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Magnetic hybrid Pd/Fe-oxide nanoparticles meet the demands for ablative 
thermo-brachytherapy

Rogier van Oossanena,b, Alexandra Maierc, J�er�emy Godarta, Jean-Philippe Pignola, Antonia G. Denkovab, 
Gerard C. van Rhoona and Kristina Djanashvilic 

aDepartment of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands; bDepartment of 
Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands; cDepartment of Biotechnology, Delft University of 
Technology, Delft, The Netherlands 

ABSTRACT 
Objective: To investigate the potential of hybrid Pd/Fe-oxide magnetic nanoparticles designed for 
thermo-brachytherapy of breast cancer, considering their specific loss power (SLP) and clinical con
straints in the applied magnetic field.
Methods: Hybrid nanoparticles consisting of palladium-core and iron oxide shell of increasing 
thickness, were suspended in water and their SLPs were measured at varying magnetic fields (12–26 mT 
peak) and frequencies (50–730 kHz) with a commercial alternating magnetic field generator 
(magneThermTM Digital, nanoTherics Ltd.).
Results: Validation of the heating device used in this study with commercial HyperMag-C nanopar
ticles showed a small deviation (±4%) over a period of 1 year, confirming the reliability of the method. 
The integration of dual thermometers, one in the center and one at the bottom of the sample vial, 
allowed monitoring of homogeneity of the sample suspensions. SLPs measurements on a series 
of nanoparticles of increasing sizes showed the highest heating for the diameter of 21 nm 
(SLP¼ 225 W/g) at the applied frequencies of 346 and 730 kHz. No heating was observed for the nano
particles with the size <14 nm, confirming the importance of the size-parameter. The heating ability of 
the best performing Pd/Fe-oxide-21 was calculated to be sufficient to ablate tumors with a radius ±4 
and 12 mm using 10 and 1 mg/mL nanoparticle concentration, respectively.
Conclusions: Nanoparticles consisting of non-magnetic palladium-core and magnetic iron oxide shell 
are suitable for magnetic hyperthermia/thermal ablation under clinically safe conditions of 346 kHz 
and 19.1 mT, with minimal eddy current effects in combination with maximum SLP.
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1. Introduction

Heat has been successfully applied in cancer treatment either 
using hyperthermia [1] to enhance the effectiveness of 
chemo- and radiotherapy [2] or to thermally ablate tissues 
[3]. During the last decades, magnetic nanoparticle hyper
thermia (MNH) has gained attention as a potential modality 
for delivering thermal treatment [4–8]. One advantage of 
MNH is that the magnetic nanoparticles (MNPs) can be deliv
ered to the tumor site percutaneously using fine needles. 
Then the MNPs are exposed to an alternating magnetic field 
(AMF). Depending on their magnetic properties, the MNPs 
interact strongly with the magnetic field and subsequently 
heat is produced [9, 10]. By injecting the MNPs selectively 
into the tumor, a highly localized thermal dose is delivered, 
which enables efficient hyperthermia and precise heat treat
ment. From a clinical perspective, MNP thermal ablation cor
responds to a minimal invasive procedure [11].

The feasibility of MNH depends on the nanoparticles 
being able to provide sufficient heating power, which is 
expressed as the specific loss power (SLP), derived from the 
total heating power dissipated from the MNPs to the envir
onment (P) divided by the mass of iron in the MNPs (mFe) 
[12] (Eq. (1)), and expressed in W/g [9, 10, 12].

SLP ¼
P

mFe
(1) 

Since there is still no standard method or equipment to 
measure SLP, the comparison of MNPs batches based on their 
SLP values should be done with conscious consideration of 
the conditions necessary for a reliable assessment. The litera
ture shows that SLP measurements are highly dependent on 
the heating device used, as well as on the analysis method 
and the applied field conditions. A study by Wells et al. has 
demonstrated that the SLP measured on the same batch of 
MNPs varies on average 30 to 40% between different 
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laboratories [13]. At the same time, the deviations in the out
come of the measurements performed at the same laboratory 
were less than 5% in most laboratories. This study indicates 
that although results cannot be directly compared between 
laboratories, results from the same laboratory on different 
MNP batches can be accurately compared. This, therefore, 
allows to compare different, internally produced MNPs for SLP 
performance, as long as all batches are measured using the 
same methodology and experimental set-up.

