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Abstract
In 2011 Avsec showed strong solidity of the q-Gaussian algebras, building upon previous results of Hou-
dayer and Shlyakhtenko, and Ozawa and Popa. In this work we study this result as well as the necessary
literature and q-mathematics needed to replicate the proof. The literature is combined within this thesis,
whilst additionally filling in gaps in Avsec’s proofs. Overall, the thesis aims to present an improved and
more accessible proof of the strong solidity of the q-Gaussian algebras.
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1
Introduction

Introduced in the 20th century, von Neumann algebras are a special type of C∗-algebra with a widespread
presence in mathematics. These algebras play a significant role in various fields of mathematics, such as
functional analysis, quantum mechanics, probability, ergodic theory, and group theory.

A Von Neumann algebra is a strongly closed ∗-subalgebra of bounded operators on a Hilbert space that
contains the identity operator. In this thesis we will be studying a very specific type of von Neumann
algebra, namely the q-Gaussian algebra. These von Neumann algebras form an active area of research,
see [2, 6, 7, 14] for instance.

The q-Gaussian algebras stem from creation and annihilation operators a∗ and a on a Fock space that
satisfy the q-relations, which are as follows:

a(f)a∗(g)− qa∗(g)a(f) = 〈f, g〉1,

where −1 ≤ q ≤ 1. An the appropriate Fock space is needed for the creation and annihilation operators
to be each others adjoints, as demonstrated by Bożejko and Speicher in [3]. We reinvestigate these results
and verify the construction, and make improvements where possible.

In the aforementioned paper Bożejko and Speicher laid the foundation for the q-Gaussian algebras. Sub-
sequently, Bożejko, Kümmerer and Speicher. further investigated the subject in [4]. Given a real Hilbert
space HR with complexification H, −1 < q < 1, and the associated q-Fock space Fq(H), we define the
q-Gaussians ω(f) for f ∈ HR by

ωf := a∗(f) + a(f).

The von Neumann algebra generated by the q-Gaussians on Fq(H) is what we call the q-Gaussian algebra,
denoted by Γq(HR). Taking inspiration from [4], we perform this construction and introduce the Wick
words. Given a word (tensor), the Wick operator assigns an element of Γq(HR), namely the Wick word.
The Wick operator will prove to be a powerful tool in working with the q-Gaussian algebra.

A von Neumann algebra whose center consists only of multiples of the identity operator is called a
factor, which in forms an interesting class of von Neumann algebras. In Chapter 4 we show that this
definition applies to the q-Gaussian algebra whenever dimHR is at least 2, utilising proofs from [16].
In the subsequent chapter we introduce the q-Gaussian functor, which assigns to a contraction on HR
a linear map on Γq(HR). We also present the notion of bimodules for von Neumann algebras, and in
particular the coarse bimodule L2(Γq(HR))⊗ L2(Γq(HR)).

The notion of strong solidity for a von Neumann algebra was established by Ozawa and Popa in [15]
for the free group factors. The application of strong solidity arises from the use of Cartan subalgebras,
which are maximal abelian subalgebras whose normalizer generates the entire von Neumann algebra. The
existence, of a Cartan subalgebra implies that the von Neumann algebra allows for a generalized crossed
product decomposition [12]. On the other hand, if no Cartan subalgebra exists, there is no generalized
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10 1. Introduction

crossed product decomposition of the von Neumann algebra. Provided the von Neumann algebra is not
amenable, strong solidity offers a stronger property than the lack of a Cartan subalgebra. That is, it
allows us to place the von Neumann algebra in the second category.

Not long after Ozawa and Popa’s paper, Avsec proved that the q-Gaussian algebras satisfy the conditions
for strong solidity in [1]. The final chapter is dedicated to studying Avsec’s proof of the aforementioned.
As such, the proofs are largely based on those of Avsec. We aim to present a more accessible version of
said proof, and in doing so close some gaps and make further improvements.



2
Preliminaries

Familiarity with functional analysis, and particularly ∗-algebras is assumed. We refer to [8] and [13] for
the basics not covered in the preliminaries. We shall state a number of important definitions and results,
and establish notation.

Definition 2.1. For q ∈ R the q-bracket for n ∈ N is given by

[n]q =
n−1∑
i=0

qi,

and the q-factorial is defined by as

[n]q! =
n∏
i=1

[i]q.

Note that if q 6= 1 we have [n]q = 1−qn
1−q , and for q = 1 we have [n]q = n and [n]q! = n!.

Definition 2.2. Let G be a group and φ : G → C. We call φ is positive definite on G if the matrix
(φ(π−1σ))π,σ∈F is positive definite, for any finite F ⊆ G.

Remark 2.3. Considering the definition of positive definite matrices, we see that the above definition is
equivalent with requiring that ∑

π,σ∈F
φ(π−1σ)r(σ)r(π) > 0

for arbitrary non-zero r : F → C.

Proposition 2.4. The product of two positive definite functions is positive definite.

Proof. Let φ, ψ : X → C be positive definite functions, and let F ⊆ X be finite. Then (φ(π−1σ))π,σ∈F
and (ψ(π−1σ))π,σ∈F are positive definite matrices. Ergo, (φ(π−1σ))π,σ∈F ⊗ (ψ(π−1σ))π,σ∈F is positive
definite. As φ and ψ are scalar-valued, we can conclude that the diagonal ((φψ)(π−1σ))π,σ∈F is a positive
definite matrix.

Below are some classical theorems that we shall make use of later on.

Theorem 2.5 (Goldstine’s Theorem). Let X be a Banach space. Then B1(X) lies weak∗ dense in
B1(X∗∗).

We recall the definition of the Schatten class. Let p ≥ 1 and H a Hilbert space. The Schatten class
Sp(H) is defined as

Sp(H) := {T ∈ B(H) | tr(|T |p) <∞},

equipped with the norm ‖T‖p = tr(|T |p)1/p. The Powers-Størmers inequality provides us with he following
norm estimate for the difference of two operators in S2(H):

11



12 2. Preliminaries

Theorem 2.6 ([5]). Let H be a Hilbert space. Then for trace class operators T, S ∈ S2(H) we have

‖T − S‖2S2
≤ ‖S2 − T 2‖S1 .

The Kaplanksy Density Theorem is stated as:

Theorem 2.7 ([17]). Let A ⊂ B(H) be a ∗-algebra represented on a Hilbert space H. Then the unit ball
of A lies strongly dense in the unit ball of the weak closure of A.

We recall the definition of a von Neumann algebra:

Definition 2.8. A von Neumann algebra is a strongly closed ∗-subalgebra of bounded operators on a
Hilbert space that contains the identity operator.

The commutant of a subset S of an algebra A is defined as the set of all elements in S that commute
with A, i.e. S′ := {a ∈ A | as = sa for all s ∈ S}. The double commutant theorem provides us an easy
property to verify if a ∗-algebra is in fact a von Neumann algebra:

Theorem 2.9 (Double commutant theorem). Let H be a Hilbert space, and A be a ∗-algebra of operators
acting on H such that 1H ∈ A. Then A is a von Neumann algebra if and only if A′′ = A holds.

This gives rise to the following equality:

Theorem 2.10. Let A be a subset of B(H) and denote the von Neumann algebra generated by A on H
by vNA(A). We have:

vNA(A) = A′′.

For a discrete group we define the von Neumann group algebra L(G) as the von Neumann algebra gen-
erated by the image of the left regular representation of G on B(`2(G)).

A trace on a von Neumann algebra M is a function τ : M+ → [0,∞] such that τ(x + y) = τ(x) + τ(y),
τ(λx) = λτ(x) and τ(x∗x) = τ(xx∗) for any x ∈ M+ and λ ≥ 0. A trace can have multiple interesting
properties. We call τ

• faithful if τ(x) > 0 for any x > 0 in M .

• finite if τ(1) <∞.

• normal if τ(supi xi) = supi τ(xi) for any bounded increasing net (xi) in M+.

A tracial state is then a state that satisfies the property of a trace as well.

An interesting class of operators on von Neumann algebras are the conditional expectations. We de-
fine these as follows:

Definition 2.11 ([5]). Let A,B with B ⊂ A be C∗-algebras. A conditional expectation from A onto B is
contractive completely positive map E : A→ B such that E |B= idB, and E(b1xb2) = b1E(x)b2 for every
x ∈ A and b1, b2 ∈ B.

We remark that E is a projection. In the case of von Neumann algebras, such a conditional expectation
is provided by the following proposition:

Proposition 2.12 ([5]). Let M be a von Neumann algebra with a faithful normal tracial state τ , and
N ⊂ M a von Neumann subalgebra. If 1M ∈ N then there exists a unique, trace-preserving, normal
conditional expectation EN from M onto N .

Let M be a von Neumann algebra and assume it has a faithful normal tracial state. In this scenario
we can define the spaces L1(M) and L2(M). Let Mτ := {xy | x, y ∈ M and τ(x∗x), τ(y∗y) < ∞}. We
can extend τ to a linear functional on Mτ such that it retains its properties, see [17] for the details. By
the required properties imposed on the trace we can create a norm on Mτ through ‖x‖1 := τ(|x|). The
completion of Mτ with respect to ‖·‖1 gives us the definition of L1(M).

Likewise, we can perform a similar construction on {x ∈ M | τ(x∗x) < ∞} in the case that M is
semi-finite, and construct the inner product 〈x, y〉 := τ(y∗x). The completion of {x ∈ M | τ(x∗x) <∞}
then yields the definition for L2(M).
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2.1. Factors
Whenever we talk of a projection in a von Neumann algebra, we assume it is orthogonal, unless explicitly
stated otherwise. After we classify projections, we will introduce the concept of factors for von Neumann
algebras.

Definition 2.13. Let M be a von Neumann algebra acting on H, and p, q ∈ M be projections. Define
the following:

• p ∼ q if there exists u ∈M such that u∗u = p and uu∗ = q.

• p � q if there exists exists a projection p′ ∈M such that p′ ≤ q and p ∼ p′. Strictness corresponds
to case that p 6∼ q.

• p is minimal if there exists no non-zero projection q ∈M such that q < p.We also call p an atom.

• If for all projections q ∈ M such that p ∼ q we have that q ≤ p implies p = q, we say p is finite.
Otherwise, p is called infinite.

In turn, these classifications will let us name some properties of von Neuman algebras. Let M be a
von Neumann algebra acting on H.

• M is called injective if there exists a projection p : B(H)→M such that ‖p‖ = 1.

• M is said to be (in)finite if the identity is (in)finite.

• M is diffuse if it has no non-zero minimal projections.

• M is called atomic if for every non-zero projection p ∈M there exists a non-zero projection q ∈M
such that q ≤ p and q is minimal.

If a von Neumann algebra’s center is trivial, i.e. it contains only multiples of the identity operator, then
we call it a factor. A factor can have different types, namely type I, type II and type III.

Definition 2.14. Let M be a factor. Then M is of type

• I if there is a minimal projection.

• II if it does not contain a minimal projection, but does contain non-zero finite projections. We
further classify it as type

− II1 if M is finite.
− II∞ otherwise.

• III if it contains no non-zero finite projections.

Takesaki [17] lists a number of useful results for factors, and we refer to this book for further study on
factors. The following two results will also be applied later on:

Proposition 2.15 ([17]). An Abelian von Neumann algebra on a separable Hilbert space is generated by
a single self-adjoint element.

Theorem 2.16 ([17]). Let A be a diffuse abelian von Neumann algebra on a separable Hilbert space. If
A is diffuse then it is isomorphic with L∞(0, 1).

The proof of Theorem [17], which utilizes the preceding proposition, can be adjusted to work in the case
that A is atomic instead. This in turn yields an isomorphism with `∞(X) instead, where X is of the
same cardinality as the set of atoms.
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Central in this thesis will be the tensor product, which we use to construct the Fock space. It is defined
as follows:

Definition 2.17. Let H be a (complex) Hilbert space. For n ≥ 1 define the n-fold tensor product

H⊗n := H ⊗ · · ·⊗︸ ︷︷ ︸
n

H,

We take Ω to be an abstract vector that we designate as the unit of C, such that for n = 0 we can set
H⊗0 = CΩ. Now define the full Fock space F(H) as

F(H) :=
∞⊗
n=0

H⊗n.

Let us equip F(H) with the inner product 〈·, ·〉0 given by the linear extension of

〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gm〉0 := δnm〈f1, g1〉 · · · 〈fn, gn〉.

As we consider this the standard inner product on a Fock space, we may omit the subscript in subsequent
use. Later on it will become apparent how the Fock space will be linked to von Neumann algebras.

There are numerous tensor product to consider. We start with the spatial tensor product. Let A and B
be C∗-algebras and (H,φ) and (K,ψ) be universal representations of A and B respectively, where the
universal representation of A is defined as the direct sum of all GNS representations associated to states
on the respective space. Then by Theorem 6.3.3 from [13] there exists a unique injective ∗-homomorphism
π : A⊗B → B(H⊗̂K) such that π(a⊗ b) = φ(a)⊗̂ψ(b). We find the following C∗-norm on A⊗B:

‖c‖min := ‖π(c)‖,

where we recall that a C∗-norm is a norm such that ‖c∗‖ = ‖c‖ and ‖c∗c‖ = ‖c‖2. We call the above
norm the spatial norm. A⊗∗ B is defined as the completion of H ⊗K with respect to the spatial norm.
By Theorem 6.4.18 of [13] this equals the min-norm [13], hence the notation.

More generally, if γ is a C∗-norm, then with A⊗γ B we denote the completion of A⊗B with respect to
γ. One more norm to consider is

‖c‖max := sup
γ is a C∗-norm on A⊗B

γ(c),

which defines a C∗-norm [13].

Yet another tensor product to consider is the binormal tensor product, or A⊗bin B, which is defined as

A⊗bin B := {f ∈ S(A⊗B) | (a, b) 7→ f(a⊗ b) is separately weak∗ continuous},

where S(A⊗B) denotes the set of states on A⊗B. We recall that a state is a positive linear functional
with norm 1.

If in particular we are working with von Neumann algebras, there is a tensor product to consider such
that it is a von Neumann algebra as well. Let M and N be von Neumann algebras on H1 and H2 respec-
tively. The tensor product of M and N , denoted with M⊗̄N , is the von Neumann algebra on H1 ×H2
generated by x ⊗ y for x ∈ M , y ∈ N . However, Chapter 6 in [13] provides us with the fact that the
representations φ and ψ used in the definition can be replaced with the GNS representation. Utilizing
this fact we simply see M⊗̄N as the closure of M ⊗N represented on H1 ⊗H2.

Proposition 2.18. Let M and N be von Neumann algebras. Then the weak∗ closure of M⊗minN equals
M⊗̄N .

Proof. First let x ∈ M⊗̄N and assume ‖x‖ = 1. Then by the double commutant theorem x lies in
M ⊗NSOT , which by Kaplanksy’s density theorem lies in B1(M ⊗N)

SOT
. As the strong operator



2.1. Factors 15

topology is finer than the weak operator topology, we find that x ∈ B1(M ⊗N)
WOT

. Lastly, by Theo-
rem 4.2.4 of [13] B1(M ⊗N)

WOT
coincides with the weak∗ closure of B1(M ⊗N) which in turn lies in

weak∗ closure of M ⊗min N .

Conversely, as the weak∗ topology is finer than the weak operator topology, the weak∗ closure ofM⊗minN
is contained in M ⊗min N

WOT . Applying Theorem 4.2.5 from [13] the finishes the proof.





3
The q-Gaussian Algebra

In this chapter we introduce the q-Gaussians, the Wick words, and most importantly the q-Gaussian
algebra Γq(HR). In general q can range from −1 to 1, and although Γ−1(HR) and Γ1(HR) are in themselves
interesting spaces, in this thesis we will concern ourselves with the case −1 < q < 1.

3.1. q-Fock Spaces
In this section we establish the q-Fock space. As the name implies, it is similar to the usual (full) Fock
space, but we use an inner product dependent on q instead to create a Hilbert space.

Let HR be a real Hilbert space, and define H := HR ⊕ iHR to be its complexification.

