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Chapter 1

Introduction

This chapter presents the research scope and highlights the main contributions of the
thesis. The background of the thesis is first introduced. Then, the existing coordin-
ation strategies are briefly presented with a concise literature review and the idea of
using model predictive control for trajectory control is described. The research needs,
objectives, and contributions are discussed thereafter. Finally, we present the outline
of the thesis.
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2 Coordination Strategies of Connected and Automated Vehicles

1.1 Background

Highway traffic congestion is a societal problem faced by many countries (van den
Broek et al., 2011; Milanés et al., 2011; Xie et al., 2017). It results in excessive travel
delays, energy consumption, and carbon dioxide (CO2) emissions (Skabardonis et al.,
2003; Wen et al., 2020; Barth and Boriboonsomsin, 2009). On-ramps on highways
are site-specific bottlenecks where mainline and on-ramp vehicles have to interact due
to the mandatory lane-changing or merging demand of on-ramp vehicles. The “mer-
ging” demand from on-ramp vehicles can cause perturbations to the highway mainline
traffic. The perturbations may bring mobility or efficiency loss (e.g. traffic congestion
or breakdown) and safety problem (e.g. rear-end, side-swipe, and merge-related colli-
sions) (Hirunyanitiwattana and Mattingly, 2006; McCartt et al., 2004; Jacobson et al.,
2006). Improving merging efficiency and safety is vital to improve traffic operations
near on-ramps. Traditional traffic management measures for on-ramp control include
ramp metering and variable speed limit control (Arnold et al., 1998; Lin et al., 2004).
The ramp metering uses traffic lights to regulate the entering of on-ramp vehicles into
the merging area. Variable speed limit control regulates mainline traffic speeds to re-
solve stop-and-go waves. The two measures are extensively studied in the literature
to reduce queue, collisions, travel time and delay, and emission and fuel consumption
(Lin et al., 2004; Jacobson et al., 2006).

With the emergence of intelligent vehicles, new control approaches can be explored to
improve traffic operations near on-ramps. Sensing and communication technologies
can enhance intelligent vehicles’ situation awareness and enable cooperative control
(Wang et al., 2014b). Driving automation systems can fulfill lateral and longitudinal
vehicle motion control actions (SAE International, 2021). They are designed to relieve
the drivers from the driving tasks and bring ride comfort (Van Arem et al., 2006). With
enhanced situation awareness, automated vehicles have the potential to keep smal-
ler inter-vehicle distances, thus potentially improving roadway capacity (Xiao et al.,
2018). Thus, they attract the attention of the public, researchers, and traffic operators.

To facilitate the research and implementation of automation in vehicles, SAE interna-
tional provides a taxonomy for six levels of driving automation: level 0 (no driving
automation), level 1 (driver assistance), level 2 (partial driving automation), level 3
(conditional driving automation), level 4 (high driving automation), and level 5 (full
driving automation), based on the functionality of the driving automation system fea-
ture (SAE International, 2021). For automated vehicles with levels 3 to 5 driving auto-
mation, they are expected to accomplish all dynamic driving tasks automatically. De-
pending on the usage of communication technology to collect ambient traffic informa-
tion, automated vehicles can be classified into autonomous automated vehicles (AAVs)
and connected automated vehicles (CAVs). AAVs,e.g. vehicles equipped with adaptive
cruise control in the market (Knoop et al., 2019), solely rely on their onboard sensors to
collect surrounding vehicular states and make decisions for themselves without cooper-
ation. Besides using on-board sensors, CAVs, e.g. vehicles equipped with cooperative
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adaptive cruise control in the market (Wang et al., 2014b), further improve their situ-
ation awareness by exchanging vehicular state and control information with each other
via vehicle-to-vehicle (V2V) communication and/or with infrastructure via vehicle-to-
infrastructure (V2I) or vehicle-to-everything (V2X) communication. Communication
among automated vehicles can maintain smaller inter-vehicle distance without sacri-
ficing traffic stability when lane changing process exists (Van Arem et al., 2006; Ma
et al., 2020). Traffic is stable if small changes in the speed of the leading vehicle are
attenuated by following vehicles. To this end, CAVs have more potential to improve
merging efficiency.

CAVs’ impact on traffic operations depends on CAVs’ acceptance by drivers and con-
trollers’ performance. Figure 1.1 shows the vehicle control structure and the interface
between it and the infrastructure control structure. It is constructed by referring to an
automated highway system (AHS) control structure (Hedrick et al., 1994; Raza and
Ioannou, 1996). The infrastructure control is made up of a network and a link layer.
The network layer issues routing instructions and traffic synchronization commands,
and provides desired density distributions to the link layer. Based on the received de-
sired density from the network layer and traffic flow measurements from the section,
the link layer issues speed and headway commands to vehicles in its section, 1 or 2
kilometers stretch of highway.

Coordination

Regulation

Vehicle dynamics

Maneuver planning and/or 

trajectory control

Throttle, Brake, Steering Controllers

Throttle, Brake, Steering Subsystems

Link

Infrastructure 

Control

Vehicle control

Network

Roadway controller

Network controller

Figure 1.1: Vehicle control structure (Hedrick et al., 1994; Raza and Ioannou, 1996)

The vehicle control consists of three layers: coordination, regulation, and vehicle dy-
namics layers. The coordination layer communicates with the link layer, other CAVs,
and drivers, schedules the desired maneuver of operation, and gives desired accel-
eration trajectories to the regulation layer. The regulation layer generates appropriate
commands to vehicular actuators to follow the planned trajectories with throttle, brake,
and steering controllers.
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This thesis mainly concentrates on the coordination layer and considers interfaces
between the coordination layer and the link and regulation layers. The maneuvers
for CAVs include cruising, platooning, cooperative car-following, and lane changing.

1.2 Development of coordination strategies

Figure 1.2 shows a typical on-ramp merging scenario in mixed traffic. On-ramp vehicles
travelling in lane 1 need to merge into mainline traffic. Coordination strategies make
mainline CAVs facilitate the merging of on-ramp vehicles by generating desired gaps
or/and speeds. Which mainline CAV in lane 2 creates a gap for which on-ramp CAV
to merge into is represented by a merging sequence. The merging sequence is the
specific sequence of vehicles from mainline and on-ramp traffic when passing through
the merging area (Ntousakis et al., 2016). Existing coordination strategies for CAVs
near on-ramps can be categorized into four groups based on main research focuses and
assumptions. The four groups are described in the following subsections.

Figure 1.2: Schematic illustration of a typical on-ramp merging scenario in mixed
traffic

1.2.1 Coordination strategies to achieve predefined final merging
conditions at a fixed merging point

To have safe and efficient merging maneuvers, the design objectives of some coordin-
ation strategies are to make both mainline and on-ramp CAVs reach their desired inter-
vehicle distances and merging speeds at a fixed merging point, where lateral maneuver
is executed to accomplish merging process. The desired inter-vehicle distances can
be based on a constant time gap or constant spacing (Xiao et al., 2018). In Wang
et al. (2013), a virtual platoon forms by mapping the on-ramp CAV onto the main lane.
Accordingly, mainline and on-ramp CAVs regulate their speed trajectories to have a
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constant spacing at a fixed merging point, respectively. In Ntousakis et al. (2016), a
merging sequence is assumed to be given. Each CAV regulates a longitudinal accel-
eration trajectory by minimizing the acceleration and its first and second derivatives
during the on-ramp merging maneuver, subject to constraints on final vehicle speed
and headway at a fixed merging point. Desired inter-vehicle distances are large and
safe enough for merging. Noticeably, if the length of the on-ramp lane is short, an
on-ramp CAV may not reach its desired inter-vehicle distance with its future preceding
vehicle at a predefined merging point.

1.2.2 Coordination strategies to improve traffic operations

Improving traffic operations near on-ramps with CAVs is the control goal of many
coordination strategies. They are applied to mainline CAVs or both mainline and on-
ramp CAVs by mainly focusing on acceleration regulation. In Zhou et al. (2017), two
cooperative rules are proposed for mainline CAVs to react to surrounding vehicles in
advance. Mainline CAVs prepare large gaps to facilitate merging of detected on-ramp
vehicles in advance, thus reducing travel time. In Scarinci et al. (2015), mainline CAVs
act as leaders of different platoons. They are controlled to reduce speeds to create
gaps for on-ramp vehicles to merge into, thus reducing the number of late-merging
vehicles. In Xie et al. (2017), mainline and on-ramp CAVs are controlled together by
a centralized cooperative merging strategy. Acceleration trajectories are regulated by
minimizing a weighted sum of minus speeds and standard deviation of accelerations. In
Rios-Torres and Malikopoulos (2017a), mainline and on-ramp CAVs are coordinated
for a common goal. The goal is to minimize a weighted sum of accelerations and
time intervals to enter into a merging zone. Only one CAV is allowed to enter in the
merging zone each time to avoid lateral conflicts. In Letter and Elefteriadou (2017),
with an assigned vehicle order, each CAV maximizes its average speed. Safe time
gaps with the conflict trajectory are kept. Besides, vehicles are not allowed to exceed
a predefined merging speed.

In Xie et al. (2017); Rios-Torres and Malikopoulos (2017a); Letter and Elefteriadou
(2017), controllers are designed based on model predictive control (MPC) and the gen-
erated acceleration trajectories of CAVs lead to small values of the constructed control
objectives, respectively. The performance of the MPC controllers is tested by assuming
the prediction model used in the controller is the same as the actual vehicle dynamics
model of the vehicle system. However, model mismatches may exist between the two
models. Model mismatches may deteriorate the performance of the MPC controllers
and even lead to string instability (Wang et al., 2016b). A platoon has string instability
if the disruption of system states increase over the vehicle number in the platoon (Feng
et al., 2019). Attenuating the detrimental influence of the model mismatches on the
performance of the MPC controllers is important for practical usages.
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1.2.3 Coordination strategies considering merging sequence with
a single main lane

Merging sequences matter in improving traffic operations. Merging two conflicting
streams of traffic into one is extensively researched, whereas merging sequences have
been sparsely addressed (Wang et al., 2013; Ntousakis et al., 2016; Rios-Torres and
Malikopoulos, 2017a; Xie et al., 2017; Letter and Elefteriadou, 2017). In Wang et al.
(2013), a virtual vehicle is introduced by mapping an on-ramp CAV onto the main
lane to form a merging sequence. A given merging sequence is assumed in Ntousakis
et al. (2016). A first-in-first-out rule based on locations is used to establish merging
sequence in Rios-Torres and Malikopoulos (2017a). In Xie et al. (2017), ramp vehicles
are projected onto the main lane using a predefined fixed merging point as the refer-
ence. In Letter and Elefteriadou (2017), a merging sequence is scheduled by using
vehicles’ potential arrival times to a predefined fixed merging point. The aforemen-
tioned approaches may not establish optimal merging sequences.

One straightforward way to establish an optimal merging sequence is to evaluate all
possible merging sequences with a certain performance indicator. In Athans (1969),
given a merging sequence, the acceleration trajectories of vehicles are generated based
on optimal control which minimizes CAVs’ deviations to their desired states, including
relative speed to the future directly preceding vehicle, acceleration, and gap error. The
gap error is the difference between the actual gap and the desired gap. All merging
sequences are then evaluated to choose the optimal one that brings the minimal value
of the control objective. In Awal et al. (2013), feasible and prospective merging se-
quences are chosen by using estimated times of CAVs to reach a fixed merging point at
a decision-making point. With a given merging sequence, CAVs utilize a traffic model
which considers several vehicles ahead to generate speed. The chosen merging se-
quences are then evaluated to find the optimal one that brings minimal merging delay.
Another way is to choose sub-optimal merging sequences by considering final desired
or assumed vehicular states at a merging point. In Zhao et al. (2018), CAVs’ min-
imum arrival times at an intersection are calculated by assuming that they accelerate to
their maximum speed and keep the maximum speed to pass through the intersection,
respectively. A CAV’s maximum arrival times are calculated based on whether it can
stop at the stop line with its maximum deceleration. If it cannot stop, its maximum
arrival time is calculated based on its initial speed, distance to the stop line, and the
maximum deceleration; otherwise, it is given the minimal arrival time plus a max-
imum delay. An upper-level optimization dynamically establishes merging sequences
by minimizing the total travel time, subject to the minimal and maximum arrival times
of CAVs, and safe entering and exiting time headway between consecutive vehicles.
A lower-level optimization follows the decisions of the upper-level optimization and
maximizes total vehicular speeds to generate acceleration trajectories for CAVs. In
Duret et al. (2019), CAVs are assumed to maintain their free-flow speed between their
initial positions and a merging position; and the final formed platoon settles down to
equilibrium at the merging position. Thus the natural ordered sequence is achieved
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by projecting vehicles’ initial positions with the maximum speed along a shock wave
starting from the merging point. An operational layer controller is designed based on
MPC. It regulates acceleration trajectories of CAVs by minimizing a weighted sum of
predicted headway errors, relative speeds to the directly preceding vehicles, and accel-
erations. A headway error is the deviation between the actual headway and the desired
headway.

In summary, in Athans (1969) and Awal et al. (2013), future detailed trajectory plan-
ning approaches are utilized in seeking optimal merging sequences. In Zhao et al.
(2018) and Awal et al. (2013), two-layer hierarchical control approaches are adopted.
Higher layers establish merging sequences by making vehicles pass through conflict
areas as quickly as possible; and lower layers regulate acceleration trajectories to reach
maximum speeds or desired states. The merging sequences are established consider-
ing initial and vehicular states and cooperative merging processes start immediately.
On-ramp CAVs are not given chances to travel to their desired speeds for certain time
periods to create large inter-vehicle distances or small speed deviations for merging
preparation.

1.2.4 Coordination strategies considering merging sequence with
multiple main lanes

When CAVs drive in multiple main lanes near on-ramp merging areas, the majority
of cooperative merging strategies prohibit mainline CAVs to change lane. Only few
studies allow mainline CAVs to change lane to facilitate on-ramp merging. In Hu and
Sun (2019), an on-ramp merging area with two main lanes is divided into a cooper-
ative lane changing region and a cooperative merging region. In the cooperative lane
changing region, a rule-based lane changing decision is applied to adjust upstream
lane flow distribution so that downstream vehicle volume for the two main lanes after
merging is balanced. The decision gives lane changing proportion of CAVs in the
outer main lane. The mainline CAVs in the outer main lane are then randomly se-
lected to change lane based on the proportion and all CAVs’ acceleration trajectories
are generated by maximizing the total speeds inside the lane changing region. In the
cooperative merging region, each vehicle is controlled to maximize its speed, subject
to safe inter-vehicle distance with the conflict trajectory and speed, acceleration, and
jerk constraint. In Ding et al. (2021), an on-ramp merging area with two main lanes
is divided into an induction zone and a merging zone. In the induction zone, the lane
changing decisions for mainline CAVs in the outer main lane are given by maximizing
the deviation between the saved time of on-ramp CAVs and the total delay caused by
lane changing of mainline CAVs. In the merging zone, on-ramp CAVs use the first-
in-first-out principle to merge into the mainline traffic. The upper and lower bound of
an on-ramp CAV’s time window for merging are roughly estimated based on its initial
speed, position, and the predefined merging speed, and a set maximum waiting time.
All on-ramp CAVs’ arrival times are scheduled together by minimizing the total delay
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caused to the mainline CAVs in the outer main lane. In Hang et al. (2021), a game
theoretical approach is utilized to generate each vehicle’s longitudinal acceleration. It
minimizes a cost function which is constructed based on predicted vehicular states.
During on-ramp merging, an on-ramp vehicle, its following vehicle in the adjacent
lane, and the following vehicle’s follower in another main lane play a coalitional game
to check whether their overall cost can be reduced without sacrificing each vehicle’s
benefit.

The approaches in Hu and Sun (2019) and Ding et al. (2021) separate lane changing of
mainline CAVs from merging of on-ramp CAVs into two regions. The lane changing
behaviors of mainline CAVs are restricted in upstream predefined areas. In Hang et al.
(2021), at most 3 vehicles are considered and their relative positions are restricted.
The possibility for mainline CAVs to facilitate on-ramp merging by changing lane is
restricted.

1.3 Research needs

The thesis is motivated by the following research needs:

N1 Robustness with respect to the mismatch between vehicle dynamics and coordin-
ation strategies models: A large model mismatch between vehicle dynamics and pre-
diction models may deteriorate the performance of MPC controllers. Ensuring control-
lers’ robustness is important and is a valuable research direction. A robust controller
can maintain stability and an acceptable performance level in the presence of bounded
modelling errors. However, the robustness of MPC coordination methods is rarely
checked or researched.

N2 Safe lane changing condition not based on final desired inter-vehicle distances
and speeds: Reaching desired inter-vehicle distances and zero relative speeds with
preceding vehicles can ensure safe merging. In crowded traffic or with a short on-ramp
lane, an on-ramp CAV may not reach its desired inter-vehicle distances with its future
preceding and following vehicles when it arrives at a predefined merging point. In this
case, how can the on-ramp CAV still join the mainline traffic safely? What are the
safe inter-vehicle distances for the on-ramp CAV to change lane? These two questions
need to be answered to check whether safe lane changing conditions can be relaxed
without adhering to the desired inter-vehicle distances. Besides, after safe merging
conditions are met, a driver is expected to take over and accomplish the lane changing
maneuver in the literature. It is necessary to propose advanced cooperative merging
strategies which allow on-ramp CAVs to accomplish merging automatically without
the intervention of drivers.

N3 Optimal merging sequence planning: Merging sequence of two conflicting streams
of traffic matter in improving merging efficiency. The optimal merging sequence is the
best merging sequence based on a certain performance indicator. Whereas, how to
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select the optimal merging sequence regarding traffic operations is rarely answered.
Besides, some on-ramp CAVs may enter into the on-ramp lane or a control zone with
low speeds when they are assigned merging sequences, respectively. Is it beneficial to
make them accelerate to increase their speeds first before guiding them to their target
slots?

N4 Cooperative merging control approach allowing mainline CAVs to change lane:
Allowing mainline CAVs to change lane to facilitate on-ramp merging improves mer-
ging efficiency. Nevertheless, for on-ramp merging sections with multiple mainstream
lanes, the majority of the existing cooperative merging strategies prohibit mainline
vehicles to change lane. The state-of-the-art merging strategies that allow mainline
CAVs to change lane constrain their lateral maneuver in a divided zone or allow at
maximum two mainline CAVs to have this choice. It is valuable but challenging to
systematically explore how a mainline CAV change lane helps to improve traffic oper-
ations.

1.4 Research objectives

The objective of this thesis is to design coordination strategies for CAVs near on-
ramps considering controller performance, safe lane changing, maneuver planning,
and trajectory control. The main objective is broken into four sub-objectives which
address the four research needs, respectively.

The first sub-objective is to develop a robust platooning control method. It mainly
focuses on longitudinal coordination of CAVs.

The second objective is to develop a cooperative merging strategy which allows on-
ramp CAVs to merge before they reach their desired inter-vehicle distances to pre-
ceding vehicles and their desired speeds, and assists CAVs to accomplish merging
automatically. A merging sequence is assumed to be given.

The third objective is to develop a cooperative merging strategy which uses a new ap-
proach to seek the optimal merging sequence and regulates CAVs’ lateral and longit-
udinal trajectories to accomplish merging. On-ramp CAVs are given chances to adjust
their positions or speeds before being coordinated with mainline CAVs to prepare for
merging.

The final one is to develop a cooperative merging strategy which allows mainline CAVs
to change lane to facilitate the merging process of on-ramp CAVs. It establishes the
dynamic optimal vehicle sequences in each lane and control acceleration trajectories
for CAVs.
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1.5 Research approach

Our designs are based on some assumptions and considerations. Firstly, we assume a
small but representative on-ramp network (See Figure 1.2) on motorways throughout
the thesis. Secondly, CAVs are assumed to be with level 4 driving automation. Finally,
we are not studying the acceptance and comfort of CAVs, although smoothness of
acceleration and comfort are taken into account in our proposed strategies.

Two types of traffic environment are considered by this thesis: a 100% CAV environ-
ment and mixed traffic. The 100% CAV environment merely has CAVs. For mixed
traffic, CAVs coexist with human-driven vehicles.

Our four sub-objectives are consecutively addressed (See Figure 1.3) by designing four
different coordination strategies for CAVs. Those four merging strategies mainly focus
on different aspects, which are shown above and below the corresponding squares in
Figure 1.3, and build on each other as illustrated by arrows.

Second sub-objectiveFirst sub-objective Third sub-objective Final sub-objective

Robustness

Acceleration 

trajectory

Safe merging 

condition

Merging 

automatically

Optimal merging 

sequence

Allowing on-ramp 

CAVs to cruise

Safe lane changing 

condition, acceleration 

trajectory

Optimal vehicle 

sequence

Figure 1.3: Research steps for the thesis

The first sub-objective is addressed in Chapter 2. A robust MPC approach is presen-
ted to coordinate acceleration trajectories of CAVs in homogeneous and heterogeneous
platoons. In a homogeneous platoon, all vehicles are CAVs. A heterogeneous platoon
comprises CAVs and human-driven vehicles. For a human-driven vehicle in a platoon,
it can not be controlled but can be affected by surrounding CAVs’ movement. Its be-
havior is roughly predicted with a car following model, intelligent driver model plus
(IDM+). The vehicle dynamics model is assumed to have parametric uncertainties. As
a result, it can be different from the nominal prediction model, which does not consider
uncertainty, of nominal MPC. The robust MPC approach regulates acceleration traject-
ories of CAVs by minimizing the maximum value of a cost function brought by model
uncertainties. The cost function is a weighted sum of predicted deviation from desired
gap, deviation from directly predecessor’s speed or desired speed, and accelerations of
each vehicle in the controlled platoon in a future horizon. The optimal acceleration
trajectories are computed in a receding horizon way based on the updated vehicular
states. String stability is selected as a performance indicator. A fixed feedback delay
is considered in simulation experiments.

A human-like coordination strategy is developed in Chapter 3 to address the second
sub-objective. It is designed based on MPC. A merging sequence is assumed to be
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given. Longitudinal accelerations of CAVs are generated by minimizing the same cost
function as that in Chapter 2. A prediction-based safe lane changing condition is given.
An on-ramp CAV turns left to the mainline traffic if it is in the acceleration lane and its
time gaps with surrounding vehicles are larger than an accepted time gap for merging
in a future horizon. Like human drivers, the accepted time gap for merging decreases
as the on-ramp CAV approaches the end of the acceleration lane. Besides, it follows
a human-like trajectory equation to accomplish lateral maneuver automatically. No
collision is selected as a performance indicator.