Currently, there is growing interest for the use of thermal 
ablation as alternative for surgery of early breast cancer 
[14–16]. In this indication, MNPs thermal ablation has the 
potential to become a minimally invasive treatment under 
light sedation, which is more economical and may lead to an 
improved cosmetic result as no breast tissue is removed [14, 
17–20]. Recently, we have reported on novel hybrid MNPs 
composed of a non-magnetic palladium core and a magnetic 
iron oxide shell for combined thermal ablation and low 
dose-rate (LDR) brachytherapy using103Pd [21, 22]. In this 
concept, MNPs are intended to be incorporated into gel-like 
seeds, which can be implanted into a tumor with high preci
sion using conventional brachytherapy equipment. The sub
sequent exposure to AMF leads to thermal ablation of the 
tumor bulk, while the radioactive MNPs decay slowly, deliver
ing a therapeutic dose over weeks without requiring multiple 
hospital visits as it is done with external beam radiotherapy 
[23]. As the ablation and adjuvant radiotherapy are realized 
in a single one-stop-shop procedure, this could significantly 
reduce patient burden and treatment time.

For this novel treatment to be successful, the first require
ment is that the hybrid MNPs can induce high SLP, which 
also means that a lesser amount of material is needed for 
intra-tumoral injection. Furthermore, there are also limits to 
the maximum magnetic field strength and frequency of an 
AMF that can be safely applied to patients. The AMF limit is 
reported to be around 5�109 Am−1s−1 for hyperthermia appli
cations using coils with a diameter of around 10 cm [24, 25]. 
This AMF limit is expressed as the product of magnetic field 
strength (H-field) in Am−1 and the frequency (s−1). However, 
our setup is calibrated using the magnetic flux density field 
(B-field), which is closely related to the H-field as follows 
from Eq. (2). Therefore, the AMF limit can be rewritten as 
approximately 6.3� 103 Ts−1, assuming mr � 1 for air. If this 
limit is exceeded, eddy currents might be induced in healthy 
tissue, causing unwanted and nonselective heating and 
ultimately burns. Therefore, the heating performance of 
MNPs should not only be evaluated using SLP values, but 
the clinical limitations on magnetic field strength and fre
quency should also be considered to enable clinical MNH.

B ¼ l0lrH (2) 

In this study we investigated several core–shell palladium 
iron oxide MNPs (Pd/Fe-oxide-n) with the sizes (n) ranging 
from 10 to 21 nm, prepared earlier in our laboratory [21]. The 
SLP of these MNPs was determined for frequencies ranging 
from 50 kHz to 730 kHz and compared to find the optimal 
batch for clinical application, keeping the AMF limit in mind. 
To ensure consistency of SLP measurements, commercial 
MNPs were used first to validate the reliability of the heating 
device.

2. Materials and methods

2.1. Nanoparticles heating device

Adiabatic heating experiments to assess SLP were performed 
with the magneThermTM Digital (nanoTherics Ltd. (Warrington, 
UK)) and a 50 mm diameter coil device. The device is a fully 
automated and integrated MNPs heating device, combining a 
multi-frequency AMF power supply unit with a set of coils of 
various sizes. The device is connected to a water cooler/ 
heater, enabling to control the coil temperature. This setup 
can generate high-intensity AMF with frequencies ranging 
from 50 to 730 kHz and maximum magnetic field strengths 
from 12 to 26 mT peak, depending on the frequency. The sys
tem includes two glass fiber thermometers (Osensa1 PRB-G40 
2.0 M-STM-MRI sensor) with a 1 mm outer diameter, compat
ible with strong magnetic fields for undisturbed temperature 
measurements. The magnetic field strengths delivered to the 
MNPs were measured using a 2D HF Magnetic Field Probe 
(AMF Life Systems LCC2) in combination with a TBS 1202B- 
EDU Digital Oscilloscope (Tektronix Inc.3). An overview of the 
available frequencies and the corresponding measured max
imum magnetic field strengths is given in Table 1.

