less reliable to be used as validation data. Further, the retrieval data derives from
deceased patients who have had their implants for an average of three years without revision, where
effects such as repeated cycles of ingrowth, implant migration, or remodelling might have occurred.
However, these effects are of no interest for the current study, as the focus lies on early ingrowth
effects within the first few weeks, and in how far ingrowth is affected by implant insertion and material
models. Normally, shear strains should also be considered when simulating bone ingrowth, which were
left out from the current study as it focuses on micromotions. Additionally, the current study showed
peaks of shear strains of 2.17% around the implant tray, which is bellow the differentiation threshold
of 3.75% found by Lacroix et al. [90]. Thus, it was not necessary to consider them, as they did not
affect the results.

According to the equivalence tests results for the Persona performance (Figure 3.9 B), the Persona
showed a significantly better performance than the NexGen when using a LE model. These results
suggest that the Persona outperforms the NexGen and should thus be placed into the market. When
using any plastic material model, the difference in performance between the implants becomes less
obvious. The equivalence tests show that both implants are significantly equivalent when using a plastic
material model. A reason for this might be the higher medial surface area of the Persona, compared to
the NexGen. A higher area means less total stresses and micromotions around the tray, and therefore
more ingrowth. Also, the medial peg of the Persona is set more posteriorly than that of the NexGen,
and therefore closer to the point towards which the loads tilt (as they also tilt towards the medial and
posterior side of the implant). This posterior peg of the Persona presents a pivot point for the loads
to dissipate. These peak loads do not dissipate when a plastic material model is used, as the contact
stresses are higher due to the interference fit. For the Persona, these high contact stresses might
balance the geometrical advantages of having a medial peg. Therefore, the amount of micromotions
for the Persona and the NexGen is approximately equal.

Adding extra considerations to the material model, like viscoelasticity, damage, or migration tracking
may lead to better results for the NexGen than the Persona. Also, implant-specific kinematics may show
less differences between the implants, as the Persona and NexGen geometries differ. The insertion
method of the implants might also negatively affect their performance. The NexGen is inserted by
simply hammering the implant into the bone, just as any other tibial component, whereas a special
tibial inserter is used for the insertion of the Persona. This inserter might twist the bone when released
from the insert, damaging its initial fixation. This potentially dangerous situation is shown as a warning
sign on page six in the insertion manual of the Persona implant [83]. Adding the effects of such an
accident to the implantation process of the simulations might result in lower performance of the Persona
compared to the NexGen.

4.4. Medial tibial collapse analysis
For the current study, a simple stumble load was applied until the bone collapsed, representing a
catastrophic collapse accident. Although no study was found that assessed medial collapse, the results
of the current study present several important observations regarding the material model used for
simulating the phenomenon. For the sVM model, the strains at collapse are spread around the implant
such that they reach the cortical bone area below, increasing the tensile stresses of the cortical bone
elements beyond their yield. Cortical bone yielding should be studied more accurately with a crack
model, rather than a compression deformation model like sVM. Additionally, the sVM curve collapses
very close to Zimmerman et al.’s stumble region (Figure 3.11). This should not occur, as the knee
would not collapse after a simple stumble case of 900 %BW. This suggests that the sVM model might
not be adequate to represent medial tibial collapse.

Contrary to the sVM model, the ICF models might show too much overall body-weight while maintaining
a low varus angle. Using an iICF model is problematic for medial collapse analysis, as the FEM algorithm
shows too many material instabilities. As discussed above, these material instabilities are caused by
high concentrations of plastic strain and inside-out elements. Further, it is impossible to account for
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the changes in density around every element when bone is crushed without a hardening equation.
This should cause higher contact stresses and dissipate plastic strains, protecting against material
instabilities. Then, the hardening of the contact elements appears to provide a computational method
that prevents material instabilities. Additionally, the hICF model also provides protection against
structural instabilities, as its collapse slope was less prominent that the one of the iICF and the sVM.