A hierarchical control approach is proposed in Chapter 4 to address the third sub-
objective. A tactical layer controller schedules optimal merging sequences for two
conflicting traffic streams by solving a model-based optimization problem in a long
future horizon. The same cost function as that in Chapter 2 is minimized. Future
vehicles’ behavior during merging is estimated by using surrogate linear models of
real vehicle trajectories regulated by an operational layer controller. During the pro-
cess, on-ramp vehicles are allowed to cruise for several seconds. The operational layer
controller is designed based on MPC. It regulates acceleration trajectories by min-
imizing the same cost function as that in Chapter 2. The prediction-based merging
condition and accepted time gaps for merging in Chapter 3 are used to determine lane
change initiation times for on-ramp CAVs. The first-in-first-out merging rule is chosen
in comparison with the tactical layer controller in scheduling merging sequences.

To address the final sub-objective, we extend the hierarchical control approach in
Chapter 4 to allow mainline CAVs to change lane in Chapter 5. A uniform surrog-
ate of real vehicle trajectories regulated by an operational controller is constructed to
predict future cruising, car-following, and cooperative lane changing maneuvers of
vehicles in the merging process. A planner Dynamic schedules vehicle sequence in
each lane by minimizing predicted disturbances reflected by negative acceleration to
upstream traffic in a long horizon. The operational controller is designed based on
MPC. It regulates longitudinal trajectories for CAVs in each lane by minimizing the
same cost function as that in Chapter 2. A mainline lane changer changes lane when its
current and predicted time gaps with surrounding vehicles are larger than a predefined
value. The safe merging condition in Chapter 3 is used for on-ramp CAVs. Besides, the
operational controller gives the lane change initiation time instants for lane changers
based on the current and predicted vehicular states. The first-in-first-out merging rule
is chosen in comparison with the planner controller in scheduling vehicle sequences.

In chapter 5, we choose to use the first-in-first-out merging rule to establish merging
sequences for comparison instead of the approach used in Chapter 4 because of two
reasons. One is that the first-in-first-out merging rule is widely used. The other is that
the tactical layer controller in Chapter 4 chooses a different objective function from the
planner in Chapter 5. By using the same comparison method, we can check whether
optimizing different objective functions lead to different optimal merging sequences
or vehicle sequences.
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1.6 Contributions

This thesis makes contributions to guarantee controller performance, safe merging con-
ditions, as well as the longitudinal and lateral maneuver control of CAVs near on-
ramps. The scientific and practical contributions of the thesis are highlighted below.

1.6.1 Scientific contributions

We present a robust platooning control approach (Chapter 2). A robust Min-Max MPC
controller is proposed. The controller ensures the robustness of string stability and
performance against parametric uncertainties of vehicle dynamics model and feedback
delay. It can be used for platooning control in both the 100% CAV environment and
mixed traffic.

A prediction-based safe lane changing condition is designed (Chapter 3). A CAV
is allowed to accept smaller time gaps than its desired value for merging while it is
approaching the end of the acceleration lane. It changes lane on the acceleration lane
when its predicted time gaps are all larger than the accepted value in a control time
horizon. The designed lane changing condition does not sacrifice traffic efficiency for
safety.

A new approach to generate optimal merging sequence for two conflicting streams of
traffic is proposed (Chapter 4). Instead of repeating future detailed merging process
exhaustively, two surrogate linear models of real vehicle trajectories regulated by an
operational layer controller are utilized to represent interactions among CAVs during
merging. The optimal merging sequence is established by minimizing a constructed
control objective based on the predicted vehicular states in a long time horizon. During
the process, an on-ramp CAV is allowed to travel with its desired speed for a short time
period before preparing itself to move to the target slot.

A hierarchical cooperative merging control approach allowing mainline CAVs to change
lane for facilitating on-ramp merging is proposed (Chapter 5). Mainline CAVs can
change lane at any location. All CAVs’ maneuvers are planned together to improve
traffic operations. Besides, acceleration trajectories are controlled in a centralized way.
No transition is needed between lane changing and merging facilitating process. We
discuss under which conditions mainline CAVs may be instructed to change lane and
analyze the correlation between lane changers’ lane change time instants.

1.6.2 Practical contributions

Our proposed robust control approach can support CAV developers to develop robust
controllers and road operators and public authorities to assess under which conditions
the developed CAVs can be admitted.



Chapter 1 13

Our designed prediction-based lane changing condition serves as a basis to develop
lane changing strategies that do not sacrifice traffic efficiency for safety and safe lane
changing conditions in mixed traffic.

Our proposed approaches to generate optimal merging or vehicle sequences can be
used by researchers when they mainly focus on longitudinal acceleration regulation
for CAVs. Besides, they are supported to design new cooperative merging strategies.
Traffic operators are given recommendations on using the first-in-first-out merging rule
to have optimal or sub-optimal merging sequences. Those recommendations are based
on the decisions of our proposed new approach to generating optimal merging se-
quences for two streams of traffic.

1.7 Outline of the dissertation

Figure 1.4 illustrates the outline of the thesis. It consists of 6 chapters. The lines with
arrows depict the relationship between the chapters. Chapter 1 introduce the research
objectives and highlights the main contributions. The following four chapters address
sub-objectives proposed in Section 1.4, respectively.

Chapter 1 Introduction

Chapter 4 A Hierarchical Model-based Optimization Control 

Approach for Cooperative Merging by Connected Automated 

Vehicles

Chapter 5 Hierarchical Optimal Maneuver Planning and 

Trajectory Control at On-ramps with Multiple Mainstream Lanes

Chapter 6 Conclusion

Chapter 2 A Robust Longitudinal Control 

Strategy of Platoons under Model Uncertainties 

and Time Delays

Chapter 3 A Flexible Strategy for Efficient 

Merging Maneuvers of Connected Automated 

Vehicles

Robustness Safe merging condition 

With a  single main lane

With multiple main lanes

Figure 1.4: The outline of the thesis
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Chapter 2 deals with a robust platooning control approach. A robust Min-Max MPC
controller is developed. It is robust to keep string stability.

In chapter 3, we present a prediction-based merging condition. It supports on-ramp
CAVs to change lane safely before it reaches its desired inter-vehicle distance to its
future directly preceding vehicle and speed. Besides, it is controlled to accomplish
on-ramp merging automatically without the intervention of drivers.

Chapter 4 designs a hierarchical control approach for the cooperative merging of CAVs.
An upper-level controller schedules an optimal merging sequence for two conflicting
streams of traffic and time instants for on-ramp CAVs to be coordinated together with
mainline CAVs for merging. A lower-level controller regulates longitudinal accelera-
tion trajectories and time instants for on-ramp CAVs to change lane.

Chapter 5 proposes a hierarchical cooperative merging control approach to allow main-
line CAVs to change lane to facilitate on-ramp merging. An upper-level controller
plans dynamic optimal vehicle sequences in each lane in a long time horizon. A lower-
level controller generates longitudinal acceleration trajectories and time instants for
lane changers to change lane.

Chapter 6 summarizes the main findings and gives future research directions.



Chapter 2

A robust longitudinal control strategy
of platoons under model uncertainties
and time delays

This chapter addresses the first sub-objective. We design a robust and flexible pla-
tooning control strategy for CAVs. Ignoring time delays and model uncertainties may
render the performance of cooperative driving systems unsatisfactory or even unstable.
We present a centralized control method, where the leader of a CAV platoon collects in-
formation from followers, computes the desired accelerations of all controlled vehicles,
and broadcasts the desired accelerations to followers. The robust platooning is formu-
lated as a Min-Max Model Predictive Control problem, where optimal accelerations
are generated to minimize the cost function under the worst case, where the worst case
is taken over the possible models. The proposed method can be applied to both homo-
geneous platoon and heterogeneous platoon with mixed human-driven and automated
controlled vehicles. A third-order linear vehicle model with fixed feedback delay and
stochastic actuator lag is used to predict the platoon behavior. Actuator lag is assumed
to vary randomly with unknown distributions but a known upper bound. The designed
strategy is tested by simulating homogeneous and heterogeneous platoons in a number
of typical and extreme scenarios to assess the system stability and performance. The
test results demonstrate that the designed control strategy for CAV can ensure stability
and the robustness of performance against model uncertainties and feedback delay and
outperforms the deterministic MPC based platooning control.

This chapter is an edited version of the article:

Chen, N., Wang, M., Alkim, T., and Van Arem, B., ”A robust longitudinal control
strategy of platoons under model uncertainties and time delays”, Journal of Advanced
Transportation, vol. 2018, Article ID 9852721, 13 pages, 2018. https://doi.org/10.1155/
2018/9852721
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2.1 Introduction

Today’s traffic systems are facing serious congestion (Ghasemi et al., 2015). Auto-
mated vehicles using advanced sensing, communication and control technologies have
the potential to increase road capacity and improve traffic operations (Van Arem et al.,
2006; Dey et al., 2016; Wang et al., 2016a). Adaptive cruise control (ACC) systems
has already entered the market (VanderWerf et al., 2001; Xu and Sengupta, 2003; Naus
et al., 2010). An automated vehicle equipped with ACC uses its on-board sensors
to detect the ambient environment and regulates its speeds to increase ride comfort.
Vehicle-to-vehicle and vehicle-to-infrastructure communications extend the visibility
of automated vehicles and enable the so-called connected automated vehicles (Rios-
Torres and Malikopoulos, 2017b). When a group of CAVs travel with short inter-
vehicle headways or gaps, a platoon is formed (Li et al., 2016). CAVs have more po-
tential to improve traffic performance compared to individual automation, since they
can share information and coordinate their behavior to ensure shorter inter-vehicle dis-
tances safely as demonstrated by field tests (Van Arem et al., 2006; Tak et al., 2016;
Wang et al., 2014a; Michaud et al., 2006; Milanés et al., 2014). With V2I commu-
nication between a road side device and electric vehicles, the traffic stability can be
improved with CAVs (Li et al., 2018).

The successful implementation of platooning entails to address some challenges, in-
cluding feedback delay, actuator lag, measurement inaccuracy and heterogeneity in
traffic (Naus et al., 2010; Jin and Orosz, 2014; Wang et al., 2016b; Xiao and Gao,
2010). Feedback delay and actuator lag are known to have detrimental effects on
string stability (Xiao and Gao, 2010; Wang et al., 2016b). Control approaches us-
ing platoon leader or predecessor acceleration as feedforward term can compensate
delay (Öncü et al., 2014; Jin and Orosz, 2014; Ghasemi et al., 2015). Another delay
compensation strategy is based on a predictive control approach (Wang et al., 2016b).
Measurement noise can be handled by using filtering and data fusion techniques (Ryu
and Gerdes, 2004). The heterogeneity of traffic can be considered by using cooperative
control strategies where a joint objective is optimized within the platoon (Wang et al.,
2014b).

Although different methods have been proposed to address the aforementioned chal-
lenges, most of them are based on deterministic modeling of vehicle system dynamics
and have not been tested systematically against uncertainties. There is no guarantee
that existing platooning control systems generate satisfactory performance with model
uncertainties. An adaptive fuzzy sliding mode control approach is proposed to deal
with the model uncertainties, and functional approximation technique is employed to
replace the unknown vehicle functions (Guo et al., 2017). However, the reliability of
using functional approximation technique is not clear. Besides, vehicle speeds can
be adjusted through electronic throttle (ET) control. With V2V communication, the
opening angle of the ET of the preceding vehicle is available. The following vehicle
then adjusts adaptively its ET to avoid collision and follow the speed of the preceding
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vehicle. Using extended state observer to estimate the change of throttle opening an-
gel and total disturbance, a double-loop integral sliding-mode controller for electronic
throttle is designed (Li et al., 2015). This controller has robustness to parametric uncer-
tainties of the ET model. An H-infinity control method for a CAV platoon is proposed
considering the uncertain vehicle dynamics (Gao et al., 2016). The robust control is
designed considering the differences among dynamics for CAVs in the platoon. The
feasibility of this control method to a heterogeneous platoon comprised of CAVs and
human-driven vehicle is not given. The robust control for the CAV platooning control
has not fully explored.

The objective of this chapter is to design a robust controller considering the model
uncertainties involved in the longitudinal vehicle dynamics. The robust control is de-
signed by considering the parametric uncertainties in the dynamics model of platoons
expressed by a third-order linear vehicle model. The robust platooning is then for-
mulated as a Min-Max Model Predictive Control (MM-MPC) problem, where optimal
desired accelerations are generated to minimize the cost function under the worst case.
The controller regulates platoon desired accelerations over a time horizon to minim-
ize the cost function representing driving safety, efficiency and ride comfort, subject
to speed limits, plausible desired acceleration range and minimal net spacing. The
designed control strategy is flexible in such a way that it can be applied to the homo-
geneous platooning control where all the vehicles in the controlled platoon are CAVs
and the heterogeneous platooning control where CAVs and human-driven vehicles are
mixed.

The remaining of the chapter is organized as follows. We will first introduce longit-
udinal dynamics models for a CAV, homogeneous and heterogeneous platoons with
CAVs. The proposed robust MM-MPC controllers for a single homogeneous and het-
erogeneous CAV platoon are presented separately. After that, the simulation experi-
ments are designed to verify the performance of the controllers followed by the discus-
sion of the simulation results of the CAV platoons under different control strategies.
Finally we conclude the findings and present future research directions.

2.2 Dynamics models

This section presents a longitudinal vehicle dynamics model for state prediction for a
single CAV and CAV platoon dynamics model considering actuator lag.

2.2.1 Single vehicle dynamics model

We introduce a longitudinal dynamics model for a single vehicle n, following an exo-
genous head vehicle, with xn, vn, an and ln denoting the location, speed, actual accel-
eration and vehicle length of the subject vehicle n. For a single CAV n, the system
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state Z is described by the gap error ∆s, relative speed ∆vn to the preceding vehicle
n− 1, and an, i.e. Z = (∆sn,∆vn,an)

T , and the control variable is defined as U = un,
where un is the desired acceleration given to vehicle n. ∆sn is the deviation between
the real gap/net spacing sn = xn−1−xn− ln and the desired gap sd

n to vehicle n−1, i.e.
∆s = sn− sd

n . We employ the Constant Time Gap (CTG) policy that is the frequently
used by researchers and largely used in the commercial ACC systems to determine the
desired gap (Wang et al., 2014a), i.e. sd

n = vn · td + s0, where td is the desired time gap
and s0 is the minimum gap at stand still. For simplicity, the time argument is dropped.

A third-order model (Equation (2.1)) is used to express the longitudinal dynamics
model for vehicle n (Wang et al., 2016b; Liang and Peng, 1999). The system dynamics
is then described by Equation (2.2).

ẋn = vn; ẍn = an; ...x n =
1

τA
n
· (un− ẍn) (2.1)

where, τA
n denotes the engine time lag for the nth vehicle.

d
dt

Z =
d
dt

 xn−1− xn− ln− sd
n

vn−1− vn

an

=

 vn−1− vn−an · td

an−1−an
un−an

τA
n

= f(Z,U,d) (2.2)

where,

A =

0 1 −td

0 0 −1
0 0 − 1

τA
n

 ;B =

 0
0
1

τA
n

 ;C =

0
1
0

 ;d = an−1

d denotes the exogenous disturbance to the vehicle system, which is the actual accel-
eration of the preceding vehicle n− 1. If the preceding vehicle is a CAV, the subject
vehicle will receive an−1 via V2V communication. When using the V2V communic-
ation to obtain the value of d is not feasible, the disturbance can be modeled using
an−1 = 0, i.e. the vehicle n−1 is assumed to travel at the same detected speed in the
prediction horizon (Wang et al., 2016b).

2.2.2 Homogeneous platoon dynamics model

For a homogeneous CAV platoon (e.g. Figure 2.1(a)) with N ≥ 2 vehicles, the sys-
tem state variable is defined as ZP = (∆s1,∆v1,a1,∆s2,∆v2,a2, · · · ,∆sN ,∆vN ,aN)

T , the
command variable is defined as UP = (u1,u2, · · · ,uN)

T , and the disturbance is defined
as dP = ap, where ap is the exogenous head vehicle of the platoon. For each of the
vehicle in the homogeneous CAV platoon, the single CAV dynamics model can be
applied. Thus the matrix-form system dynamics model for a CAV platoon with N
vehicles can be expressed with:

d
dt

ZP =
d
dt
(∆s1,∆v1,a1,∆s2,∆v2,a2, · · · ,∆sN ,∆vN ,aN)

T = g(ZP,UP,dP) (2.3)
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g(ZP,UP,dP) = AP ·ZP +BP ·UP +CP ·dP (2.4)

where,

AP =


A3×3

1 03×3 · · · 03×3

03×2 A3×4
2 · · · 03×3

...
... . . . ...

03×2 03×3 · · · A3×4
N

 ;BP =

B1 0
. . .

0 BN

 ;CP =

[
C 0
0 0

]
;

A3×3
1 =

0 1 −td

0 0 −1
0 0 − 1

τA
1

 ;A3×4
i =

0 0 1 −td

1 0 0 −1
0 0 0 − 1

τA
i

 , i = 2,3, · · · ,N;

Bk =

 0
0
1

τA
n

 ,k = 1,2, · · · ,N.

2.2.3 Heterogeneous platoon dynamics model

When a platoon is comprised of a CAV(s) and a human-driven vehicle(s), a hetero-
geneous platoon is formed. A heterogeneous CAV platoon is given as shown in Fig-
ure 2.1(b). For this platoon, the state and control variables can be defined as ZHP =

(∆s1,∆v1,a1,∆s2,∆v2,∆s3,∆v3,a3,∆s4,∆v4)
T and UHP = (u1,u3)

T , and the exogenous
disturbance is dPH = (ap,a2,a4)

T . For the human-driven vehicles, the actual accelera-
tions cannot be controlled directly but can be calculated using a car-following model.
We use IDM+ to model the collision-free car-following behavior as expressed with
Equation (2.5) and Equation (2.6), where α is the maximum acceleration, b is the de-
sired deceleration, and s∗ is the dynamic desired headway (Schakel et al., 2012; Treiber
et al., 2000). To this end, the dynamics model of the heterogeneous platoon is as shown
in Equation (2.7) and Equation (2.8).

dx
dt

= v,
dv
dt

= a (2.5)

dv
dt

= α ·min[1− (
v
v0

)
4
,1− (

s∗(v,∆v)
s

)
2

] (2.6)

where,

s∗(v,∆v) =
s0 + v ·T − v ·∆v

2 ·
√

α ·b

d
dt

ZHP =
d
dt
(∆s1,∆v1,a1,∆s2,∆v2,∆s3,∆v3,a3,∆s4,∆v4)

T = h(ZHP,UHP,dHP)

(2.7)
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h(ZHP,UHP,dHP) = AHP ·ZHP +BHP ·UHP +CHP ·dHP (2.8)

where,

AHP =


An=1 03×2 03×3 03×2

02×2 D2×3 02×3 02×2

03×2 03×3 An=3 03×2

02×2 02×3 02×2 D2×3

 ;BHP =


02×1 02×1

1
τA

1
0

04×1 04×1

0 1
τA

3

02×1 02×1

 ;

CHP =


C 03×1 03×1

02×1 E 02×1

03×1 C 03×1

02×1 02×1 E

 ;D =

[
0 0 1
1 0 0

]
;E =

[
−T
−1

]

(a) A homogeneous platoon

(b) A heterogeneous platoon

Figure 2.1: The platooning formations

2.3 Design of robust controller for platoon operation

In this section we develop a robust controller to determine the control command by
minimizing a running cost function.

2.3.1 Design assumptions

The homogeneous platooning controller is designed based on the following assump-
tions:
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• The CAVs are homogeneous. They have the same vehicle length, desired accel-
eration boundary, speed limits and variable actuator lag.

• The accurate feedback information on positions, speeds and actual accelerations
of controlled vehicles can be obtained via on-board sensors and V2V commu-
nication, but are subject to a fixed feedback delay τS. The received state at time
t is actually measured at time t − τS (Wang et al., 2016b). As a result of the
feedback delay, the initial condition of the system state is not accurate.

• The controller updates the control command at regular time intervals.

• The CAVs are subjected to the stochastic actuator lag τA(t), with τA(t) ∈ [α,β ],
(0 < α < β ) (Jia and Ngoduy, 2016; Rajamani and Shladover, 2001).

2.3.2 Platooning control formulation

Min-Max model predictive control problem

There are several paradigms for robust control of linear systems: H2, H∞, “multi-
model” paradigm and “linear system with a feedback uncertainty” paradigm (Kothare
et al., 1996; Duan et al., 2006). For linear systems as in Equation (2.4), the “multi-
model” paradigm works by discovering different linearly independent combination of
[AP BP]. The “linear system with a feedback uncertainty” paradigm can be converted
into the form of “multi-model” essentially (Kothare et al., 1996).

The stochastic actuator lag τA can result in different dynamics models. Thus “multi-
model” paradigm is chosen. The robust platooning controller is designed by combining
MPC method and the robust control (Wang et al., 2014a). We formulate the platooning
control problem as a MM-MPC problem (Kothare et al., 1996). To achieve a system-
optimal performance, we use a centralized control method. The leader of a CAV pla-
toon collects information from followers, computes the desired accelerations of itself
and all followers, and broadcasts the desired accelerations to followers. The designed
controller regulates platoon desired accelerations over a time horizon [t0, t0 + Tp] to
minimize a cost function J representing driving safety, efficiency and ride comfort. It
is formulated as Equation (2.9):

min
Up[t0,t0+Tp]

max
[APBP]∈SP

J(ZP,UP) = min
Up[t0,t0+Tp]

max
[APBP]

(
∫ t0+Tp

t0
L(ZP(t),UP(t))dt) (2.9)

subject to:

• the system dynamics model of Equation (2.3).

• the initial condition: Z̃P
t0 = ZP(t0− τS)

• the constraints on state ZP(t) and UP(t)
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where L denotes the running cost. Z̃P
t0 represents the initial state for the controlled

vehicle system at t0.

Cost specification for controller

The cost function L is defined as Equation (2.10), where three different cost terms
representing safety, efficiency and control are included.

L = c1 ·
N

∑
i=1

(∆si)
2

︸ ︷︷ ︸
safety

+c2 ·
N

∑
i=1

(∆v2
i )︸ ︷︷ ︸

disruption

+c3 ·
N

∑
i=1

(ui)
2

︸ ︷︷ ︸
control

(2.10)

where, c1, c2, and c3 are weight parameters.

The safety cost term implies that the vehicles tend to reach the desired gap. The disrup-
tion cost works by making the following vehicles in the platoon to follow the speeds
of their preceding vehicles. The control cost penalizes large values of desired acceler-
ation.