The device used for the SLP measurements was cooled 
with water circulating through the coil at 20 �C, and heat 
loss was prevented by placing the plastic sample vial in an 
insulated polystyrene holder. The temperature was assessed 
by the fiber-optic thermometers inserted through the holes 
in the lid of the sample vial, with one thermometer posi
tioned in the center and the other at the bottom of the sam
ple vial (Figure 1). This setting allows for monitoring of the 
heating power distribution within the whole sample volume 
and ensures the suspension stability, as sedimentation of the 
MNPs would lead to a higher temperature at the bottom of 
the sample.

2.2. Magnetic nanoparticles and sample preparation

The Pd/Fe-oxide-n MNPs were synthesized in-house and charac
terized, which has been published previously by Maier et al. 
[21]. The commercial iron oxide nanoparticles, HyperMAG-C, 
coated with dimercaptosuccinic acid (DMSA), were purchased 

Table 1. Overview of the AMF frequencies generated by the magneThermTM Digital and the corresponding measured maximum magnetic field peak strengths 
including standard deviation (n¼ 3).

Frequency (kHz) 50 159 188 251 297 346 390 454 570 730

Magnetic field (mT) 26.36 ± 0.12 21.06 ± 0.04 18.66 ± 0.03 21.80 ± 0.04 20.74 ± 0.09 19.13 ± 0.12 16.81 ± 0.02 16.18 ± 0.12 13.20 ± 0.03 12.33 ± 0.04
Field-Frequency  
product (T s−1)

1318 3349 3508 5472 6160 6619 6556 7346 7524 9013
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from nanoTherics Ltd (Warrington, UK). These MNPs are avail
able in an aqueous suspension with a stock concentration of 
10 mg(Fe)/mL. All Pd/Fe-oxide MPNs used in this study (Table 
2) were coated with DSPE-PEG2000-COOH (DSPE ¼ 1,2-dis
tearoyl-sn-glycero-3-phosphoethanolamine, PEG¼ carboxy poly
ethylene glycol) following the procedure described in Ref. [21] 
and dispersed in water prior to the measurements. The batch 
Pd/Fe-oxide-21 was used as a model to study the effect of the 
surfactants: DSPE-PEG2000-COOH, DSPE-PEG2000-NH2, DSPE- 
PEG5000-NH2, DSPE-PEG2000-OCH3 and Si-PEG5000-COOH [21]. All 
surfactants were purchased from Avanti Polar Lipids 
(Alabaster, USA).

Magnetic properties were assessed by a superconducting 
quantum interference device (SQUID) using a MPMS LX mag
netometer from Quantum Design (San Diego, USA). About 
1 mg of dry MNPs was used and the hysteresis loops were 
obtained under continuously increasing static magnetic field 
at 300 K. The samples were prepared by suspending approxi
mately 4 mgFe of dry MNPs in 1 mL of Milli-Q water and 
intense stirring to homogenize the sample, although the 
homogeneity of the opaque suspensions could not be verified 

by eye. Directly after mixing, 1 mL of each suspension was 
transferred to a 2 ml plastic vial covered with a screw cap 
with two 1 mm holes to guide the fiber-optic thermometers. 
After heat measurements, the exact iron concentration of the 
sample was determined by inductively coupled plasma optical 
emission spectrometer ICP-OES Optima 8000 from Perkin 
Elmer (Groningen, The Netherlands) for the SLP calculations.

2.3. Specific loss power measurements

For all SLP measurements the temperature was tracked 
before the exposure until the sample temperature variation 
was less than 0.05 �C/min, indicating the sample has reached 
an equilibrium with the environment. Then, the sample was 
exposed to the magnetic field for 60 s while constantly meas
uring the temperature. The sample was allowed to cool nat
urally to its equilibrium temperature before starting the next 
measurement. The SLP were calculated using the DT 
between 5 and 50 s, to discard non-linear effects of the 
device caused during the starting and stopping of magnetic 
field [26].