As we did for the Fock space, we designate an abstract vector Ω as the unit of C. Henceforth, we
shall refer to Ω as the vacuum vector. Let H⊗n be as in the preliminaries. We define

Ffinite(H) := Span
{
f1 ⊗ · · · ⊗ fn ∈ H⊗n | n ∈ N0

}
.

Definition 3.1. Let n ∈ N and denote the symmetric group of n elements with Sn. For a permutation
π ∈ Sn, define the number of inversions i(π) as

i(π) := #{(i, j) | 1 ≤ i < j ≤ n, π(i) > π(j)}.

Observe the following: for a permutation π ∈ Sn we have that i(π) = i(π−1). Indeed, any pair (i, j) such
that π(i) > π(j) yields i′ = π(j) and j′ = π(i) such that i′ < j′ and π−1(i′) > π−1(j′).

We will now make our first steps towards defining the q-inner product 〈·, ·〉q.

Definition 3.2. Let f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gm ∈ Ffinite. For q ∈ (−1, 1), set

〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gm〉q := δnm
∑
π∈Sn

qi(π)〈f1, gπ(1)〉 · · · 〈fn, gπ(n)〉.

Define 〈·, ·〉q on Ffinite as its sesquilinear extension.

Note that it agrees with the inner product in Definition 2.17 for q = 0.

Let ‖·‖q denote the norm induced on Ffinite(H) by the q-inner product. For example, ‖f1⊗· · ·⊗ fn‖q =
‖f1 ⊗ · · · ⊗ fn‖0 if f1, . . . , fn are pairwise orthogonal in H.

Theorem 3.3. 〈·, ·〉q is positive definite on Ffinite.

The proof is structured as follows: First we define an operator Pq such that we can write 〈·, ·〉q = 〈·, Pq·〉0.
Then, by showing that π 7→ qi(π) is a strictly positive definite function in the sense Definition 2.2, we can
conclude that Pq is positive definite. From this we can conclude the theorem.
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18 3. The q-Gaussian Algebra

We start by defining Pq on Ffinite through the linear extension of PqΩ := Ω and

Pqf1 ⊗ · · · ⊗ fn :=
∑
π∈Sn

qi(π)fπ(1) ⊗ · · · ⊗ fπ(n). (3.1)

A simple substitution then shows that

〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ n〉q = 〈f1 ⊗ · · · ⊗ fn, Pqg1 ⊗ · · · ⊗ gn〉0

as desired. By our definition of 〈·, ·〉q we therefore have that 〈ξ, η〉q = 〈ξ, Pqη〉0 for any ξ, η ∈ Ffinite(H).

In order to simplify the notation and help with the proofs, we use the unitary representation π 7→ Uπ of
Sn on H⊗n defined through

Uπf1 ⊗ · · · ⊗ fn := fπ(1) ⊗ · · · ⊗ fπ(n).

That is, we can write
Pqf1 ⊗ · · · ⊗ fn =

∑
π∈Sn

qi(π)Uπf1 ⊗ · · · ⊗ fn. (3.2)

We now arrive the main proof of this section:

Proof of theorem 3.3. The following proof it taken from [3]. We first show that the function

φq : Sn → C, φq : π 7→ qi(π)

is a positive definite function, and conclude from there.

For arbitrary non-zero r : Sn → C we need to show that∑
π,σ∈Sn

qi(π
−1σ)r(σ)r(π) > 0.

Define

Φ := {(i, j) | i 6= j, 1 ≤ i, j ≤ n}
Φ+ := {(i, j) | 1 ≤ i < j ≤ n}.

For any π ∈ Sn and A ⊆ Φ we set

π(A) := {(π(i), π(j)) | (i, j) ∈ A}.

Note that π(A) ⊆ Φ and |π(A)| = |A|. From the definition of i(π) as the number of inversions, we have
that i(π) = |π(Φ+)\Φ+| for any π ∈ Sn. Combining the above facts, and using that i(π) = i(π−1) we
find that

2i(π) = i(π) + i(π−1)
= |π(Φ+)\Φ+|+ |π−1(Φ+)\Φ+|
= |π(Φ+)\Φ+|+ |Φ+\π(Φ+)|
= |π(Φ+)4Φ+|.

Let σ ∈ Sn. Substituting π−1σ in the above and applying π to π(Φ+)4Φ+ we deduce that 2i(π−1σ) =
|σ(Φ+)4π(Φ+)|.

Observe that for q = 0 we have φq(π) is 1 for the identity and otherwise 0, which is positive defi-
nite. For q 6= 0, we split the problem into the cases q < 0 and q > 0.
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For the first case, let 0 < q < 1. Take λ ≥ 0 such that q = e−λ, and let 1A be the indicator func-
tion for a set A. We find:

qi(π
−1σ) = exp

(
−λ2 |σ(Φ+)4π(Φ+)|

)
= exp

(
−λ2

∑
x∈Φ
|1σ(Φ+)(x)− 1π(Φ+)(x)|2

)

=
∏
x∈Φ

exp
(
−λ2 |1σ(Φ+)(x)− 1π(Φ+)(x)|2

)
.

By Proposition 2.4 it suffices to prove positive definiteness for a single term, i.e. for the function
x 7→ exp

(
−λ2 |1σ(Φ+)(x)− 1π(Φ+)(x)|2

)
. Applying the aforementioned proposition then yields positive

definiteness for the entire product as a function on Sn.

Let x ∈ Φ, and r : Sn → C be an arbitrary function. Moreover, define s : {0, 1} → C by

s(0) :=
∑
σ∈Sn

x 6∈σ(Φ+)

r(σ), s(1) :=
∑
σ∈Sn

x∈σ(Φ+)

r(σ)

We have: ∑
π,σ∈Sn

exp
(
−λ2 |1σ(Φ+)(x)− 1π(Φ+)(x)|2

)
r(σ)r(π)

=
∑

π,σ∈Sn
x 6∈σ(Φ+)4π(Φ+)

r(σ)r(π) + e−
λ
2

∑
π,σ∈Sn

x∈σ(Φ+)4π(Φ+)

r(σ)r(π)

=
∑
σ∈Sn

x 6∈σ(Φ+)

r(σ)
∑
π∈Sn

x 6∈π(Φ+)

r(π) +
∑
σ∈Sn

x∈σ(Φ+)

r(σ)
∑
π∈Sn

x∈π(Φ+)

r(π)

+e−λ2

 ∑
σ∈Sn

x∈σ(Φ+)

r(σ)
∑
π∈Sn

x 6∈π(Φ+)

r(π) +
∑
σ∈Sn

x∈σ(Φ+)

r(σ)
∑
π∈Sn

x 6∈π(Φ+)

r(π)


= s(0)s(0) + s(1)s(1) + e−

λ
2

[
s(0)s(1) + s(1)s(0)

]
=

1∑
i,j=0

e−
λ
2 |i−j|

2
s(i)s(j).

As x 7→ e−
λ
2 |i−j|

2 is a positive definite function, we deduce that

1∑
i,j=0

e−
λ
2 |i−j|

2
s(i)s(j) ≥ 0

and conclude that φq is positive definite for 0 < q < 1.

The case of −1 < q < 0 remains. By definition of φq we obviously have that φq(π) = qi(π) =
(−1)i(π)φ−q(π). We claim that π 7→ (−1)i(π) is positive definite. Provided this is the case, we can
call upon Proposition 2.4 again to conclude φq(π) is positive definite.

The first step is to show that π, σ ∈ Sn, i(πσ) and i(π) + i(σ) have the same parity. Indeed, if we
have (i, j) ∈ Φ+ such that (πσ)(i) > (πσ)(j), then either (i, j) yields an inversion for σ, or (σ(i), σ(j))
yields an inversion for π. If (i, j) does not yield an inversion, then it either yields one for both σ and
π, or none for either. Ergo, we have that i(πσ) and i(π) + i(σ) have the same parity, and therefore
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(−1)i(π−1σ) = (−1)i(π−1)(−1)i(σ) = (−1)i(π)(−1)i(σ). That is, the sign is a representation of Sn.

Now let r : Sn → C be an arbitrary function. Using the result above we conclude the claim as fol-
lows: ∑

π,σ∈Sn

(−1)i(π
−1σ)r(σ)r(π) =

∑
π,σ∈Sn

(−1)i(σ)r(σ)(−1)i(π)r(π)

=
∑
σ∈Sn

(−1)i(σ)r(σ)
∑
σ∈Sn

(−1)i(σ)r(σ)

≥ 0.

We are now able to finish the proof. We need only show that 〈η, Pqη〉0 > 0 for non-zero η ∈ H⊗n

for n ∈ N0. Let η ∈ H⊗n be non-zero and {ξi}i∈I be a complete orthonormal system for H⊗n, i.e.
η =

∑
i∈I〈η, ξi〉0ξi. Using (3.2) and that φq is positive-definite, we have:

〈η, Pqη〉0 =
∑
π∈Sn

qi(π)〈η, Uπη〉0

= 1
n!

∑
π,σ∈Sn

qi(π
−1σ)〈η, Uπ−1ση〉0

= 1
n!

∑
π,σ∈Sn

qi(π
−1σ)〈Uπη, Uση〉0

= 1
n!

∑
π,σ∈Sn

qi(π
−1σ)

∑
i∈I
〈Uπη, ξi〉0〈ξi, Uση〉0

= 1
n!
∑
i∈I

 ∑
π,σ∈Sn

qi(π
−1σ)〈ξi, Uπη〉0〈ξi, Uση〉0


> 0.

Now that we have proven 〈·, ·〉q to be positive definite, and therefore an inner product, we can properly
define the q-Fock space.

Definition 3.4. We define the q-Fock space Fq(H) as the completion of Ffinite(H) with respect to the
inner product 〈·, ·〉q.

3.2. The creation and annihilation operators
Just as they exist on regular Fock spaces, we define creation and annihilation operators on the q-Fock
space. Applied to a tensor in H⊗n, as hinted by the names, the creation operator creates an extra tensor
leg to obtain a new tensor in H⊗(n+1). On the other hand, the annihilation operator sends a tensor in
H⊗n to an element in H⊗(n−1).

Definition 3.5. Given f ∈ H, we define the creation operator a∗ on Fq(H) as the linear extension of

a∗(f)Ω := f,

a∗(f)g1 ⊗ · · · ⊗ gn := f ⊗ g1 ⊗ · · · ⊗ gn.

The annihilation operator a on Ffiniteq (H) is defined as the linear extension of

a(f)Ω := 0,

a(f)g1 ⊗ · · · ⊗ gn :=
n∑
i=1

qi−1〈f, gi〉g1 ⊗ · · · ⊗ ǧi ⊗ · · · ⊗ gn,

where ǧi indicates that it has to be deleted in the tensor.
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We will also briefly consider the right variants of the creation and annihilation operator, denoted by a∗r
and ar respectively. These are defined identically on the vacuum vector, and otherwise

a∗r(f)g1 ⊗ · · · ⊗ gn := g1 ⊗ · · · ⊗ gn ⊗ f

ar(f)g1 ⊗ · · · ⊗ gn :=
n∑
i=1

qn−i〈f, gi〉g1 ⊗ · · · ⊗ ǧi ⊗ · · · ⊗ gn.

Later on we will apply some of the results for the creation and annihilation operator to their right variants,
the proof of which are analogous and will therefore be skipped. There are however some interesting
relations between the left and right analogues that we would like to make explicit. Namely, the following
remark allows us to switch between the two:

Remark 3.6. Let S be the operator on Fq(H) that turns the order of tensors around. For f ∈ H we
have:

a∗r(f) = Sa∗(f)S
ar(f) = Sa(f)S.

We now arrive at two important properties that the creation and annihilation operators that we have
defined satisfy.

Lemma 3.7. For all f, g ∈ H and q ∈ (−1, 1), on Ffinite(H) the operators a∗ and a satisfy

a(f)a∗(g)− qa∗(g)a(f) = 〈f, g〉1,

which we shall refer to as the q-relations. Moreover, a∗(f) and a(f) are adjoints with respect to the
q-inner product.

Proof. By linearity it suffices to show both statements hold on H⊗n. We first show that the q-relations
are indeed true.

Let h1 ⊗ · · · ⊗ hn ∈ H⊗n. Then:

(a(f)a∗(g))h1 ⊗ · · · ⊗ hn = a(f)g ⊗ h1 ⊗ · · · ⊗ hn

= 〈f, g〉h1 ⊗ · · · ⊗ hn + q

n∑
i=1

qi−1〈f, gi〉g ⊗ h1 ⊗ · · · ⊗ ȟi ⊗ · · · ⊗ hn

= (〈f, g〉+ qa∗(g)a(f))h1 ⊗ · · · ⊗ hn,

which yield the q-relations. It remains to show that the creation and annihilator operators are each
other’s adjoint. For f ∈ H and g1 ⊗ · · · ⊗ gn ∈ H⊗n and h1 ⊗ · · · ⊗ hn+1 ∈ H⊗(n+1) we set out to prove
that

〈a∗(f)g1 ⊗ · · · ⊗ gn, h1 ⊗ · · · ⊗ hn+1〉q = 〈g1 ⊗ · · · ⊗ gn, a(f)h1 ⊗ · · · ⊗ hn+1〉q,
We proceed with a proof by induction on n.

The case n = 0 follow directly from the definition. Let n ≥ 1 and assume the above statement holds for
all n′ < n. Consider the subset of permutations of Sn which map 1 to i. We denote:

S(i)
n := {π ∈ Sn | π(1) = i}.

Recall that

〈g1 ⊗ · · · ⊗ gn, h1 ⊗ · · · ⊗ hn〉q =
∑
σ∈Sn

qi(σ)〈g1 ⊗ · · · ⊗ gn, Uσh1 ⊗ · · · ⊗ hn〉0.

For i = 1, . . . , n+1, we claim that we can rewrite
∑
σ∈Sn q

i(σ)〈g1⊗· · ·⊗gn, Uσh1⊗· · ·⊗ ȟi⊗· · ·⊗hn+1〉0
using elements from S

(i)
n+1 instead. Identify σ ∈ Sn with π ∈ S(i)

n+1 where

π(l) =


i if l = 1,
σ(l) if σ(l) < i,

σ(l) + 1 if σ(l) ≥ i.
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Note that this construction yields a bijection between S(i)
n+1 and Sn. Moreover, we can see that pairs of

the form (1, j) for j = 2, · · · , n + 1 yield exactly i − 1 inversions by taking j′ = σ−1(j) and noting that
σ−1(j) > 1. All the other inversions of π have a one-to-one correspondence to the inversions of σ by the
above construction, and hence

i(π) = i− 1 + i(σ),

Thus, for σ ∈ Sn and i = 1, . . . , n+ 1, if we pick the associated π ∈ S(i)
n+1 we can then write

qi(σ)〈g1 ⊗ · · · ⊗ gn, Uσh1 ⊗ · · · ⊗ ȟi ⊗ · · · ⊗ hn+1〉0 = qi(π)−i+1〈g1, hπ(2)〉 · · · 〈gn, hπ(n+1)〉,

where we note that the i-th leg of h1⊗· · ·⊗hn+1 is not accessed in the right hand side. For all i = 1 · · ·n+1
we have arrived at the conclusion of the claim:

〈g1 ⊗ · · · ⊗ gn, h1 ⊗ · · · ⊗ ȟi ⊗ · · · ⊗ hn+1〉q =
∑

π∈S(i)
n+1

qi(π)−i+1〈g1, hπ(2)〉 · · · 〈gn, hπ(n+1)〉

Using the fact that {S(i)
n+1 | i = 1, · · · , n+ 1} forms a partition of Sn+1, we complete the proof as follows:

〈g1 ⊗ · · · ⊗ gn, a(f)h1 ⊗ · · · ⊗ hn+1〉q =
n+1∑
i=1

qi−1〈f, hi〉〈g1 ⊗ · · · ⊗ gn, h1 ⊗ · · · ⊗ ȟi ⊗ · · · ⊗ hn+1〉q

=
n+1∑
i=1

qi−1〈f, hi〉
∑

π∈S(i)
n+1

qi(π)−i+1〈g1, hπ(2)〉 · · · 〈gn, hπ(n+1)〉

=
n+1∑
i=1

∑
π∈S(i)

n+1

qi(π)〈f, hπ(1)〉〈g1, hπ(2)〉 · · · 〈gn, hπ(n+1)〉

=
∑

π∈Sn+1

qi(π)〈f, hπ(1)〉〈g1, hπ(2)〉 · · · 〈gn, hπ(n+1)〉

= 〈a∗(f)g1 ⊗ · · · ⊗ gn, h1 ⊗ · · · ⊗ hn+1〉q.