Constraints specification

The constraints on state and control variables are specified as constraints on speeds,
gaps and desired accelerations:

• Speed constraint: vi ∈ [0,vmax].

• Gap constraint: xp− x1− l1 ≥ s0; xi− xi+1− li ≥ s0.

• Acceleration constraint: ui ∈ [amin,amax].

2.3.3 Solution approach

A nominal MPC does not consider uncertainties. It uses a fixed [AP BP] as the dynam-
ics model to design the controller. We use Sequential Quadratic Programming (SQP)
algorithm to generate the optimal control trajectory (Boggs and Tolle, 1995). When
the model uncertainties are considered, we have to solve a MM-MPC problem. The
concept of minimizing the worst case is applied to solve the MM-MPC problem, i.e.
minimizing the largest cost or worst case value of J when a deterministic τA is used in
the dynamics model to predict the future states of the vehicle systems (Liang and Peng,
1999). To have the largest cost, each possible value of τA should be involved. With
infinite possibilities of τA, the computation is theoretically infinite by utilizing brute-
force search. For simplicity, we discretize the continuous range of the values of τA into
M intervals of equal size and only consider the M+1 endpoints’ values. The solution
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method of the the ‘min-max’ problem is formulated as an algorithm as shown in Al-
gorithm 1. The M+1 values correspond to M+1 different models. When one model is
utilized for prediction, a nominal-MPC formulation forms. Algorithm 1 solves M+1
nominal-MPC formulations and selects the solution to the one having the maximum
cost.

Data: Sensor delay τS, the boundary of actuator lag τA ∈ [α,β ], (delayed)
system state ZP(t0− τS), M intervals

Result: Optimal control input u∗ in the horizon [t0, t0 +Tp)

initialization;
for i← 1:M+1
τA

i ← α+(i-1) · β−α

M ; ui← the solution of optimal control problem of
Equation (2.9) with τA← τA

i ; Ji← the total cost with ui[t0, t0 +Tp] using
Equation (2.9)

end
for i← 2:M+1
if J1 < Ji

J1← Ji; u1[t0, t0 +Tp]← ui[t0, t0 +Tp]

end
end
u∗[t0, t0 +Tp] = u1[t0, t0 +Tp]

Algorithm 1: The solution for the ‘min-max’ problem

2.4 Design of robust controller for heterogeneous pla-
toon operation

In this subsection, we first illustrate how to propose a formulation for heterogeneous
platooning control like homogeneous platooning control, and then give the detailed
design description.

For a platoon of heterogeneous followers like Figure 2.1(b), the CAVs can predict the
human-driven vehicles’ behaviors by using IDM+ (Wang et al., 2014b). Robust het-
erogeneous platooning control can then be achieved by optimizing a joint cost function
same as Equation (2.9 and Equation (2.10 for the whole platoon.

2.4.1 Design assumptions

The robust heterogeneous platooning controller is designed under the following addi-
tional assumptions compared to homogeneous controller design:

• The locations and speeds of the human-driven vehicles can be detected by the
on-board sensors equipped on the CAVs.
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• The controller has imperfect knowledge of the car-following behavior. This im-
perfection is represented by uncertainties in the parameters of IDM+.

2.4.2 Platooning control formulation and solution

The heterogeneous platooning controller is also formulated as a Min-Max model pre-
dictive control problem as shown in Equation (2.11), where the superscript H is used to
represent the notations for heterogeneous platooning control. It uses the same format
of cost function as the homogeneous platooning controller except that the control cost
of the human driven vehicles is represented by the actual accelerations. The variations
of τA and the uncertainties in α and b of IDM+ are considered.

min
UH [t0,t0+Tp]

max
[AHBH ]

J(ZH ,UH) = min
UH [t0,t0+Tp]

max
[AHBH ]

(
∫ t0+Tp

t0
ι(ZH(t),UH(t))dt) (2.11)

ι = c1 ·
4

∑
i=1

(∆si)
2

︸ ︷︷ ︸
safety

+c2 ·
4

∑
i=1

(∆v2
i )︸ ︷︷ ︸

disruption

+c3 · ((u1)
2 +(u3)

2 +(a2)
2 +(a4)

2)︸ ︷︷ ︸
control

(2.12)

subject to:

• the system dynamics model of Equation (2.7) and the dynamics model of human-
driven vehicles of Equation (2.5).

• the initial condition and the constraints: they are the same as that described in
the homogeneous platooning controller design.

The Min-Max model predictive control problem for the heterogeneous includes the
variation of τA and the uncertainties in α and b of IDM+. The solution for this prob-
lem is essentially the same as that used in the homogeneous platooning controller
design. We discretize the continuous range of the values of τA with the same method
as that used in the homogeneous platooning controller design. After that, the problem
is solved as for the homogeneous platooning controller design.

2.5 Simulation experimental design

This section presents the experimental design to assess the performance of the designed
platooning controllers, including selected simulation scenarios, controller parameter
settings, and the performance indicators.
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2.5.1 Simulation scenarios

To test the robustness of the robust MM-MPC controller for a homogeneous CAV pla-
toon and the flexibility of the controller to a heterogeneous platoon control, different
simulation scenarios are used. Generally τS is between 0.1-0.3 s (Wang et al., 2016b).
We choose τS = 0.2 s. τA(t) ∈ [0.2,0.8] s is chosen as designed bound of τA. We
compare the designed robust controller with a deterministic nominal MPC controller
using a fixed τA = 0.2 s. The two controllers are compared under the designed scenario
with τA(t) ∈ [0.2,0.8] s, and unplanned scenario with τA(t) ∈ [0.8,0.9] s, i.e. the actu-
ator lag of vehicle systems are outside the assumed bounds (Kothare et al., 1996). The
selected simulation scenarios are as shown in Table 2.1. The heterogeneous platoon-
ing controller are tested with imperfect knowledge of the car-following behavior of
human-driven vehicles by using different parameters of IDM+ used by human-driven
vehicles in the platoon. The selected scenarios are as shown in Table 2.2.

Table 2.1: Simulation scenarios for a homogeneous platooning control test

τA (s) Control strategy
[0.2,0.8] Nominal MPC (τA = 0.2)
[0.2,0.8] Robust MM-MPC (τA(t) ∈ [0.2,0.8]
[0.8,0.9] Nominal MPC (τA = 0.2)
[0.8,0.9] Robust MM-MPC (τA(t) ∈ [0.2,0.8]

Table 2.2: Simulation scenarios for a heterogeneous platooning control test

τA (s) α (m/s2) b (m/s2) Control strategy
[0.2,0.8] 1.1 2 Nominal MPC (τA = 0.2, α= 1.25, b=2.09)
[0.2,0.8] 1.1 2 Robust MM-MPC (τA(t) ∈ [0.2,0.8], α = 1.25, b = 2.09)
[0.8,0.9] 1.1 2 Nominal MPC (τA = 0.2, α= 1.25, b=2.09)
[0.8,0.9] 1.1 2 Robust MM-MPC (τA(t) ∈ [0.2,0.8], α = 1.25, b = 2.09)

2.5.2 Parameter settings

We choose N = 4 to demonstrate platoon control, since it can sufficiently show the
performances of the controlled platoon as shown in Figure 2.1(a) and Figure 2.1(b)
(Milanés et al., 2014). The parameter setting for CAVs in the homogeneous and het-
erogeneous platooning controllers is the same. The platoons follow an exogenous head
vehicle that has a designated speed profile. The total simulation time is 50 seconds (s).
To clearly show the performances of the controllers, we use a step function of accel-
eration for the exogenous head vehicle. It starts with an initial speed of 25 m/s and
decelerates with -4 m/s2 from 3 to 5 s and then accelerates with 1 m/s2 from 27 s to 35
s. For other time slots, its acceleration is 0 m/s2. For the controllers, the parameters
are set as: td = 1 s (Xiao and Gao, 2011), s0 = 2 m, Tp = 5 s, c1 = 0.6, c2 = 0.5, c3 =
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0.6, amax =1.5 m/s2, amin = -8 m/s2, li = 4 m (i = 1,2,3,4), M = 19 and vmax = 120/3.6
m/s.

The controller parameters have been manually tuned. The controller tracks the exo-
genous head vehicle responsively and results in small overshoots and no oscillations in
the case where sensor delay τS is 0.2 s and no actuator lag exists. In the same case, the
time horizon Tp is chosen by preliminary simulations. The total running cost barely
changes with higher values of Tp. Systematic tuning methods of MPC can be found in
(Garriga and Soroush, 2010).

For the heterogeneous platooning control, we assume the controller has imperfect
knowledge of the human-driven vehicles. The controller assumes that the paramet-
ers of the IDM+ are α = 1.25 m/s2, b = 2.09 m/s2, and T = 1.2 s, while actually the
parameters of the IDM+ are α = 1.1 m/s2, b = 2 m/s2, and T = 1.2 s. Both simulation
time step and controller sampling step are 0.2 s. The simulation starts with equilibrium
conditions for each CAV and human-driven vehicle.

2.5.3 Performance assessment indicators

Several indicators are selected to assess the performance of the CAV platoon under dif-
ferent control strategies : (1) total running cost of all controlled vehicles in simulation;
(2) total running costs of the first controlled vehicle (1st vehicle) and the last one (4th
vehicle); (3) maximum absolute actual acceleration, relative speed and gap error for
the first and last controlled vehicle; (4) string stability. A platoon has string stability
if the disruption of system states reduce over the vehicle number in the platoon (Feng
et al., 2019).

2.6 Simulation results and discussion

In this section, the simulation results are shown and analyzed and the discussion is
presented thereafter.

2.6.1 Homogeneous platooning control performance

The simulations are performed separately with the nominal MPC controller (determ-
inistic controller with actuator lag τA = 0.2 s) and the robust MM-MPC controller.
The performances are shown with figures of the variation of actual acceleration, re-
lative speed, and gap error as shown in Figure 2.2 and of assessment indicators are
shown in second and third columns in Table 2.3. As depicted in Figure 2.2, the nom-
inal MPC and the designed robust MM-MPC controller generate reasonable behavior
when τA(t) ∈ [0.2,0.8] s. When the exogenous head vehicle decelerates, the relative
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speed and gap error of the first vehicle become negative while other vehicles are still
in the equilibrium states, and the cost of the controller starts to increase. Both con-
trollers work by reducing the costs and give control commands to reduce the relative
speeds and gap errors caused by the deceleration of the exogenous head vehicle. The
first vehicle then starts to decelerate. After that the second vehicle’s relative speed and
gap error become negative as well and costs are generated, and the controller has to
reduce the costs caused by the relative speeds and gap errors of the first and second
vehicles while considering the control costs. It can easily be observed in Figure 2.2
that the changes of actual accelerations start from the first vehicle to the last vehicle
sequentially.

The behavior of the first vehicle is more sensitive to the behavior of the the exogenous
head vehicle, and this can be reflected in Figure 2.2 and values of costs in Table 2.3.
Both controllers can settle to new equilibrium where the cost is zero after certain time,
and the maximum of absolute actual acceleration, relative speed and gap error of the
4th vehicle is smaller than these of the first vehicle. To this end, they can ensure string
stability.

Table 2.3: Performance results: homogeneous platooning controllers

Indicators
Nominal MPC MM-MPC Nominal MPC MM-MPC
τS = 0.2 s, τA(t) ∈ [0.2,0.8]s τS = 0.2 s, τA(t) ∈ [0.8,0.9]s

∑
4
i=1 Ji 617,57 615,19 936,75 689,59
J1 248,43 248,65 352,58 308,49
J4 99,99 99,01 187,37 98,39

max |∆v+1 | (m/s) 1,13 1,16 1,24 1,16
max |∆v+4 | (m/s) 0,96 0,97 1,30 0,93
max |a+1 | (m/s2) 1,19 1,25 1,30 1,30
max |a+4 | (m/s2) 0,97 0,97 1,23 1,03
max |∆s+1 | (m) 0,66 0,74 2,05 0,93
max |∆s+4 | (m) 0,41 0,40 0,89 0,41

max |∆v−1 | (m/s) 4,13 4,17 4,24 4,15
max |∆v−4 | (m/s) 1,92 1,90 2,14 1,84
max |a−1 | (m/s2) 4,34 4,35 4,49 4,15
max |a−4 | (m/s2) 2,20 2,17 2,38 1,95
max |∆s−1 | (m) 2,11 2,09 3,17 3,12
max |∆s−4 | (m) 0,20 0,19 0,68 0,25

2.6.2 Robustness of MM-MPC controller

When it comes to the scenario with τA(t)∈ [0.8,0.9] s, the performances of the nominal
MPC controller (deterministic controller with actuator lag τA = 0.2 s) and the designed
robust MM-MPC controller differs as shown in Figure 2.3 and the assessment indicat-
ors are shown in fourth and fifth columns in Table 2.3. The nominal MPC controller
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Figure 2.2: Comparison of nominal MPC (τA = 0.2 s) and MM-MPC (designed with
τA(t) ∈ [0.2,0.8] s) for homogeneous platooning control while actual τA(t) ∈ [0.2,0.8]
s
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can plausibly reach a new equilibrium state; however, that cannot be achieved within
the simulation time as shown in Figure 2.3(a), 2.3(c) and 2.3(e). There exists many
oscillations but it may ensure string stability since the maximum of absolute actual
acceleration, relative speed and gap error of the 4th vehicle is smaller than these of the
first vehicle as shown in Table 2.3. By comparison, the robust MM-MPC controller
can still settle to new equilibrium, and thus can ensure local and string stability. Be-
sides, the total cost of the platoon using MM-MPC controller is 26.38% lower than
that using the nominal MPC controller. This illustrates that the MM-MPC controller
is quite robust against large model uncertainties. As opposed to the robust MM-MPC
controller, the nominal MPC controller cannot handle large model uncertainties.

2.6.3 Heterogeneous platooning control performance

The nominal MPC controller and the designed robust MM-MPC controller for the
heterogeneous platoon is tested with imperfect knowledge of the car-following model
IDM+. The simulations are conducted with different parameter settings of the IDM+
used in the controllers and the human-driven vehicles. The performances of the nom-
inal MPC controller (deterministic controller with actuator lag τA = 0.2 s) and the de-
signed robust MM-MPC controller are shown in Figure 2.4 and Figure 2.5, and Table
2.4.

Table 2.4: Performance results: heterogeneous platooning controllers

Indicators
Nominal MPC MM-MPC Nominal MPC MM-MPC
τS = 0.2 s, τA(t) ∈ [0.2,0.8]s τS = 0.2 s, τA(t) ∈ [0.8,0.9]s

∑
4
i=1 Ji 938,74 933,82 1120,52 988,19
J1 249,38 250,08 348,66 301,35
J4 212,97 211,75 229,23 209,92

max |∆v+1 | (m/s) 1,12 1,11 1,23 1,21
max |∆v+4 | (m/s) 1,55 1,55 1,59 1,58
max |a+1 | (m/s2) 1,22 1,15 1,26 1,25
max |a+4 | (m/s2) 0,80 0,80 0,81 0,81
max |∆s+1 | (m) 1,02 1,03 1,71 1,07
max |∆s+4 | (m) 14,59 14,65 14,41 14,59

max |∆v−1 | (m/s) 4,11 4,15 4,17 4,08
max |∆v−4 | (m/s) 2,14 2,14 2,46 2,19
max |a−1 | (m/s2) 4,41 4,41 4,47 4,19
max |a−4 | (m/s2) 2,04 2,01 2,46 2,09
max |∆s−1 | (m) 2,14 2,14 2,99 2,96
max |∆s−4 | (m) 16,28 16,55 17,97 16,31

When τA(t) ∈ [0.2,0.8] s, the performances of nominal MPC controller and the de-
signed robust MM-MPC controller are similar. They both generate reasonable be-
havior as analyzed in homogeneous platooning control performance and settle to the
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Figure 2.3: Comparison of nominal MPC (τA = 0.2 s) and MM-MPC (designed with
τA(t) ∈ [0.2,0.8] s) for homogeneous platooning control while actual τA(t) ∈ [0.8,0.9]
s
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Figure 2.4: Comparision of nominal MPC (τA = 0.2 s) and MM-MPC (designed with
τA(t)∈ [0.2,0.8] s) for heterogeneous platooning control while actual τA(t)∈ [0.2,0.8]
s
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Figure 2.5: Comparision of nominal MPC (τA = 0.2 s) and MM-MPC (designed with
τA(t)∈ [0.2,0.8] s) for heterogeneous platooning control while actual τA(t)∈ [0.8,0.9]
s
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new equilibrium state within the simulation time. However, when it comes to τA(t) ∈
[0.8,0.9] s, the nominal MPC controller has more oscillations before reaching the new
equilibrium state. The ability to reach a new equilibrium state and keep string sta-
bility is plausible for the nominal MPC controller while obvious for the MM-MPC
controller. Besides, MM-MPC controller brings 12.55% total platoon cost reduction
compared with the nominal MPC controller.

The simulation results confirm the feasibility and robustness of the MM-MPC con-
troller to homogeneous platooning control and flexibility to heterogeneous platooning
control.

2.6.4 Discussion

The nominal MPC controller chooses τA = 0.2 s. This choice is based on preliminary
simulations. τA = 0.5 s is not chosen because utilizing 0.5 s results in more oscillations
and brings higher total cost where the actual actuator lag is 0.2 s.

The solution method for MM-MPC is clear and obvious enough; however, the relation
of M and the length of the bound of τA(t) is not deeply explored. It is noticeable that
the larger M is, the longer the computation time will be. There is a tradeoff between
the computation time and the performance when choosing the value of M. The solution
method can be replaced by using linear matrix inequalities (Kothare et al., 1996).

Even through the controllers have imperfect knowledge of the car-following model,
the good performance of the controller can be kept. This implies the controllers are
not sensitive to the parameters of the car-following model, and the controllers for ho-
mogeneous platooning control may be converted for heterogeneous platooning control
easily. It is noticeable, the positive benefits of using MM-MPC controller are larger
with homogeneous platooning than with the heterogeneous platooning. This may be
explained by the fact that the controller cannot give command to the human-driven
vehicle directly. The simulation results show the feasibility and robustness of the MM-
MPC controller to homogeneous platooning control and flexibility to heterogeneous
platooning control.

The simulation results indicate that with model uncertainties, the robust control is
needed for guaranteeing the benefits of the designed controller. This chapter focuses
on using the parameter uncertainties to represent the model uncertainties. However,
we have not explored other methods of representing model uncertainties. Developed
CAVs are suggested to be tested under different scenarios before being brought into
the market.
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2.7 Conclusion

This chapter proposed a robust MM-MPC controller for vehicle homogeneous and het-
erogeneous platooning control, taking into account the feedback delay and model para-
metric uncertainties. Unlike the deterministic MPC, the robust MM-MPC controller is
formulated as a ‘min-max’ problem and generates the desired acceleration by selecting
the solution of the worst case. Simulation results suggest the robustness and flexibil-
ity of the proposed MM-MPC controller with reference to the nominal deterministic
MPC controller within and outside of the specified parameter range, respectively. In
all situations, the robust MM-MPC controller outperforms the nominal MPC controller
and the benefits of the robust MM-MPC is much more pronounced where the uncer-
tainties are outside specified parameter range. However, the computation time of the
robust MM-MPC is larger than the nominal MPC. In the solution algorithm to robust
MM-MPC, several nominal MPC formulations are solved.

Application of the MM-MPC controller in heterogeneous platoon control seems to val-
idate the flexibility of the proposed control approach and further indicate the robustness
of the controller against uncertainties in mixed traffic. The proposed controller has the
potential to improve traffic operations due to its robust performance against uncertain-
ties and system delays. The flexibility to mixed traffic shows that MM-MPC controller
may be applied to different platooning formations with more CAVs or human-driven
vehicles. Nevertheless, it should be tested under these platooning formations to valid-
ate this potential.

This research will be extended to robust control design under stochastic feedback delay
and input uncertainties in addition to model parametric uncertainties. Future research
is also directed to the analytic approach using Lyapunov theory to guarantee string sta-
bility of vehicle platoons and robust lane change control in mixed traffic to improve
traffic operations. In the next chapter, a human-like cooperative merging strategy is de-
veloped. CAVs on mainline and on-ramp lanes are coordinated together to accomplish
on-ramp merging. A safe prediction-based lane-changing condition is given.



Chapter 3

A human-like flexible strategy for
efficient merging maneuvers of
connected automated vehicles

Chapter 1 presents a robust platooning control approach. This chapter focuses on co-
ordination of CAVs in two adjacent lanes. The second sub-objective is addressed.
We propose a strategy for CAVs to guide on-ramp vehicles to mainline traffic effi-
ciently while ensuring safe interactions with the mainline vehicles. Point-mass kin-
ematic models are used to describe 2-D vehicle motion and receding horizon control
is used to generate optimal trajectories of interacting vehicles. The strategy determ-
ines the optimal merging time instant for merging vehicles and accelerations of all
involving vehicles to minimize the deviation from the preceding vehicles’ speed, de-
viation from preferred inter-vehicle gaps, accelerations, and the merging time instant.
The strategy builds on a pre-determined order of vehicles passing the conflict zone but
is not restricted to fixed merging points as many methods assumed in the literature. It
resembles human-like behavior in the sense that on-ramp CAVs accept smaller time
gaps for merging when approaching the end of the acceleration lane. The on-ramp
CAVs are controlled longitudinally and laterally to finish the merging process auto-
matically. The feasibility and performance of the proposed strategy are demonstrated
through numerical simulations.

This chapter is an edited version of the article:

Chen, N., Wang, M., Alkim, T., and Van Arem, B., ”A flexible strategy for efficient
merging maneuvers of connected automated vehicles”. 18th COTA International Con-
ference of Transportation Professionals, 2018, pp. 46 –55.

35



36 Coordination Strategies of Connected and Automated Vehicles

3.1 Introduction

Connected Automated Vehicles, enabled by V2V or V2I communications, have the
potential to bring driving comfort and increase traffic performance (Van Arem et al.,
2006). The performance of automated vehicles depends on the design of their decision-
making systems. For automated vehicles to fully replace human drivers, their control-
lers should handle different foreseen scenarios in real traffic. On-ramp merging is a
common but challenging task for drivers. Inappropriate merging maneuvers can lead
to traffic perturbation and even crashes. When on-ramps are activated, considerable
vehicle hours are lost. With the possibility of cooperation among CAVs and coordin-
ation between CAVs and infrastructure, the merging process can be improved, thus
leading to safer and more efficient traffic.