2.4. Intra-laboratory reliability of SLP measurements

The focus of this study is to investigate the SLP of the hybrid 
Pd/Fe-oxide MNPs developed in our laboratory and the rela
tions of the corresponding SLP to magnetic field strength 
and frequency. As explained earlier, the SLP values com
monly reported to express the heat generation capacity of 
MNPs are influenced by the procedure and the device used 
[13]. To ensure intra-laboratory reliability of the experimental 
setup, we performed a series of SLP measurements using 
commercial HyperMag-C nanoparticles. A vial containing an 
aqueous MNPs suspension (10 mgFe/mL) was placed in the 
coil and the induced heating was measured at a frequency 
of 346 kHz with a field strength of 19.2 mT. This calibration 
measurement was repeated under the same conditions for 
12 months to assess the long-term performance of the 
magneThermTM Digital device. With a total of 21 measure
ments, ranging between 115 W/g and 132 W/g, the standard 
deviation was determined to be 4.9 W/g (3.9%) (Type A 
evaluation of standard uncertainty) as listed in Table S1. This 
standard deviation has been used as measurement uncer
tainty (Type B evaluation of standard uncertainty) for all 
other samples. In addition, a fresh HyperMag-C suspension 
was measured midway (after 6 months), which provided a 
comparable SLP value indicative of the maintained colloidal 

Figure 1. Schematic drawing of the insulated polystyrene sample holder (grey) 
containing the plastic sample vial (blue) and two glass fiber thermometers.

Table 2. Overview of MNPs evaluated in this study and their corresponding magnetic properties [21].

MNPs Diameter (nm) Ms (300 K/5 K) (emu/gNP) Hc (300 K/5 K) (Oe) TB (K) Batch name in Ref. [21]

Fe-oxide-comm 15 —a —a —a —b

Pd/Fe-oxide-10 10 20.5/26.4 10/466 30 Exp_[surf]/[Fe]¼ 2
Pd/Fe-oxide-12 12 28.1/36.9 19/236 23 Exp_DPE
Pd/Fe-oxide-13 13 45.1/52.1 8/287 40 Exp_3 �C
Pd/Fe-oxide-16 16 39.9/46.5 9/56 120 Exp_ODE:DPE(1:1)
Pd/Fe-oxide-18 18 55.4/63.6 4/13 160 Exp_DBE
Pd/Fe-oxide-19 19 57.5/63.7 6/213 130 Exp_7 �C
Pd/Fe-oxide-20 20 58.7/67.9 8/20 180 Exp_standard
Pd/Fe-oxide-21 21 61.4/69.2 12/67 200 Exp_10mg
anot determined; bcommercial MNPs.
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stability of the sample used for the long-term measurements. 
It is noteworthy that a slight decrease in the suspension sta
bility became visible only after 10 months and became obvi
ous after 12 months. The SLP of the 12-month-old sample 
was measured 5 times in a row, with the first measurement 
being 119 W/g, each consecutive measurement slightly less 
and the last measurement being only 101 W/g, as it can be 
seen in Figure S1. This underlines the importance of a sam
ple that is stable in suspension and the need to properly vor
tex the sample before each measurement.

2.5. SLP calculations

The SLP values, typically calculated using Eq. (3), account for 
two heat loss mechanisms. When the system is adiabatic, 
meaning the heat loss to the environment is negligible com
pared to the sample heating, P is calculated as follows:

P ¼ C �mm �
dT
dt

(3) 

where C is the specific heat capacity of the medium (water), 
mm is the mass of the medium, T is the temperature and t is 
the time [27].

In a non-adiabatic system, the energy loss to the environ
ment must be compensated using the Corrected Slope 
Method (CSM) [27]:

P − LDT ¼ C �
dT
dt

(4) 

where L is the linear loss factor that describes the heat loss 
to the environment as a function of DT (the temperature dif
ference between the sample Ts and the environment T0) and 
L is a sample-specific constant that is derived from the cool
ing curve after the magnetic field has been turned off. The 
CSM is only valid for the values of DT where the heat loss to 
the environment is linearly proportional to DT.