The next object of our attention will be the boundedness of a∗ and a. Then by a density argument we
can conclude that Lemma 3.7 holds on the entirety of the q-Fock space as well.

Remark 3.8. The above proof allows us to compute the norm of f⊗n explicitly for f ∈ H. The above
proof shows that

‖f⊗(n+1)‖2q =
n+1∑
i=1

qi−1‖f‖2‖f⊗n‖2q = [n+ 1]q‖f‖2‖f⊗n‖2q.

Hence, by a simple induction argument we can conclude that ‖f⊗n‖q =
√

[n]q!‖f‖n.

We can in fact compute the exact norms of a∗ and a on Fq(H):

Lemma 3.9. a∗ and a are bounded on Fq(H), and

‖a∗(f)‖q = ‖a(f)‖q =
{
‖f‖√
1−q if 0 ≤ q < 1,
‖f‖ if − 1 < q < 0.

(3.3)

Proof. Part of the lemma in itself is that we can in fact extend a and a∗ to Fq(H). That is, we show that
the above results instead hold for Ffinite(H) with the q-inner product, and then by a standard extension
argument we find the result.

The first equality follows from a∗ and a being adjoints, and thus we only need to compute the norm
for a∗. Let us split the problem into two, the case of negative q and non-negative q. We start with the
former, i.e. −1 < q < 0.
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Let ξ ∈ Ffinite(H) and f ∈ H. From the q-relations and the adjointness of a∗ and a of we have:

‖a∗fξ‖2q = 〈a∗(f)ξ, a∗(f)ξ〉q
= 〈a(f)a∗(f)ξ, ξ〉q
= 〈(〈f, f〉+ qa∗(f)a(f))ξ, ξ〉q
= ‖f‖2‖ξ‖2q + q‖a(f)ξ‖2q
≤ ‖f‖2‖ξ‖2q. (3.4)

That is, a and a∗ to Fq(H) are indeed bounded on Ffinite(H) and ‖a(f)‖ = ‖a∗(f)‖ ≤ ‖f‖. As
a∗(f)Ω = f we have equality as well, proving the statement for −1 < q < 0.

The case of 0 ≤ q < 1 is somewhat more involved. Let us first show that 1√
1−q is an upper bound

for the norm of a∗.

Let f ∈ H and ξ ∈ H⊗n. We shall define πij ∈ Sn as the transposition of i and j, where 1 ≤ i, j ≤ n
and i 6= j. For notational purposes we set πii as the identity. Moreover, let us embed Sn into Sn+1 in
the trivial sense. Recall that Pq was such that 〈ξ, ξ〉q = 〈ξ, Pqξ〉0. Let P (n)

q denote the restriction of Pq
to H⊗n, where we note that if maps to H⊗n. Moreover, as the definition involves a finite sum it is also
bounded.

From the proof of Lemma 3.7 we can derive

P (n)
q =

∑
π∈Sn

qi(π)Uπξ

=
n∑
i=1

qi−1
∑

σ∈Sn−1

qi(σ)(1⊗ Uσ)Uπ1i

=
n∑
i=1

qi−1

1⊗
∑

σ∈Sn−1

qi(σ)Uσ

Uπ1i

=
[

(1⊗ P (n−1)
q )

n∑
i=1

qi−1Uπ1i

]
.

Since both P (n)
q and Uπ1i are self-adjoint with respect to the standard inner product, we have that

(
(1⊗ P (n−1)

q )
n∑
i=1

qi−1Uπ1i

)∗
=

n∑
i=1

qi−1Uπ1i(1⊗ P (n−1)
q ).

This yields:

P (n)
q

(
P (n)
q

)∗
= (1⊗ P (n−1)

q )
n∑
i=1

qi−1Uπ1i

n∑
i=1

qi−1Uπi1(1⊗ P (n−1)
q )

≤ (1⊗ P (n−1)
q )

[
n∑
i=1

qi−1

]2

(1⊗ P (n−1)
q )

≤ 1
(1− q)2 (1⊗ P (n−1)

q )(1⊗ P (n−1)
q )∗.



24 3. The q-Gaussian Algebra

Hence P (n)
q ≤ 1

1−q1⊗ P (n−1)
q as 0 ≤ q < 1. This yields

‖a(f)‖2q = 〈a(f)ξ, a(f)ξ〉q
= 〈f ⊗ ξ, f ⊗ ξ〉q
= 〈f ⊗ ξ, P (n+1)

q (f ⊗ ξ)〉q

≤ 1
1− q 〈f ⊗ ξ,1⊗ P

(n−1)
q (f ⊗ ξ)〉0

= 1
1− q ‖f‖

2〈ξ, ξ〉q. (3.5)

By the same argument as before a and a∗ are bounded operators on Fq(H) with ‖a(f)‖ = ‖a∗(f)‖ ≤
‖f‖/

√
1− q for 0 ≤ q < 1. Let f⊗n = f ⊗ · · · ⊗ f ∈ H⊗n. Lastly, we have that

‖a∗(f)f⊗n‖2q = 〈f ⊗ f⊗n, f ⊗ f⊗n〉q

= 〈f ⊗ f⊗n,1⊗ P (n−1)
q

n∑
i=1

qi−1Uπ1i(f ⊗ f⊗n)〉0

=
n∑
i=1

qi−1〈f, f〉〈f⊗n, P (n)
q f⊗n〉0

= 1− qn+1

1− q ‖f‖
2‖f⊗n‖2q,

which gives us equality in norm as n→∞.

Now that we have established our creation and annihilation operators on Fq(H), as well as the q-relations,
are ready to introduce the q-Gaussians.

Definition 3.10. For f ∈ HR, we define the q-Gaussians ω(f) as

ω(f) := a∗(f) + a(f).

With these, we define Γq(HR) as the von Neumann algebra generated by the q-Gaussians in B(Fq(H)).
That is,

Γq(HR) := {a∗(f) + a(f) | f ∈ HR}′′ ⊆ B(Fq(H)).

Lemma 3.11. The vacuum vector is cyclic and separating for Γq(HR), and defines a trace through
τ(x) := 〈Ω, xΩ〉q. Moreover, Γq(HR) is a finite von Neumann algebra.

Proof. See [4].

Remark 3.12. The right analogues of the above construction are defined by substituting the right creation
and right annihilation operators. That is, ωr(f) := a∗r(f) + ar(f), and Γq,r(HR) := {ωr(f) | f ∈ HR}′′.

3.3. Wick words
Consider an element from Γq(HR) and apply it to the vacuum vector. Since the vacuum vector is sepa-
rating, we obtain a unique element in Fq(H). Conversely, certain vectors from Fq(H) can be identified
with elements in Γq(HR), which we will see as we introduce the Wick words. We first consider the results
on Ffinite(H), after which it can be extended to Fq(H).

Let us first define some notation. For n ∈ N and k = 0, . . . , n let us define

P
(n)
k := {I, J ⊆ {1, . . . , n} | |I| = k, |J | = n− k, I ∪ J = {1, . . . , n}},

where we take each I and J as ordered sequences, i.e. for (I, J) ∈ P (n)
k :

I = (i1, . . . , ik), i1 ≤ · · · ≤ in,
J = (j1, . . . , jn−k), j1 ≤ · · · ≤ jn−k.
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Note that I and J are disjoint. Moreover, for (I, J) ∈ P (n)
k we set

ι(I, J) := #{(p, q) | iq > jq, 1 ≤ p ≤ k, 1 ≤ q ≤ n− k}.

As the final step in defining the q-Wick product, we collect all of the P (n)
k in

P (n) :=
n⋃
k=0

P
(n)
k .

Definition 3.13. We define the Wick product of an element in Ffinite(H) on Fq(H) through the linear
extension of

W (f1 ⊗ · · · ⊗ fn) :=
∑

(I,J)∈P (n)

qι(I,J)a∗(fi1) · · · a∗(fi|I|)a(fj1) · · · a(fj|J|).

for f1 ⊗ · · · ⊗ fn ∈ H⊗n.

Observe that
W (f1 ⊗ · · · ⊗ fn)∗ = W (fn ⊗ · · · ⊗ f1).

There is the question of whether these operators are elements of Γq(HR). For a single f ∈ H we have
W (f) = a∗(f) + a(f) = ω(f) ∈ Γq(HR). For higher order terms, we turn deduce a recursive formula for
W (f1 ⊗ · · · ⊗ fn+1). Clearly we have

W (f1 ⊗ · · · ⊗ fn+1) = a∗(f1)
∑

(I,J)∈P (n+1),1∈I

qι(I,J)a∗(fi2) · · · a∗(fi|I|)a(fj1) · · · a(fj|J|)

+
∑

(I,J)∈P (n+1),1∈J

qι(I,J)a∗(fi1) · · · a∗(fi|I|)a(f1)a(fj2) · · · a(fj|J|)

=: A+B

We can use the q-relations to move a(f1) forward in a∗(fi1) · · · a∗(fi|I|)a(f1)a(fj2) · · · a(fj|J|) which make
up the terms in B, to obtain that

B = a(f1)
∑

(I,J)∈P (n)

qι(I,J)a∗(fi1+1) · · · a∗(fi|I|+1)a(fj1+1) · · · a(fj|J|+1)

−
n+1∑
i=1

qi−1〈f1, fi+1〉W (f2 ⊗ · · · ⊗ ˇfi+1 ⊗ · · · ⊗ fn+1).

through an exercise of expanding the terms. Combining these statements we get

W (f1 ⊗ · · · ⊗ fn+1) = ω(f1)W (f2 ⊗ · · · ⊗ fn+1)−
n∑
i=1

qi−1〈f1, fi+1〉W (f2 ⊗ · · · ⊗ ˇfi+1 ⊗ · · · ⊗ fn+1).

Thus, by a simple induction argument with the above formula we conclude thatW (f1⊗· · ·⊗fn) ∈ Γq(HR).

We elaborate upon the aforementioned relation between Γq(HR) and Ffinite(H). For any ξ ∈ Ffinite(H)
we have that

W (ξ)Ω = ξ.

For any f1 ⊗ · · · ⊗ fn ∈ H⊗n this is easily seen, as applying any annihilation operator to the vacuum
vector will yield zero, and so only the term a∗(f1) · · · a∗(fn)Ω remains. Moreover, since Ω is separating,
W (ξ) is the only element that yields ξ. In this fashion, we can uniquely extend W to the entirety of
Γq(HR)Ω by requiring that W (ξ)Ω = ξ for ξ ∈ Γq(HR)Ω. Thus, if we have an x ∈ Γq(HR), we have
ξ := xΩ ∈ Fq(H) such that x = W (ξ).
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Remark 3.14. For the Wick words we can also define the right-analogue Wr by using the right creation
and annihilation operators. Let S be the operator that reverses the order of tensors once again. Using
Remark 3.6 we can deduce the following:

Wr(Sξ) = SW (ξ)S,

which shows us that Γq(HR)Ω = Γq,r(HR)Ω.

In particular, for W (ξ),W (η) ∈ Γq(HR) this gives us the following nice equality:

W (ξ)η = W (ξ)Wr(η)Ω = Wr(η)W (ξ)Ω = Wr(η)ξ.

3.4. The q-Gaussian functor
Suppose we have a contractive map u : HR → HR. This section is dedicated to constructing a map Γq(u)
between Γq(HR) and Γq(HR) which is completely positive and trace preserving. We call this construction
the q-Gaussian functor.

Lemma 3.15. Let T : Ffinite(H) → Ffinite(H) be an operator such that it commutes with Pq, where
Pq defines the inner product on Ffinite(H) as in section 3.1. Then ‖T‖0 = ‖T‖q.

Proof. Let ξ ∈ Ffinite(H). By the functional calculus we have that we have that P 1/2
q and T commute

as well, and so:

‖Tξ‖2q = 〈Tξ, Tξ〉q
= 〈Tξ, PqTξ〉0
= 〈P 1/2

q Tξ, P 1/2
q Tξ〉0

= 〈TP 1/2
q ξ, TP 1/2

q ξ〉0
= 〈P 1/2

q ξ, T ∗TP 1/2
q ξ〉0

≤ ‖T ∗T‖0〈P 1/2
q ξ, P 1/2

q ξ〉0
= ‖T ∗T‖0‖ξ‖2q.

Therefore
‖T‖2q ≤ ‖T ∗T‖0 ≤ ‖T‖20.

Applying the above with P−1
q instead we find the reverse inequality, and so ‖T‖q = ‖T‖0.

Now suppose we have a contraction T : HR → HR. We can define the map F(T ) from Ffinite(H) to
Ffinite(H) through the linear extension of

Fq(T )Ω = Ω,
Fq(T )(f1 ⊗ · · · ⊗ fn) = (Tf1)⊗ · · · ⊗ (Tfn).

for f1⊗ · · · ⊗ fn ∈ H⊗n. Note that as T is a contraction we have that ‖Fq(T )‖0 <∞. We also note that
for another contraction S on HR we have Fq(TS) = Fq(T )Fq(S).

It is easily verified that PqFq(T ) = Fq(T )Pq. Thus, we can apply Lemma 3.15 to find that Fq(T ) is
bounded with respect to the q-norm, and therefore we can extend it to a bounded operator on Fq. With
the operator established on the entirety of Fq, we can move on to the main theorem of this section:

Theorem 3.16. Let T : HR → HR be a contraction. Define Γq(T ) : Γq(HR)→ Γq(HR) through

(Γq(T )X)Ω = Fq(T )(XΩ).

for X ∈ Γq(HR). Then Γq(T ) a unique linear, bounded, completely positive trace preserving map. More-
over, if T is orthogonal, then Γq(T ) is a ∗-automorphism. If T is an orthogonal projection then Γq(T ) is
a conditional expectation.
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Proof. Linearity is clear, and uniqueness follows from the separating property of the vacuum vector in
Γq(KR). The unital property is also easily verified by the definition. Recall that for W (ξ) ∈ Γq(HR) we
have that W (ξ)∗ = W (ξ∗). Utilizing this fact in combination with the definition of Γq(T ) yields that it
respects the ∗ operation.

Let S : HR → HR be a contraction as well. Then

(Γq(TS)X)Ω = Fq(TS)(XΩ) = Fq(T )Fq(S)(XΩ) = (Γq(T )Γq(S)X)Ω,

by the multiplicativity of Fq(·). Thus, a factorization of T into contractions yields a factorization of
Γq(T ). Given a factorization of T , tt suffices to prove the statements for each case separately as these
translate to the result throughout the composition.

Set KR = HR ⊕HR. We claim that we can write T = POI, where

• I : HR → KR is an isometric embedding,

• O : KR → KR is orthogonal,

• P : KR → HR is an orthogonal projection.

We choose I to be the canonical embedding of HR into HR ⊕ HR in the first coordinate, which clearly
satisfies the required properties. Similarly, for P we choose the projection onto first coordinate.

It remains to find the appropriate operator for O. Since T is a contraction,
√

1− T ∗T is well-defined.
Now consider the operator O on KR → KR given by

O =
(

T
√

1− T ∗T√
1− TT ∗ −T ∗

)
.

Note that (1− T ∗T )T ∗ = T ∗(1− TT ∗), and so by the continuous functional calculus we obtain that T ∗
and
√

1− T ∗T commute. Consequently, it is easy to verify that O is orthogonal.