Different cooperative merging strategies have been designed. Wang et al. (2013) pro-
poses to convert merging into a virtual platooning control problem. The conversion
is based on mapping an on-ramp vehicle or platoon onto the mainstream lane to form
a virtual platoon. The motions of all vehicles in the virtual platoon are controlled by
using a geometric method which makes inter-vehicle distances reach a constant value
at a fixed merging point. (Milanés et al., 2011) also uses a geometric method to plan
desired inter-vehicle distances laterally and longitudinally. Formulating merging as a
constrained nonlinear optimization problem or a MPC formulation is another stream
of approach. Based on MPC, a cooperative path generation method is designed to
regulate the acceleration trajectories of one on-ramp and one mainstream vehicle to-
gether (Cao et al., 2015). A longitudinal trajectory planning methodology to facilitate
the merging process works by minimizing the engine effort and passenger discomfort
(Ntousakis et al., 2016). The control target is, at a fixed merging point, the speed of
the controlled vehicle equals to its putative leader and the controlled vehicle reaches its
desired time-headway. The objectives of minimizing the engine effort and passenger
discomfort are reached by minimizing the acceleration and its first and second deriv-
atives of the controlled vehicle. Using Hamiltonian analysis, an analytical optimal
solution format is available offline. In Rios-Torres and Malikopoulos (2017a), acceler-
ation trajectories are generated to reduce fuel consumption. The controller minimizes
the square of accelerations. An analytical solution is achieved. To avoid collision, the
potential collision zone comprised of the acceleration lane and the mainstream lane is
treated as a merging zone. Only one vehicle is allowed to enter into before its driver
takes over and completes the final lane changing maneuver (Rios-Torres and Maliko-
poulos, 2017a). This concept of using a merging zone to avoid conflicts is also used
in Xie et al. (2017). The designed merging strategy reduces travel time and increases
average speed by minimizing the standard deviation of accelerations and the oppos-
ite values of vehicles’ speeds (Xie et al., 2017). A longitudinal and lateral control
strategy is proposed by evaluating discrete lane change decisions and continuous ac-
celerations jointly based on receding horizon control and dynamic game theory (Wang
et al., 2015). The discrete lane change time instants and directions are given in the
prediction horizon according to the predicted desired lane sequence.
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The role of infrastructure is considered by some merging strategies. A slot-based
method is proposed in Marinescu et al. (2012). CAVs travel within virtual slots gener-
ated by traffic management system (Marinescu et al., 2012). For on-ramps with ramp
metering, CAVs in the mainstream lane collect gaps based on the fundamental diagram
theory, and then the ramp metering regulates on-ramp vehicles to use the collected gaps
for merging (Scarinci et al., 2015). In Jin et al. (2017), the infrastructure sends signals
to the upstream CAVs to make gaps for the upcoming merging vehicles.

The majority of existing methods ignore the lateral motion of merging CAVs and only
longitudinal motion is controlled. The merging starts when the longitudinal inter-
vehicle gaps for merging vehicles reach a constant spacing or a constant time gap
at a fixed merging point. The lateral motion is then completed by drivers or controlled
using a simple geometric method. The merging condition is rigid and has no flexible
acceptable gaps depending on the urgency of the merge; and the merging can thus fail
in dense traffic without sufficiently large gaps. However, human drivers behave dif-
ferently. When reaching closer to the terminal of the acceleration lane, drivers accept
smaller gaps (Daamen et al., 2010). This increases the traffic efficiency to a certain de-
gree. Therefore, it is better for on-ramp CAVs to have human-like behavior to increase
the feasibility of finding an acceptable gap for merging.

This chapter proposes a strategy for CAVs to optimally guide the on-ramp vehicles
to the mainline traffic efficiently while ensuring safe interactions with the mainline
vehicles. Point-mass kinematic models are used to describe 2-D vehicle motion and
receding horizon control is used to generate optimal trajectories of interacting vehicles.
The strategy determines optimal merging time for on-ramp vehicles and acceleration
trajectories for all involving vehicles by minimizing the deviation from the directly pre-
ceding vehicles’ speed, deviation from preferred inter-vehicle gaps, accelerations, and
the time spent in the acceleration lane. The strategy builds on a pre-determined order
of passing the conflict zone but is not restricted to fixed merging points. It resembles
some human-like behavior in the sense that on-ramp vehicles accept smaller time gaps
for merging when approaching the end of the acceleration lane. The performance of
the strategy is demonstrated through numerical simulations.

The remaining of the chapter is organized as follows. Firstly, cooperative merging
concepts and operational preliminaries are stated. After that, vehicle dynamics models
are presented. The formulation of the cooperative merging strategy is given. Finally,
the design of simulations and experimental results are illustrated.

3.2 Cooperative merging concepts and operational pre-
liminaries

We consider a typical merging scenario with one mainstream lane and an on-ramp lane
connected with an acceleration lane (see Figure 3.1). We postulate a future passing
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order of the vehicles at the conflict zone (Ntousakis et al., 2016). For on-ramp vehicle
2 in Figure 3.1, its putative leader and putative follower in the target lane are numbered
as vehicle 1 and 3, respectively.

 

Figure 3.1: A typical merging scenario with one mainstream lane and an on-ramp
connected with an acceleration lane

The three vehicles are CAVs whose longitudinal and lateral accelerations are con-
trolled. We do not consider communication imperfection, nor any measurement noise
in this chapter. A receding horizon control method is used to design the merging
strategy. At the current time instant, the interacting vehicles communicate their cur-
rent states represented by the inter-vehicle gap and relative speeds. With the commu-
nicated information, the controller predicts the future motions of the three vehicles
using vehicle dynamics models and decides the optimal acceleration trajectories of all
three vehicles and the initiation time of lane change for vehicle 2 over a time horizon
T p. The decisions are generated to optimize a performance index or cost function of
the whole CAV group, reflecting safety, efficiency, and control effort. The lane change
of vehicle 2 can be triggered when the predicted time gaps to vehicle 1 and 3 are larger
than a minimum time gap in the predicted future. Only the first sample of the accel-
eration trajectories is implemented. At the next time instant, the whole procedure is
repeated with updated vehicular information.

3.2.1 Vehicle dynamics models

The system we considered consists of the three vehicles shown in Figure 3.1. The
passing order of the three vehicles is as shown with two dotted arrow lines in Figure
3.1. xi, yi, vix, viy, aix and aiy are denoted as the longitudinal location, lateral location,
longitudinal speed, lateral speed, longitudinal acceleration, and lateral acceleration of
vehicle i (i = 1,2,3). The merging process is that vehicle 2 moves laterally and longit-
udinally from the acceleration lane to the mainstream lane while vehicle 1 and 3 move
longitudinally. For simplicity, the time argument is dropped where no misunderstand-
ing exists.

The state variable and control variable are defined X = (s1,∆v1,s2,∆v2,s3,∆v3,y2)
T

and U = (a1x,a2x,a3x, t l
2)

T respectively, where si = xi−1− xi–li and ∆vi = vi−1− vi
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(i = 1,2,3) denote gap (or net spacing) and relative speed of vehicle i with respect
to vehicle i− 1 respectively, t l

2 denotes the merging time instant for vehicle 2 and li
denotes the length of vehicle i. y2 is the lateral position of vehicle 2. It is a continuous
function of t l

2 as shown in Equation 3.1, where h denotes the lane width. Point mass
models are chosen to describe the motion of a vehicle. A second order dynamics is
used to represent both the longitudinal and lateral motion of vehicles, as shown in
Equation 3.2 and Equation 3.3.

y2 =


−h/2 t ≤ t l

2
f (t l

2) t l
2 < t < t l

2 + tm
h/2 t ≥ t l

2 + tm

(3.1)

ẋi = vix, v̇ix = aix (3.2)

ẏi = viy, v̇iy = aiy (3.3)

The admissible values of lateral and longitudinal accelerations are subject to the phys-
ical characteristics of vehicles (Mehar et al., 2013). To this end, the system state dy-
namics is as shown in Equation 3.4.

d
dt

X = (∆v1,a0−a1,∆v2,a1−a2,∆v3,a2−a3, ẏ2)
T (3.4)

3.3 Cooperative merging strategy design

This section gives a detailed description of the formulation of the cooperative merging
approach for CAVs.

3.3.1 Cooperative merging control formulation

The objectives of the cooperative merging controller are to efficiently and safely facil-
itate the on-ramp merging vehicle to merge into the mainstream traffic. MPC method
is applied to design the controller. At each time instant t0, the controller solves an
optimal control problem as shown in Equation 3.5 and Equation 3.6.

min
U [t0,t0+Tp]

J(X ,U) = min
U [t0,t0+Tp]

∫ t0+Tp

t0
L(X ,U)dt (3.5)

L = c1 ·
3

∑
i=1

(∆si)
2

︸ ︷︷ ︸
safety

+c2 ·
3

∑
i=1

(∆vi)
2

︸ ︷︷ ︸
disruption

+c3 ·
3

∑
i=1

(aix)
2

︸ ︷︷ ︸
control

+ c4 · t l
2︸ ︷︷ ︸

lane switch

(3.6)
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where c1, c2, and c3 are weight parameters. ∆si = si− sd
i denotes the gap error, i.e. the

deviation of the real gap to the desired gap. The desired gap sd
i is determined by using

a constant time gap, i.e. sd
i = vi · td + s0, where s0 is the minimum gap at standstill. Tp

is the prediction horizon.

The cost function is comprised of safety, disruption, control, and lane switch costs.
With the safety cost, the CAVs have a tendency to reach the desired gap. The disruption
cost implies that CAVs follow the speeds of their preceding CAVs according to the
future passing order. The control cost penalizes large values of desired longitudinal
accelerations. The lane switch cost represents the cost for late merging and thus the
time spent in the acceleration lane is penalized. When an on-ramp vehicle have large
enough inter-vehicle distances with its future preceding and following vehicles, it is
instructed to change lane in the acceleration immediately to reduce the lane switch
cost.

The optimal control problem is subject to the following constraints on state and control
variables:

1) the system dynamics models represented by Equation 3.2 and Equation 3.3.

2) the initial condition: X(t0) = X̃(t0) , where X̃(t0) represents the initial state for the
controller at t0.

3) state constraints of speed bound: vi ∈ [0,vlimit ], where vlimit represent the speed
limits.

4) admissible acceleration bound: aix ∈ [ai
min,a

i
max], where −ai

min and ai
max denote the

largest deceleration and acceleration respectively.

Vehicle 2 starts to merge when its predicted time gap with vehicle 1 and vehicle 3 are
lager than a threshold tg(x2). tg(x2) is dependent on vehicle 2’s position in the acceler-
ation lane. The chosen simple relationship between tg(x2) and x2 is linear as shown in
Figure 3.2, where xs and xe denote the start and end locations of the acceleration lane
respectively, and tmax

g and tmin
g denote the maximum and minimum time gap for the

acceptance of the merging CAV and the putative follower during the merging process,
respectively.
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Figure 3.2: The linear relationship of desired net gap headway and the location of CAV
2 in the acceleration lane

The solution to the constrained optimization problem is based on the Pontryagin’s Min-
imum Principle. The optimal longitudinal accelerations are first obtained, after that the
controller compares the predicted gaps between vehicle 1 and 2 and between vehicle 2
and 3 with the acceptable gap to have the differences in the prediction horizon. When
the on-ramp CAV is traveling in the acceleration lane, the first time instant that satisfies
all the differences are non-negative is the optimal merging time instant.

To have the optimal longitudinal accelerations, we use X1 =(s1,s2,s3)
T , X2 =(∆v1,∆v2,∆v3)

T

and Sd = (sd
1,s

d
2,s

d
3)

T and construct its Hamiltonian function as shown in Equation 3.7
considering Equation 3.4 and Equation 3.6.

H = c1 · (X1−Sd)+ c2 ·X2
2 + c3 ·

3

∑
i=1

(aix)
2 +λ1 ·X2 +λ2 ·

3

∑
i=1

(a(i−1)x−aix) (3.7)

where λ1 and λ2 are co-state variables. The necessary conditions for optimality are as
shown in Equation 3.8.

λ̇1 =−
∂H
∂X1

; λ̇2 =−
∂H
∂X2

(3.8)

subject to initial state conditions and terminal conditions: λ1(t0 +Tp) = 0 and λ2(t0 +
Tp) = 0. The process then turns to two-point boundary value problem. It is then solved
with a gradient method (Wang et al., 2015).

3.3.2 Human-like lane change

The lateral motion of CAV 2 resembles a human-like behavior. When the lane changing
maneuver starts, it follows an empirical human-like lane change path model shown in
Equation 3.9, where tm and h represent the lane change execution time and the lane
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width respectively (Samiee et al., 2016). The positive value of h indicates lane change
to the right side of the road.

f (t l
2) =

(
−6h
t5
m

)
(t− t l

2)
5 +

(
15h
t4
m

)
(t− t l

2)
4 +

(
−10h

t3
m

)
(t− t l

2)
3−h/2 (3.9)

3.4 Simulations and results

This section designs two experiments to test the performance of the designed mer-
ging strategy to achieve cooperative on-ramp merging with short time gap acceptance
characteristics.

3.4.1 Experiment Design

The merging controller parameters are set as follows: c4 = 0.5, Tp = 6 s, td = 1 s,
vlimit = 30 m/s, ai

min =−2 m/s2 (i= 1,2,3), ai
max = 2 m/s2 (i= 1,2,3), tm = 2 s, s0 = 2

m, tmin
g = 0.25 s (Daamen et al., 2010), and tmax

g = 1 s. The combinations of c1, c2, and
c3 are listed in Table 3.1. The simulation time step is 0.1 s. A feedback delay τs = 0.2
s due to discrete sampling process is introduced in simulation, i.e. X(t) = X(t− τs).
Thus the performance of the strategy is tested against model mismatch. The length of
the acceleration lane is 300 m, setting xs = 0 m and xe = 300 m.

To prove the efficiency of the controller, the two experiments are designed. The settings
are as shown in Table 3.2 and Table 3.3. In experiment 1, the initial inter-vehicle
distances between CAV 2 and CAV 1 and between CAV 2 and CAV 3 are the same;
while in experiment 2, the inter-vehicle distance of CAV 2 and CAV 3 is 0, and the
merging situation is much more difficult than the first experiment. The speed of CAV
1 is set constant for the two experiments and the simulation time is 30 s.

Table 3.1: Combinations of c1, c2, and c3

Number c1 c2 c3

1 0.1 0.5 0.5
2 0.2 0.5 0.5
3 0.1 0.6 0.5
4 0.1 0.5 0.6

3.4.2 Results and analysis

When c1=0.1, c2=0.5, and c3=0.5, vehicle trajectories in experiment 1 are shown in
Figure 3.3 and Figure 3.4. The merging strategy generates reasonable behaviors of
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Table 3.2: Initial conditions for experiment 1

i xi (m) yi (m) vix (m/s) li (m)
1 18 3.5/2 30 4
2 0 -3.5/2 30 4
3 -18 3.5/2 30 4

Table 3.3: Initial conditions for experiment 2

i xi (m) yi (m) vix (m/s) li (m)
1 32 3.5/2 30 4
2 0 -3.5/2 30 4
3 -4 3.5/2 30 4
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Figure 3.3: Simulation results of experiment 1
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CAVs. Initially, the actual gaps of CAV 2 and 3 are smaller than their desired gaps,
and the gap errors are negative. To reduce the gap errors, CAV 2 and 3 decelerate to
reduce their speeds, and then their desired gaps decrease. However, after the decel-
eration of CAV 2 and 3, the relative speeds start to be positive and the values of the
longitudinal accelerations are non-zero. And then there exists a trade-off for these cost
terms. Finally, the following vehicles settle down to the equilibrium states where de-
sired gaps are 32 m, speeds are 30 m/s, and longitudinal accelerations are zero. In the
lateral dimension, according to differences of the predicted gaps of merging CAV 2 to
CAV 1 and CAV 3 to the accepted gap as shown in Figure 3.4(b), the merging time
instant is t l

2 = 4.3 s. The merging trajectory is as shown in Figure 3.3(d). Before mer-
ging, the predecessor of CAV 3 is CAV 1; however, after merging it turns to be CAV
2. Accordingly, the visual gap of CAV 3 to its preceding CAV in the mainstream lane
reduces sharply and then gradually increases to reach the equilibrium state, as shown
in Figure 3.4(a).
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Figure 3.4: Experiment 1: (a) distance gap of CAV 3 to its preceding CAV in the
mainstream; (b) the difference of the predicted gaps to the accepted gaps over the
prediction horizon at several different simulation time

For different combinations of c1, c2, and c3, the corresponding values of t l
2 are listed in

Table 3.4. Table 3.4 shows that the second combination lead vehicle 2 to merge earlier.
This may indicate that vehicle 2 can accomplish merging earlier if c1 is given a larger
value.

Table 3.4: The corresponding values of t l
2 for different combinations of weights in

experiment 1

Number c1 c2 c3 t l
2

1 0.1 0.5 0.5 4.3
2 0.2 0.5 0.5 4.1
3 0.1 0.6 0.5 4.3
4 0.1 0.5 0.6 4.3
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Figure 3.5: Simulation results of experiment 2
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Figure 3.6: Experiment 2: (a) distance gap of CAV 3 to its preceding CAV in the
mainstream; (b) the difference of the predicted gaps to the accepted gaps over the
prediction horizon at several different simulation time

The simulation results of experiment 2 are shown in Figure 3.5 and Figure 3.6. The
controller still generates reasonable behaviors for CAVs in this challenging scenario.
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Longitudinally, the initial gap for CAV 3 is 0 and the gap error is large and negative.
The controller gives commands for CAV 3 to decelerate. The behavior of CAV 2 is
affected by the trade-off of different cost terms and it starts with constant speeds. With
deceleration, the gap error of CAV 3 reduces; however, its relative speed becomes pos-
itive. By trading off different cost terms, CAV 2 and 3 finally reaches the equilibrium
state as that in experiment 1. Laterally the merging time instant is t l

2 = 5 s as shown in
Figure 3.6(b).

For different combinations of c1, c2, and c3, the corresponding values of t l
2 are listed

in Table 3.5. Like Table 3.5, Table 3.5 demonstrates that a larger c1 brings a smaller
value of t l

2. Besides, Table 3.5 suggests that a larger c2 may result in a larger value of
t l
2.

Table 3.5: The corresponding values of t l
2 for different combinations of weights in

experiment 2

Number c1 c2 c3 t l
2

1 0.1 0.5 0.5 5
2 0.2 0.5 0.5 4.7
3 0.1 0.6 0.5 5.1
4 0.1 0.5 0.6 5

The simulation results seem to indicate the feasibility of the designed controller to
complete merging automatically and safely, and the capability of on-ramp CAVs to
accept small gaps for merging. Even though only two settings of initial states of CAVs
are given in this chapter, many other possible settings have been tested by us. By
performing simulations with different weights, we find that a larger value for c1 or a
small value for c2 may make the on-ramp CAV start to merge earlier.

3.5 Conclusion

This chapter proposes a cooperative merging control strategy for on-ramp CAVs to
complete the merging task automatically and safely. The controller is designed based
on model predictive control. It regulates the longitudinal motions of CAVs and gives
the initiation times of lane change for merging vehicles. On-ramp CAVs are allowed
to accept smaller time gaps for merging while approaching the end of the acceleration
lane. When an on-ramp vehicle travels in the acceleration lane and its predicted inter-
vehicle distances to its future preceding and following vehicles in the mainline lane are
larger than the accepted values in the predicted time horizon, respectively, it turn left
to join mainline the traffic. The lateral lane changing maneuver is automatically con-
trolled to follow an empirically lateral acceleration trajectory without the intervention
of a driver. The feasibility of the designed controller to complete merging automat-
ically and safely and the capability to accept small gaps for merging may be demon-
strated by numerical experiments. Besides, experimental results suggest the proposed
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approach generates feasible and smooth trajectories at challenging initial conditions
even when feedback delay is not considered by the controller.

The proposed cooperative merging control strategy uses a predefined merging se-
quence. A future research direction is to seek optimal merging sequence. Besides,
future research will focus on ensuring safe and automatic merging maneuvers in mixed
traffic. In the next chapter, we propose a hierarchical control approach. The optimal
merging sequence for two conflicting streams of traffic is scheduled. Longitudinal ac-
celeration trajectories for CAVs are regulated to achieve safe and efficient merging and
time instants for on-ramp CAVs to change lane are given based on the safe merging
condition presented in this chapter.





Chapter 4

A hierarchical model-based
optimization control approach for
cooperative merging by connected
automated vehicles

Chapter 3 uses a predefined merging sequence. This chapter presents a new approach
to determine the optimal merging sequence. It addresses the third sub-objective. We
put forward a hierarchical control approach for CAVs to achieve efficient and safe mer-
ging operations. Gap selection and dynamic speed profiles of interacting vehicles at
on-ramps affect the safety and efficiency of highway merging sections. A tactical layer
controller employs a second-order car-following model with a cooperative merging
mode to represent a cooperative merging process and generates an optimal dynamic
vehicle merging sequence. An operational layer controller is designed based on model
predictive control. It uses a third-order vehicle dynamics model and optimizes de-
sired accelerations for CAVs and the time instants when the on-ramp CAVs initiate
the lane-changing executions respectively. Both the tactical layer controller and oper-
ational layer controller derive their control commands by minimizing the same object-
ive function for different time horizons. The performance of the proposed hierarchical
control framework and a benchmark on-ramp merging method using a first-in-first-out
rule to determine the merging sequence is demonstrated under 135 scenarios. The
experimental results show the superiority of the hierarchical control approach.

This chapter is an edited version of the article:

Chen, N., Van Arem, B., Alkim, T., and Wang, M., ”A hierarchical model-based optim-
ization control approach for cooperative merging by connected automated vehicles”,
IEEE Transactions on Intelligent Transportation Systems, 2020, doi: 10.1109/TITS.202
0.3007647.
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4.1 Introduction

Highway traffic congestion and traffic incidents are societal problems, and they bring
great economic loss to the public. On-ramps on highways are typical bottlenecks where
improper on-ramp merging behavior brings loss to traffic efficiency and safety easily
(Milanés et al., 2011). The loss to a great extent is caused by improper merging se-
quences and motions of involved vehicles during merging processes (Pueboobpaphan
et al., 2010; Morales and Nijmeijer, 2016; Li et al., 2014; Feng et al., 2015; Chen and
Englund, 2016; Yang et al., 2016).