Figure 2 suggests that it takes at least 30 min for a sample 
in an insulated holder to cool down to ambient temperature 
(DT< 20 �C) after stopping the AMF. The cooling rate 

(0.75 �C/min) is around 4% of the heating rate (17.9 �C/min), 
which is close to the error in the SLP measurements as 
reported in Section 2.4. When comparing the adiabatic meth
ods and CSM for calculating the SLP, the difference in the 
two methods was smaller than the measurement uncertainty. 
Therefore, the system was assumed to be adiabatic for 
DT< 20 �C.

2.6. Sample inhomogeneity

Although all samples were thoroughly mixed prior to meas
urements, the heat generated by some, not included, MNPs 
batches was not homogeneous. Figure 3 represents tempera
ture curves of an old, oxidized HyperMag-C sample, which 
has become unstable in suspension. Figure 3(A) shows a lin
ear increase in sample core and bottom temperatures meas
ured immediately after intense vortexing, with a slightly 
slower cooling rate measured at the bottom. In contrast, 
when the measurements were done without vortexing the 
same sample, different heating/cooling rates were measured 
at the two locations, indicating aggregation and sedimenta
tion of the MNPs (Figure 3(B)). The sedimentation of the 
MNPs was not visible to the naked eye and was only 
observed by comparing the two temperature profiles. This 
underlines the importance of two temperature probes to 
check the stability of the suspensions for proper investiga
tions of SLPs.

3. Results and discussion

3.1. MNP size effect

The hybrid Pd/Fe-oxide MNPs batches SLP, with characteris
tics detailed in Table 2, were measured at the frequencies of 
50, 346 and 730 kHz (Figure 4) using the concentrations 
determined by ICP-OES (Table S2). The first observation 
shows that the SLP values measured at 50 kHz remain low 
(40 W/g) for all MNPs sizes and MNPs below 13 nm do not 
heat at all regardless of the frequencies. Above this size, the 

Figure 2. Heating/cooling curve of HyperMag-C sample in the insulated sample holder. The solid and the dashed lines represent the core and the bottom temper
atures of the sample, respectively.
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SLP of all MNPs typically show an increasing heating trend 
with size, however, some interesting observations can be 
made. For instance, the SLP of Pd/Fe-oxide-n (n¼ 13, 18, 21) 
are similar at 346 and 730 kHz, while Pd/Fe-oxide-16 shows 
more heating at 730 kHz. Interestingly, the opposite is true 
for Pd/Fe-oxide-19 and Pd/Fe-oxide-20, where more heating 
is detected at 346 kHz. The trend of increasing SLP with 
increasing sizes, at least in the range 12 to 20 nm, has also 
been previously reported for conventional iron oxide MNPs 
[28–30]. The SLP of the three largest samples, Pd/Fe-oxide-n 
(n¼ 19, 20, 21) was determined for all frequencies available 
on the magneThermTM Digital (Table S3). These measure
ments confirmed that the largest SLP values are observed at 
346 kHz, while at higher frequencies the SLP either plateaus 
(n¼ 21) or gradually decreases slightly (n¼ 19, 20).

In an attempt to understand the difference in frequency 
dependence, we took a closer look at the other parameters of 
these MNPs, as previously reported by Maier et al. [21] and 

now shown in Table 2. There is a possibility that Pd/Fe-oxide- 
19 and Pd/Fe-oxide-20 MNPs have lower saturation magnetiza
tion, which limits their SLP. However, when comparing the 
saturation magnetization of the samples, Pd/Fe-oxide-19 and 
Pd/Fe-oxide-20 do not appear to be substantially different 
from the other samples. When looking at the blocking tem
perature TB, a measure of the anisotropy of the MNPs [31], 
there is also no clear difference between Pd/Fe-oxide-19, Pd/ 
Fe-oxide-20 and the other samples. The size and size distribu
tion of the samples, whose TEM images are given in Figure S1, 
do not provide any indication either. Although the size distri
bution of Pd/Fe-oxide-20 can be described as narrow com
pared to most other samples, Pd/Fe-oxide-19 MNPs exhibit a 
broader size distribution comparable to that of Pd/Fe-oxide-21 
and Pd/Fe-oxide-16 MNPs [21].