We now show that the statements hold for the individual factors. Let us start with the orthogonal
map O. We claim that

Γq(O)X = Fq(O)XFq(O)∗,

Obviously it holds for the unit. First we show that it holds for Wick words of length 1. Let f ∈ H. We
observe that

Fq(T )a∗(f) = a∗(Tf)Fq(T )
a(f)Fq(T ∗) =

Recall that 〈Tf, Tg〉 = 〈f, g〉 for any g ∈ H. Utilizing this, and that OO∗ = 1KR , for g1⊗ · · ·⊗ gn ∈ H⊗n
we find:

Fq(O)W (f)Fq(O)∗ = Fq(O)(a∗(f) + a(f))Fq(O)∗

= Fq(O)Fq(O∗)a∗(Of) + Fq(O)Fq(O∗)a(Of)
= Fq(OO∗)(a∗(Of) + a(Of))
= W (Of).

To obtain the result for higher order Wick words, we call upon the recursive formula we found in Section
3.3. Suppose the result holds for Wick words of length less than n. Now for g1⊗ · · · ⊗ gn ∈ H⊗n the fact
that

Fq(O)W (f1)W (f2 ⊗ · · · fn)Fq(O)∗ = Fq(O)Fq(O)∗W (Of1)W (Fq(O)f2 ⊗ · · · fn)
= W (Of1)W (Fq(O)f2 ⊗ · · · fn)

suffices, as the recursive formula then yields the result. With our explicit expression for Γq(O)X we can
deduce that it is bounded and completely positive.
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It remains to check that it preserves the trace. Indeed,

τ(Fq(O)XFq(O∗)) = 〈Ω,Fq(O)XFq(O∗)Ω〉q
= 〈Fq(O)∗Ω, XFq(O∗)Ω〉q
= 〈Fq(O∗)Ω, XFq(O∗)Ω〉
= 〈Ω, XΩ〉q
= τ(X).

Utilizing that Fq(O)∗Fq(O) = Fq(O)Fq(O)∗ = 1K we can see that yields an automorphism. Thus, in
the case that T is orthogonal, we could conclude the proof here as Γq(T ) is a ∗-automorphism.

Let us now consider the factor P . The above proof for boundedness, complete positivity, and the trace
preserving property can be applied to identically to P , as PP ∗ = 1HR (however, the automorphism result
fails). In a similar manner, if T is a projection, if we verify that it yields a conditional expectation to
finish the proof. As for any f ∈ H and g ∈ ranP we have 〈f, g〉 = 〈Pf, g〉 = 〈Pf, Pg〉 we can repeat a
similar argument with Fq(P ) and the Wick operator to conclude this case.

In the case that T is neither a projection nor orthogonal, only the first factor remains. Let P1 be
the orthogonal projection of KR into the first coordinate. Then through its definition we find Fq(P1) is
a projection in Fq(K) equal to projecting on the first coordinate. That is,

Fq(H) ' Fq(K)Fq(P1).

Let ωK(f) be the q-Gaussians on Fq(K). We set:

ΓKq (HR) := vNA(ωK(f ⊕ 0) | f ∈ HR).

Embedding Fq(H) in the first coordinate we have ΓKq (HR)Fq(H) ⊂ Fq(H). By the previous identifica-
tions we can deduce

Γq(HR) ∼= ΓKq (H)Fq(P1).

But this homomophism is in fact equal to I. As a ∗-homomorphism Γq(I) is therefore completely positive.
Lastly, using that Fq(P1)Ω = Ω we see that it preserves the trace. Having now shown the statements for
all three factors, we conclude the proof.
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Factoriality of Γq(HR)

Recall that a von Neumann algebra is a factor if its centre consists of multiples of the identity. The main
result of this chapter is the following:

Theorem 4.1. If dimH ≥ 2 then Γq(HR) is a factor.

The proof of the theorem rests on the next proposition:

Proposition 4.2. Suppose dimH ≥ 2, and e ∈ HR is such that ‖e‖ = 1. Then {W (e)}′′ is a maximal
abelian subalgebra.

First we fix some notation. Recall that for ξ = ξ1 ⊗ · · · ξa ∈ H⊗a and η = η1 ⊗ · · · ηb ∈ H⊗b then

〈ξ1 ⊗ · · · ξa, η1 ⊗ · · · ηn〉q = δa,b〈ξ1 ⊗ · · · ξa, P aq η1 ⊗ · · · ηb〉,

where P aq is Pq restricted to H⊗a. This is possible by Theorem 3.3. Let us denote the Hilbert space as
Ha
q and let ‖ξ‖Haq denote the norm of ξ with the above norm.

We now split H⊗n into two, namely a part of size n − k and a part of size k, for k ≤ n. If we take
ξ ⊗ η, ξ′ ⊗ η′ ∈ H⊗(n−k) ⊗H⊗k we have the inner product

〈η ⊗ ζ, ξ′ ⊗ η′ ⊗ ζ ′〉Haq = 〈ξ ⊗ η, Pn−kq ξ′ ⊗ P kq η′〉.

Note that this does not coincide with the inner product on H⊗n. To link the two, we define the unique
operator Rn,k : H⊗n → H⊗n through its adjoint by

Pnq = (Pn−kq ⊗ P kq )R∗n,k,

where we embed H⊗(n−k) ⊗H⊗k in H⊗n in the canonical way.

It can be verified (see [16]) that
Rn,k =

∑
π∈Sn\Sn−k×Sk

qi(π)Uπ,

where the representative of each right coset is chosen such that the number of inversions is minimal. This
provides us with an upper estimate for the norm, namely

‖Rn,k‖ ≤
∞∏
i=1

(1− |q|i)−i.

Set Cq :=
∏∞
i=1(1− |q|i)−i.

29
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Lemma 4.3. The embedding of Hn−k
q ⊗Hk

q in Hn
q has norm at most

√
Cq.

Proof. We have:

(Pnq )2 = Pnq (Pnq )∗

= (Pn−kq ⊗ P kq )R∗n,kRn,k(Pn−kq ⊗ P kq )∗

≤ ‖R∗n,kRn,k‖(Pn−kq ⊗ P kq )2

≤ C2
q (Pn−kq ⊗ P kq )2.

Thus, Pnq ≤ CqPn−kq ⊗ P kq and we conclude that for any ν ∈ Hn
q we have

‖ν‖2Hnq = 〈Pnq ν, ν〉

≤ Cq〈Pn−kq ⊗ P kq ν, ν〉
= Cq‖ν‖2Hn−kq ⊗Hkq

.

Remark 4.4. Applying the above result inductively on e1 ⊗ · · · ⊗ en where ei ∈ H are unit vectors we
have

‖e1 ⊗ · · · ⊗ en ⊗ e⊗m‖q ≤ Cq‖e1 ⊗ · · · ⊗ en‖q‖e⊗m‖q ≤ Cn/2q

√
[m]q!.

One more definition and result before we start on the proof of the proposition:

Definition 4.5. Let e ∈ H. Set Ee ⊂ Fq(H) as

Ee := Span{e⊗n | n ≥ 0}.

We note that Ee = Fq(Re).

We construct an identification between {W (e)}′′ and Ee ∩ Γq(HR)Ω. On the one hand, suppose we
have W (ξ) ∈ {W (e)}′′. Then as {W (e)}′′ is closed in the strong operator topology, we can find ξi ∈ Ee
such that W (ξi) converges weakly to W (ξ). But then applying both to Ω and using that W (ξi)Ω = ξi
we directly find that ξ ∈ Ee.

On the other hand, suppose we have ξ ∈ Ee ∩ Γq(HR)Ω. Let PRe : HR → Re be the orthogonal
projection onto Re. Then

(Γq(PRe)W (ξ))Ω = Fq(PRe)(W (ξ)Ω)
= Fq(PRe)ξ
= PEeξ

= ξ

= W (ξ)Ω. (4.1)

As Ω is separating, this implies that W (ξ) = Γq(PRe)W (ξ), and therefore W (ξ) ∈ {W (e)}′′.

Proof of Proposition 4.2. Let W (ξ) ∈ Γq(HR) ∩ {W (e)}′. We need to show that W (ξ) ∈ {W (e)}′′, or
equivalently ξ ∈ Ee.

Let η ∈ Ee and consider W (η). By our assumption W (ξ) and W (η) commute. Applying (W (ξ)W (η) −
W (η)W (ω)) to the vacuum vector and utilising Remark 3.14 we have:

0 = (W (ξ)W (η)−W (η)W (ξ))Ω
= W (ξ)η −W (η)ξ
= Wr(η)ξ −W (η)ξ
= (Wr(η)−W (η))ξ.

(4.2)
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Thus
ξ ∈

⋂
W (η)∈{W (e)}′′

ker(Wr(η)−W (η)).

To show that ξ ∈ Ee, it suffices to show that

E⊥e ⊂ Span

 ⋃
W (η)∈{W (e)}′′

ran(Wr(η)−W (η))

 .

Now extend {e} to an orthonormal basis (ei)i≥0 of HR, where we take e0 = e. Clearly we have

E⊥e = Span{ei1 ⊗ · · · ⊗ ein | n > 1, eik 6= 0 for some k}.

Take z = ei1⊗· · ·⊗ein ∈ E⊥e . It suffices to show that z is the weak limit of elements in Span{Ran(Wr(η)−
W (η)) |W (η) ∈ {W (e)}′′}.

As {W (e)}′′ is commutative and diffuse by we have {W (e)}′′ ' L∞([0, 1]) equipped with the Lebesgue
measure. We can identify the Rademacher functions

ri(x) := sign sin(2iπx), i = 1, 2, · · ·

on [0, 1] with elements in {W (e)}′′.

Let (ηi)i ⊂ Ee be the sequence such that W (ηi) ' ri for i ≥ 1. Then W (ηi)2 ' r2
i = 1, and simi-

larly we see that W (ηi) is self-adjoint. Moreover, ri → 0 weakly as i → ∞ in L2([0, 1]), and so we find
weak convergence for ηi in Fq(H) as well.

Let us now define the following sequence in Fq(H):

zi := (W (ηi)−Wr(ηi))(W (ηi)z).

Expanding the brackets we note that

zi = W (ηi)2z −Wr(ηi)W (ηi)z
= z −Wr(ηi)W (ηi)z.

Thus, it suffices to show that Wr(ηi)W (ηi)z converges weakly to zero. To simplify our notation, set

yi := Wr(ηi)W (ηi)z.

Obviously the norm of W (ηi) is at most 1, through the identification with ri. Remark 3.14 then gives
us the same estimate for Wr(ηi). Hence, ‖yi‖ ≤ ‖z‖, and thus it is sufficient to show that for any pure
tensor t = ej1 ⊗ · · · ⊗ ejp ∈ Fq(H) that 〈yi, t〉q → 0 as i→ 0. By Remark 3.14 we have:

〈yi, t〉q = 〈Wr(ηi)W (ηi)z, t〉q
= 〈Wr(z)ηi,W ∗r (ηi)t〉q
= 〈Wr(z)ηi,W (t)ηi〉q.

Recall the definition of the Wick word from Definition 3.13 (as well as the the right-analogue in this
case). Substituting the sum in the above expression and moving the sums out of the inner product, we
obtain

〈Wr(z)ηi,W (t)ηi〉q =
∑

(I,J)∈P (n)

(I′,J′)∈P (p)

qι(I,J)qι(I
′,J′)〈a∗r(eir1

) · · · a∗r(eirm )ar(eis1
) · · · ar(eisn−m )ηi, (4.3)

a∗(ejr′1 ) · · · a∗(ejr′
l

)a(ejs′1 ) · · · a(eis′
p−l

)ηi〉q,
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where

(I, J) = ((r1, · · · , rm), (s1, · · · , sn−m))
(I ′, J ′) = ((r′1, · · · , r′l), (s′1, · · · , s′p−l)).

As the number of terms in P (n) and P (p) is finite and depends only on n and p, ans |q| < 1, it is sufficient
to show that each inner product goes to 0 as i → ∞. Since we intend to show the result for all pure
tensors z and t, and can thus freely reorder them, we can drop the double indexing. That is, we may
assume I = (1, . . . ,m) and J = (l+1, . . . , n) since this will be the case for some (different) z, and similarly
for I ′ and J ′.

By way of this simplification, we can write the inner product terms in the right-hand side in (4.3)
in the following manner:

Ii := 〈a∗r(ei1) · · · a∗r(eim)ar(eim+1) · · · ar(ein)ηi, a∗(ej1) · · · a∗(ejl)a(ejl+1) · · · a(eip)ηi〉q,

which gives us a more manageable expression. To aim is now to show that Ii → 0 as i→∞.

We look at the terms within the inner product in more detail. As ηi ∈ Ee, it follows that ar(eik)ηi = 0
whenever eik 6= e, as it lies in the orthogonal complement. As such, we can assume that ein = e. More-
over, ar(e)ηi ∈ Ee, and so we can repeat the argument to argue that eil+1 = eil+2 = · · · = eisn = e. Thus,
in order to be non-zero, our term must be of the form

a∗r(ei1) · · · a∗r(eim)ar(e)n−mηi.

For k ≥ 1 we have that ar(e)e⊗k = [k]qe⊗(k−1). Write ηi =
∑
k≥0 a

i
ke
⊗k. Note that as W (ηi) is

self-adjoint we necessarily have that all ak are real. We can now write:

(ar(e))n−mηi =
∑
k≥0

aik(ar(e))n−me⊗k

=
∑

k≥n−m

aik
[k]q!

[k +m− n]q!
e⊗k+m−n.

Thus, overall this yields the result that for non-zero terms we have

a∗r(ei1) · · · a∗r(eim)ar(e)n−mηi =
∑

k≥n−m

aik
[k]q!

[k − (n−m)]q!
a∗r(ei1) · · · a∗r(eim)e⊗k−(n−m).

Now consider the other term in the inner product, that is, W (t)ηi. Nearly identically we also derive:

a∗(ej1) · · · a∗(ejl)a(e)p−lηi =
∑
k≥p−l

aik
[k]q!

[k + l − p]q!
a∗(ej1) · · · a∗(ejl)e⊗k+l−p.

We now substitute these terms to find that

Ii

= 〈
∑

k≥n−m

aik
[k]q!

[k +m− n]q!
a∗r(ei1) · · · a∗r(eim)e⊗k+m−n,

∑
k′≥p−l

aik′
[k′]q!

[k′ + l − p]q!
a∗(ej1) · · · a∗(ejl)e⊗k

′+l−p〉q

=
∑
k≥m
k′≥l

aik−2m+na
i
k′−2l+p

[k − 2m+ n]q!
[k −m]q!

[k′ − 2l + p]q!
[k′ − l]q!

〈a∗r(ei1) · · · a∗r(eim)e⊗k−m, a∗(ej1) · · · a∗(ejl)e⊗k
′−l〉q

=
∑
k≥m
k≥l

aik−2m+na
i
k−2l+p

[k − 2m+ n]q!
[k −m]q!

[k − 2l + p]q!
[k − l]q!

〈a∗r(ei1) · · · a∗r(eim)e⊗k−m, a∗(ej1) · · · a∗(ejl)e⊗k−l〉q.
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We now investigate the inner product terms appearing in the above sum. Let v be the largest index such
that ei1 = ei2 = · · · = eiv−1 = e. By choice of z there must exist ik with k ≤ m with eik 6= e, so v ≤ m.
Taking the adjoint for a∗r(ei1) · · · a∗r(eiv ) we have

〈a∗r(ei1) · · · a∗r(eim)e⊗k−m, a∗(ej1) · · · a∗(ejl)e⊗k−l〉q
= 〈a∗r(eiv+1) · · · a∗r(eim)e⊗k−m, ar(eiv ) · · · ar(ei1)(ej1 ⊗ · · · ⊗ ejl ⊗ e⊗k−l)〉q
= 〈a∗r(eiv+1) · · · a∗r(eim)e⊗k−m, ar(eiv )ar(e)v−1(ej1 ⊗ · · · ⊗ ejl ⊗ e⊗k−l)〉q.

We consider ar(e)v−1(ej1 ⊗ · · · ⊗ ejl ⊗ e⊗k−l). Each application of ar(e) cancels an occurrence of e mul-
tiplying by factor of q depending on n and the index of the cancelled tensor leg. Suppose k ≥ v so that
we do not (necessarily) cancel all of the tensors.