With the development of control and telematic technologies, Connected Automated
Vehicles potentially improve highway operations near on-ramps (Van Arem et al.,
2006; Jin et al., 2018; Ntousakis et al., 2016; Rios-Torres and Malikopoulos, 2017a;
Shladover et al., 2012; Rios-Torres and Malikopoulos, 2017b; Zhou et al., 2017). In
high driving automation CAVs exchange their current and/or anticipated information
with each other via Vehicle-to-Vehicle communication and/or with the road infra-
structure via Vehicle-to-Infrastructure communication to enhance situation awareness
and/or maneuver in a coordinated way (Van Arem et al., 2006; Wang et al., 2014b;
Rios-Torres and Malikopoulos, 2017b; Chen et al., 2018c). CAVs have the potential
to follow selected or established merging sequences, and to accomplish or to facilit-
ate difficult merging tasks automatically by behaving cooperatively. Many trajectory-
planning approaches exist. They mainly belong to (cooperative) adaptive cruise con-
trol, geometric methods, and optimal control. (Milanés et al., 2011; Rios-Torres and
Malikopoulos, 2017b; Ntousakis et al., 2016).

By contrast, fewer methods are available to establish optimal merging sequences. To
improve traffic efficiency, mainline vehicles are allowed to yield for merging of on-
ramp vehicles (Wang et al., 2013; Rios-Torres and Malikopoulos, 2017a,0). The ex-
isting cooperative merging strategies generally utilize proactive merging sequences.
The merging sequences are given before on-ramp vehicles reaching at merging points
(Wang et al., 2013; Awal et al., 2013; Rios-Torres and Malikopoulos, 2017b).

This chapter aims to design a cooperative merging strategy for CAVs to achieve safe
and efficient traffic under 100% CAV market penetration. The cooperative merging
strategy is based on a hierarchical control approach, where a tactical controller and an
operational layer controller work together to select gaps for the merging of on-ramp
CAVs, to regulate CAVs’ desired accelerations, and to determine time instants when
the on-ramp CAVs initiate lane-changing executions respectively. The superiority of
the proposed cooperative hierarchical control approach over a benchmark control ap-
proach, using a first-in-first-out method to determine merging sequences and the same
operational layer controller to regulate vehicular motions, is verified numerically at a
microscopic level under 135 scenarios with different initial conditions and desired time
gap settings.

The remainder of the chapter is organized as follows. In Section 4.2 the relevant liter-
ature on establishing merging sequences is critically reviewed and summarized. The
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following section presents the designed cooperative merging control architecture. Sec-
tion 4.4 elaborates on the design of the tactical controller and operational layer control-
ler. After that, we introduce simulation experiments design in Section 4.5, followed by
an analysis and a discussion of simulation results in Section 4.6. Finally, Section 4.7
concludes the study.

4.2 Literature review on establishing merging sequences

Existing cooperative merging strategies have two types of means to establish merging
sequences. One means is based on explicit rules. The methods belong to this means
are thus called ’rule-based methods’ for simplicity. Another means is based on the
predicted values of a global or local performance indicator relating to traffic operations.
Prediction-based approaches are called ’optimal methods’ for simplicity.

The rule-based methods include virtual mapping, the first-in-first-out method, heur-
istic methods, and others. The virtual mapping method establishes merging sequences
by comparing initial path lengths of vehicles to a fixed merging point (Milanés et al.,
2011; Wang et al., 2013; Rios-Torres and Malikopoulos, 2017b). A vehicle closer
to the merging point passes through it earlier. When a control zone is defined, first-
in-first-out method establishes merging sequences by comparing the enter times of
vehicles into the control zone (Rios-Torres and Malikopoulos, 2017a). A vehicle that
enters into the control zone earlier leaves earlier. An upper layer controller of a two-
layer local merging control method utilizes a heuristic method to establish merging
sequences (Schmidt and Posch, 1983; Posch and Schmidt, 1984). The upper layer
controller prescribes a constant merging velocity. It makes vehicles entering into the
control zone adjust their speeds first to the merging velocity based on constant accel-
erations and then continue to move. Thus, the expected leaving times of vehicles can
be calculated. A merging sequence is then established by sorting the expected leaving
times of vehicles. Others includes all other methods using plausibly reasonable rules
to establish merging sequences, such as selecting one mainline CAV to yield for the
merging of an on-ramp vehicle or appointing virtual slots for CAVs (Pueboobpaphan
et al., 2010; Scarinci et al., 2015; Marinescu et al., 2012). In Pueboobpaphan et al.
(2010), the first downstream mainline CAV, which is estimated within a safety zone
when an on-ramp human-driven vehicle arrives at a merging point, yields for merging
of an on-ramp human-driven vehicle. Because human-driven vehicles’ arriving times
and speeds at the start of an acceleration lane are not perfectly predicted, sometimes
mainline CAVs generate unnecessarily large gaps. Mainline CAVs can act as leaders
to collect gaps for merging of on-ramp vehicles by using the fundamental diagram in
traffic flow theory (Scarinci et al., 2015).

Optimal methods evaluate all or some selected merging sequences by using the pre-
dicted values of a performance indicator relating to traffic operations and establish the
optimal one for merging of on-ramp vehicles. Athans (1969) uses optimal platooning



52 Coordination Strategies of Connected and Automated Vehicles

control to generate accelerations of vehicles and compares the values of an object-
ive function during on-ramp merging process with different merging sequences. The
merging sequence that corresponds to the minimal value of the objective function is
optimal. However, the process to establish the optimal merging sequence may be time-
consuming when many vehicles are involved. An optimal merging sequence can also
be established during a merging process (Cao et al., 2014). Cao et al. (2014) utilizes a
trajectory equation with uncertain parameters as potential merging paths of an on-ramp
vehicle and designs on-ramp merging control based on MPC. Uncertain parameters in
the potential merging paths and vehicles’ longitudinal accelerations are generated by
minimizing a weighted sum of several penalty functions. Awal et al. (2013) calcu-
lates a CAV’s safe vehicular speed by considering several vehicles ahead of it within
a specified distance. Where no merging exists, the nature arriving times of CAVs at
a merging point can be estimated. Reasonable merging sequences are established by
comparing these estimated arriving times. The predicted merging delays with these
reasonable merging sequences are then compared to determine the optimal merging
sequence. Zhao et al. (2018) proposes a bi-level programming model for autonomous
intersection control. An upper-level controller estimates the earliest and latest arrival
times of CAVs into an intersection and establishes an optimal passing sequence of
vehicles by minimizing the sum of arriving times of CAVs in two different roads, sub-
ject to safe minimal time intervals. A lower-level controller optimizes every vehicle’s
trajectory to follow the allocated arrival time and maximizes the terminal speed. Xu
et al. (2019) gives optimal merging sequences through a genetic approach. A car-
following model is used to update vehicles’ accelerations and vehicles’ accelerations
are assumed to be constant in divided time intervals. Duret et al. (2019) proposes a
model-based bi-level control strategy for splitting a platoon of trucks near network
merges. A supervisory tactical strategy uses a first-order Newell car-following model
with bounded acceleration and deceleration to describe the follower-the-leader beha-
vior of vehicles. A natural ordered sequence is given by projecting vehicles’ position-
time with the maximum flow speed along a shock wave on two lanes to a shock wave
starting from a leader’s position. The optimal ordering sequence is established to make
the projections in a time-ordered set. The existing optimal methods tend to arrange
passing times of vehicles over a merging point or repeat future detailed merging pro-
cess exhaustively with different merging sequences to find an optimal one.

Both the rule-based methods and the optimal methods establish merging sequences
by using numerical criteria. The numerical criteria employed by the rule-based meth-
ods are based on values related to vehicles’ initial or estimated future positions and/or
speeds. Merging sequences selected by utilizing the rule-based methods do not have
obvious advantages over other possible merging sequences. The optimal methods re-
peat future detailed merging process exhaustively with different merging sequences
to choose optimal ones. Compared with the rule-based methods, the optimal methods
evaluate all or some merging sequences and adopt selected global or local performance
indicators relating to traffic operations to establish optimal merging sequences. The
optimal methods to a great extent ensure utilizing the established merging sequence
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improves traffic operations. However, the existing optimal methods rely on accurate
vehicle dynamics models and detailed trajectory planning process. These methods’
flexibility is limited. They may not work properly to establish optimal merging se-
quences when mismatches exist. Besides, with the existing optimal methods, on-ramp
CAVs start to adapt their speeds and positions to prepare merging into selected gaps
respectively when they enter into on-ramp lanes. This neglects the possibilities of al-
lowing on-ramp vehicles to drive with their desired speeds for certain time periods
respectively to reduce their speed deviations to mainline vehicles’ or adjust their pos-
itions to have large inter-vehicle distances. Chances to improve traffic operations may
thus be ignored to some extent. This chapter proposes a novel hierarchical model-based
optimization control approach to plan vehicular trajectories for CAVs. This approach
can establish optimal merging sequences when mismatches exist and allow on-ramp
vehicles to travel with their desired speeds for certain time periods respectively.

Acceleration lane

On-ramp lane

Mainstream lane

(1)(3) (2)(4)(5)
Centralized
ControllerControl Zone

L

L

0 m

r

Figure 4.1: A typical on-ramp merging scenario

4.3 Cooperative merging control architecture

Figure 4.1 shows a typical on-ramp merging scenario considered in this chapter. All
vehicles are CAVs with SAE Level 4 Automation, and they are assumed to be automat-
ically controlled by the operational layer controller. On-ramp CAVs need to merge into
mainstream traffic before reaching the end of an acceleration lane. Located near the
start of the acceleration lane, a roadside centralized controller, which acts as the tac-
tical layer controller, regularly collects vehicular information provided by in-vehicle
estimators through V2I communication. The operational layer controller is located in
CAVs, regulating CAVs’ motions.
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Figure 4.2: Hierarchical architecture of the merging control system

A hierarchical control architecture (See Figure 4.2) is designed to achieve safe and
efficient merging of the on-ramp CAVs. It includes two controllers, CAVs’ actuators,
CAVs’ dynamics, on-board sensors, and estimators. These components are connec-
ted by communications networks. CAV’s actuators execute decision from the opera-
tional layer controller, thus changing CAVs’ motion. The tactical layer controller and
operational layer controller assume that the estimator equipped on each CAV gives
accurate vehicular information detected by sensors, including position, speed, and ac-
tual acceleration of that CAV. With Zt(0), the value of a state variable defined by the
tactical layer controller at time 0 s, the tactical layer controller computes optimal fu-
ture vehicle merging sequences (or equivalently selects gaps for the on-ramp CAVs to
merge respectively) and speed-adaptation time instants for on-ramp vehicles to maxim-
ize efficiency and comfort while respecting safety and maneuver constraints in a time
horizon T . A speed-adaptation time instant is the time instant when an on-ramp CAV
starts to adapt its speed and position to prepare merging into the target gap. The max-
imal efficiency and comfort are to be achieved when the value of an objective function
is minimal. The objective function is a weighted sum of deviations of inter-vehicle
gaps to desired gaps, relative speeds to their direct predecessors, and actual accelera-
tions of all the vehicles, subject to constraints on velocities, actual accelerations, and
inter-vehicle gaps. To predict CAVs’ future dynamics in the merging process, the tac-
tical layer controller employs a second-order multi-regime model with a car-following
mode and a cooperative merging mode. The transition of the two modes is separated
by an on-ramp CAV’s speed-adaptation time instant and a time instant when it accom-
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plishes the lateral maneuver. The tactical layer controller transmits the optimal future
vehicle merging sequence and speed-adaptation time instants to the operational layer
controller as a command every ∆t̂, if the command is accepted by the operational layer
controller. If the command is rejected and a request is made by the operational layer
controller, a new command is to be established by the tactical layer controller before
∆t̂.

With the command received from the tactical layer controller and Zo(t0), the value of
the state variable defined by the operational layer controller at the current time t0, the
operational layer controller rejects the command when no feasible solution is found for
an on-ramp vehicle. If the on-ramp vehicle is far away from the end of the acceleration
lane, the operational layer controller then requests a new command from the tactical
layer controller. A request is a trigger event for the tactical layer controller to establish
a new decision without waiting until ∆t̂. However, if the on-ramp vehicle is close to
the end of the acceleration lane, the operational layer controller chooses the next slot
after the established target slot directly for the on-ramp vehicle.

When the tactical command is accepted, the operational layer controller computes lon-
gitudinal desired acceleration trajectories for CAVs and lane-changing initiation time
instants in a shorter time horizon Tp < T by using MPC. A lane-changing initiation
time instant is the time instant when a merging vehicle initiates the lane-changing ex-
ecution. The operational layer controller utilizes a third-order longitudinal dynamics
model as a state prediction model and minimizes the same specification of the objective
function as the tactical layer controller. When an on-ramp vehicle has a sufficient gap,
it steers towards the main lane and executes merging. The gap acceptance criterion for
the on-ramp CAV is that its current and predicted inter-vehicle time gaps to its future
direct predecessor and follower in the whole prediction horizon Tp are larger than a
certain time gap, depending on the on-ramp vehicle’s location on the acceleration lane.
When the on-ramp CAV’s lane-changing initiation time is given, its lateral motion is
modeled with a lateral trajectory equation (Samiee et al., 2016), which is elaborated
in Appendix 4.7. The operational layer controller updates its commands with a fixed
frequency 1/∆t.

4.4 Merging control formulation

This section elaborates on the design of the tactical layer controller and operational
layer controller. For clarity, only one on-ramp vehicle r is considered to establish a
merging sequence and its speed-adaptation time instant. The process applies to scen-
arios where multiple on-ramp vehicles exist as well.
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4.4.1 Tactical layer controller establishing a merging sequence and
speed-adaptation time instant

For the tactical layer controller, the state variable is defined as Zt =(x1,v1,a1,x2,v2,a2,

· · · ,aN ,xr,vr,ar)
T , where xi, vi, and ai (i=1,2,...,N), xr, vr, and ar denote mainline CAV

i’s location, speed, and actual acceleration, on-ramp CAV’s location, speed, and actual
acceleration respectively. For notation simplicity, the time argument is dropped when
no ambiguity exists. The decision variable is defined as Ut = (~fr, t p)T , where ~fr is
a row vector denoting the merging sequence and t p stands for the speed-adaptation
time instant of the on-ramp CAV. When t < t p, the size of ~fr is N, and the value of
~fr is (1,2,...,N). After t p, the on-ramp vehicle starts to adapt its speed and position to
prepare merging into the target gap and the size of ~fr is increased to N+1, and the value
of the vector is (1,2,...,k-1,r,k,...N), with ~fr(k)=r, ~fr(k−1)=k−1, and ~fr(k+1)=k. To
this end, k is the on-ramp CAV’s position in the mainline platoon after accomplishing
merging.

Closed loop system dynamics model

A second-order model with a feedback law is used to express the longitudinal behavior
of a CAV. The open-loop system dynamics for each vehicle are described in Equation
(4.1). Because the second-order vehicle dynamics model is used, no extra time is
needed to reach a new desired acceleration.

ẋi = vi, v̇i = ai, i = 1,2, · · · ,N,r (4.1)

Considering cases when there is a conflict between the merging vehicle and the main-
line traffic during the on-ramp merging process, vehicles’ motions are categorized into
two modes: car-following and cooperative merging. The cooperative merging mode
only applies to the on-ramp CAV and its potential direct follower from t p to the first
time instant when the on-ramp CAV is on the main lane.

The car-following operation is modeled by a Helly car-following model, as shown in
Equation (4.2) (Brackstone and McDonald, 1999).

ac f
~fr(i)

(t) = D1 ·∆v~fr(i)(t−∆t̂)

+D2 · (s~fr(i)(t−∆t̂)− sd
~fr(i)

(t−∆t̂)) (4.2)

where, D1 and D2 are parameters, ∆v~fr(i) = v~fr(i−1)− v~fr(i), s~fr(i) = x~fr(i−1)− x~fr(i)−
lveh, and sd

~fr(i)
= v~fr(i) · td + s0 are CAV ~fr(i)’s relative speed, inter-vehicle gap and

desired inter-vehicle gap to its (potential) direct predecessor. lveh, td , and s0 denote
vehicle length, desired time gap and the minimum inter-vehicle gap at standstill re-
spectively.
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For the on-ramp vehicle, before t p, it travels to reach its desired speed vlimits as shown
in Equation (4.3), a special car-following mode. When multiple on-ramp vehicles exist,
a following on-ramp vehicle uses the vehicular information of its direct preceding on-
ramp vehicle in the car-following mode to generate its actual acceleration if its direct
preceding vehicle is close to it.

ar = D3 · (vlimits− vr(t−∆t̂)) (4.3)

The cooperative merging mode works by adjusting the inter-vehicle gaps between the
on-ramp CAV (CAV ~fr(k)) and its potential direct follower (CAV ~fr(k+1)) and prede-
cessor (CAV ~fr(k−1)) till these gaps are large enough for the on-ramp CAV to execute
merging. During the adjustment, the on-ramp CAV and its potential follower acceler-
ate or decelerate comfortably to create suitable inter-vehicle gaps. We utilize the same
criterion of acceptable time gap for lane changing in our previous work (Chen et al.,
2018a). For lane changing, the on-ramp vehicle tends to accept a smaller inter-vehicle
time gap to its potential direct predecessor and follower when it is approaching the
acceleration lane’s end as shown in Equation (4.4) (Chen et al., 2018a), where xs, xe,
and tmin

g denote the start and end longitudinal position of the acceleration lane, and the
minimum acceptable time gap respectively.

tg(t) = (x~fr(k)(t)−acs) · (tmin
g − td)/(ace−acs)+ td (4.4)

The cooperative merging operation is modeled by a piecewise function, as shown in
Equation (4.5). To ensure comfort, when a vehicle is in the cooperative merging mode,
its actual acceleration is bounded within [dcom,acom], standing for the acceptable range
of acceleration during the cooperative merging process. If the vehicle accelerates, its
acceleration is constrained to be less than acom.If it decelerates, its its deceleration is
constrained to be larger than dcom.

a ~fr( j) =

min(acom,min(ac f
~fr( j)

,amax)), ac f
~fr( j)
≥ 0,

max(dcom,max(ac f
~fr( j)

,dmax)),a
c f
~fr( j)

< 0,
(4.5)

where, the value of j is k or k + 1. amax and dmax denote maximum positive and
minimum negative acceleration of vehicles respectively. amax and dmax are assumed
constant for all CAVs simply, but they can be different for different CAVs in the design.

Tactical decision problem formulation

To improve traffic efficiency and safety, the tactical layer controller aims to make the
following vehicles to have the same speed as the first downstream vehicle, ensure inter-
vehicle spacing s~fr(i) to be as desired value sd

~fr(i)
, and reduce the effort of changing
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vehicular states which is reflected by actual accelerations. The formulation is as shown
in Equation (4.6) and Equation (4.7). The time period T is long enough for the on-ramp
vehicle to merge in the mainstream lane and relax to the equilibrium state.

min
Ut

J(Zt,Ut) = min
Ut

(
∫ 0+T

0
ι(Zt,Ut)dt)

+ c4 · (
N+1

∑
2
(∆v~fr(i)(0+T ))2)

+ c5 · (
N+1

∑
2
(∆s~fr(i)(0+T ))2) (4.6)

ι = c1 ·∑
i
(∆s~fr(i))

2 + c2 ·∑
i
(∆v2

~fr(i)
)+ c3 ·∑

i
(a~fr(i))

2 (4.7)

∆s~fr(i) = s~fr(i)− sd
~fr(i)

, i = 2,3, · · · ,M(t) (4.8)

subject to:

• the system dynamics model shown in Equation (4.1), car-following mode shown
in Equation (4.2) and Equation (4.3) and cooperative merging mode shown in
Equation (4.5).

• the initial condition: Zt(0)=Z̃t(0).

• speed constraints: 0≤ v~fr(i) ≤ vlimits.

• gap constraints: s~fr(i) ≥ s0.

• acceleration constraints: dmax ≤ a~fr(i) ≤ amax.

where, ∆s~fr(i) denotes vehicle ~fr(i)’s gap error, c1, c2, c3, c4, and c5 are weight para-

meters, and M(t) is the size of ~fr(t). Before t p, M(t)=N and the on-ramp CAV is not
included. During t < t p, the on-ramp CAV travels with its desired speeds, generating
zero value of the objective function. While t ≥ t p, M(t)=N+1, including the on-ramp
CAV at t p. The on-ramp vehicle steers towards the main lane when its lane changing
conditions are first met. The lane changing conditions are: 1) dcom ≤ ac f

~fr(k)
, ac f

~fr(k+1)
≤

acom, 2) on-ramp CAV ~fr(k) is on the acceleration lane, and 3) on-ramp CAV ~fr(k)’s
inter-vehicle time gaps to its potential direct predecessor and follower are larger than
tg, as shown in Equation (4.4). After a lane changing maneuver time tm, the on-ramp
CAV accomplishes on-ramp merging process and is on the main lane.

The tactical layer controller is formulated as a mixed-integer quadratic programming
problem (See Equation (4.6)). The on-ramp CAV needs to change lane before reaching
the end of the acceleration lane. Thus, t p has an upper bound. Besides, we discretize
the possible values of t p to be multiples of the time step ∆t̂. As the choices of k and
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t p are finite, the problem can be solved iteratively by giving different values to k and
t p. The optimal Ut is then transmitted to the operational layer controller. To ensure
safety, the tactical layer controller does not give the on-ramp CAV’s lane-changing ini-
tiation time instant as a command, because the tactical controller and operational layer
controller have mismatches regarding vehicle dynamics model and vehicular motions.
According to current and predicted inter-vehicle time gaps, the operational layer con-
troller then decides lane-changing initiation time based on a gap acceptance criterion
(Chen et al., 2018a).

4.4.2 Operational layer controller regulating vehicular trajectory

Operational layer controller formulation

Receiving the optimal combination of the merging sequence ~fr and t p of the on-ramp
vehicle, the operational layer controller regulates vehicles’ longitudinal desired accel-
erations and determines the on-ramp CAV’s lane-changing initiation time instant t l to
reach efficient and safe traffic performance. Before t l is determined, the evaluation fre-
quency of the desired accelerations and t l by the operational layer controller is a fixed
1/∆t. After the on-ramp vehicle starts to steer towards the main lane at t l , t l is not eval-
uated. The operational layer controller is designed based on MPC. With the vehicular
information at time t0, the operational layer controller generates the optimal longitud-
inal desired accelerations and determines t l within future Tp time horizon, shorter than
T .