Hardening does not have a limit for density changes, as density should stop increasing when porosity
reaches zero. Any porous structure that is compressed enough will eventually become non-porous.
As discussed in the implantation section, a free surface area function might be used to limit density
growth. This has been applied in SED remodelling based functions from Huiskes et al. [38]. Further,
implementing a free surface area function into hardening would automatically distinguish between
cortical and trabecular bone in the equations, making a density threshold for trabecular and cortical
bone unnecessary. This limit of hardening may also reduce the potentially unrealistic contact stresses
that the hICF model predicts between the bone and the implant.

The previous observation leads to a future hypothesis. The SED remodelling theory from Huiskes
et al. considers only elastic behaviour. To be able to study a cementless implant, it is necessary to
understand how plastic SED could affect remodelling. The change of density of every element under
volumetric plastic strains could be taken into account for a remodelling analysis in cementless models.
This could be explained by the fact that density already changes when using a pressure dependent
plastic model. The stiffness of an element could be immediately updated when it becomes plastic, just
as when it is updated by the elastic SED values. This would allow to perform remodelling experiments
in cementless implants while maintaining considerations of early interference fit resulting from insertion.

A simple experiment to corroborate the medial tibial collapse findings of the current study might be
performed with post-mortem bone samples. Several post-mortem bone specimens must be implanted
with NexGen implants. Then, the implanted bones must be loaded in the stumbling conditions specified
in this study until collapse. Afterwards, an anterior transverse cut should be performed in the centre
of the implant pegs to measure whitening zones of the implant. The whitening plastic zone could then
be correlated to the plasticity thickness areas obtained in the results of this project. These could give
information about which material model predicts medial collapse better. Given the time and budget
available for this project, it was not possible to perform these experiments. The medial collapse results
show that there are many differences between the bone behaviour under extreme conditions, which
should be taken into account during the design of new implants. Further analysis on applied material
models should be performed.
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5. Conclusions
It seems that the developed hardening function for an ICF model is capable to predict hardening
adequately. This is because the function predicted the same final yield stress present in Kelly et al.’s
data. This function was applied to micromotions as well as medial collapse simulations. The hICF model
is promising for medial tibial collapse future analyses, as it does not show fatal material instabilities
and does not fail close to the stumble thresholds as a sVM model. Also, the results of tray ingrowth of
the hICF model were more equivalent to the retrieval data than those of any other model. Further, it
is necessary to fully validate the hardening function with tri-axial tests on bone specimens. For this, it
is also suggested to validate a function which limits hardening yield surface growth with a free surface
area function.

Simulating implantation was demonstrated to be necessary prior to analysis, as the implantation output
provides the adequate press-fit stresses and surface contact required for the implant to remain stable.
Also, implantation appears to be an adequate indicator of the validity of the plastic model, as the
concentrated plasticity around the implant changes depending on the material model used, just as
the contact stresses of the cementless implant. Physical experiments in which an implant is inserted
and then cut through a specific plane to obtain whitening zones is necessary to validate more realistic
simulations of contact stresses.

Light activities such as cycling and squatting (activity similar to sitting/standing up) are recommended
as they show high levels of ingrowth when analysed separately. The results suggest that stair walking
should definitely be avoided, as it was the activity that caused the least ingrowth. Although gait also
led to lack of ingrowth, it is an activity that cannot be restrained from the patient. However, it is
suggested to walk as little as possible during the early stages after surgery, and certainly not to carry
heavy loads. Tests on implant-specific loads obtained from musculoskeletal models should be used in
future studies, as they might provide an ingrowth pattern that correlates better with retrieval data.

Micromotion experiments on simple specimens would provide information on the accuracy of the
predicted micromotions, revealing which material model most accurately predicts micromotions. Further,
the bone ingrowth results from every material models were not fully validated with the retrieval data.
Extra considerations, like migration, iterative ingrowth, shear strains, and remodelling might eventually
make the simulations significantly equivalent to retrieval data. Additionally, a bigger population is
required for a retrieval study to have the adequate power for it to be used as validation data. Overall,
the results of the sVM and the hICF models were the closest to be equivalent to the retrieval data. The
sVM model slightly under-predicted the data, while the hICF model slightly over-predicted it.