We investigate how each term in the expanded result looks. As we are working with the right-annihilation,
let us consider the indices as counted from the right. Let (ej1⊗· · ·⊗ejl⊗e⊗(k−l))h,r for h = (h1, . . . , hv−1)
denote the term such that the tensor leg at index h1 as counted from the right has been cancelled, after
which we repeat the procedure to the remaining tensor with (h2, . . . , hv−1). Necessarily we must have
1 ≤ hi ≤ k− i+ 1 for i = 1, . . . , v − 1. Whenever we cancel an ei 6= e the term yields zero. In this spirit,
let δh be 0 if an ei 6= e is cancelled, and otherwise 1. Altogether, we can express

ar(e)v−1(ej1 ⊗ · · · ⊗ ejl ⊗ e⊗k−l) =
∑

h∈{1,...,k}v−1

1≤hi≤k−i+1

δhq
−v+1+

∑v−1
i=1

hi(ej1 ⊗ · · · ⊗ ejl ⊗ e⊗(k−l))h,r.

In order to express the whole term, remains to apply ar(eiv ). Let us assume k ≥ n + p, which ensures
that k ≥ l + v. By our choice of v we have eiv 6= e, so in order for it not to yield zero, we need to cancel
an element from ej1 ⊗ · · · ⊗ ejl . As we have removed v − 1 tensor legs, the tensor now has a length of
k − v + 1, of which at most l − v + 1 remain from ej1 ⊗ · · · ⊗ ejl .

The assumption k ≥ n + p guarantee that at least 1 tensor leg coming from e⊗(k−l) remains in the
term. In particular, there are at least k − l − v + 1 such legs. If we consider the definition of the right-
annihilation operator, we find that the exponent in the q-term is at least k − l − v + 1 by virtue of the
previous sentence. The remaining tensor now has length k− l, of which at most l of ej1 ⊗· · ·⊗ ejl remain
and at most k − l of e⊗(k−l).

By Remark 4.4 and the fact that Cq ≥ 1, a 7→ [a]q! is increasing, we can conclude that

‖ar(eiv )(ej1 ⊗ · · · ⊗ ejl ⊗ e⊗(k−l))h,r‖q ≤ Cl/2q

√
[k − l]q ≤ Cpq

√
[k − l]q!.

Let us start absorbing constants, starting with Cq,p = Cpq . Substituting the above in (4.4) together with
the above result yields that

‖ar(eiv )ar(e)v−1(ej1 ⊗ · · · ⊗ ejl ⊗ e⊗k−l)‖q ≤
∑

h∈{1,...,k}v−1

1≤hi≤k−i+1

|q|v−1+
∑v−1

i=1
hiCq,p

√
[k − l]q!.

We claim that we can bound
∑
h∈{1,...,k}v−1

1≤hi≤k−i+1
|q|v−1+

∑v−1
i=1

hi by a constant depending only on v and q.

Considering the last index separately, we have that

∑
h∈{1,...,k}v−1

1≤hi≤k−i+1

|q|v−1+
∑v−1

i=1
hi = |q|v−1

∑
h∈{1,...,k}v−2

1≤hi≤k−i+1

|q|
∑v−2

i=1
hi

k−v+2∑
hv−1=1

|q|hv−1

≤ |q|v−1
∑

h∈{1,...,k}v−2

1≤hi≤k−i+1

|q|
∑v−2

i=1
hi 1

1− |q| .
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Applying an induction argument, we can argue that∑
h∈{1,...,k}v−1

1≤hi≤k−i+1

|q|v−1+
∑v−1

i=1
hi ≤ |q|v−1

(1− |q|)v−2 = Cq,v.

Since v itself depends on n, we have therefore found that

‖ar(eiv )ar(e)v−1(ej1 ⊗ · · · ⊗ ejl ⊗ e⊗k−l)‖q ≤ Cq,n,p
√

[k − l]q!.

We arrive at the end of the proof. Let N > 2 max(n, p), and split the sum in I into the parts A(N)
i with

k < N and B(N)
i with k ≥ N .

On the one hand we have
|A(N)
i | ≤

∑
N>k≥m
N>k≥l

|aik−2m+n||aik−2l+p|CN,q,n,p.

by the fact that the sum is now finite. As ηi converges weakly to zero, we have that aik converges to zero
as i→∞. Thus, we find that limi→∞A

(N)
i = 0.

We now consider B(N)
i . As ‖e⊗k‖ =

√
[k]q!, and ‖η‖ = 1, we necessarily have that |aik| ≤ 1

[k]q ! . We
apply Cauchy-Schwarz and see that

|B(N)
i | ≤

∑
k≥N

|aik−2m+n||aik−2l+p|
[k − 2m+ n]q!

[k −m]q!
[k − 2l + p]q!

[k − l]q!
‖a∗r(eiv+1) · · · a∗r(eim)e⊗k−m‖q ·

·‖ar(eiv )ar(e)v−1(ej1 ⊗ · · · ⊗ ejl ⊗ e⊗k−l)‖q

≤ Cq,n,p
∑
k≥N

√
[k − 2m+ n]q!

[k −m]q!

√
[k − 2l + p]q!

[k − l]q!
|q|k
√

[k − l]q!‖eiv+1 ⊗ · · · ⊗ eim ⊗ e⊗k−m‖q

≤ Cq,n,p
∑
k≥N

√
[k − 2m+ n]q!

[k −m]q!

√
[k − 2l + p]q!√

[k − l]q!
|q|k
√

[k −m]q!

= Cq,n,p
∑
k≥N

√
[k − 2m+ n]q!

[k −m]q!

√
[k − 2l + p]q!

[k − l]q!
|q|k

Note that
[k − 2m+ n]q!

[k −m]q!
=

k−2m+n∏
i=k−m+1

[i]q ≤
1

(1− |q|)n−m ≤ 1
(1− |q|)n .

Likewise, we find a similar expression for [k − 2l + p]q!/[k − l]q!. We can conclude thus conclude

|B(N)
i | ≤ Cq,n,p

∑
k≥N

1
(1− |q|)n(1− |q|)p

≤ Cq,n,p
|q|N

(1− |q|)n+p

= Cq,n,p|q|N .

We emphasize that the constant Cq,n,p does not depend on the choice of N . Consequently, we have

lim sup
i→∞

|Ii| ≤ lim
i→∞
|A(N)
i |+ lim sup

i→∞
|B(N)
i | ≤ Cq,n,p|q|N .

Since this must hold for arbitrary large N , we conclude that Ii = 0.
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Now that we have completed the proof of the proposition, we can show the proof of Theorem 4.1 and
conclude the chapter.

Proof of Theorem 4.1. We now conclude with the theorem. Let x = W (ξ) ∈ Z(Γq(HR)). Then by
Proposition 4.2 we have W (ξ) ∈ {W (e)}′′ for any unit e ∈ HR. Hence, by our previous assertion we have
ξ ∈ Ee for any e ∈ HR of norm one. But since dimH ≥ 2 and we can thus find two non-zero orthogonal
elements, we necessarily have ξ = 0. That is, ξ is a multiple of Ω we conclude that x is a multiple of
identity.





5
Deformations and bimodules

In this chapter we set up the deformation αt that we will end up using to prove strong solidity of Γq(HR).
We also introduce the coarse bimodule. The content of this chapter are largely based on [1].

5.1. The deformation αt
Let us start by defining the necessary functions.

For t ≥ 0 define the map ut : HR → HR through

uth := e−th, h ∈ HR.

Then ut is obviously a contraction, so we satisfy the requirements for Theorem 3.16. Hence, said theorem
provides us with a trace-preserving, completely positive, unital map Tt = Γq(ut). As we have that
us ◦ ut = us+t, we can deduce that Ts ◦ Tt = Ts+t by multiplicativity of the functor. Moreover, T0 =
Γq(1HR) = 1Γq(HR). Therefore, (Tt)t≥0 forms a semigroup of completely positive, unital maps on Γq(HR).
From now on we refer to this function whenever we write Tt.

Definition 5.1. Let us now consider Γq(HR ⊕HR), and set Rt : HR ⊕HR → HR ⊕HR as the rotation

Rt =
(

e−t −
√

1− e−2t
√

1− e−2t e−t

)
.

By Theorem 3.16 this yields a group (Γq(Rt))t≥0 of ∗-automorphisms of Γq(H ⊕ H). Let us denote
αt := Γq(Rt). We shall refer to αt, sometimes referred to as an s-malleable deformation in the literature,
as the deformation or the deformation of Γq(HR).

Now that we have introduced Γq(HR⊕HR), we are interested in how it interacts with Γq(HR). By consid-
ering Γq(ι) of the canonical embedding ι : HR → HR ⊕HR in the first coordinate we can embed Γq(HR)
in the first coordinate in Γq(HR⊕HR). Additionally, we observe the following relation between αt and Tt:

Similar to the above we can project elements from Γq(HR ⊕ HR) onto the first coordinate. That is,
let P1 : HR⊕HR → HR be the projection onto the first coordinate, such that Γq(P1) gives us the desired
projection. Then Tt(x) = Γq(P1) ◦ αt(x), which one can verify using Wick words.

Definition 5.2. Let P ⊂ M be a von Neumann subalgebra, and let (θt)t≥0 be a continuous family of
completely positive maps θt :M→M. Then P is rigid with respect to (θt)t∈R if

lim
t↓0

sup
x∈P
‖x‖≤1

‖θt(x)− x‖L2(M) = 0.

We will exclusively apply this definition with Γq(HR) and (Tt)t≥0 or Γq(HR ⊕HR) and the deformations
(αt)t≥0. As it is now always easy to check the above definition, we formulate some equivalent conditions
in the case that we are working with αt and HR is finite-dimensional.
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Theorem 5.3. Let HR be finite-dimensional and B ⊂ Γq(HR) be a von Neumann subalgebra. Then the
following are equivalent:

(i) B is rigid with respect to αt.

(ii) B is rigid with respect to Tt.

(iii) B is atomic.

Proof. We start by showing that (ii)⇒ (iii). Suppose B is diffuse, and B is rigid with respect to Tt. Let
U(B) denote the set of unitaries in B. By definition of rigidity there exists t0 such that

‖Ttx− x‖2 ≤
1
2

for all t < t0 and x ∈ U(B).

Let A ⊂ B be a maximal abelian subalgebra of B. We claim that A must be diffuse as well, which
we argue by contradiction. Suppose we can find a minimal projection p ∈ A. Then as p is not minimal
in B by assumption, pBp must contain elements different from multiples of p. Indeed, if pBp = Cp, then
we could find no smaller projection in B than p, contradicting that B is diffuse. Thus, let x ∈ pBp be
such that it is not a multiple of p.

We claim that x commutes with elements in A. Let a ∈ A. Then by orthogonality of p we can write
a = p⊥ap⊥ + pap. Moreover, since p is minimal we have pAp = Cp, so we can write a = λp for some
scalar p. Using that pxp = x, we note:

ax = apxp

= (p⊥ap⊥ + pap)pxp
= 0 + papxp

= λpxp.

Repeating the same computation with xa reveals that x commutes with elements from A, which contra-
dicts the assumption that A is a maximal abelian subalgebra.

Hence, by Theorem 2.16 we have that A ' L∞(0, 1), where L∞(0, 1) is equipped with the Lebesgue
measure. This identification allows us to find a sequence (xn)∞n=1 in A such that ‖xn‖ = 1, τ(xn) = 0 and
xn converges weakly to zero in L2(Γq(HR)). In L∞(0, 1), consider the function t 7→ eint, and define xn to
be the associated sequence element in A. Firstly, the norm is indeed 1. Secondly, as the trace in L∞(0, 1)
being given by Lebesgue integration, the trace is zero. And lastly, the Riemann-Lebesgue Lemma yields
weak convergence to zero.

We now argue that ‖Ttxn‖2 → 0 as n → ∞. Note that all the eigenvalues of Tt are of the form
e−kt, for k ≥ 0. The corresponding eigenvectors are direct sums of tensors with a total length of k, and
result of H being finite-dimensional it follows that the corresponding eigenspaces are finite-dimensional.
Thus, we can conclude that Tt is compact. But a compact operator maps weakly convergent sequences
to norm-convergent sequences, and thus ‖Ttxn‖2 → 0 as n → ∞ for any fixed t. We conclude this
implication by noting that

‖Tt(xn)− xn‖2 = ‖xn‖2 = 1, as n→∞.

which contradicts (5.1).

Secondly, we prove that (iii)⇒ (ii). Suppose B is atomic. Using Chapter V.1 we can write

B '
⊕
i∈I

B(Hi)

where I is an index set. We can derive some extra properties here. Firstly, we necessarily have that
dimHi <∞ for all i ∈ I, as Γq(HR) is a finite von Neumann algebra. Secondly, as the predual of Γq(HR)
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is separable by virtue of dim(HR) <∞, we can conclude that I is countable. That is, we can take I ⊂ N.

Let zi be the projection on coordinate i in
⊕

i∈I B(Hi). Then {zi}i∈I forms an orthogonal family,
ziBzi = B(Hi), and

∑
i∈I τ(zi) = 1. For a set F ⊂ I define ιF : B → B by

ιF (x) :=
∑
i∈F

zixzi.

Now let ε > 0. By the fact that
∑
i∈I τ(zi) = 1 we can find a finite F ⊂ I such that∑

i∈FC
τ(zi) < ε.

A crude estimation then shows that for x ∈ P such that ‖x‖ ≤ 1 we have

‖ιFC (x)‖22 <
∑
i∈FC

τ(zi) < ε.

Let us write x = ιF (x) + ιFC (x). Then we have:

‖Tt(x)− x‖2 = ‖(Tt(ιF (x))− ιF (x)) + (Tt(ιFC (x))− ιFC (x))‖2
≤ ‖(Tt − id)(ιF (x))‖2 + ‖(Tt − id)(ιFC (x))‖2

Since the range of ιF is finite-dimensional, it follows that ‖(Tt − id)(ιF (x))‖2 → 0 uniformly in t, as Tt
weakly converges to the identity. For the other term, by the properties of Tt we deduce that

‖Tt(ιFC (x))‖2 <
√
ε.

As Tt is a contraction, we have that ‖(Tt − id)(ιFC (x))‖2 ≤ 2‖ιFC (x)‖2. Since this holds for any ε > 0,
we conclude that

lim
t↓0

sup
x∈B
‖x‖≤1

‖Tt(x)− x‖2 = 0.

That is, B is rigid with respect to Tt.

The computations to show that (i) ⇔ (ii) are more straightforward. Assume B is rigid with respect to
αt. Let x ∈ Γq(HR). From the embedding it follows that

〈x, αt(x)〉 = 〈x, Tt(x)〉.

Applying the above and Cauchy Schwarz, we have:

‖αt(x)− x‖22 = 2〈x, x〉 − 〈αt(x), x〉 − 〈x, αt(x)〉
= 2(〈x, x〉 − 〈x, Tt(x)〉)
= 2〈x, x− Tt(x)〉
≤ 2‖x‖‖Tt(x)− x‖2.

The assumption that ‖Tt(x) − x‖2 converges uniformly to 0, in combination with the above inequality,
yields that the same holds for αt.

We can in fact obtain the reverse inequality of the above. Let EΓq(HR) be the conditional expectation of
Γq(HR ⊕HR) onto Γq(HR) as given by Proposition 2.12. Then for x ∈ Γq(H) we have

‖Tt(x)− x‖2 = ‖EΓq(H)(αt(x)− x)‖2
≤ ‖αt(x)− x‖2,

and by the same argument αt converges uniformly to the identity under the assumption B is rigid with
respect to Tt.
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5.2. Bimodules for von Neumann algebras
Let M and N be von Neumann algebras, and let Nop denote the opposite algebra. That is, in Nop

the multiplication is reversed. Recall the binormal tensor product from Chapter 2. We define an M -N -
bimodule as the ∗-representation of M ⊗binNop on a Hilbert space, where M acts on the first tensor leg,
and N acts on the second tensor leg with reversed multiplication. One particular bimodule that will play
a very important role is the coarse bimodule:

Definition 5.4. Let M and N be von Neumann algebras. We call the M -N -bimodule L2(M) ⊗ L2(N)
the coarse bimodule.