For the operational layer controller, the state variable is defined as Zo=(s~fr(1),∆v~fr(1),

∆a~fr(1), · · · ,∆a~fr(M(t)),yr)
T , where ∆a~fr(i)=a~fr(i−1) - a~fr(i) is CAV ~fr(i)’s relative actual

acceleration to its (future) direct predecessor. The control variable is defined as Uo =

(u~fr(1), · · · ,u~fr(M(t)),ξr, t l)T , where u~fr(i) is the desired acceleration of CAV ~fr(i) and ξr

is the lane-changing acceptability of the on-ramp vehicle ~fr(k). When lane-changing
conditions are not met, ξr(t) equals to 0. When the on-ramp vehicle accepts the lane-
changing conditions, ξr(t) becomes 1, the on-ramp vehicle starts to steer towards the
main lane, and the corresponding time instant is t l . The longitudinal vehicle dynamics
model used by the operational layer controller is expressed with a third-order model,
as shown in Equation (4.9), Equation (4.10) and Equation (4.11) (Sheikholeslam and
Desoer, 1993; Liang and Peng, 1999; Wang et al., 2016b). An actuator lag τA is the
time duration needed for a vehicle ~fr(i) to change its actual acceleration a~fr(i) to its
given desired acceleration u~fr(i). τA of vehicles herein are assumed constant, but there
is no restriction on their homogeneity in our design.

ṡ~fr(i) = ∆v~fr(i), i = 2,3, · · · ,M(t) (4.9)

∆v̇~fr(i) = ∆a~fr(i) (4.10)
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∆ȧ~fr(i) =
u~fr(i−1)−u~fr(i)−∆a~fr(i)

τA (4.11)

When the on-ramp vehicle starts to change lane, i.e. ξr(t) = 1, its lateral path during
the lane changing process is designed to follow a polynomial equation (Samiee et al.,
2016), as shown in Equation (4.21) and Equation (4.22) in Appendix 4.7.

We use a MPC method to formulate the control problem of the operational layer con-
troller (Wang et al., 2014b; Chen et al., 2018c), as shown in Equation (4.12). The
objective function specification is as shown in Equation (4.13).

min
Uo

ζ (Zo,Uo) = min
Uo

(
∫ t0+Tp

t0
ψ(Zo,Uo)dt)

+ c4 ·
M(t)

∑
2
(∆v~fr(i)(t0 +Tp))

2

+ c5 ·
M(t)

∑
2
(∆s~fr(i)(t0 +Tp))

2 (4.12)

ψ = c1 ·∑
i
(∆si)

2

︸ ︷︷ ︸
safety

+c2 ·∑
i
(∆v2

i )︸ ︷︷ ︸
disruption

+c3 ·∑
i
(ui)

2

︸ ︷︷ ︸
control

(4.13)

i = 2,3, · · · ,M(t)

The operational layer controller has the same specification of an objective function
as the tactical layer control. However, the operational layer controller generates the
CAVs’ desired accelerations by minimizing the objective function. Minimizing the
first two items implies that vehicles tend to reach equilibrium states, where the inter-
vehicle gaps are their desired values and relative speeds are zeros, safety being ensured
and disruption attenuated. Penalizing large positive or small negative accelerations
saves control effort. The lane-changing acceptability ξr is not controlled as the longit-
udinal accelerations, but it is affected by the predicted inter-vehicle gaps and speeds.
For an open-loop control of the operational layer controller, the lane-changing accept-
ability ξr is determined by using Equation (4.14). When the on-ramp vehicle is on the
acceleration lane and the inter-vehicle gaps between it, ordering k after merging, and
its future direct predecessor and follower are larger enough within future time horizon
Tp, it changes lane.

ξr =
t0+Tp

∏
j=t0

(s~fr(k)( j)− v~fr(k) · tg− s0 ≥ 0) ·

(s~fr(k+1)( j)− v~fr(k+1) · tg− s0 ≥ 0) (4.14)
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where, tg is calculated by using the position of the on-ramp vehicle at t0, x~fr(k)(t0),
when the on-ramp vehicle is on the acceleration lane.

The control process is subject to below constraints:

• the system dynamics model shown in Equation (4.9), Equation (4.10) and Equa-
tion (4.11).

• an initial state: Zo(t0) = Z̃o(t0)

• speed constraints: 0 ≤ v~fr(i) ≤ vlimits.

• gap constraints: s~fr(i) ≥ s0.

• acceleration constraints: dmax ≤ u~fr(i) ≤ amax.

Solution to the optimal control problem

The generation of optimal longitudinal desired accelerations for the formulated MPC
problem is achieved by using Pontryagin’s Minimum Principle (Wang et al., 2015;
Duret et al., 2019).

X1 = (s~fr(1), · · · ,s~fr(M(t)))
T (4.15)

X2 = (∆v~fr(1), · · · ,∆v~fr(M(t)))
T (4.16)

X3 = (∆a~fr(1), · · · ,∆a~fr(M(t)))
T (4.17)

Sd = (sd
~fr(1)

, · · · ,sd
~fr(M(t))

)T (4.18)

We define X1, X2, X3, and Sd as shown in Equation (4.15)-(4.18) and create the cor-
responding Hamiltonian function of the optimization problem as shown in Equation
(4.19). For the first mainline vehicle, its relative speeds, relative actual accelerations
and gap errors are zeros, if it travels with a constant speed.

H = c1 · (X1−Sd)2 + c2 ·X2
2 + c3 ·∑

i
u2
~fr(i)

+λ1 ·X2 +λ2 ·X3

+λ3 ·∑
i

u~fr(i−1)−u~fr(i)
τA −λ3 ·

X3

τA (4.19)

λ̇1 =−
∂H
∂X1

; λ̇2 =−
∂H
∂X2

; λ̇3 =−
∂H
∂X3

(4.20)
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where, λ1, λ2, and λ3 are co-state variables of X1, X2, and X3 respectively. To have the
optimal longitudinal desired accelerations, Equation (4.9), Equation (4.10), Equation
(4.11) and Equation (4.20) need to be solved. The terminal conditions for Equation
(4.20) are λ1(t0 +Tp)=2 · c5 · (X1(t0 +Tp)− Sd(t0 +Tp)), λ2(t0 +Tp)=2 · c4 · (X2(t0 +
Tp)), and λ3(t0+Tp)=0. We are faced with a two-point boundary-value problem which
is solved by using an iterative algorithm used in (Wang et al., 2014a).

For the on-ramp CAV, before t p, it runs with its desired speeds until reaching the
speed limits. It utilizes Equation (4.12) to generate its desired acceleration by mak-
ing ∆vr = vlimits− vr and ∆sr = 0. When multiple on-ramp vehicles exist, a following
on-ramp vehicle utilizes its direct preceding vehicle’s information to regulate its de-
sired acceleration by Equation (4.12) and the generated value of the objective function
is included in the tactical layer controller and the operational layer controller to calcu-
late the total value of the objective function.

4.5 Simulation experiments design

In this section, we describe numerical experiment settings to test the designed hierarch-
ical cooperative merging strategy and give its detailed parameter settings. Performance
indicators used to show the traffic operations with the proposed strategy are given.

4.5.1 Simulation scenarios

To test the performance of the proposed hierarchical control approach, we design
135 scenarios with different initial conditions, desired time gap settings, and differ-
ent numbers of on-ramp vehicles. The initial conditions include the on-ramp CAVs’
initial speed and the initial relative position (RP) of the first on-ramp CAV to the space
between mainline CAV 3 and 4. For simplicity, we use percentages to represent RPs.
If the first on-ramp CAV simultaneously enters with the mainline CAV 3 and CAV 4,
respectively, into the control zone, the RP is indicated by 0% and 100%, respectively.
The control zone (See Figure 4.1) is used by a benchmark control method. The RPs
are set to be 0%, 20%, 40%, 60% and 80%. The desired time gap td varies among 0.6
s, 0.8 s, and 1 s. The on-ramp CAVs’ initial speed changes among 15 m/s, 20 m/s, and
25 m/s. The acceleration lane’s longitudinal start point is 0 meter (m), and its endpoint
is 300 m. The initial first on-ramp vehicle’s rear position is -62 m.

There are five mainline CAVs, N=5. Their initial speeds are 25 m/s. Initially, for
90 scenarios, one on-ramp CAV exists. Mainline vehicles start in equilibrium states
for 45 scenarios and in non-equilibrium states for the other 45 scenarios respectively.
When vehicles start in non-equilibrium states, the inter-vehicle distance between initial
vehicle 1 and 2 is 0.5 times of the desired inter-vehicle distance of the vehicle 2 and
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other vehicles have desired inter-vehicle distances to their direct preceding vehicles
respectively. Another 45 scenarios starting with two on-ramp CAVs are included as
well. For these 45 scenarios, all vehicles start from equilibrium states.

Table 4.1 shows the settings of two scenarios. Under these two scenarios, the detailed
performance of the controllers are analyzed.

Table 4.1: The settings of 2 scenarios

Number td RP vr(0) number of on-ramp CAVs
1 1 0% 15 m/s 1
2 1 0% 15 m/s 2

The first mainline CAV is set to travel with 25 m/s all the time. Besides, a fixed
feedback delay τS=0.2 s is also considered: Z̃t(0)=Zt(0−τS) and Z̃o(t0)=Zo(t0−τS),
during the experiments.

4.5.2 Benchmark control method for comparison

To show the advantage of the designed hierarchical control approach, we compare it
with the benchmark control strategy. The benchmark control strategy uses a first-in-
first-out method, a vehicle entering into a control zone earlier leaving it earlier, to
determine a merging sequence and implements the same herein designed operational
layer controller to generate vehicular motions. The control zone is delimited, with a
distance L, as shown in Figure 4.1. The distance L is within the transmission ranges of
Dedicated Short-Range Communication (DSRC). For the benchmark control strategy,
t p is 0 s. The corresponding future mainline vehicle order for the first on-ramp vehicle
can be k=4 for all scenarios and k=3 or 4 when the on-ramp CAV and mainline CAV
3 enter into the control zone at the same time. When k can be 3 or 4 and on-ramp
vehicles’ initial speeds are 25 m/s, the future vehicle order of the second on-ramp
vehicle after merging can be 5 or 6; otherwise, the future vehicle order of the second
on-ramp vehicle after merging is 6.

4.5.3 Parameter settings

For our designed tactical and operational layer controller, their common parameters
use the same values respectively. The parameter values representing vehicles’ max-
imum positive and minimum negative accelerations, vehicles’ length, vehicles’ desired
time gap, etc., are collected through V2V or V2I communication. We herein refer to
parameter settings assumed in others’ experiments to determine parameters’ values in
our experiments. The parameters are set as follows: L=62 m, T =50 s, Tp=6 s (Wang
et al., 2014a), vlimits=30 m/s, dcom=-4 m/s2, acom=2 m/s2, dmax=-4 m/s2 (Xiao et al.,
2018), amax=2 m/s2 (Xiao et al., 2018), tmin

g =0.25 s (Chen et al., 2018a), ∆t=0.1 s,
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∆t̂=0.5 s, xs=0 m, xe=300 m, lveh=4 m, D1=0.2, D2=0.7, D3=2, c1=0.1, c2=0.5, c3=0.5,
c4=0.1, c5=0.1, tm=5 s, h=-3.5, s0=2 m, and N=5. The values of weights c1, c2, c3, c4,
and c5 were manually tuned to give stable closed loop performance. Systematic tun-
ing methods of MPC can be found in (Garriga and Soroush, 2010). 64-bit MATLAB
R2018a on windows 7 system conducts the experiments with different initial settings.
The third-order vehicle dynamic model is chosen to represent the behavior of vehicles.
The operational layer controller regulates vehicular longitudinal accelerations and the
lane-changing initiation time instants for lane changers as shown in Equation (4.12).
When a lane changer steers towards the main lane and executes merging, its lateral
positions change according to Equation (4.21). For each experiment, the simulation
time is 50 s, long enough for the on-ramp vehicle to merge into the mainline traffic.

4.5.4 Performance indicators

Selected performance indicators are related to the actual vehicular trajectories in the
simulation time and control objectives, representing the overall traffic operations. We
aim to achieve efficient and safe merging of the on-ramp vehicle and to generate
smooth trajectories for ride comfort. To this end, the selected performance indicat-
ors are the overall value of the objective function calculated by using the weighted
sum of the actual gap errors, relative speeds, and the desired accelerations of CAVs
during the merging process and the occurrence of collision. The weight parameters on
gap errors, relative speeds, and the desired accelerations are c1, c2, and c3 respectively.
Besides, the terminal inter-vehicle gap errors with a weight parameter c5 and relative
speeds with a weight parameter c4 are also included in the objective function.
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Figure 4.3: Vehicular trajectories with the proposed hierarchical control approach
under a scenario where the on-ramp CAV and mainline CAV 3 enter into the control
zone at the same time



Chapter 4 65

4.6 Simulation results and discussion

In this section, simulation results with two different on-ramp merging control methods
under the 135 experimental scenarios are given and discussed.

Table 4.2: Experiment results of the scenarios with vr(0) is 15 m/s

td (s);

RP (%)

Objective function value k;

t p (s)

Improvement

(%)k=3,

t p=0

k=4,

t p=0
HCA

0.6;0 8414.83 2023.63 778.90 5;4
90.74

& 61.51

0.6;20 2386.19 660.01 5;4 72.34

0.6;40 3092.92 728.09 5;4 76.46

0.6;60 4171.99 967.60 5;3 76.81

0.6;80 5652.86 1200.77 5;6.5 78.76

0.8;0 9690.12 2099.76 1625.89 4;7
83.22

& 22.57

0.8;20 2344.72 1192.44 5;4 49.14

0.8;40 3098.95 957.02 5;4 69.12

0.8;60 4398.80 1004.74 5;4 57.15

0.8;80 6296.09 1247.11 5;2.5 59.76

1;0 11130.34 2337.90 1837.97 4;2
83.49

& 21.38

1;20 2402.95 2044.39 4;8 14.92

1;40 3170.85 1519.02 5;4 52.09

1;60 4687.61 1275.86 5;4 72.78

1;80 7032.86 1366.88 5;3 80.56

4.6.1 Safe performance

In all the 135 scenarios, no collision exists for the two on-ramp merging control meth-
ods. One example of the evolution of inter-vehicle gaps and the desired accelerations
with the proposed hierarchical control approach (HCA) under scenario 1 (See Table
4.1 ). With the hierarchical control approach, the future on-ramp CAV’s vehicle order
after merging is k = 4, and t p is 2 s, as shown in Table 4.2. The dashed black line
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illustrates that the on-ramp vehicle is still on the on-ramp or acceleration lane, while
the solid black line indicates it is on the main lane. Obviously, the merging process
does not have collisions; thus, it is safe. At around 20 s, the inter-vehicle gaps and
desired accelerations relax to the equilibrium values.

4.6.2 Performance of the proposed hierarchical control approach

One on-ramp vehicle: mainline vehicles starting from equilibrium states

When one on-ramp vehicle exists and mainline vehicles start from equilibrium states,
for the possible 45 scenarios with different initial conditions and desired time gap
settings, experimental results show that the proposed hierarchical control approach
outperforms the benchmark control method in 34 scenarios, and behaves as good as
the benchmark control method in 11 scenarios.

Table 4.3: Experiment results of the scenarios where the on-ramp CAV and mainline
CAV 3 enter into the control zone at the same time

td (s);

vr(0)

(m/s)

Objective function value k;

t p (s)

Improvement

(%)k=3,

t p=0

k=4,

t p=0
HCA

0.6;15 8414.83 2023.63 778.90 5;4
90.74

& 61.51

0.8;15 9690.12 2099.76 1625.89 4;7
83.22

& 22.57

1;15 11130.34 2337.90 1837.97 4;2
83.49

& 21.38

0.6;20 2562.47 1106.06 741.53 4;2
71.06

& 32.96

0.8;20 3411.90 1579.01 1183.04 4;1.5
65.33

& 25.08

1;20 4396.84 2131.91 1691.02 4;1.5
61.54

& 20.68

0.6;25 1335.10 1335.10 1121.98 3;1.5 15.96

0.8;25 1985.48 1985.48 1058.95 3;2 46.67

1;25 2758.56 2758.56 1984.06 3;3 28.08

When the on-ramp vehicle’s initial speed vr(0) is 15 m/s, 0.6 times of the speed of the
mainline traffic 25 m/s, using HCA for on-ramp merging control brings pronounced
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improvements in traffic operations as shown in Table 4.2. In Table 4.2, the first column
includes different combinations of desired time gaps td and RP. The overall value of the
objective function is calculated with the weighted sum of the actual gap errors, relative
speeds, and the desired accelerations of CAVs during the merging process with a given
merging sequence and t p generated by using the first-in-first-out method or HCA are
given in columns 2, 3, and 4. The established decisions from the HCA are presented
in column 5. Column 6 indicates the improvement in traffic operations by using the
proposed HCA, all higher than 14.92%. The improvement percentage is calculated
by dividing the objective function value caused by using the first-in-first-out method
into the deviation of the objective function value caused by using the first-in-first-out
method and the HCA. Initially, the on-ramp CAV’s speed deviation to the speed of
the mainline traffic is large. Using the first-in-first-out method to establish a merging
sequence does not give time for the on-ramp vehicle to increase its speed. Its potential
direct follower needs to brake strongly to facilitate on-ramp CAV’s merging, causing
large values of desired accelerations. By contrast, HCA gives the on-ramp CAV several
seconds t p to accelerate to increase its speed; and then makes the on-ramp vehicle to
adapt its speed and position to its target gap. After merging, the mainline vehicle order
for the on-ramp CAV is 4 or 5.

When the on-ramp CAV’s initial speed vr(0) increases to 20 m/s or 25 m/s, the HCA
still outperforms the benchmark control method under scenarios where the on-ramp
CAV and mainline CAV 3 enter into the control zone at the same time, RP being 0%,
as shown in Table 4.3. The improvements in traffic operations by using the proposed
HCA are all higher than 15.96%. When the on-ramp CAV’s initial speed vr(0) is 20
m/s, the HCA chooses 4 or 5 as the on-ramp CAV’s future mainline vehicle order, and
gives t p a positive value, several seconds. It is noticeable that when RP is 0%, choosing
k=3 or k=4 by the benchmark control method for on-ramp merging does matter when
vr(0) is not 25 m/s. The merging sequences with k=4 work better. When vr(0) is 25
m/s, choosing k=3 or k=4 by the benchmark control method achieves the same value
of the objective function, and thus makes no difference to the traffic operations.

When the on-ramp CAV’s initial speed vr(0) is 20 m/s, compared with the benchmark
control method, using HCA brings at least 13.47% improvement in traffic operations
where RP is 20% or 80%. HCA tends to give the same merging sequence as the bench-
mark control method when the on-ramp CAV’s initial position is around the middle of
the mainline CAV 3 and 4, as shown in Table 4.4. With the desired time gap increases,
the possibility of the HCA to give the same merging sequence as the benchmark control
method increases. When the on-ramp CAV’s initial speed is 25 m/s, the same initial
speed as the mainline traffic, the two control methods behave the same when initial RP
is within [20%,60%].
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Table 4.4: Experiment results of the scenarios with vr(0) is 20 m/s and RP is not 0%

td (s) RP (%)
Objective function value k;

t p (s)

Improvement

(%)k=4,t p=0 HCA

0.6 20 873.77 700.84 4;2 19.79

0.6 40 871.97 848.00 4;2 2.75

0.6 60 1127.47 1076.66 4;3.5 4.51

0.6 80 1657.77 942.28 5;2 43.16

0.8 20 1201.85 1014.07 4;1.5 15.62

0.8 40 1128.47 1123.15 4;1.5 0.47

0.8 60 4;0 0

0.8 80 2185.79 1594.65 5;1.5 27.05

1 20 1593.79 1379.06 4;1.5 13.47

1 40 1439.35 1438.58 4;1 0.5

1 60 4;0 0

1 80 2723.37 1981.38 4;5.5 27.25
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Figure 4.4: The performance of the hierarchical control approach compared with the
benchmark control method
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Compared with the benchmark control method, the performance of the HCA under
the 45 scenarios are marked in Figure 4.4. In Figure 4.4, a circle means that using
HCA brings improvement in traffic operations; a star means that HCA gives the same
decision as the benchmark control method. By observing Table 4.2, Table 4.3, Table
4.4, and Figure 4.4, we conclude that the HCA outperforms the benchmark control
method when the on-ramp CAV’s initial speed is 15 m/s, when the desired time gap
is 0.6 s or when the on-ramp CAV’s relative position to mainline CAV 3 and 4 is
0%, 20%, and 80%. When the on-ramp CAV’s initial speed is 20 m/s, the HCA also
outperforms the benchmark control method when the on-ramp CAV’s relative position
to mainline CAV 3 and 4 is 40%. Under the remaining scenarios, the HCA gives the
same decisions as the benchmark control method.

One on-ramp vehicle: mainline vehicles starting from non-equilibrium states

In Figure 4.3, after the on-ramp vehicle accomplishes lane changing, small inter-
vehicle gaps exist. To this end, the two control methods are further tested with a
small inter-vehicle gap existing in mainline traffic, checking their performance when
a new on-ramp vehicle shows up after the first on-ramp vehicle changes lane. For
the 45 scenarios with mainline vehicles starting from non-equilibrium states, a small
inter-vehicle distance 0.5·v2·td is given to initial vehicle 2 and other following mainline
vehicles start from the equilibrium states. Before t p, initially mainline CAV 2 decel-
erates to have its desired inter-vehicle distance, reducing its speed. Mainline CAV 3
decelerates to reduce relative speed to CAV 3. With these changes in vehicular states,
the performance of the HCA is as shown in Figure 4.5.

By comparing with Figure 4.4, the differences exist in 5 scenarios. 3 of them are
with vr(0) being 25 m/s, RP being 80%, and td being 0.6 s, 0.8 s, or 1 s. The re-
maining 2 scenarios are: (1) vr(0)=20 m/s, RP=60%, and td=0.6 s; (2) vr(0)=20 m/s,
RP=40%, and td=1 s. For these 5 scenarios, the HCA establishes the same decision as
the first-in-first-out method instead of outperforming in Figure 4.4. As a result, under
16 scenarios, the two control methods give the same decision; under the remaining
29 scenarios, the HCA outperforms the first-in-first-out method, averagely bringing
33.01% improvement in traffic operations.

When RP is 0%, for the first-in-first-out method using k=4 outperforms k=3 when
vr(0) <25 m/s. However, when vr(0) is 25 m/s, choosing k=4 or k=3 leads to the
same value of the objective function. The finding is the same as shown in Table 4.3.