To accurately simulate medial tibial collapse, future experiments need to include migration tracking
and adequate use of a remodelling subroutine. Nevertheless, progress was achieved in the current
study, as differences in collapse behaviour and instabilities were observed when using different plastic
material models. For future research, it is suggested to include plasticity into remodelling by updating
density after plastic volumetric changes, which is possible only when using pressure dependent models.
Physical tests similar to those suggested for implantation should be performed to observe the total
distribution of whitening areas after collapse. This data should also be used to correlate the respective
model with the experimental collapse results.

The ingrowth simulations were not capable to accurately predict that the Persona implant would
fail compared to the NexGen. When only using a LE model, the Persona implant was expected to
outperform the NexGen. But when adding complexity into the material model, the results show that
the performance may not be as good as expected. Complexity such as non-linear plasticity and pressure
dependent bone models are enough to tell that the NexGen and Persona implants are equivalent in
performance, and should have gone through more iterations before being placed into the market. More
experiments and variables have to be considered before obtaining a realistic model that can predict
the Persona failure.
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A. Input loads for micromotion experiments.

Figure A.1: Loading conditions for gait analysis, obtained from Bergmann et al. (2008) [44]. The original data was filtered so
only changes of less than 10% in the main load and moment directions would remain, decreasing the amount of increments
from 121 to 30.

Figure A.2: Loading conditions for stair climbing analysis, obtained from Bergmann et al. (2008) [44]. The original data was
filtered so only changes of less than 10% in the main load and moment directions would remain, decreasing the amount of
increments from 129 to 25. These data points were combined with downstairs walk.
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Figure A.3: Loading conditions for walking downstairs analysis, obtained from Bergmann et al. (2008) [44]. The original data
was filtered so only changes of less than 10% in the main load and moment directions would remain, decreasing the amount of
increments from 129 to 26. These data points were combined with stair climbing.

Figure A.4: Loading conditions for standing up analysis, obtained from Bergmann et al. (2008) [44]. The original data was
filtered so only changes of less than 10% in the main load and moment directions would remain, decreasing the amount of
increments from 672 to 23. These data points were combined with sitting down.
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Figure A.5: Loading conditions for sitting down analysis, obtained from Bergmann et al. (2008) [44]. The original data was
filtered so only changes of less than 10% in the main load and moment directions would remain, decreasing the amount of
increments from 672 to 23. These data points were combined with standing up.

Figure A.6: Loading conditions for cycling analysis, obtained from Bergmann et al. (2008) [44]. The original data was filtered
so only changes of less than 10% in the main load and moment directions would remain, decreasing the amount of increments
from 139 to 24.
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B. Isotropic Crushable Foammodel hardening
function demonstration.

The yield criterion of the isotropic crushing foam model (𝑓ፈፂፅ) was originally developed by Deshpande
and Fleck (2000) [87], who defined its ellipse shaped surface as:

𝑓ፈፂፅ = √𝑞ኼ + 𝛼ኼ𝑝ኼ − 𝑞፲ (B.1)

Where 𝑞 is the equivalent Von Mises stress (second invariant of the deviatoric stress tensor 𝑆) and 𝑝 is
the hydrostatic pressure (first invariant of the stress tensor 𝜎). 𝛼 is the ellipse shape constant, and 𝑞፲
the yield stress in pure shear. These are defined as:

𝑞 = 𝐽ኼ = √
3
2𝑆 ∶ 𝑆 =

√1
2[(𝜎ኻኻ − 𝜎ኼኼ)

ኼ + (𝜎ኼኼ − 𝜎ኽኽ)ኼ + (𝜎ኽኽ − 𝜎ኻኻ)ኼ + 6(𝜎ኼኻኼ + 𝜎ኼኻኽ + 𝜎ኼኽ)] (B.2)

𝑝 = 𝐼ኻ = −
1
3𝑡𝑟𝑎𝑐𝑒(𝜎) = −

1
3(𝜎ኻኻ + 𝜎ኼኼ + 𝜎ኽኽ) (B.3)

𝛼 = 3𝐾
√9 − 𝐾ኼ

; 𝐾 =
𝜎፲፨
𝑝፲፨

(B.4)

𝑞፲ = 𝜎፲√1 + (
𝛼
3 )

ኼ (B.5)

𝜎፲፨ = 𝑐𝜌፝ፚ፬፡ᑠ (B.6)

𝐾 is the initial ellipse shape parameter, 𝑝፲፨ the initial yield under pure hydrostatic pressure, 𝜎፲፨ the
initial yield stress in uniaxial loading, 𝜌ፚ፬፡ᑠ the bone’s initial ash density, and 𝑐 and 𝑑 its exponential
regression constants obtained from Keyak et al (2003)[50]. Also, a Von Mises to hydrostatic pressure
ratio 𝑅 defined as:

𝑅 = 𝑞
𝑝 (B.7)

All the previous parameters define the geometry of the ICF model yield surface in the 𝑝𝑞 plane. A
graphical representation of this can be seen in figure B.1.