For two M -N -modules we can define a notion of weak containment of one bimodule in the other. We
define it as follows:

Definition 5.5. Let H and K be M -N -bimodules. If for all ε > 0, all ξ ∈ H, and all finite subsets
F ⊂M and E ⊂ N , there exist η1, . . . ηn ∈ K such that

|〈ξ, xξy〉 −
n∑
j=1
〈ηj , xηjy〉| < ε, for all x ∈ F and y ∈ E,

we say that H is weakly contained in K. Let us denote this as H ≺ K

Remark 5.6. If two M -N -bimodules H1 and H2 are weakly contained in K, then we can see H1 ⊕H2
as an M -N -bimodule by the canonically extending the action. Then, for H1⊕H2 it is easily checked that
it is weakly contained in K.

Recall that S(A ⊗max B) denotes the set of states on A ⊗max B. Let H be an M -N -bimodule, and let
ξ ∈ H such that ‖ξ‖ = 1. We can define an element ϕξ of S(M ⊗max N) by the linear extension of

ϕξ(x⊗ y) := 〈ξ, xξy〉.

From here, we define a map Tϕξ : M → N through

Tϕξ(x)(y) = ϕξ(x⊗ y), x ∈M, y ∈ N.

In particular, for x ∈M and y ∈ N we therefore have Tϕξ(x)(y) = 〈ξ, xξy〉. As we will have great interest
in if a bimodule is weakly contained in the coarse bimodule, we derive equivalent conditions to give us
more options to verify weak containment, given some conditions on the von Neumann algebras.

Lemma 5.7. Let M and N be finite von Neumann algebras with separable predual and H be an M -N -
bimodule. Consider the following statements:

(i) For ξ ∈ H, Tξ = Tϕξ extends to an element S2(L2(M), L2(N)).

(ii) For ξ ∈ H such that ‖ξ‖H = 1, ϕξ ∈ S(M ⊗maxN) is continuous with respect to the minimal tensor
norm.

(iii) H ≺ L2(M)⊗ L2(N).

Then (i) implies the others, and (ii) and (iii) are equivalent.

Proof. First we show that (i)⇒ (ii). We set up an identification of the coarse bimodule L2(M)⊗L2(N)
with S2(L2(M), L2(N)). Indeed, for a pure tensor ξ ⊗ η ∈ Ł2(M)⊗ L2(N) let θξ,η : L2(M)→ L2(N) be
defined through the linear extension of

θξ,η(ζ) = 〈ζ, ξ〉η, ζ ∈ L2(M).

clearly θξ,η ∈ S2(L2(M), L2(N)). Conversely, S2 operators allow for an approximation in the form of a
linear combination of θξ,η for ξ ∈ L2(M), η ∈ L2(N) (see Chapter 2.4 of [13]).

By the assumption that Tϕξ can be extended to an element in S2(L2(M), L2(N)). Using the identi-
fication S2(L2(M), L2(N)) ' L2(M)⊗ L2(N) ' L2(M ⊗bin Nop), we can find ζ ∈ L2(M ⊗bin Nop) that
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corresponds with Tϕξ . Moreover, as M and N are finite, we have that ζ ∈ L1(M ⊗bin Nop). Lastly, by
Proposition 2.18 we can identify L1(M⊗̄N) with M ⊗min N and conclude that ‖ϕξ‖min∗ ≤ ‖Tϕξ‖S2 .

We continue by showing that (iii)⇒ (ii). If H ≺ L2(M)⊗ L2(N), using the definition of weak contain-
ment we can find η1, · · · ηn ∈ L2(M)⊗ L2(N) such that

|ϕξ(x⊗ y)−
n∑
j=1

ϕηj (x⊗ y)| < ε

for all x ∈ E finite, y ∈ F and ε > 0. Let π be the ∗-representation as in the definition of the coarse
bimodule. We have:

ϕηj (x⊗ y) = 〈ηj , π(x⊗ y)ηj〉,

and hence ϕηj lies in the predual of B(L2(M) ⊗ L2(N)). As a limit of elements of the form
∑n
j=1 ϕηj ,

Section 2 in [9] yields that ϕξ is min-continuous.

Lastly, we prove that (ii) ⇒ (iii). Assume ϕξ is continuous with respect to the min-norm. Conse-
quently, it can be extended to M ⊗minN and is therefore an element of M ⊗minN . By Proposition 2.18
we have that M ⊗min N equals the closure of M ⊗N with respect to the norm of B(L2(M) ⊗ L2(N)).
Using the Hahn-Banach extension theorem we can extend ϕξ to the entirety of B(L2(M)⊗L2(N)). That
is, ϕξ ∈ B(L2(M)⊗ L2(N))∗.

By Goldstine’s Theorem (Theorem 2.5), we have that the predual of B(L2(M) ⊗ L2(N)) lies dense
in B(L2(M) ⊗ L2(N))∗ with respect to the weak∗ topology. For η ∈ L2(M) ⊗ L2(N) let us define a
continuous linear functionals θη on B(L2(M)⊗ L2(N)) through

θη(ζ) := 〈η, ζη〉, ζ ∈ B(L2(M)⊗ L2(N)).

Then
X := Span{θη | η ∈ L2(M)⊗ L2(N)}

lies dense in the predual of B(L2(M) ⊗ L2(N)) with respect to the norm, and therefore it lies weak∗
dense in B(L2(M)⊗ L2(N))∗.

Thus, we can find (ψi)∞i=1 in X in the form ψi =
∑ni
j=1 θηij such that for any x ∈ B(L2(M)⊗L2(N)) we

have pointwise convergence:
ψi(x)→ ϕξ(x), as i→∞.

This holds for finite sets of B(L2(M)⊗ L2(N)), so in particular for any ε > 0 and E ⊂M , F ⊂ Y finite
we can find i such that:

|〈ξ, xξy〉 −
ni∑
j=1
〈ηij , xηijy〉| = |ϕξ(x⊗ y)− ψi(x⊗ y)| < ε,

for all x ∈ E, y ∈ F , which yields us weak containment.





6
Strong solidity of Γq(HR)

In this chapter we reach the core result of the thesis, which is to show that Γq(HR) is strongly solid.
This result is based on Avsec’s paper on the subject [1]. We replicate a number of the proofs, and make
improvements where possible. In particular, we fill some gaps in the proofs and offer more expanded
proofs.

The definition of strong solidity is in order now. For this we first need the concept of amenability:

Definition 6.1. Let M be a von Neumann algebra with tracial state τ . Then M is is called amenable if
there exists a state ϕ ∈ B(L2(M)) such that ϕ |M= τ and ϕ(ax) = ϕ(xa) for all a ∈M and x ∈ L2(M).

At last, we can define one of the central definitions in this thesis.

Definition 6.2. Let M be a von Neumann algebra, and let P ⊂ M be a subalgebra. The normalizer of
P in M is defined as

NM (P ) := {u ∈ U(M) | u∗Pu = P}.

We call M strongly solid if for all diffuse, amenable subalgebras P ⊂M , NM (P ) generates an amenable
subalgebra.

Sadly, from here on forth we will be restricted to finite dimensional HR, as this will prove necessary in
some of the proofs that are to follow.

6.1. Weak containment in the coarse bimodule
We reiterate that HR is from now on taken to be finite-dimensional. Let L2(Γq(HR ⊕ 0))⊥ denote the
orthocomplement of L2(Γq(HR ⊕ 0)) in L2(Γq(HR ⊕HR)).

Definition 6.3. Let m ≥ 0. Define the following subspaces of L2(Γq(HR ⊕ 0))⊥:

Fm := Span{W (f1 ⊗ · · · ⊗ fn) | m legs of f1 ⊗ · · · ⊗ fn are from 0⊕HR and n−m from HR ⊕ 0}‖·‖2 ,

and

Em :=
m⊕
k=0

Fk.

We can view Fk and Ek as Γq(HR)-Γq(HR)-bimodules by restricting the action of Γq(HR ⊕ HR). This
section will be dedicated to showing that Em is weakly contained in the coarse bimodule L2(Γq(HR))⊕
Γq(HR) for appropriate m.
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Theorem 6.4. Let m > − log(d)
2 log|q| with d = dim(H). Then E⊥m−1 ≺ L2(Γq(HR))⊗L2(Γq(HR)).

Throughout this section we will identify elements from Ek and Fk with elements from Fq(H) through
the vacuum vector. To simplify the notation, we shall set M := Γq(HR), M̃ := Γq(HR ⊕HR). We shall
need a number of lemmas before proving the proposition. The following lemma is dependent on HR being
finite-dimensional:

Lemma 6.5. Let K = ⊕∞j=0Hj be a Hilbert space and A = [Aij ] : K → K be an operator such that

(i) Aij = 0 if |i− j| ≥ L for a fixed L > 0.

(ii) There exists j0 such that
‖Aij‖ ≤ Crjk

for all j ≥ j0 and for constants 0 < r < 1, k, and C independent of i and j.

(iii) dim(Hj) = dj for a fixed d.

Then A ∈ Sp(K) for p > − log(d)
k log(r) .

Proof. Let K1 = ⊕j0−1
j=0 Hj and K2 = ⊕j≥j0Hj . Then

‖A‖Sp ≤ ‖A : K1 → K1‖Sp + ‖A : K1 → K2‖Sp + ‖A : K2 → K1‖Sp + ‖A : K2 → K2‖Sp
= ‖A : K1 → K1‖Sp + ‖A : K1 → K2‖Sp + ‖A∗ : K1 → K2‖Sp + ‖A : K2 → K2‖Sp (6.1)

As K1 is finite-dimensional, we can estimate the first three terms using a constant, and so only the last
term remains. Suppose p > − log(d)

k log(r) , or equivalently drpk < 1. Applying the min-max theorem for
singular values we obtain

‖A : K2 → K2‖Sp ≤ C ′ +
L∑

l=−L

∥∥∥∥∥∥
∑
j≥L

Aj,j+l

∥∥∥∥∥∥
Sp

≤ C ′ +
L∑

l=−L

 ∞∑
j=j0

dj
(
Cr(j+l)k

)p 1
p

= C ′ + C ′′

 ∞∑
j=j0

Cpdjrjkp

 1
p

<∞.

Let EM denote the conditional expectation on M , and define Φξ,η : Lp(M) → Lp(M) by Φξ,η(x) :=
EM (W (ξ)∗xW (η)) for ξ, η ∈ Fk. We intend to show that we can apply the above lemma to Φξ,η for
ξ, η ∈ Fk for p = 2 and for k ≥ − log(d)

2 log(|q|) .

The following proposition will yield us the result:

Proposition 6.6. Let ξ ∈ (H⊕H)⊗n1∩Fk, η ∈ (H⊕H)⊗n2∩Fk, and ζ1 ∈ (H⊕0)⊗m, and ζ2 ∈ (H⊕0)⊗l.
Then we have that

|〈ζ2,Φξ,η(ζ1)〉q| ≤ Cq,ξ,η|q|jk‖ζ1‖q‖ζ2‖q,

for a constant Cq,ξ,η depending only on q, ξ and η.

Recall how the splitting of H⊗n into 2 parts in Chapter 4. We perform a similar construction, but this
time we consider H⊗a ⊗ H⊗b ⊗ H⊗c such that a + b + c = n. Recall that with Hn

q we denote H⊗n
equipped with the q-inner product.
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Consider the space Ha
q ⊗ Hb

q ⊗ Hc
q . For ξ ⊗ η ⊗ ζ, ξ′ ⊗ η′ ⊗ ζ ′ ∈ Ha

q ⊗ Hb
q ⊗ Hc

q we have the inner
product

〈ξ ⊗ η ⊗ ζ, ξ′ ⊗ η′ ⊗ ζ ′〉Hnq = 〈ξ ⊗ η ⊗ ζ, P aq ξ′ ⊗ P bq η′ ⊗ P cq ζ ′〉0.

Note that this does not coincide with the inner product on H
⊗(a+b+c)
q . To link the two, we define the

unique operator Ra,b,c through its adjoint by

P a+b+c
q = (P aq ⊗ P bq ⊗ P cq )R∗a,b,c.

similarly to how we defined Rn,k in Chapter 4.

To aid us in proving Proposition 6.6 we need the following lemma:

Lemma 6.7. For ν ∈ H⊗(a+b+c) we have

‖ν‖Ha+b+c
q

≤ Cq‖ν‖Haq⊗Hbq⊗Hcq

for a constant Cq depending only on q.

Proof. Recall the operator R∗n,k from Chapter 4 and the explicit form for Rn,k. On the hand we have
that

P a+b+c
q = Ra+b+c,c(Ra+b,b ⊗ 1Hcq )(P aq ⊗ P bq ⊗ P cq ).

But then we must have
R∗a,b,c = (R∗a+b,b ⊗ 1Hqc )R∗a+b+c,c.

Applying Lemma 4.3 twice we obtain the result.

The following operator will be needed to effectively use R∗a,b,c:

Definition 6.8. For j ∈ N we define

mn : H⊗jq ⊗H⊗jq → C

as the inner product pairing, where mj(v ⊗ w) = 〈v, w〉. Suppose now have a triple tensor product space
Hn
q ⊗ Hm

q ⊗ Hk
q . For 1 ≤ a < b ≤ 3 and appropriate j we define mab

j as the operator that applies the
inner product pairing to the right end of the a-th space after splitting, and the left end of the b-th space
after splitting. For example, applying m13

j to an element from Hn−j
q ⊗ Hj

q ⊗ Hm
q ⊗ Hj

q ⊗ Hk−j
q would

pair elements from both Hj
q spaces, and applying the identity on the remainder, mapping to an element

in Hn−j
q ⊗Hm

q ⊗Hk−j
q

We now set out to prove the proposition.

Proof of Proposition 6.6. Let ξ ∈ (H ⊕ H)⊗n1 ∩ Fk, η ∈ (H ⊕ H)⊗n2 ∩ Fk and ζ1 ∈ (H ⊕ 0)⊗m, and
ζ2 ∈ (H⊕0)⊗l. Let EM denotes the conditional expectation of M̃ ontoM . By that fact that ζ1 ∈ (H⊕0)m
we have that

〈ζ2,Φξ,η(ζ1)〉q = 〈W (ζ2)Ω, EM (W (ξ)∗W (ζ1)W (η))Ω〉q
= 〈EMW (ζ2)Ω,W ∗ξW (ζ1)W (η)Ω〉q
= 〈W (ζ2)Ω,W (ξ)∗W (ζ1)W (η)Ω〉q.
= 〈ζ2,W (ξ∗)W (ζ1)W (η)Ω〉q.

Proposition 4.9 in [6] states that

〈ζ2,W (ξ)∗W (ζ1)W (η)Ω〉q
= 〈ζ2,

∑
j,r,s≥0
r+s≤n1
s+j≤m
j+r≤n2

qr(m−j−s)m13
r m

12
s m

23
j R

∗
n1−r−s,r,s(ξ

∗)⊗R∗s,m−s−j,j(ζ1)⊗R∗j,r,n2−j−r(η)〉q.
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Note that the terms in the above sum in which a tensor from 0⊕H occurs yield zero in the inner product
by virtue of ζ2. Thus, we only need consider the terms in which all of the tensors in 0 ⊕H from ξ get
cancelled against all of the tensors in 0⊕H from η. As both ξ and η have exactly k such tensors, we can
see that the non-zero terms must satisfy the condition that r ≥ k. Thus, by applying Cauchy-Schwarz
we find

|〈ζ2Ω,W (ξ)∗W (ζ1)W (η)Ω〉q|

≤ ‖ζ2‖Hlq‖
∑

j,s≥0,r≥k
r+s≤n1
s+j≤m
j+r≤n2

qr(m−j−s)m13
r m

12
s m

23
j R

∗
n1−r−s,r,s(ξ

∗)⊗R∗s,m−s−j,j(ζ1)⊗R∗j,r,n2−j−r(η)‖q

Now that we have obtained ‖ζ2‖Hlq , we continue by estimating the norm of the sum. Since we can at
most remove n+k elements through the pairing of ζ1 with ξ and η, we have that m− j−s ≥ m−n1−n2
and therefore qr(m−j−s) ≤ qr(m−n1−n2). In combination with 6.7 and the triangle inequality we see:

‖
∑

j,s≥0,r≥k
r+s≤n1
s+j≤m
j+r≤n2

qr(m−j−s)m13
r m

12
s m

23
j R

∗
n1−r−s,r,s(ξ

∗)⊗R∗s,m−s−j,j(ζ1)⊗R∗j,r,n2−j−r(η)‖q

≤ Cq|q|r(m−n1−n2)
∑

j,s≥0,r≥k
r+s≤n1
s+j≤m
j+r≤n2

‖m13
r m

12
s m

23
j R

∗
n1−r−s,r,s(ξ

∗)⊗R∗s,m−s−j,j(ζ1)⊗

⊗R∗j,r,n2−j−r(η)‖
H
n1−r−s
q ⊗Hm−s−jq ⊗Hn2−j−r

q

As we have previously established that ‖R∗n,k,l‖ ≤ Cq, all that remains is to find an estimate for mab
i .