Two on-ramp vehicles: mainline vehicles starting from equilibrium states

When two on-ramp vehicles exist in the on-ramp lane and the second on-ramp vehicle
has the desired inter-vehicle distance to the first one, the second on-ramp vehicle’s
future vehicle order after merging is 6 or 5 decided by the first-in-first-out method.
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Figure 4.5: The performance of the hierarchical control approach compared with the
benchmark control method when a small gap exists

Choosing 5 as the future vehicle order of the second on-ramp vehicle is only possible
when RP is 0% and vr(0) is 25 m/s. For the HCA, the future vehicle order of the second
on-ramp vehicle is 6 under 42 scenarios. For the remaining three scenarios where vr(0)
is 25 m/s and RP is 40%, the HCA gives 5 as the second on-ramp vehicle’s future
vehicle order and generates 5.5 s or 6 s as its speed-adaptation time instant. Under
scenario 2 (See Table 4.1 ), the HCA gives 2.5 s as the speed-adaptation time instant
for the two on-ramp vehicles, respectively. The desired acceleration trajectories of
vehicles are as shown in Figure 4.6. The black or dashed blue line illustrates that the
first or second on-ramp vehicle is still on the on-ramp or acceleration lane respectively,
while the solid black or blue line indicates the vehicle is on the main lane respectively.
For the first-in-first-out method, the on-ramp vehicles are on the main lane at 8.7 s and
10.7 s respectively, bringing 5732.25 as the objective function value.

In Figure 4.6(b), the second on-ramp vehicle follows the first on-ramp vehicle before
2.5 s, bringing 37.90 to the objective function value. After 2.5 s, the two on-ramp
vehicles’ trajectories are regulated together with mainline vehicles. At 10.8 s and 10.6
s, the two on-ramp vehicles are on the main lane respectively. The merging process
produces in total 3473,94 to be the objective function value, making 39.40% improve-
ment compared with the first-in-first-out method.
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Figure 4.6: Vehicular trajectories with the hierarchical control approach under a scen-
ario where the on-ramp CAV and mainline CAV 3 enter into the control zone at the
same time

The comparison results of the two control methods are as shown in Figure 4.7. An
upward-pointing triangle shows that the HCA deteriorates traffic operations compared
with the first-in-first-out method. By comparison, for 7 scenarios, the two control
methods generate the same decisions. For 4 scenarios, the HCA deteriorates traffic
operations, averagely binging 1.2% deterioration. However, for the remaining 34 scen-
arios, the HCA makes an averagely 26.65% improvement. To this end, the HCA still
has superiority.

Under scenarios where two on-ramp vehicles exist and are close to each other, when
RP is 0% and vr(0) is 25 m/s, choices of k=3 or k=4 for the first on-ramp or of using
5 or 6 as the future vehicle order of the second on-ramp vehicle by the first-in-first-out
method work the same as scenarios where only one on-ramp vehicle exist. When RP
is 0% and vr(0) is less than 25 m/s, using k=4 and 6 as the future vehicle order of the
second on-ramp vehicle by the first-in-first-out method brings improvement in traffic
operations compared with other choices.

4.6.3 Results of and Recommendations on using the first-in-first-
out method

Because the first-in-first-out method is a simple way to determine a merging sequence,
compared with the proposed hierarchical control approach, we give recommendations
on when to use the first-in-first-out method reasonably and suitably to traffic operators
and researchers. For all the scenarios where the first on-ramp CAV and the mainline
CAV 3 enter into the control zone at the same time, using the first-in-first-out method
to establish merging sequences lose quite some traffic benefits, as shown in Table 4.3,
Figure 4.4, Figure 4.5, and Figure 4.7, with k=4 having an overall better performance
than with k=3 for the first-in-first-out method. To this end, priority can be given to
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Figure 4.7: The performance of the proposed hierarchical control approach compared
with the benchmark control method under scenarios starting with two on-ramp vehicles

mainline traffic when a mainline vehicle and an on-ramp vehicle enter into the control
zone at the same time. When the first on-ramp vehicle’s initial speed vr(0) is 15 m/s,
0.6 times of the speed of the mainline traffic 25 m/s, the first-in-first-out method,
does not reach a good overall traffic performance as the proposed hierarchical control
approach, as shown in Table 4.2. To this end, using the first-in-first-out to establish
merging sequences is not suitable when the initial speed of the first on-ramp vehicle is
significantly lower than the mainline traffic. When the first on-ramp CAV enters into
the control zone between two mainline CAVs, with the on-ramp vehicle’s initial speed
increasing to 20 m/s, the first-in-first-out method is possibly suitable as shown in Table
4.4 and Figure 4.4. The possibility is higher when CAV 2 has a small inter-vehicle gap
compared to its desired value as shown in Figure 4.5. When the on-ramp vehicle’s
initial speed reaches 25 m/s, the possibility of using the first-in-first-out method to
have the same decision as the proposed hierarchical control approach greatly increases,
as shown in Figure 4.4.

Compared with the optimal vehicle merging sequences and the speed-adaptation time
instants of on-ramp vehicles under 135 scenarios, determined by the proposed hier-
archical control approach, we recommend researchers or traffic operators to use the
first-in-first-out method when the initial speed of the first on-ramp vehicle vr(0) is
close to the mainline traffic and its initial relative position to two mainline vehicles
is within [40%,60%]. When vr(0) is slower than the speed of the mainline traffic, it
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is better for the on-ramp vehicle to accelerate for several seconds to reach or slightly
exceed the speed of the mainline traffic before using the first-in-first-out method to
establish a merging sequence. The distance of the control zone L is thus shrinking
with the rear of the on-ramp vehicle. If the on-ramp CAV has the same speed as the
mainline traffic and enters into the control zone at the same time instant as a mainline
CAV, the first-in-first-out method is not recommended to be implemented immediately,
as shown in Table 4.3; the on-ramp CAV is recommended to accelerate for 1 or 2 s and
to choose an anterior slot or gap for merging, compared to initial option decided by
first-in-first-out method.

4.6.4 Discussion

The proposed hierarchical control approach generates a combination of an optimal
merging sequence and speed-adaptation time instants of the on-ramp merging vehicles.
Instead of making an on-ramp vehicle to adapt its speed and position for merging
immediately after it enters into an on-ramp lane employed by existing methods, our
tactical layer controller allows an on-ramp vehicle to move with desired speeds for a
certain time period before it starts to adapt its speed and position to prepare merging
into the target gap. The time period allows the on-ramp vehicle to increase its speed,
reducing speed deviation to the mainline traffic, and to adjust its relative position to two
mainline vehicles where the target gap locates. As a result of the speed and position
adaptation, its direct follower does not need to brake strongly to facilitate the merging
maneuver, when the initial speed of the on-ramp vehicle is significantly lower than the
mainline traffic, or when the on-ramp CAV and a mainline CAV enter into the control
zone at the same time.

The proposed hierarchical control approach overall works better than the first-in-first-
out method in improving traffic operations. The experimental results show the superi-
ority of the proposed hierarchical control approach. To this end, without repeating the
detailed merging process exhaustively with the operational layer controller, an optimal
merging sequence can also be established. Besides, considering a speed-adaptation
time instant for an on-ramp vehicle can bring extra improvement in traffic operations
even though the idea is not explicitly addressed in other researches. Preparing on-ramp
vehicles to reach a merging or certain speed before establishing a merging sequence
implicitly supports the idea of considering speed-adaptation time instant (Schmidt and
Posch, 1983; Posch and Schmidt, 1984). For 4 scenarios, the proposed hierarchical
control approach brings 1.2% deterioration. This deterioration may be caused by mis-
matches between the tactical and operational layer controllers or the feedback delay.
Reducing the mismatches or considering feedback delay in the design may attenuate
the deterioration.

The third-order vehicle dynamics model rests on a linearization approach to create a
linear representation of a nonlinear longitudinal vehicle dynamics model (Wang et al.,
2016b). The linearized model captures driveline dynamics, finite bandwidth of vehicle
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actuators, and time lag for the torque available at the tires to achieve a desired accelera-
tion. The third-order vehicle dynamics model is preferred than the second-order model
because it is closer to real vehicle behavior and brings reasonable control commands
for real-world implementation (Wang et al., 2016b). Besides, parameter uncertainties
in the vehicle dynamics model can be considered using the third-order vehicle dynam-
ics model (Chen et al., 2018c). The tactical layer controller usually uses a large value,
0.5 s or 1 s, larger than the actuator lag, as the time step to save computation time; thus,
the third-order vehicle dynamics model is not necessary and the second-order vehicle
dynamics model is employed. If for some automated vehicles, actuator lags are quite
large, a third-order vehicle dynamics model can be used in the tactical layer controller
to reduce the mismatch in vehicle dynamics models. Besides, a car-following mode
and a cooperative merging mode are utilized by the tactical layer controller to gener-
ated actual accelerations based on analytical models rather than numerical optimization
in the operational layer. These differences make the computation time of the tactical
layer controller tractable. In all our experiments, these differences or mismatches do
not contradict the feasibility and applicability of the tactical layer controller to gener-
ate optimal merging sequences. This finding may support other researchers to explore
simpler optimal control methods to establish merging sequences under different market
penetrations of CAVs.

When one on-ramp vehicle exists and five mainline vehicles exist, with a looking-
ahead horizon T =50 s, the computation time of the tactical layer controller is 0.32 s.
When the number of on-ramp vehicles increases to two, the computation of the tactical
layer controller becomes 4.8 s when all the possible merging sequences and speed-
adaptation time instants are evaluated. The incremental computation time is caused by
the added numbers of possible combinations and the selected solution method: enu-
meration algorithm. If the merging sequences or speed-adaptation time instants can be
restricted to limited choices according to experimental results, the computation time
can be reduced. Besides, efficient solutions for mixed-integer programming problems
may also reduce computation time, which is one of our future research directions. It
takes the operational layer controller around 0.91 s to solve the problem of 6 vehicles
with a time horizon 6 s. The computation time of the operational layer controller turns
to be around 1.12 s when 7 vehicles are involved. In practical usage, the computation
time of the operational layer controller should be considered when it is large. The
computation time of the operational layer controller can be reduced with distributed
model predictive control (Camponogara et al., 2002).

In our work, imperfect state observation/estimation is already included with a small
state delay in the tactical layer. For our 135 experiments, a feedback delay is included,
which means the tactical layer controller uses previous vehicular information to estab-
lish merging sequences and the merging sequences are established at 0 s, without using
the designed feedback nature. The experimental results show that the established mer-
ging sequences are feasible. Besides, with feedback nature, the tactical layer controller
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has a self-correction mechanism already, though it may update at larger intervals, e.g.
5 to 10 s. To this end, small disturbances in vehicular information do not likely change
the feasibility of the established merging sequences. However, we cannot prove that
feasibility is guaranteed with the finite number of experiments, especially when the
state observation deviates largely from the ground truth. To this end, we add another
mechanism in our control architecture. The additional function allows the operational
layer controller to reject decisions from the tactical layer controller if no feasible solu-
tion is found for an on-ramp vehicle among ∆t̂. If no feasible solution can be found by
the operational controller under the current tactical command and the on-ramp vehicle
is far away from the end of the acceleration lane, the operational layer controller then
requests a new command from the tactical layer controller. Triggered by the rejec-
tion event, the tactical layer controller establishes new decisions before ∆t̂. To address
safety-critical situations where no feasible solution exists and the on-ramp vehicle is
close to the end of the acceleration lane, the operational layer controller is given the
autonomy to choose the next gap after the previous target gap for the on-ramp vehicle
directly to accomplish merging.

In the tactical layer, the Helly car-following model is employed to predict the future
vehicular longitudinal accelerations of a CAV instead of using the operational layer
controller. At this stage, all vehicles are assumed to be CAVs. However, our design
can be extended to adapt to mixed traffic where human-driven vehicles coexist with
CAVs. To include human-driven vehicles, reasonable car-following and lane-changing
models can be assumed to represent the behaviors of human-driven vehicles for both
the tactical and operational controllers to predict the future development of the sur-
rounding traffic scene. Safety should be ensured at the operational layer controller. To
ensure safety, the current and predicted inter-vehicle distances should be large enough
for a lane changer to change lane as shown in Equation (4.14). Besides, because the
human-driven vehicles do not tend to cooperate to facilitate a lane changing process
and their behaviors can not be perfectly modeled or predicted, a trade-off between
merging efficiency and the risk to collide can be considered at the operational layer
controller in the future.

Noise in actuators or sensors may deteriorate the performance of the controllers to
regulate vehicular motions. Noise in detected measurements can be filtered out with
data fusion methods in the hierarchical architecture of the merging control system if
a filter is added to the estimator. When the uncertainties in actuators cause actuator
lag to vary in a small range of values, the deterioration is small. However, when the
uncertainties bring a large range of values of the actuator lag, a robust control method
is needed to ensure the string stability of the operational layer controller (Chen et al.,
2018c).

Because the first-in-first-out method is common and easy to be implemented, we give
recommendations for using the first-in-first-out method to get the same or similar de-
cisions as or to the proposed hierarchical control approach. To improve traffic opera-
tions, traffic operators and researchers can use those recommendations when using the
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first-in-first-out method to establish merging sequences. One point should not be neg-
lected that optimal merging sequences are established based on a certain performance
indicator. For different performance indicators, different merging sequences may be
optimal.

4.7 Conclusions and future research

This chapter puts forward a hierarchical control approach for efficient and safe on-
ramp merging of Connected Automated Vehicles. A tactical layer controller uses a
car-following and a cooperative merging mode to represent the regimes to generate
vehicular trajectories during the merging process and gives optimal tactical decisions
that bring efficient traffic operations. During the optimization, on-ramp vehicles are
allowed to drive with their desired speeds for certain time periods respectively before
they start to adapt their speeds and positions to prepare merging into the target gaps,
respectively. An operational layer controller is designed based on model predictive
control. It employs a third-order vehicle dynamics model, regulates desired accelera-
tions of CAVs, and gives commands on the lane-changing executions of the on-ramp
vehicles based on current and predicted inter-vehicle time gaps. The performance of
the proposed hierarchical control approach and a benchmark control approach, us-
ing the first-in-first-out method to determine merging sequences, is tested under 135
scenarios with different initial conditions and desired time gap settings. Experimental
results suggest that the proposed hierarchical control approach may outperform the
benchmark control method and the superiority may be kept when multiple on-ramp
vehicles exist.

We conclude that different settings of initial conditions and the desired time gap do
affect an optimal combination of a merging sequence and time instants when on-ramp
CAVs start to adapt their speeds and positions to prepare merging into the target gaps
respectively. The proposed hierarchical control approach seems to bring pronounced
improvements in traffic operations when the initial speed of the on-ramp vehicle is
significantly lower than the mainline traffic, when the desired time gap is small, such
as 0.6 s, or when an on-ramp CAV and a mainline CAV enter into the control zone
at the same time. Allowing on-ramp vehicles to travel with their desired speeds for
certain time periods respectively can bring improvements in traffic operations.

After comparing the simulation results of the proposed hierarchical control approach
and the benchmark on-ramp merging method, we give recommendations to use the
first-in-first-out method to establish merging sequences. The main idea of the recom-
mendations is to adapt the initial speed and position of the on-ramp CAV to meet
conditions where the first-in-first-out method probably gives the same decision as the
tactical controller of the proposed hierarchical control approach.

The future research will dive into merging with multiple main lanes. The cooperative
merging strategy should be extended to allow CAVs on the outermost main lane to per-
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form courtesy lane change. The future research will also focus on on-ramp merging
under mixed traffic by extending the proposed hierarchical control approach. Macro-
scopic characteristics of traffic flow will be analyzed to evaluate the benefits of our
design on traffic operations. In the next chapter, we tackle merging with multiple main
lanes. On-ramp CAVs are allowed to change lane to facilitate motorway on-ramp mer-
ging.

APPENDIX

A polynomial equation for a vehicle’s lateral motion during the lane changing
maneuver

yr(t) =


yr(t0) t < t l,ξr(t) = 0
f (t) t l ≤ t ≤ t l + tm,ξr(t l) = 1

yr(t0)+h t > t l + tm

(4.21)

f (t) =
−6h
t5
m
· (t− t0)5 +

15h
t4
m
· (t− t0)4 +

−10h
t3
m
· (t− t0)3 + yr(t0) (4.22)

where, h denotes maximum lateral position variation whose absolute value equals to
lane width. For changing lane to the left side of the road, h is a negative value.
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Hierarchical optimal maneuver
planning and trajectory control at
on-ramps with multiple mainstream
lanes

Chapters 3 and 4 focus on coordination of CAVs in one on-ramp lane and one main
lane. This chapter relaxes one main lane to multiple main lanes. It addresses the final
sub-objective. We propose a hierarchical cooperative merging control approach that
ensures collision-free and traffic-efficient merging through the interaction of a man-
euver planner and an operational trajectory controller. State-of-the-art approaches in
cooperative merging either build on heuristics solutions or prohibit mainline CAVs to
change lane on multilane highways. The planner predicts future vehicular trajectories,
including acceleration trajectories and time instants when lane changes start, in a long
horizon up to 50 seconds with a linear prediction model. It establishes the optimal
dynamic vehicle sequence in each lane by minimizing predicted traffic disturbances
that can propagate upstream and lead to traffic breakdown. Mainline vehicles may be
made to change lane. The operational controller follows the established instructions
from the planner and regulates vehicular trajectories with model predictive control in
a shorter horizon of 6 seconds. The performance of the designed hierarchical cooper-
ative merging control approach is compared to a cooperative merging method utilizing
widely used first-in-first-out rule to establish merging sequences and the same opera-
tional controller to generate vehicular trajectories. Systematic comparison shows that
the proposed approach consistently results in less disturbances during merging.

This chapter is an edited version of the article:

Chen, N., Van Arem, B., and Wang, M., ”Hierarchical optimal maneuver planning and
trajectory control at on-ramps with multiple mainstream lanes”, under review.
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5.1 Introduction

The spatial and temporal dimensions of interactions between mainline and on-ramp
traffic on highway trigger congestion, traffic oscillation, and incidents if inter-vehicle
spaces are less than desired values (Ntousakis et al., 2016). Connected automated
vehicles are effective countermeasures to improve traffic operations near on-ramps (Nt-
ousakis et al., 2016; Van Arem et al., 2006; Wang et al., 2013; Pueboobpaphan et al.,
2010; Zhou et al., 2017). CAVs are equipped with on-board sensors to detect ambient
driving environment. Besides, CAVs have communication units and share information
among themselves or with other entities through vehicle-to-everything communica-
tion to enhance situation awareness, thus having high potential to bring benefits in
traffic operations (Van Arem et al., 2006; Xiao and Gao, 2010; Shladover et al., 2012;
Rios-Torres and Malikopoulos, 2017b; Chen et al., 2018c,0; Zhao et al., 2018). The
movement of automated vehicles are generally controlled by a maneuver planning and
trajectory control and a trajectory following controllers (Schmidt and Posch, 1983;
Milanés et al., 2011; Guanetti et al., 2018). The maneuver planning and trajectory
control controller schedules dynamic vehicle sequences in each lane and plans refer-
ence trajectory online or offline in advance (See Figure 1.1). The trajectory following
controller commands vehicular actuators to track the planned trajectory as close as
possible. In this study, our scope focuses on the maneuver planning and trajectory
control.

The maneuver planning and trajectory control controller, in general, predicts interaction-
aware maneuvers of the surrounding vehicles, schedules a merging sequence, and
guides a lane changer to a given slot safely by regulating trajectories of ambient con-
trolled vehicles (Bahram et al., 2016; Evestedt et al., 2016; Scarinci et al., 2015). The
merging sequence reflects the dynamic sequences of vehicles in each lane during mer-
ging, thus indicating a vehicle’s future directly preceding and following vehicles re-
spectively. Both merging sequence scheduling and trajectory control impact traffic
efficiency or traffic operations.

5.1.1 Literature review

Feasible trajectory control

Initially motion planning is given more attention. Automated vehicles have a great
potential to improve traffic throughput by maintaining small inter-vehicle distances.
Regulating automated vehicles to have desired speeds and small inter-vehicle distances
before reaching a merging point or the end of the acceleration lane becomes the main
research focus in Milanés et al. (2011); Wang et al. (2013); Chen et al. (2018b); Rios-
Torres and Malikopoulos (2017b); Posch and Schmidt (1984). A merging sequence, at
this stage, can be coupled together with the trajectory or motion planning. In Schmidt
and Posch (1983), each vehicle is assumed to reach a prescribed merging velocity with
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a constant acceleration. A sequence control layer calculates predicted times-to-go of
all vehicles in a control zone to a merging point and establishes a merging sequence
by ascending the predicted times-to-go. Besides, the sequence control layer detects
possible conflicts by comparing successive values in the ordered set of times-to-go and
then assigns appropriate motion control law to a motion control layer. The motion
control layer accordingly generates trajectories for vehicles to reach the predefined
merging velocity and have large enough time intervals at the merging point. Moreover,
when a merging sequence is predefined or given by mapping vehicles in one lane to
another lane, vehicles’ are controlled to reach desired inter-vehicle distances at a mer-
ging point. Remarkably, V2X communication becomes essential to transmit vehicular
information (Wang et al., 2013). Different control algorithms, e.g. model predictive
control, are proved to plan feasible trajectories for automated vehicles to merge safely
with desired speeds or inter-vehicle distance through simulation or field tests (Milanés
et al., 2011; Wang et al., 2013; Cao et al., 2015; Chen et al., 2018b). Control strategies
for facilitating merging process with automated vehicles before 2013 are summarized
in Scarinci and Heydecker (2014).

Efficient trajectory control with given sequence or with simple sequencing meth-
ods

Traffic efficiency and operations are then considered in trajectory control strategies for
automated vehicles. In Ntousakis et al. (2016), a merging sequence is assumed to be
given. Merging trajectories are planned for a vehicle by minimizing a cost function,
subject to estimated final states of the vehicle at a merging point. The cost function is
a weighted sum of vehicular acceleration, jerk and its first derivative. The planned tra-
jectories ensure comfort and bring traffic efficiency. In Rios-Torres and Malikopoulos
(2017a), a control zone is presented before a merging zone. CAVs inside the control
zone are controlled by a centralized controller. The merging zone is the region with
potential lateral collisions of the vehicles. A first-in-first-out rule is used to decide mer-
ging sequences. If two vehicles enter the control zone simultaneously, the centralized
controller randomly selects one to have a smaller vehicle order. Vehicles are assumed
to have a constant speed in the merging zone. Only one vehicle can be crossing the
merging zone at a time. The controller plans an acceleration trajectory for each vehicle
by minimizing a weighted sum of the accelerations during the merging process and
the time headway when the vehicles are leaving the merging zone, thus reducing fuel
consumption and travel time. In Xie et al. (2017), a merging sequence is scheduled
by projecting on-ramp vehicles to the right-most mainline lane using a merging point
as the reference. A centralized controller plans vehicular trajectories by minimizing
a weighted sum of minus speeds and standard deviation of accelerations during the
merging process. In Zhou et al. (2019), a state-constrained optimal control based tra-
jectory control strategy is proposed. The speeds of mainline facilitating CAVs were
bounded from below to mitigate the negative impact on the safety of the their follow-
ing vehicles. However, the aforementioned studies mainly focus on trajectory control
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and do not explore an optimal or sub-optimal merging sequence.