Additionally, Kelly et al. (2012) [53] considers a non-associative flow rule for trabecular bone. For
that, the flow potential rule 𝑔ፈፂፅ was defined as:

𝑔ፈፂፅ = √𝑞ኼ + 𝛽ኼ𝑝ኼ (B.8)

Where 𝛽 is the ellipse shape constant for the flow potential rule, defined by the plastic Poisson’s ratio
𝜈፩ as:

𝛽 = 3
√2
√1 − 2𝜈፩1 + 𝜈፩

(B.9)

According to the flow rule, plastic flow occurs when the yield criterion reaches zero 𝑓ፈፂፅ = 0 [91].
Then, the stress rate vector �̇� for non-associative materials is be defined as:

�̇� = [𝐷፞ −
𝐷፞𝑚𝑛

ፓ𝐷፞
ℎ + 𝑛ፓ𝐷፞𝑚

]�̇� (B.10)

With 𝐷፞ the elastic stiffness matrix, 𝑚 = Ꭷ፠ᑀᐺᐽ
Ꭷ the direction of plastic flow, 𝑛ፓ = Ꭷ ᑀ፟ᐺᐽ

Ꭷ

ፓ
the transposed

gradient vector of the yield function, �̇� the strain rate, and ℎ the hardening function.
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Figure B.1: Graphical representation of the isometric crushing foam model yield criterion. The yield surface in the ፩፪ plane is
represented by an ellipse. The equivalent Von Mises yield strength ፪ᑪ depends on the Von Mises to hydrostatic pressure ratio ፑ.
The loading configuration becomes uniaxial when ፑ  ኽ, which means the current equivalent yield stress becomes the uniaxial
yield stress (፪ᑗ  ᑪ).

The hardening function usually depends on the hardening parameter 𝜅 which depends on the yield
criterion 𝑓. This function can be defined as [91]:

ℎ = −1�̇�
𝜕𝑓ፈፂፅ
𝜕𝜅 �̇� (B.11)

Where �̇� is the magnitude of plastic flow, and �̇� is the hardening rate. If a work hardening condition is
considered, which means:

�̇� = 1
𝜎፲
𝜎ፓ �̇� or �̇� =

𝑞፲
𝜎፲

̇𝜖፩ (B.12)

And considering that the plastic strain rate �̇� is defined according to the flow rule:

�̇�
፩
= �̇�𝑚, (B.13)

The following expression for the hardening function ℎ can be obtained:

ℎ = −1
𝜎፲
𝜕𝑓ፈፂፅ
𝜕𝜅 𝜎ፓ𝑚 (B.14)

Now, to simplify the previous equation, it is necessary to first extend the direction of plastic flow:

𝑚 = 𝜕𝑔ፈፂፅ
𝜕𝜎 = 1

2√𝑞ኼ + 𝛽ኼ𝑝ኼ
⎛
⎜
⎜

⎝

2𝜎ኻኻ − 𝜎ኼኼ − 𝜎ኽኽ − (2/3)𝛽ኼ𝑝
2𝜎ኼኼ − 𝜎ኻኻ − 𝜎ኽኽ − (2/3)𝛽ኼ𝑝
2𝜎ኽኽ − 𝜎ኻኻ − 𝜎ኼኼ − (2/3)𝛽ኼ𝑝

6𝜎ኻኼ
6𝜎ኻኽ
6𝜎ኼኽ

⎞
⎟
⎟

⎠

(B.15)

And by applying it in equation B.14:

ℎ = −1
2𝜎፲√𝑞ኼ + 𝛽ኼ𝑝ኼ

𝜕𝑓ፈፂፅ
𝜕𝜅 [𝜎ኻኻ(2𝜎ኻኻ − 𝜎ኼኼ − 𝜎ኽኽ −

2
3𝛽

ኼ𝑝) + 𝜎ኼኼ(2𝜎ኼኼ − 𝜎ኻኻ − 𝜎ኽኽ −
2
3𝛽

ኼ𝑝)+

𝜎ኽኽ(2𝜎ኽኽ − 𝜎ኻኻ − 𝜎ኼኼ −
2
3𝛽

ኼ𝑝) + 6(𝜎ኼኻኼ + 𝜎ኼኻኽ + 𝜎ኼኼኽ)]
(B.16)
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Which can be reorganised as:

ℎ = −1
𝜎፲√𝑞ኼ + 𝛽ኼ𝑝ኼ

𝜕𝑓ፈፂፅ
𝜕𝜅 [(𝜎ኼኻኻ + 𝜎ኼኼኼ + 𝜎ኼኽኽ) − (𝜎ኻኻ𝜎ኼኼ + 𝜎ኻኻ𝜎ኽኽ + 𝜎ኼኼ𝜎ኽኽ)−

1
3𝛽

ኼ𝑝(𝜎ኻኻ + 𝜎ኼኼ + 𝜎ኽኽ) + 3(𝜎ኼኻኼ + 𝜎ኼኻኽ + 𝜎ኼኼኽ)]
(B.17)

And then the previous equation can be simplified by adding the definitions of Von Mises stress B.2,
hydrostatic pressure B.3, and flow potential function B.8. It is possible to obtain:

ℎ = −1
𝜎፲𝑔ፈፂፅ

𝜕𝑓ፈፂፅ
𝜕𝜅 [𝑞ኼ + 𝛽ኼ𝑝ኼ] = −𝑔ፈፂፅ𝜎፲

𝜕𝑓ፈፂፅ
𝜕𝜅 (B.18)

The change of the yield criterion with respect to the hardening parameter has to be defined. As the
equivalent yield stress should be dependent from the hardening parameter 𝜎፲(𝜅). When this is applied
in the yield criterion B.1, the following is obtained:

𝑓ፈፂፅ(𝜅) = √𝑞ኼ + 𝛼ኼ𝑝ኼ − 𝜎፲(𝜅)√1 + (
𝛼
3 )

ኼ (B.19)

When obtaining the derivative with respect of the hardening parameter 𝜅, the following is obtained:

𝜕𝑓ፈፂፅ
𝜕𝜅 = −

𝜕𝜎፲(𝜅)
𝜕𝜅 √1 + (𝛼3 )

ኼ (B.20)

Now, as these equations work when the flow rule holds true (𝑓ፈፂፅ = 0), the uniaxial yield strength (𝜎፲)
can be written as:

𝜎፲ =
√𝑞ኼ + 𝛼ኼ𝑝ኼ

√1 + (ᎎኽ )
ኼ

(B.21)

Which allows to apply equations B.8 B.20 B.21 into equation B.18:

ℎ = (1 + (𝛼3 )
ኼ)√𝑞

ኼ + 𝛽ኼ𝑝ኼ

√𝑞ኼ + 𝛼ኼ𝑝ኼ
𝜕𝜎፲(𝜅)
𝜕𝜅 (B.22)

Now, adding the definition of the Von Mises to hydrostatic pressure ratio (B.7) to the previous equation
to substitute p:

ℎ = (1 + (𝛼3 )
ኼ)
√𝑞ኼ + 𝛽ኼ( ፪ፑ )

ኼ

√𝑞ኼ + 𝛼ኼ( ፪ፑ )
ኼ

𝜕𝜎፲(𝜅)
𝜕𝜅 (B.23)

ℎ = (1 + (𝛼3 )
ኼ)√𝑅

ኼ + 𝛽ኼ
𝑅ኼ + 𝛼ኼ

𝜕𝜎፲(𝜅)
𝜕𝜅 (B.24)

Now, integrating the work hardening rule when 𝑓ፈፂፅ = 0 to obtain 𝜅:

𝜅 = ∫ �̇� 𝑑𝑡 = ∫
𝑞፲
𝜎፲

̇𝜖፩ 𝑑𝑡 (B.25)

Where the advantage of choosing a work hardening rule arises, as the normalisation
፪ᑪ
ᑪ
can be reduced

by introducing equation B.5:

𝜅 = √1 + (𝛼3 )
ኼ∫ ̇𝜖፩ 𝑑𝑡 (B.26)

𝜅 = √1 + (𝛼3 )
ኼ𝜖፩ (B.27)
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With this hardening parameter 𝜅, it is possible to obtain the partial differential of both sides of the
equation.