Lemma 4.11 in [6] offers an estimate for mi, which is dependent on the dimension of the spaces in-
volved. As j, r, s are bounded by either n1 or n2, this lemma immediately yields the result as H is
finite-dimensional.
Thus far, we have that

‖m13
r m

12
s m

23
j R

∗
n1−r−s,r,s(ξ

∗)⊗R∗s,m−s−j,j(ζ1)⊗R∗j,r,n2−j−r(η)‖
H
n1−r−s
q ⊗Hm−s−jq ⊗Hn2−j−r

q

≤ Cξ,η‖R∗n1−r−s,r,s(ξ
∗)⊗R∗s,m−s−j,j(ζ1)⊗R∗j,r,n2−j−r(η)‖

H
n1−r−s
q ⊗Hm−s−jq ⊗Hn2−j−r

q

≤ Cq,ξ,η‖ξ∗ ⊗ ζ1 ⊗ η‖Hn1
q ⊗Hmq ⊗H

n2
q

= Cq,ξ,η‖ξ∗‖Hn1
q
‖ζ1‖Hmq ‖η‖Hn2

q
.

Lastly, summarising our results we see:

|〈ζ2,W (ξ)∗W (ζ1)W (η)Ω〉q| ≤ Cq,ξ,η|q|r(m−n1−n2)‖ζ2‖Hlq
∑

j,s≥0,r≥k
r+s≤n1
s+j≤m
j+r≤n2

‖ξ∗‖Hn1
q
‖ζ1‖H⊗mq ‖η‖H⊗n2

q
.

≤ Cq,ξ,η|q|km‖ζ1‖Hmq ‖ζ2‖Hlq ,

as we can bound the number of terms in the sum depending on only n and k.

We are now equipped to prove the theorem.

Proof of Theorem 6.4. We first show that Φξ,η is Hilbert-Schmidt by applying Lemma 6.5 to it. Let
ζ1 ∈ H⊗m and ζ2 ∈ H⊗l. From the fact that

〈ζ2,Φξ,η(ζ1)〉q = 〈W (ζ2)Ω,W (ξ)∗W (ζ1)W (η)Ω〉q = 〈ζ2,W (ξ)∗W (ζ1)η〉q

we can easily see that 〈ζ2,Φξ,η(ζ1)〉q = 0 if |m − l| ≥ L for some L depending on n and k that depends
only on ξ and η. From this we deduce that the first criterion of Lemma 6.5 is satisfied. The third criterion
is satisfied trivially. The last statement follows directly from 6.6.
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We will now argue that that Fk is weakly contained in L2(M) ⊗ L2(M). Let ξ ∈ Fk for k ≥ − log(d)
2 log(|q|) .

Take x, y ∈M . With the M -M -bimodule structure on Fk, on the one hand we have

〈ξ, xξy〉 = τ(W (ξ)∗xW (ξ)y)
= τ(EM (W (ξ)∗xW (ξ))y)
= τ(Φξ,ξ(x)y).

On the other hand, we recall ϕξ and Tϕξ from Lemma 5.7, whereas Tϕξ(x)(y) = 〈ξ, xξy〉. That is, Φξ,ξ
coincides with Tφξ as defined in Lemma 5.7. By choice of k and the previous lemma we have it lies in S2
and as such we find that Tφξ is Hilbert-Schmidt. Thus, Lemma 5.7 yields that Fk ≺ L2(M) ⊗ L2(M).
Lastly, by Remark 5.6, the direct sum of weakly contained bimodules is still weakly contained in another,
and so we conclude:

E⊥m−1 = ⊕k≥mFk ≺ L2(M)⊗ L2(M).

6.2. Strong solidity
Provided that k is large enough, by Proposition 6.4 we have that E⊥k−1 is weakly contained in the coarse
bimodule. To make use of this, we need to relate αt to E⊥k−1.

Let us use PFk and PEk−1 to denote the orthogonal projection with respect to the q-inner product
onto their respective spaces. In particular, we explicitly construct the projection onto Fk, which, with
some abuse of notation, we do through the identification given by the application of the vacuum vector.

Take x = (f1,1 ⊕ f1,2) ⊗ · · · ⊗ (fn,1 ⊕ fn,2) ∈ (H ⊕ H)⊗n and let A ⊂ {1, · · · , n} of size k. We de-
fine ΛAx ∈ Fk as the tensor in which we project the i-th leg of x on 0 ⊕ H if i ∈ A and on H ⊕ 0
otherwise. That is,

(ΛAx)i =
{

0 ⊕ fi,2 if i ∈ A,
fi,1 ⊕ 0 if i 6∈ A.

We claim that PFk : (H ⊕H)⊗n → (H ⊕H)⊗n is given by

PFk(x) =
∑

A⊂{1,··· ,n}
|A|=k

ΛAx.

Since ΛBΛA(x) = δABΛA(x) it is obvious that if we extend by linearity the right-hand side of the
above expression defines a projection, and has Fk as its range. To see that it is orthogonal, let y =
(g1,1 ⊕ g1,2)⊗ · · · ⊗ (gn,1 ⊕ gn,2) ∈ (H ⊕H)⊗n. and we find that

〈PFkx, y〉 =
∑

A⊂{1,··· ,n}
|A|=k

∑
π∈Sn

qi(π)
∏
i∈A
〈fi,2, gπ(i),2〉

∏
i∈AC

〈fi,1, gπ(i),1〉 = 〈x, PFky〉.

As the Fk are orthogonal for different k, the above provides us with an explicit form for PEm , namely
PEm =

∑m
k=0 PFk .

Remark 6.9. For Wick words of length 1 we one can verify that PEm(W (f)W (h)W (g)) = W (f)PEm(W (h))W (g)
forW (f),W (g) ∈ Em−1 andW (h) ∈ Γq(HR⊕R). Then, using the recursive formula determined in Section
3.3 for Wick words, we can extend the result to Wick words of arbitrary length.

Proposition 6.10. Let k ∈ N be given. Then there exists a constant Ck depending only on k such that

‖(αtk − id)(x)‖2 ≤ Ck‖PE⊥
k−1

αt(x)‖2

for x ∈
⊕

m≥kH
⊗m ⊆ Fq(H) and t < 2−k.
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Proof. We first prove it for pure tensors. Note that all operators involved preserve tensor lengths, so it
suffices to show the inequality on H⊗n for n ≥ k. Let x = f1 ⊗ · · · ⊗ fn and y = g1 ⊗ · · · ⊗ gn.

Firstly, we have:

〈PE⊥
k−1

αt(x), PE⊥
k−1

αt(y)〉q = 〈
n∑

m=k
PFmαt(x),

n∑
m=k

PFmαt(y)〉q

=
n∑

m=k
〈PFmαt(x), PFmαt(y)〉q.

Applying our previously found formula for PFm , we can see that

PFmαt(x) =
∑

A⊂{1,··· ,n}
|A|=m

e−t(n−m)
√

1− e−2t
m

ΛAx

by bringing the scalars out of the tensor product. Hence, we have:

〈PFmαt(x), PFmαt(y)〉q =
∑

A,B⊂{1,··· ,n}
|A|=|B|=m

e−2t(n−m)(1− e−2t)m〈ΛAx,ΛBy〉q.

In computing 〈ΛAx,ΛBy〉 we note that the terms in the q-inner product can only be non-zero if A is
matched exactly with B. But for a fixed A, if we iterate over all possible B ⊂ {1, · · · , n} and iterate over
all permutations matching A to B, it is equivalent to iterating over Sn entirely. Thus, we obtain:

n∑
m=k
〈PFmαt(x), PFmαt(y)〉q =

n∑
m=k

∑
A⊂{1,··· ,n}
|A|=m

e−2t(n−m)(1− e−2t)m〈x, y〉q

=
n∑

m=k

(
n

m

)
e−2t(n−m)(1− e−2t)m〈x, y〉q.

Let us now look at that which we wish to estimate using the above. Note that 〈αtk(x), αtk(x)〉q = 〈x, y〉q
as (e−tk)2 + (

√
1− e−2tk)2 = 1. Similarly, 〈x, αtk(y)〉q = e−nt

k〈x, y〉q = 〈αtk(x), y〉q. Thus, we have:

〈(αtk − id)(x), (αtk − id)(y)〉q = 〈αtk(x), αtk(y)〉q + 〈x, y〉q − (〈x, αtk(y)〉q + 〈αtk(x), y〉q)

= 2(1− e−nt
k

)〈x, y〉q.

Thus, it suffices to show that 2(1− e−ntk) < Ck
∑n
m=k

(
n
m

)
e−2(n−m)t(1− e−2t)m for some Ck depending

only on k. For the case k = 0 any C > 2 suffices, so let us assume k ≥ 2.

First pick Cm for m = 0, . . . , k − 1 such that(
n

m

)
e2mt(1− e−2t)m ≤ Cmnmtm.

for m = 0, . . . , k− 1 and all t < 2−k and n ∈ N. This is clearly possible as for n >> k we have
(
n
k

)
≈ nk

k! ,
and the other two factors in the left-hand side are bounded from above by em. Now pick Mk such that
e−2nt∑k−1

m=0 Cmn
mtm < 1

2 for nt > Mk, which is possible since e−nt dominates the sum as nt becomes
large. Suppose that nt < Mk. First we use that

n∑
m=k

(
n

m

)
e−2t(n−m)(1− e−2t)m >

(
n

k

)
e−2t(n−k)(1− e−2t)k.

For t < 2−k and n ∈ N we have 1− e−ntk ≤ ntk ≤ nktk and (1− e−2t)k ≥ tk. As such, it suffices to find
Ck such that

(
n
k

)
e−2t(n−k) > Ckn

k > 0. For one part we see that e−2t(n−k) > e−2nt > e−2Mk . For the
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other part, as before we use that if n >> k then
(
n
k

)
≈ nk

k! and so
(
n
k

)
> Ckn

k and thus we conclude this
case.
Now suppose that nt > Mk. Then t < 2−k and n > 2k so applying the Binomial Theorem to (1 + (1 −
e−2t))n we have

n∑
m=k

(
n

m

)
e−2t(n−m)(1− e−2t)m = 1−

k−1∑
m=0

(
n

m

)
e−2t(n−m)(1− e−2t)m

= 1− e−2nt
k−1∑
m=0

(
n

m

)
e2tm(1− e−2t)m

≥ 1− e−2nt
k−1∑
m=0

Cmn
mtm

≥ 1
2 .

As 2(1− e−ntk) < 2 we have proved the statement for all n and t < 2−k.

We have almost arrived at the main conclusion where we show Γq(HR) is strongly solid. Before we do
so, we need to introduce the concept of weak compactness for a subalgebra P ⊂ Γq(HR) from Ozawa and
Popa’s paper [15].

Definition 6.11. Let P ⊂ Γq(HR). We say P is weakly compact inside Γq(HR) if there exists a net
(ηi) ∈ L2(P ⊕ P̄ ) such that

(i) limi‖ηi − (v ⊗ v̄)ηi‖2 = 0 for v ∈ U(P ),

(ii) limi‖ηi − (u⊗ ū)∗ηi(u⊗ ū)‖2 = 0 for u ∈ NΓq(HR)(P ),

(iii) 〈(1⊗ x̄)ηi, ηi〉 = τ(x) = 〈ηi, (x⊗ 1)ηi〉 for x ∈ P and any i.

With all set in place, we now enter the final stage of the thesis, as we have arrived at the main theorem
of this work. In the proof of strong of the q-Gaussian algebras, Avsec borrows from Houdayer and
Shlyakhtenko work [11], and as such the proof of the following theorem is an amalgamation of [1] and
[11].

Theorem 6.12. For −1 < q < 1 and finite-dimensional HR we have that Γq(HR) is strongly solid.

Proof. Recall the definition of strong solidity from Definition 6.2. Let P ⊂ Γq(HR) = M be a diffuse,
amenable subalgebra. We need to show that NM (P )′′ is amenable.

By Lemma 2.2 in [10], if we can show that for any non-zero z ∈ Z(NM (P )′ ∩ M) and any finite
F ⊂ U(NM (P )′′) we have that ∥∥∥∥∥∑

u∈F
uz ⊗ uz

∥∥∥∥∥
M⊗̄M̄

= |F |, (6.2)

we find that NM (P ) is amenable. Thus, we we set out to show that the above it satisfied.

Note that
∥∥∑

u∈F uz ⊗ ūz
∥∥
M⊗̄M̄ ≤ |F | holds by the triangle inequality and the fact that ‖uz⊗ūz‖M⊗M̄ =

1 by definition of the spatial norm. The rest of the proof will be focussed on showing that the reverse
inequality holds.

Let z ∈ Z(NM (P )′ ∩M) be a non-zero projection. Since P is diffuse, Theorem 5.3 yields us that P
is not rigid with respect to αt. Thus, αt cannot converge uniformly to the identity on B1(P ). A simple
contradiction argument tells us that Pz is diffuse as well, so we can instead apply Theorem 5.3 to B1(Pz).
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Since we can write any element as the sum of 4 unitary operators within the algebra, αt cannot converge
uniformly on U(Pz) either. Thus, we can find a sequence (uk)k∈N ⊂ U(Pz) together with (tk) such that
tk → 0 such that ‖αt(umk z)− ukz‖2 ≥ c‖ukz‖2 = c‖z‖2 for some c > 0. We now apply 6.10 to obtain

‖PE⊥
m−1

αtk(ukz)‖ ≥ Cm‖αtm
k

(ukz)− ukz‖2 ≥ Cm‖z‖2,

whereas obviously Cm < 1. From now on, we fix the constant Cm as it is above. By Pythagoras’ Theorem
we find that

‖PEm−1αtk(ukz)‖2 ≤
√

1− C2
m‖αtk(ukz)‖2 =

√
1− C2

m‖(ukz)‖2 =
√

1− C2
m‖z‖2. (6.3)

We shall show that this will lead to a contradiction. Set δ = 1−
√

1−C2
m

6 and pick k0 such that ‖αtk(z)−
z‖2 ≤ δ for any k ≥ k0.

Combining the main result from [18] with Theorem 3.5 from [15] we have that P is weakly compact
inside Γq(HR). Let (ηn) be as described in the definition of weakly compact. Let us now define the
following sequences for k ≥ k0:

ηkn := (αtk ⊗ 1)ηn,
ξkn := ((PEm−1)⊥αtk ⊗ 1)ηn,
ζkn := (PE⊥

m−1
αtk ⊗ 1)ηn.

Lemma 6.13. Fix δ = 1−
√

1−C2
m

6 as before, and let k ≥ k0. Then

lim
n
‖(z ⊗ 1)ζkn‖2 ≥ δ.

Proof. We give a proof by contradiction. Assume we can choose k ≥ k0 such that limn‖(z ⊗ 1)ζkn‖2 < δ.
Using that ηkn = ξkn + ζkn we note that

lim
n
‖(z ⊗ 1)ηkn − (PEm−1αtk(uk)z ⊗ ūk)ξkn‖2 ≤ lim

n
‖(z ⊗ 1)ηkn − (PEm−1αtk(uk)z ⊗ ūk)ηkn‖2

+ lim
n
‖(PEm−1αtk(uk)z ⊗ ūk)ζkn‖2.

On the one hand we have

lim
n
‖(PEm−1αtk(uk))z ⊗ ūk)ζkn‖2 ≤ lim

n
‖(z ⊗ 1)ζkn‖.