In general, SLP is higher at 730 kHz compared to 346 kHz. 
However, for some samples, among which Pd/Fe-oxide-19 
and Pd/Fe-oxide-20, this is not the case. The decrease in SLP 

Figure 3. Heating curves of an old, unstable batch of HyperMag-C MNPs obtained with two thermometers placed at the center (solid line) and the bottom (dashed 
line) of the sample measured immediately after (A) or a few hours after (B) rigorous stirring.

Figure 4. The SLP of all synthesized Pd/Fe-oxide-n MNPs vs their size (n) measured at 50, 346 and 730 kHz. Commercial nanoparticles (Fe-oxide-comm, HyperMag- 
C) with the size of 15 nm are also included for comparison.
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at 730 kHz could indicate that the frequency is approaching 
the so-called blocking frequency, which is too high for the 
magnetization of the MNPs to revert before the direction of 
the external field is changed again [9]. Further investigation 
on SLP of these samples at frequencies beyond 730 kHz 
could give more insight into the effects of the blocking 
frequency.

Another parameter, related to the saturation magnetiza
tion, is the so-called anisotropy field Hk. This is the external 
field intensity required to completely change the magnetiza
tion orientation, e.g. the external field at which the sample 
reaches its saturation magnetization. In Figure 5 it can be 
seen that within the field strengths used (±300 Oe max) the 
magnetization of the sample is not saturated yet, indicating 

that the Hk field is not reached. This implies that the MNPs 
are still in the regime, where an increase in magnetic field 
strength would increase magnetization, and thus increase 
SLP. Therefore, it can be concluded that Hk is not a limiting 
factor in the SLP of the samples in this study.

3.2. Blocking temperature effect

In Figure 6, the SLP values of the samples are plotted against 
the corresponding blocking temperatures (TB) as determined 
using Zero Field Cooling (ZFC). The blocking temperature 
generally increases with increasing MNP size [21]. For both 
size and TB, a trend of increasing SLP is observed. Samples 
Pd/Fe-oxide-10 and Pd/Fe-oxide-12, which did not show 

Figure 5. Magnetization curves measured with dry Pd/Fe-oxide MNPs at 300 K (A) as described in [21] and magnification of the x-axis showing coercivities Hc at 
static field.

Figure 6. Blocking temperatures of the Pd/Fe-oxide-n MNPs [21] vs their SLP at 50, 346 and 730 kHz.
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significantly high SLP, also have the lowest TB. Interestingly, 
the TB of Pd/Fe-oxide-13 is only slightly higher, while the SLP 
is much higher. This suggests the size is more of a limiting 
factor than TB for these MNPs.

3.3. Surfactant effect

Common practice to increase the colloidal stability of the sus
pension of MNPs is to coat their surface with surfactant mole
cules, of which numerous options are available [32]. Therefore, 
in this study we also investigated the impact of four different 
surfactants on the SLP performance. To do this, Pd/Fe-oxide- 
21 MNPs were coated with various polyethylene glycol (PEG) 
derivatives and SLP were measured at 346 kHz and 19.2 mT. 
The first sample was coated with DSPE-PEG2000-COOH, which 
is also used for all the samples mentioned in the previous 
sections. The other three samples were coated with DSPE- 
PEG2000-methoxy, DSPE-PEG2000-NH2 and DSPE-PEG5000-NH2 

respectively. In this experiment no significant difference in SLP 
was measured between these four samples, with the SLP rang
ing from 188 to 205 W/g.

3.4. SLP clinical application

We have investigated various MNPs and determined their 
SLP in order to find the best performing one for clinical 
applications. There have been many studies evaluating the 
heat dissipation from MNPs for hyperthermia and the corre
sponding MNPs distribution [33–37], which can become 
rather complex. For our purpose, we used a simple first 
approximation introduced by Dutz and Hergt [24], who pro
posed a formula to determine the minimal SLP to elevate the 
temperature in a spherical tumor by DT, assuming a homo
geneous MNPs concentration c and a tumor radius R:

SLP ¼
DT � 3k

c � R2
(5) 

Here k is the heat conductivity of tissue, assumed to be 
0.64 WK−1m−1 [38]. This equation indicates that the smaller 

the tumor, the higher the SLP needed to reach the same 
temperature increase.