𝜕𝜅 = √1 + (𝛼3 )
ኼ𝜕𝜖፩ (B.28)

Then substitute the hardenig differential 𝜕𝜅 with the equivalent plastic strain differential 𝜕𝜖፩ in equation
B.24:

ℎ = (1 + (𝛼3 )
ኼ)√𝑅

ኼ + 𝛽ኼ
𝑅ኼ + 𝛼ኼ

1

√1 + (ᎎኽ )
ኼ

𝜕𝜎፲
𝜕𝜖፩ , (B.29)

Which after reducing, the hardening equation leads to:

ℎ = √(𝑅
ኼ + 𝛽ኼ)(9 + 𝛼ኼ)
9(𝑅ኼ + 𝛼ኼ)

𝜕𝜎፲
𝜕𝜖፩ (B.30)

Where the square rooted part of the equation was defined as an incremental hardening constant Ω:

Ω = √(𝑅
ኼ + 𝛽ኼ)(9 + 𝛼ኼ)
9(𝑅ኼ + 𝛼ኼ) (B.31)

ℎ = Ω
𝜕𝜎፲
𝜕𝜖፩ (B.32)

Also, if 𝛼 = 0 and 𝛽 = 0 the hardening equation reduces to the common Von Mises hardening definition
for metals. In it, the hardening of the material’s yield stress depends entirely on the equivalent plastic
strain change [91].

Now, the only necessary equation which still needs to be defined is the change of equivalent yield
stress with respect to equivalent plastic strain

Ꭷᑪ
ᎧᎨᑡ . To obtain such scalar function, the fundamental

assumption comes from the use of the volumetric plastic strain 𝜖፩፯፨፥ as a material density change
parameter. Volumetric plastic strain indicates the permanent change in the volume of an element, as
thus change of density. Then, it could be used to describe the change of yield stress. This applied to
equation B.6:

𝜎፲ = 𝑐𝜌፝ፚ፬፡ = 𝑐(
𝑚

𝑉፨(1 + 𝜖፩፯፨፥)
)
፝

ፚ፬፡
(B.33)

𝜎፲ = 𝑐(
𝜌ፚ፬፡ᑠ
1 + 𝜖፩፯፨፥

)
፝

(B.34)

𝜎፲ =
𝜎፲፨

(1 + 𝜖፩፯፨፥)፝
(B.35)

The previous equation accounts for the changes of volume of an element during plastic behaviour, but
it still cannot be used in equation B.32. For that, it is necessary to relate equivalent Von Mises plastic
strain 𝜖፩ to volumetric plastic strain 𝜖፩፯፨፥. To achieve this, it is necessary to refer to equations 12a and
12b from Deshpande and Fleck (2000) [87]:

̇𝜖፩ =
̇̂𝜖

1 + (ᎎኽ )
ኼ
𝑞
𝜎፲
, (B.36)

̇𝜖፩፯፨፥ =
𝛼ኼ ̇̂𝜖

1 + (ᎎኽ )
ኼ
𝑝
𝜎፲
, (B.37)

Where ̇̂𝜖 is the equivalent strain rate. When dividing equation B.36 over B.37 and simplifying using B.7
it is possible to obtain:

̇𝜖፩ = 𝑅
𝛼ኼ ̇𝜖፩፯፨፥ (B.38)
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Which yields an expression that relates Von Mises and volumetric strain rates. Now, considering that
the model works for small increments, allows to integrate both parts over time in the form:

∫ ̇𝜖፩ 𝑑𝑡 = 𝑅
𝛼ኼ ∫ ̇𝜖፩፯፨፥ 𝑑𝑡 (B.39)