Before we continue with the other term, we make a small detour. Let x ∈ M̃ . Recall that αt is a
∗-automorphism. In combination with the third property of (ηn) for any k we have

‖(x⊗ 1)ηkn‖22 = 〈(xαtk ⊗ 1)ηn, (xαtk ⊗ 1)ηn〉
= 〈ηn, (α∗tkx

∗xαtk ⊗ 1)ηn〉
= 〈ηn, (α∗tk(x∗x)α∗tkαtk ⊗ 1)ηn〉
= τ(α∗tk(x∗x))
= τ(EMα∗tk(x∗x))
= τ(x∗x)
= ‖x‖22. (6.4)

Now let x ∈M instead. Then by Remark 6.9 we find

‖(x⊗ 1)ζkn‖2 = ‖(x⊗ 1)(PE⊥
m−1
⊗ 1)ηkn‖2

= ‖(PE⊥
m−1
⊗ 1)(x⊗ 1)ηkn‖2

≤ ‖(x⊗ 1)ηkn‖2
= ‖x‖2.
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We now continue with our estimation. We have:

lim
n
‖(z ⊗ 1)ηkn − (PEm−1αtk(uk)z ⊗ ūk)ηkn‖2

≤ lim
n
‖(z ⊗ 1)ηkn − (PEm−1zαtk(uk)⊗ ūk)ηkn‖2 + lim

n
‖(PEm−1(αtk(uk)z − zαtk(uk))⊗ uk)ηkn‖2

≤ lim
n
‖(z ⊗ 1)ηkn − (PEm−1zαtk(uk)⊗ ūk)ηkn‖2 + lim

n
‖((αtk(uk)z − zαtk(uk))⊗ 1)ηkn‖2

= lim
n
‖(z ⊗ 1)ηkn − (PEm−1zαtk(uk)⊗ ūk)ηkn‖2 + lim

n
‖αtk(uk)z − zαtk(uk)‖2.

Recall that z ∈ Z(NM (P )′). Since obviously U(P ) ⊂ NM (P ) we have that uk commutes with z for any
k. Hence, by reusing αt is a ∗-homomorphism we deduce that

‖αtk(uk)z − zαtk(uk)‖2 ≤ ‖αtk(uk)z − αtk(z)αtk(uk)‖2 + ‖αtk(z)αtk(uk)− zαtk(uk)‖2
≤ ‖αtk(uk)z − αtk(uk)αtk(z)‖2 + ‖αtk(z)− z‖2
≤ 2‖αtk(z)− z‖2.

For the remaining term we first note that

lim
n
‖(z⊗1)ηkn−(PEm−1zαtk(uk)⊗ūk)ηkn‖2 ≤ lim

n
‖(z⊗1)ζkn‖2+lim

n
‖(zPEm−1⊗1)ηkn−(PEm−1zαtk(uk)⊗ūk)ηkn‖2

We now claim that limn‖(zPEm−1 ⊗ 1)ηkn − (PEm−1zαtk(uk) ⊗ ūk)ηkn‖2 = 0. By the fact that z ∈ M ,
Remark 6.9, and property (ii) of ηi we obtain

lim
n
‖(zPEm−1 ⊗ 1)ηkn − (PEm−1zαtk(uk)⊗ ūk)ηkn‖2 ≤ lim

n
‖(zPEm−1x⊗ 1)ηkn − (zPEm−1αtk(uk)⊗ ūk)ηkn‖2

≤ lim
n
‖ηkn − (αtk(uk)⊗ ūk)ηkn‖2

≤ lim
n
‖(αtk ⊗ 1)(ηn − (uk ⊗ ūk)ηn)‖2

≤ lim
n
‖ηn − (uk ⊗ ūk)ηn‖2

= 0.

Combing the results we arrive at

lim
n
‖(z ⊗ 1)ηkn − (PEm−1αtk(ukz)⊗ ūk)ξkn‖2 ≤ 4 lim

n
‖(z ⊗ 1)ζkn‖2 < 4δ. (6.5)

We use this to create a contradiction with (6.3). Recall the assumption that ‖αtk′ (z) − z‖2 ≤ δ for any
k′ ≥ k0. Using the reverse triangle inequality we obtain

‖PEm−1αtk(ukz)‖2 ≥ ‖(PEm−1αtk(uk))z‖ − ‖PEm−1αtk(ukz)− (PEm−1αtk(uk))z‖2
≥ ‖(PEm−1αtk(uk))z‖ − ‖αtk(uk)αtk(z)− αtk(uk)z‖2
≥ ‖(PEm−1αtk(uk))z‖ − ‖αtk(z)− z‖2
≥ ‖(PEm−1αtk(uk))z‖ − δ.

Applying the formula from (6.4) and using the properties of the conditional expectation again we find

‖(PEm−1αtk(uk))z‖2 ≥ ‖PEm−1((PEm−1αtk(uk))z)‖2
= ‖(PEm−1 ⊗ 1)((PEm−1αtk(uk))z ⊗ 1)ηkn‖2
≥ ‖(PEm−1(αtk(uk))z ⊗ ūk)ξkn‖2

Now applying the inequality we found in (6.5) we can conclude our contradiction by

‖PEm−1αtk(ukz)‖2 ≥ lim
n
‖(PEm−1(αtk(uk))z ⊗ ūk)ξkn‖2 − δ

≥ lim
n
‖(z ⊗ 1)ηkn‖2 − 5δ

= ‖z‖2 − 5δ
>

√
1− C2

m‖z‖2.
= δ.
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We continue with proving strong solidity. Let ρ(Mop) denote the space of right actions of Γq(HR) on
Em−1. Let ζz,kn := (z ⊗ 1)ζkn. We define the state ϕz,k on B(Em−1) ∩ ρ(Mop)′ as follows:

ϕz,k(x) := lim
n

1
‖ζz,kn ‖22

〈(x⊗ 1)ζz,kn , ζn,kn 〉.

Lemma 6.14. Let a ∈ NM (P )′′. Then ϕz,k(ax − xa) converges uniformly to 0 on the unit ball of
B(Em−1) ∩ ρ(Mop)′.

Proof. Let u ∈ NM (P ). Since z and u commute, we have that

lim
n
‖ζz,kn − (u⊗ ū)ζz,kn (u⊗ ū)∗‖2 = lim

n
‖(z ⊗ 1)(ζz,kn − (u⊗ ū)ζz,kn (u⊗ ū)∗)‖2

≤ lim
n
‖ζkn − (u⊗ ū)ζkn(u⊗ ū)∗‖2

= lim
n
‖ζkn(u⊗ ū)− (u⊗ ū)ζkn‖2

By the Pythagorean Theorem we have that

‖ηkn(u⊗ ū)− (u⊗ ū)ξkn‖22 + ‖ηkn(u⊗ ū)− (u⊗ ū)ζkn‖22 = ‖ηkn(u⊗ ū)− (u⊗ ū)ηkn‖22,

allow us to see that

lim
n
‖ζz,kn − (u⊗ ū)ζz,kn (u⊗ ū)∗‖2 ≤ lim

n
‖ηkn(u⊗ ū)− (u⊗ ū)ηkn‖2.

By a simple triangle inequality we have

lim
n
‖ηkn(u⊗ ū)∗ − (u⊗ ū)ηkn‖2 ≤ lim

n
‖ηkn(u⊗ ū)− ηkn(αtk(u)⊗ ū)‖2

+ lim
n
‖ηkn(αtk(u)⊗ ū)− (αtk(u)⊗ ū)ηkn‖2

+ lim
n
‖(αtk(u)⊗ ū)ηkn − (u⊗ ū)ηkn‖2.

By (6.4) we can

lim
n
‖(αtk(u)⊗ ū)ηkn − (u⊗ ū)ηkn‖2 ≤ lim

n
‖(αtk(u)⊗ 1)ηkn − (u⊗ 1)ηkn‖2

= ‖αtk(u)− u‖2.

We find the same estimate for limn‖ηkn(u⊗ ū)− ηkn(αtk(u)⊗ ū)‖2. Thus, we find

lim
n
‖ηkn(u⊗ ū)∗ − (u⊗ ū)ηkn‖2 ≤ 2‖u− αtk(u)‖2 + lim

n
‖(αtk ⊗ 1)((u⊗ ū)ηn − ηn(u⊗ ū))‖2

≤ 2‖u− αtk(u)‖2 + lim
n
‖(u⊗ ū)ηn − ηn(u⊗ ū)‖2

= 2‖u− αtk(u)‖2 + lim
n
‖ηn − (u⊗ ū)∗ηn(u⊗ ū)‖2

= 2‖u− αtk(u)‖2.

Moreover, for any x ∈ B(Em−1) ∩ ρ(Mop)′ , using the fact that u is unitary, we have

ϕz,k(u∗xu) = lim
n

1
‖ζz,kn ‖22

〈(u∗xu⊗ 1)(1⊗ ū)ζz,kn , (1⊗ ū)ζn,kn 〉

= lim
n

1
‖ζz,kn ‖22

〈(x⊗ 1)(u⊗ ū)ζz,kn , (u⊗ ū)ζn,kn 〉

= lim
n

1
‖ζz,kn ‖22

〈(x⊗ 1)(u⊗ ū)ζz,kn (u⊗ ū)∗, (u⊗ ū)ζn,kn (u⊗ ū)∗〉
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Combining these statements with Lemma 6.13 we obtain:

|ϕz,k(u∗xu)− ϕz,k(x)| = lim
n

1
‖ζz,kn ‖22

|〈(x⊗ 1)(u⊗ ū)ζz,kn (u⊗ ū)∗, (u⊗ ū)ζn,kn (u⊗ ū)∗〉

−〈(x⊗ 1)ζz,kn , ζn,kn 〉|

≤ lim
n

‖x‖
‖ζz,kn ‖22

(
|〈(u⊗ ū)ζz,kn (u⊗ ū)∗, (u⊗ ū)ζz,kn (u⊗ ū)∗ − ζz,kn 〉|

+ |ζz,kn , ζz,kn − (u⊗ ū)ζz,kn (u⊗ ū)∗|
)

≤ lim
n

‖x‖
‖ζz,kn ‖22

(
‖(u⊗ ū)ζz,kn (u⊗ ū)∗‖2‖(u⊗ ū)ζz,kn (u⊗ ū)∗ − ζz,kn ‖2

+ ‖ζz,kn ‖2‖ζz,kn − (u⊗ ū)ζz,kn (u⊗ ū)∗‖2
)

≤ lim
n

‖x‖
‖ζz,kn ‖22

(
2‖ζz,kn ‖2 · 2‖u− αtk(u)‖2

)
≤ 4

δ
‖u− αtk(u)‖2.

Letting k →∞ and multiplying by u this yields

lim
k→∞

|ϕz,k(ux− xu)| = 0

for any u ∈ NM (P ), with uniform convergence for x ∈ B(Em−1) ∩ ρ(M)′. Consequently, it holds for any
a ∈ Span(NM (P )) and as well.

We now intend to apply Kaplansky’s density theorem (Theorem 2.7), but it remains to check that ϕz,k
is indeed bounded. Let a ∈ Em−1. Then

|ϕz,k(xa)| ≤ 1
δ2 ‖x‖|(az ⊗ 1)ζkn, ζkn|

= 1
δ2 ‖x‖‖za‖2

≤ 1
δ2 ‖x‖‖a‖2. (6.6)

We can estimate |ϕz,k(ax)| similarly, and using Kaplanky’s density theorem yields the result.

We continue to the final stage of the proof. Let µ be the representation ofM⊗binMop from the definition
of Em−1 as an M -M -bimodule. Then through Lemma 5.7 we find continuity with respect to the minimal
norm, and thus we can extend it to a unital completely positive map µ̃ : B(L2(M))⊗̄Mop → B(Em−1).
Now define Ψ on B(Em−1) by Ψ(x) := µ̃(x⊗1). Note that Ψ extends the left action on Em−1. Moreover,
as Mop is in the multiplicative domain of µ̃, elements in the range of Ψ commute with the right action.
Set ψz,k := φz,k ◦Ψ, which is a state on B(L2(M)).

Let u ∈ NM (P ). Using Lemma 6.14 we can see that for any x ∈ B(L2(M)) we have that

lim
k
|ψz,k((uz)∗x(uz)− x| = lim

k
|φz,k(Ψ((uz)∗x(uz))−Ψ(x))|

= lim
k
|φz,k((uz)∗Ψ(x(uz))−Ψ(x))|

= lim
k
|φz,k(u∗Ψ(xu)−Ψ(x))|

= 0,

where z disappears simply by applying the definition of φz,k. Moreover, by Lemma 6.14 this convergence
is uniform on the unit ball. By applying the Hahn-Banach separation theorem we can find a sequence
(µz,k) ⊂ S1(L2(M))+ such that ‖µz,k‖1 = 1 and

lim
k
‖µz,k − (uz)µz,k(uz)∗‖1 = 0 (6.7)
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for all u ∈ U(NM (P )). Since f is finite we may replace µz,k by zµz,kz, which we note is positive, and
scale it by ‖zµz,kz‖1 to obtain elements a sequence of (µz,k) of norm 1 elements such that zµz,kz = µz,k

and the limit holds for u ∈ F .

Let us define a sequence (νz,k)k ∈ S2(L2(M)) through νz,k := (µz,k)1/2. The elements have norm 1
and satisfy zνz,kz = νz,k, as well as

lim
k
‖νz,k − (uz)νz,k(uz)∗‖2 = 0 (6.8)

for all u ∈ F by Theorem 2.6. Let us identify S2(L2(M)) with L2(M)⊗L2(M̄) as bimodules through the
identification of (ξ ⊗ η) with θξ,η(v) := 〈v, η〉ξ. By Theorem 6.4.19 in [13], this yields the spatial tensor
norm on L2(M)⊗ L2(M̄). Using the above results, we can conclude:

|F | = ‖
∑
u∈F

νz,k‖2

≤ lim
k

∥∥∥∥∥∑
u∈F

(uz)νz,k(νz,k)∗
∥∥∥∥∥

2

+ lim
k

∥∥∥∥∥∑
u∈F

νz,k − (uz)νz,k(uz)∗
∥∥∥∥∥

2

= lim
k

∥∥∥∥∥∑
u∈F

(uz)νz,k(uz)∗
∥∥∥∥∥

2

=

∥∥∥∥∥∑
u∈F

uz ⊗ ūz

∥∥∥∥∥
M⊗M̄

.
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Conclusion

The main focus of this thesis was to show strong solidity of the q-Gaussian algebras for −1 < q < 1, in
which we have succeeded in Chapter 6. Borrowing results from [1] and [11], we combined the coarse bi-
module and the deformation αt to show that the normalizer of diffuse amenable subalgebras are amenable.
This result is based on Avsec’s paper [1], on which we have made some adjustments and improvements.

In our journey to achieve the main result, we have been exposed to some of the existing literature
on q-mathematics, and have seen the details of the construction of the q-Gaussian algebras. In Chap-
ter 3 we introduced and constructed the q-analogue of the Fock space. Together with the creation and
annihilation operator, which satisfy the q-relations, these form the basis of the q-Gaussian algebras.
Moreover, this chapter also introduced the Wick operator, which together with the vacuum vector, allows
us to study elements in Γq(HR). The Wick operator proved to be extremely useful in subsequent chapters.

In an intermezzo we showed that the q-Gaussian algebras are factors by an application of the Wick
operator. In the subsequent chapter, we introduced the deformation αt, which comes from a rotation of
HR into HR⊕HR. This chapter also introduced the coarse bimodule, which together with the deformation
formed a crucial element in the proof of strong solidity of Γq(HR).

Lastly, Chapter 6 was dedicated to the main focus of the thesis. Here we showed that Em−1 is con-
tained in the coarse bimodule for sufficiently large m dependent on q. We borrow a result from the
literature which gives us weak compactness for amenable subalgebras of Γq(HR). Unfortunately the
methods used in the proof only allowed for finite dimensional HR. Nevertheless, the aforementioned
results in combination with an application of the deformation αt allowed us to conclude that Γq(HR) is
in fact strongly solid.
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