Using Eq. (5) and assuming an average concentration of 
10 mg/mL of MNPs is achievable by implantation of the MNPs, 
a 2D color-plot with SLP, R and DT was made (Figure 7). 
Thermal ablation treatment requires a temperature increase of 
at least 15 �C or higher above the body temperature [39]. 
Clearly, MPNs Pd/Fe-oxide-21(line a) and Pd/Fe-oxide-18 (line 
b), with SLP greater than 200 W/g at both 346 kHz and 
730 kHz, have the potential to thermally ablate tumors with a 
radius as small as 4 mm when using an average concentration 
of 10 mg/mL of MNPs. In the case of Pd/Fe-oxide-20 (line c) it 
can be seen that an SLP< 120 W/g can still lead to ablation of 
the tumor larger than 5 nm. An overview of the samples with 
their corresponding SLP (> 50 W/g) and the minimum tumor 
size that can be thermally ablated is given in Table 3.

Table 1 shows that at 346 kHz, the Hf value (6619 Ts−1) is 
close to the AMF limit (6300 Ts−1) for clinical application, 
while at 730 kHz the Hf value (9013 Ts−1) is 35% higher. This 
means that to use thermal ablation safely at 730 kHz, the 
magnetic field strength must be lowered by 35% to remain 
below the AMF limit. However, this would significantly 
reduce the SLP and is therefore undesirable. At 50 kHz, the 
SLP is only about 40 W/g, but the Hf value around 1300 Ts−1 

is almost 5 times lower than the AMF limit. A magnetic field 
strength 5 times higher, at 150 mT, would be needed, but 
we could not determine SLP at these high magnetic field 
strengths due to hardware limitations. As the heating power 
increases linearly with frequency and exponentially with field 
strength, a 150 mT field at 50 kHz would theoretically provide 
more heating than 19 mT and 346 kHz, while the Hf value 
remains the same. However, we foresee that it might be 
challenging to design a clinical system capable of generating 
such a strong field, because the required current would be 
so large that this would in turn introduce new demands for 
coil cooling, safety and other technological aspects. At the 
same time, it has been reported that at very high field 
strengths, the increase in SLP is limited as it becomes stable 
and does not raise further [40]. Taking all these factors into 
account, our results suggest that the best-case scenario that 

Figure 7. Modeled relationship between SLP and tumor radius, and the achievable temperature increase within the tumor with homogeneously distributed MNPs. 
The lines represent the actual SLP values of Pd/Fe-oxide-21 (A), Pd/Fe-oxide-18 (B) and Pd/Fe-oxide-20 (C) measured at the optimal field (19 mT) and frequency 
(345 kHz) combination.
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can be safely realized includes Pd/Fe-oxide-21 MNPs heated 
at 346 kHz. It would be interesting to investigate frequencies 
between 50 kHz and 346 kHz at higher magnetic field 
strengths, where higher heating might be obtained for the 
same Hf value.

4. Conclusion

Comparing the different hybrid Pd/Fe-oxide MNPs and their 
corresponding heating performance, our results suggest a 
strong heating power dependency on MNPs size and block
ing temperature, comparable to commercial iron oxide 
MNPs. A trend of greater SLP with increasing size was 
observed, along with an absence of heating power at small 
MNPs sizes. Therefore, the finding that the best performing 
MNPs are Pd/Fe-oxide-21 with the largest diameter of 21 nm 
at both 346 kHz and 730 kHz, is in line with the reported 
observations for iron oxide MNPs.

We conclude that within the frame of our experimental 
design, Pd/Fe-oxide-21 MNPs at a concentration of 5 mg/mL 
can effectively ablate tumors of 5 mm or larger. Accounting 
for the AMF limit for safe clinical application, we recommend 
using radioactive Pd/Fe-oxide hybrid MNPs for thermal abla
tion with a 346 kHz field to minimize eddy current effects 
while maximizing SLP.
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