𝜖፩ = 𝑅
𝛼ኼ 𝜖

፩
፯፨፥ (B.40)

Then, by applying the previous equation into B.35 it is possible to obtain:

𝜎፲ =
𝜎፲፨

(1 + ᎎᎴ
ፑ 𝜖

፩)፝
(B.41)

An additional condition is necessary, as hardening behaviour is considered to occur only under compression.
In that case, and considering that the equivalent plastic strain 𝜖፩ is obtained from the second invariant
of strain, which is given always positive by the solver. It is necessary to rewrite the previous equation
to:

𝜎፲ =
𝜎፨

(1 − ᎎᎴ
ፑ 𝜖

፩)፝
; for 𝑝 > 0 (B.42)

The previous equation also means that the ICF model will remain under ideal conditions when tension
is applied. The previous equation can be partially derived with respect to 𝜖፩, from which the following
is obtained:

𝜕𝜎፲
𝜕𝜖፩ =

𝛼ኼ𝐴𝐵(𝜌ፚ፬፡)ፁ
(𝑅 − 𝛼ኼ𝜖፩)ፁዄኻ (B.43)

Having the previous equation is the final requirement to have all the information for equation B.32.
Therefore, the final hardening equation applied into the flow rule is:

ℎ = {Ω
𝛼ኼ𝑑𝜎፲፨

(𝑅 − 𝛼ኼ𝜖፩)፝ዄኻ for ∈ 𝑝 ≥ 0
0 for ∈ 𝑝 < 0

(B.44)

The equation was applied in Marc mentat into a especial subroutine as the software does not have
the material model implemented. The algorithm to create this material model into a FORTRAN based
subroutine can be found in the next appendix.
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C. Isotropic Crushable Foammodel subroutine
algorithm

Figure C.1: Block diagram of the isometric crushing foam model yield criterion subroutine. The functions are called for each
integration point of each element, where the cycle repeats for each load until the return mapping algorithm converges to the
yield surface.

According to Marc 2015 volume D user guide [92], a generalised plasticity model can be defined
using five different subroutines (HOOKLW, ZERX, ASSOC, WKSLP, YIEL), each of them involving a
specific equation to be solved. The process of each of the subroutines is followed for every increment,
and it’s called as many times the return mapping algorithm (default solving method for plastic analysis
in marc mentat) requires. A simplified block diagram of this sub process is shown in figure C.1.

The first subroutine (HOOKLW), is used in every simulation of this study, and is used to define the
bone’s heterogeneous properties. As its name implies, it is used to assign the Hooke’s law stiffness

matrix 𝐷፞ constants in terms of each element’s Young’s modulus 𝐸 and Poisson’s ratio 𝜈. For that, each
element’s 𝐸 is calculated from it’s ash density 𝜌ፚ፬፡, based on Keyak et al. (1997) [46] constants.

The second subroutine (ZERX), is used to calculate the current equivalent yield stress (𝑞፟) directly from
the stress vector, based on the loading direction 𝑅 C.2.First the current incremental Von Mises stress
(𝑞፱) and the current hydrostatic pressure (𝑝፱) are calculated using equations B.2 and B.3, followed by
the ratio 𝑅 with B.7. The process continues by calculating 𝑓ፈፂፅ. If 𝑓ፈፂፅ < 0, yield has not occurred
(figure C.2 A), then the yield stress 𝑞፟ is extrapolated based on the current loading path with the
equation:

𝑞፟ =
𝑅፱𝑞፲

√𝑅ኼ፱ + 𝛼ኼ
(C.1)

In the yielding case (𝑓 = 0), the current yield stress is simply defined as the current Von Mises stress
𝑞፟ = 𝑞፱ (figure C.2 B). The result of 𝑞፟ is used to define the equivalent yield stress for every increment
in the third subroutine (YIELD).

After calculating 𝑞፱ , 𝑝፱ , 𝑅 and 𝑞፟, if yielding is occurring, Marc mentat calls for the (ASSOC) subroutine.
This subroutine allows to define the direction of plastic flow𝑚 (equation B.15). The subroutine requires
the flow vector to be multiplied by the current equivalent Von Mises stress 𝑞፱𝑚 as means for later
internally normalise the vector. The subroutine is also responsible to internally calculate the gradient
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Figure C.2: Case scenarios in which the equivalent yield stress (፪ᑗ) is calculated in the ZERX subroutine. A) The subroutine
remains in elastic zone and the yield stress is extrapolated based on the current loading path ፑᑩ. B) The loading arrived at the
yield point, further analysis of stress flow and hardening begin.

of the yield function 𝑛, which is calculated numerically using 𝑞፱.

Finally, the subroutine WKSLP is called to define the hardening function ℎ and the new yield surface
uniaxial strength 𝜎፲. For that, both values are calculated in terms of the total equivalent plastic strain
𝜖፩ using the equations B.44 and B.42. The equivalent plastic strain is provided by the subroutine,
obtained as a result from the previously defined non-associative flow rule. The constants 𝑐, 𝑑, 𝛼 and 𝛽
are obtained from the data input of the simulation, just as the value of 𝜌ፚ፬፡ of each element.

This process is internally repeated by the subroutine as many times it is necessary for the return
mapping algorithm to converge. It is also performed for every integration point of every bone element.
This subroutine was validated by repeating the experiments in cubes of trabecular bone performed by
Kelly et al. (2013) [54].
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D. Micromotions finite element algorithm

Figure D.1: Block diagram for micromotions analysis for every increment. The analysis is prepared at the beginning of each
increment and calculates: incremental shear micromotions (ፈ፬᎙ፌ), incremental gap micromotions (ፈ፠᎙ፌ), resulting shear
micromotions (ፑ፬᎙ፌ), and resulting gap micromotions (ፑ፠᎙ፌ). In the sketch one can observe a representation of a contact
node (in orange), and a bone contact face.

The subroutine calculates the following parameters for every implant contact node: incremental
shear micromotions (𝐼𝑠𝜇𝑀), incremental gap micromotions (𝐼𝑔𝜇𝑀), resulting shear micromotions (𝑅𝑠𝜇𝑀),
and resulting gap micromotions (𝑅𝑔𝜇𝑀). The process begins by restarting the four values of micromotions
for each contact node if the cycle is about to begin (figure D.1 1). It is then followed by a for loop that
obtains the closest bone element to that node, and stores that element’s face as a reference system
to calculate the shear and gap micromotions (figure D.1 2).

The, the current face normal vector 𝑉፧ is stored, and its referred on the position of the contact node
(figure D.1 3). Where the magnitude of this vector expresses the total gap between the node and
the bone (incremental gap micromotions 𝐼𝑔𝜇𝑀). As the mesh of the bone uses tetrahedral elements,
a local coordinate system is defined by the vectors (𝑉ፚ and 𝑉ፚ) that go from the first node of the
element face (A) to the other two nodes (B and C), respectively. This system s used to locate the exact
coordinates of the projection of the contact node into the bone face with the vector 𝑉ፚ፱ (figure D.1 4).

Both 𝑉፧ and 𝑉ፚ፱ are then stored for each increment. After that, the current shear coordinates are
compared to the coordinates of every previous increment, obtaining the total distances from the
current increment to all the previous (figure D.1 5). Then, the incremental shear micromotions 𝐼𝑠𝜇𝑀
were defined as the longest of these distances (figure D.1 6). Then, the current incremental shear
micromotions 𝐼𝑠𝜇𝑀 are compared to all the previous incremental values (figure D.1 7). If the current
𝐼𝑠𝜇𝑀 was higher than all the previous values, then this was set as the resulting shear micromotions
𝑅𝑠𝜇𝑀 value (figure D.1 8). After that, the subroutine compares the current 𝐼𝑔𝜇𝑀 to all the previous
incremental values. In the same fashion as with shear micromotions, if the 𝐼𝑔𝜇𝑀 is higher than all the
previous increments, the current value would then become the new resulting gap micromotions 𝑅𝑔𝜇𝑀
(figure D.1 10).

After incremental micromotion analysis, the model calculated the loads and inner displacements via
FEM (as a common simulation). The process would be repeated for every increment of the loading
cycle. Finally, every simulation finished after four cycles were performed, as it has been proven that
those are enough for resulting micromotions converge to its final value [93].
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