Efficient trajectory control with vehicle sequence optimization

Without changing trajectory control strategies, extra improvement on traffic efficiency
can be achieved by using an optimal or sub-optimal merging sequence. Generally,
different merging sequences can be evaluated when both detailed trajectory control
strategies and vehicle dynamics models are known. In Athans (1969), a merging se-
quence is given by an assumed command and control center. The merging of two
strings of vehicles into a single guideway is reduced to controlling vehicles in a single
string. The merging problem is formulated as an optimal control problem. All possible
merging sequences are used to get the corresponding values of the objective function
of the optimal control problem. The optimal merging sequence corresponding to the
minimum value is chosen. In Awal et al. (2013), the upstream vehicle closest to a
defined decision point acts as a leader and establishes merging sequences for its up-
stream vehicles within vehicle-to-vehicle communication range. Prospective merging
sequences are selected based on the estimated arriving times of mainline and on-ramp
vehicles to a merging point. With each of the merging sequences, merging delay is
calculated. The one corresponding to the minimum merging delay is selected as op-
timal. Besides, when checking different merging sequences, interaction-aware man-
euver prediction can rely on surrogate linear models. In Chapter 4, a tactical layer
controller uses constrained linear models to predict vehicular trajectories during mer-
ging. All possible merging sequences are successively evaluated in order to find the
optimal one. An operational layer controller accepts the given optimal merging se-
quence and plans vehicular trajectories based on model predictive control. Moreover,
sub-optimal merging sequences can be given by using certain assumptions on final
vehicular states or rules. In Ding et al. (2019), the arrival times of mainline and on-
ramp vehicles are assigned to form a merging sequence. The merging sequence is
then adjusted according to four rules to have small time intervals between consecut-
ive vehicles. The acceleration profile for each vehicle is generated by minimizing the
square of accelerations within the assigned arrival time. If a newly detected vehicle is
instructed to follow an existing vehicle in the same lane and has a short inter-vehicle
distance with the target, the newly detected vehicle utilizes a linear control law to up-
date its acceleration. In Duret et al. (2019), a tactical layer controller gives a merging
sequence based on two assumptions: 1) CAVs in two platoons travels with a constant
free-flow speed between their initial positions and a merging position. 2) the final pla-
toon settles down to equilibrium at the merging location with all vehicles following
Newell equilibrium conditions. A merging sequence is established by projecting ini-
tial positions of vehicles with the free-flow speed along a shock wave starting from
the merging position. Besides, the tactical layer controller gives time instants when
yielding vehicles start to create gaps by increasing time shifts, respectively. An oper-
ational layer is designed based on MPC. It receives tactical decisions and then plans
acceleration trajectories for CAVs. In Min et al. (2020), the first controlled vehicles
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in a main or an on-ramp lane accelerates to its desired speed and following vehicles
utilize intelligent driver model to update accelerations in a divided game area. When
one controlled vehicle is leaving the game area, a centralized controller utilizes game
theory to give a merging sequence by evaluating weighted sum of three aspects: 1)
the number of vehicles in each lane; 2) a vehicle’s distance from a predefined merging
point; and 3) the mean space distance of a vehicle from its preceding and following
one. The weight vector is determined by searching the Pareto solution of minimizing
fuel consumption caused by velocity and acceleration, respectively. In a divided ad-
justing area, vehicles follow their preceding vehicles given in the merging sequence
and utilize constrained IDM to update their accelerations, respectively.

Trajectory control in mixed traffic

Improving merging efficiency in mixed traffic also draws significant attention. In
Scarinci et al. (2015), CAVs in the main lane adjacent to the acceleration lane act as
leaders of different platoons and collect small partial headways to form single longer
ones to facilitate merging, thus reducing merging disruption. In Zhou et al. (2017), the
acceleration rates of automated vehicles are determined by using a cooperative intel-
ligent driver model. This model considers actions of surrounding vehicles. Mainline
automated vehicles create larger gaps for on-ramp human-driven vehicles within their
detection ranges in advance. As a result, automated vehicles eliminate freeway oscil-
lations. In Sun et al. (2020), a ramp merging mechanism is formulated as a bi-level
optimization program to give merging sequences and plan vehicular trajectories to-
gether. With the mechanism, the throughput can be further increased by 10%-15%.
The mechanism can be used for mixed traffic. In some studies, lane changing behavi-
ors of CAVs are described by lane changing models or rules for human-driven vehicles
with or without certain changes (Nilsson et al., 2016; Xiao et al., 2018; Bahram et al.,
2016). These lane changing models or rules lack considering possible cooperation
among CAVs.

Trajectory control at on-ramp merging areas with multiple main lanes

Allowing mainline CAVs to change lane to facilitate on-ramp merging increases com-
plexity. In Hu and Sun (2019), a rule-based lane changing decision is utilized for
upstream mainline CAVs in the outer main lane in a lane changing region to balance fu-
ture downstream lane flow distribution. The rule decides the lane changing proportion,
thus determining the number of mainline vehicles that need to change lane. Mainline
vehicles are then randomly chosen as lane changers. The lane changers’ future vehicle
sequences are decided by mapping their positions to their target lane. In the lane chan-
ging region, CAVs’ trajectories are generated together by maximizing the total speed.
In a cooperative merging region, merging sequences are assumed to be given. A CAV’s
trajectory is planned by maximizing its speed during merging. In Xu et al. (2020), a
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bi-level cooperative driving strategy is utilized to reduce delay. An upper-level plan-
ning checks some promising passing orders generated by Monte Carlo Tree Search.
The search is based on some heuristic rules and a passing-order-to-trajectory interpret-
ation algorithm. The passing-order-to-trajectory interpretation algorithm is presented
in a lower-level planning. The algorithm gives the total travel time and CAVs’ accel-
eration trajectories. In Hang et al. (2021), each vehicle minimizes its driving safety,
ride comfort, and travel efficiency cost by playing a game. Besides, an on-ramp CAV
and its two adjacent passive participants in two different main lanes: a follower in
its adjacent main lane and the follower of the mainline vehicle in the left main lane,
play in a cooperative game to check whether extra total cost can be reduced without
sacrificing each vehicle’s benefit. The vehicle in the right main lane may change lane
to the left to further reduce the total cost. Driving characteristics of the CAVs can be
considered. Different driving characteristics bring different optimal choices for CAVs.
In Ding et al. (2021), estimated delay time in an induction zone of mainline is min-
imized by instructing some upstream controlled CAVs in the rightmost main lane to
change lane to the left. On-ramp CAVs join outer mainline traffic in the merging zone
by using a first-in-first-out principle. The earliest and latest time instants for on-ramp
CAVs to join mainline traffic at a fixed position are calculated based on vehicular ini-
tial position, speed, and allowed acceleration range, respectively. Their joining time
instants are optimized together to make on-ramp vehicles join mainline traffic quickly
and reduce affected CAVs’ delay.

5.1.2 Knowledge gap

In summary, trajectory control methods, merging or vehicle sequences selections, and
mainline facilitating lane changing maneuvers affect traffic efficiency or traffic oper-
ations during cooperative merging of CAVs. By comparison, the first two aspects are
extensively studied. When CAVs travel in multiple main lanes near on-ramps, allowing
mainline vehicles to change lane for facilitating merging increases both flexibility to
create large spaces for merging vehicles and complexity of the controlled system. Ex-
isting control methods only allow upstream mainline vehicles to change lane to the left
before entering a given merging zone, check several possible vehicle sequence com-
binations based on safe lane changing constraints and with an assumption that each
CAV has a constant acceleration in the process, or allow at most three CAVs to play a
game without sacrificing each CAV’s benefit. These methods restrict lane change loc-
ations, ignore chances for CAVs to cooperatively create safe lane changing conditions,
or fail to optimize overall traffic efficiency. A centralized control method is needed to
systematically address lane changing maneuvers of mainline CAVs to optimize overall
traffic performance during on-ramp merging.
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5.1.3 Our contribution

This chapter proposes a hierarchical cooperative merging control approach to address
automated merging procedures of on-ramp vehicles when mainline CAVs are allowed
to change lane to facilitate on-ramp merging process. Main contributions are summar-
ized as follows: (i) the maneuver planner centrally predicts future merging procedures
in a long time horizon T , e.g. T≥50 s, by using a uniform prediction model to repres-
ent car-following, cruising, and cooperative lane changing maneuvers during merging
and optimizes dynamic vehicle sequences in each lane by minimizing disturbances re-
flected by negative acceleration to upstream traffic (Daganzo et al., 1999). The predic-
tion model is constructed based on linear microscopic traffic models. Mainline CAVs’
lane changing positions are not restricted and potential vehicle sequences are not re-
stricted by initial vehicular states. (ii) The operational trajectory controller centrally
regulate vehicle accelerations by using MPC in a short time horizon Tp, e.g. Tp=6 s,
and decides the time instants for lane changers to turn left. The predictive and feed-
back nature of MPC scheme can check feasibility of established vehicle sequences and
handle predicted possible failures in time. (iii) Both the planner and operational con-
troller considers vehicle-vehicle interaction and constrains on acceleration and speed
to have safe and feasible dynamics.

5.1.4 Chapter organization

The remainder of the chapter is organized as follows. Section 5.2 presents the hierarch-
ical cooperative merging control approach. Sections 5.3 and 5.4 elaborate on the math-
ematical formulations of the planner and operational controller, respectively. Section
5.5 presents simulation set-up and experimental results. Finally, Section 5.6 concludes
the contribution.

5.2 Hierarchical cooperative merging control approach

A typical on-ramp merging scenario (See Figure 5.1) has two main lanes, one on-ramp
lane and one acceleration lane. The lanes are numbered from right to left, with the on-
ramp lane and the acceleration lane both numbered 1. On-ramp CAVs have to merge
into mainline traffic, thus having path conflicts with mainline CAVs in lane 2.

The hierarchical cooperative merging control approach (See Figure 5.2) resolves pos-
sible conflicts by regulating both mainline and on-ramp CAVs’ trajectories to have
large enough inter-vehicle distances during merging near on-ramps. Both the plan-
ner and operational controller locate in a roadside unit (See Figure 5.1 and Figure
5.2), so that the trajectories of all CAVs can be controlled together. The roadside unit
collects initial vehicle sequence, position and speed through Vehicle-to-Infrastructure
communications. The planner utilizes model-based prediction and decides dynamic
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Figure 5.1: Schematic illustration of a typical on-ramp merging scenario with multiple
main lanes
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Figure 5.2: Cooperative control hierarchy for maneuver planning and trajectory control
of CAVs near on-ramps

vehicle sequences in each lane by considering the mandatory lane changing demand of
on-ramp vehicles and by minimizing overall disturbances to upstream mainline traffic
during prediction time horizon T . The dynamic vehicle sequences are then sent to the
operational controller which commands longitudinal acceleration for CAVs and time
instants to turn left for lane changers respectively. On-ramp CAVs merge into mainline
traffic before reaching the end of the acceleration lane. The planner performs the same
function as the tactical layer controller in Chapter 4. Whereas, the planner does not
explicitly establish speed-adaptation time instants.

The T in the planner is up to 50 seconds (s). The planner updates its decision at
low frequencies, e.g. every 5-10 s. The operational controller updates commands at
high frequencies, e.g. every dt≤0.1 s. To explore optimal vehicle trajectories near
on-ramps, centralized control methods are utilized by the planner and operational con-
troller. However, the hierarchical cooperative merging control approach is not restric-
ted to centralized control methods and it can be extended to adapt to mixed traffic. If
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the operational controller finds that an on-ramp CAV does not have large enough inter-
vehicle distances with its target preceding and following CAVs for lane changing when
it is approaching the end of the acceleration lane based on prediction, the operational
controller overrules the given vehicle sequence for the on-ramp vehicle to find feasible
and safe trajectories.

5.3 Maneuver planner: model-based optimization

The merging of on-ramp CAVs in lane 1 into mainline traffic is mandatory. The plan-
ner thus has to give feasible dynamic vehicle sequences that ensure the on-ramp CAVs
to merge into mainline traffic before reaching the end of the acceleration lane. The
planner answers under which conditions mainline CAVs change lane to facilitate mer-
ging attenuates disturbances to upstream traffic, which mainline vehicles change lane,
and what the final vehicle orders of the mainline lane changers are. Time argument t
is omitted to improve readability when no ambiguity exists.

All CAVs are numbered from 1 to N1+N2+N3 (See Figure 5.1). Ni represents the initial
number of CAVs in lane i. Oi, j and Pi, j are 0-1 variables. Oi, j denotes the vehicle
sequence between CAV i and j based on all CAVs’ lateral and longitudinal positions.
Oi, j=1 indicates that CAV i is CAV j’s directly preceding vehicle in the same lane.
Otherwise, Oi, j=0. Pi, j denotes the desired vehicle sequence between CAV i and j ac-
cording to the planner. Pi, j=1 indicates that CAV i is CAV j’s target directly preceding
vehicle. All CAVs in lane 1 have to change lane safely before reaching the end of the
acceleration lane. To this end, at T , ∑

N1
i=1 ∑

N1+N2+N3
1 Oi, j+∑

N1+N2+N3
i=1 ∑

N1
j=1Oi, j=N1.

5.3.1 Linear bounded models for merging prediction

The longitudinal behavior of a CAV is expressed by a second-order vehicle dynamics
model. The open-loop system dynamics for each vehicle are described in Equation
(5.1), where xi, vi, and ai denote the location, speed, and acceleration of CAV i, re-
spectively.

ẋi = vi, v̇i = ai, i = 1,2, · · · ,N1 +N2 +N3 (5.1)

To predict vehicular trajectories during future merging process, the planner borrows
models from traffic flow community to represent CAVs’ behavior during on-ramp mer-
ging process. Considering cases when vehicle may conflict with or directly influence
each other, vehicles’ motions are categorized into three maneuvers: car-following,
cruising, and cooperative lane changing.

The car-following maneuver works when a vehicle follows its future directly preced-
ing vehicle which is in the same lane, i.e., O j,i=Pj,i. The car-following operation is
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modeled using a car-following model used in Van Arem et al. (2006) for automated
vehicles with bounded accelerations, as shown in the car-following part in the pre-
diction model shown in Equation (5.2). The cruising maneuver applies to the first
vehicle in each lane according to the dynamic vehicle sequences and its formulation is
as shown in the cruising part in Equation (5.2), where vlimits can also be replaced with
a desired speed set by a driver or traffic control system. The cooperative lane chan-
ging maneuver computes the accelerations in the cooperative lane changing process as
a special case of car-following maneuver. When a vehicle’s target lane is the left of
its original lane according to the dynamic vehicle sequences, it starts to prepare itself
to create sufficient inter-vehicle distances to execute lane change. To achieve large
enough inter-vehicle distances, it and its future directly follower in the target lane are
in cooperation maneuver until it accomplishes the lane change. The cooperation man-
euver is formulated in the cooperative lane changing part in Equation (5.2).

ai = PB
i ·
[
(D1 ·∆Vi +D2 ·∆Si +D3 ·a j)

]
·PA

i︸ ︷︷ ︸
car following

+ PC
i ·
[
(D5 ·∆Vi +D6 ·∆Si +D7 ·a j)

]
· (1−PA

i )︸ ︷︷ ︸
cooperative lane changing

+ (1−PC
i ) ·D4 ·∆Vi︸ ︷︷ ︸
cruising

(5.2)

where, D1, D2, D3, D4, D5, D6, and D7 are model parameters; PC
i =∑

N1+N2+N3
j=1 Pj,i

and PB
i =∑

N1+N2+N3
j=1 (Pj,i ·O j,i); ∆Vi=(1−∑

N1+N2+N3
j=1 Pj,i) ·vd

i +∑
N1+N2+N3
j=1 (v j ·Pj,i)−vi

and ∆Si=si-sd
i ; si=(1−∑

N1+N2+N3
j=1 Pj,i) ·(sd

i +xi+ lveh)+∑
N1+N2+N3
j=1 (x j ·Pj,i)−xi− lveh;

lveh denotes vehicle length, sd
i = vi · td + s0 is the desired gap of CAV i, and vd

i is the

desired speed if no predecessor exists; PA
i =

N1+N2+N3
∏
j=1

(O j,i ≡ Pj,i) differentiates whether

a CAV’s directly preceding vehicle in the same lane is the desired one. PC
i , PB

i , and PA
i

are equal 0 or 1. If vehicle i has a desired preceding vehicle, PC
i is 1. PB

i is 1 when
vehicle i has a desired preceding vehicle in its target lane and has a preceding vehicle
in its original lane. If PA

i is 1, vehicle i is following its desired preceding vehicle in
its target lane. td and s0 represent the desired time gap and the minimum inter-vehicle
gap at standstill, respectively.

The acceleration calculated by the car-following and cooperative lane changing man-
euvers are bounded to [amin,as

i ] to be realistic and safe, where amin is the minimal
negative acceleration, and as

i is the lower bound of maximum acceleration amax and
safe vehicle-vehicle interaction acceleration aint

i shown in Equation (5.3).
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aint
i =

N1+N2+N3

∑
j=1

((D1 ·∆Vi +D2 ·∆Si

+D3 ·a j) · (1− (∆Si ≤ 0∧a j < 0)) ·O j,i) (5.3)

where, td
min is the minimum safe time gap. When a vehicle is decelerating, its directly

following vehicle in its original lane does not accelerate if their inter-vehicle distance
is less than the follower’s desired value.

5.3.2 Safe inter-vehicle distance for changing lane

When inter-vehicle distances are large enough between a lane-changer and both its
future directly preceding and following vehicle, it changes lane. For on-ramp lane
changers traveling in the acceleration lane, they accept a smaller but safe time gap
to change lane while approaching the end of the acceleration lane, which is reflected
by an acceptable time gap tatg shown in Equation (5.4) (Chen et al., 2020a). xe (See
Figure 5.1) stands for the end of the acceleration lane. For a mainline lane changer, it
accepts td

min to accomplish its merging maneuver. When lane-changing conditions are
met, lane-changers start to steer to the left, with a fixed time duration tm (Samiee et al.,
2016; Chen et al., 2020a); after 0.5·tm, the lane-changer is in its target lane.

tatg = xi · (td
min− td)/xe + td; (5.4)

5.3.3 Optimization formulation: dynamic vehicle sequences

The planner is a model-based optimization model that optimizes dynamic vehicle
sequences by minimizing disturbances to upstream traffic and by explicitly ensur-
ing successful lane changing of on-ramp vehicles. Its state vector is represented by
ZP=(x1,y1,v1,a1,· · · ,xN1+N2+N3 , yN1+N2+N3 ,vN1+N2+N3 ,aN1+N2+N3)

T and the control vec-
tor UP = (P1,1, · · · ,PN1+N2+N3,N1+N2+N3)

T shows time-varying vehicle sequence for
every two vehicles in each lane, where yi denotes lateral position of CAV i.

Vector Q2 and Q3 representing negative accelerations of the last vehicles in main lane
2 and 3 respectively in T are chosen to reflect disturbances to upstream traffic and the
Euclidean norm (or 2-norm) of them is included in the performance measure shown
in Equation (5.5) (Daganzo et al., 1999). Given that On-ramp CAVs are mandatory
to change lane, a vector M=[m1, · · · ,mN1]T and a binary vector B=[b1, · · · ,bN1]T are
introduced, where mi is a large number and bi=0 means that on-ramp vehicle i has
accomplished merging within T . To this end, bi=1-∑N1+N2+N3

j=1 Oi, j-∑
N1+N2+N3
j=1 O j,i at

T .
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min
UP

(‖Q2‖2 +‖Q3‖2 +MT ·B) (5.5)

subject to:

• the system dynamics model shown in Equation (5.1), maneuver prediction model
shown in Equation (5.2).

• the initial condition: ZP(0) = Z̃P(0) and ∑
N1+N2+N3
i=1 ∑

N1+N2+N3
j=1 Pi, j(0) = N1 +

N2 +N3−3.

• the final condition: N1 +N2 +N3− 2 ≤ ∑
N1+N2+N3
i=1 ∑

N1+N2+N3
j=1 Pi, j(T ) ≤ N1 +

N2 +N3−1.

• speed constraints: 0≤ vi ≤ vlimits.

• acceleration constraints: amin ≤ ai ≤ as
i .

where, Z̃P(0) is initial state at 0 s.

Equation (5.5) is a generic formulation. Extra assumptions can be made to reduce
randomness and freedom of lane changing choices of mainline CAVs. To restrict lane
changing times of CAV i during T , the sum of the absolute values of lateral posi-
tion changes can be constrained. Besides, lane changing directions can be restricted
to reduce complexity. In section 5.5, only limited number of CAVs are considered
with different initial settings, and thus Equation (5.5) can be solved effectively using
enumeration. However, more efficient solution methods are left to be explored for
situations where enumeration is difficult or time consuming.

5.4 Operational trajectory controller: MPC approach

The operational controller optimizes vehicle trajectories by taking into account the dy-
namic vehicle sequences established by the planner. It is formulated as model predict-
ive control to regulate longitudinal acceleration trajectory to reach desired vehicular
states and to safely lead lane changers to their target lanes, respectively. In Chapter 4,
the proposed operational layer controller regulates CAVs in one lane together. Unlike
it, the operational controller in this Chapter controls all CAVs together.

The desired vehicular state for the first vehicle in each lane is to reach the desired
speed. The following vehicles wish to have the same speed as their directly predecessor
in target lane while keeping safe or the desired inter-vehicle distances, respectively.
To this end, Zo = (∆V1,s1,∆y1, · · · ,∆VN1+N2+N3,sN1+N2+N3 ,∆yN1+N2+N3)

T is defined as
the state vector. ∆yi=yt

i-yi is deviation between the target and actual lateral position
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of vehicle i. If ∆yi is not 0, vehicle i changes lane when ξi=1 and the lane chan-
ging direction depends on ∆yi. ξi stands for the safe lane-changing acceptability for
vehicle i and is evaluated by the operational controller based on the planned acceler-
ation trajectories and predicted vehicular positions. The control vector is defined as
Uo = (a1,ξ1, · · · ,aN1+N2+N3,ξN1+N2+N3)

T .

An optimal Uo in a finite time horizon [t0,t0+Tp) is given by minimizing a construc-
ted objective function as shown in Equation (5.6). The constructed objective function
penalizes deviations of vehicular states to equilibrium states where the first vehicles
in each lane travel to reach desired speeds and following vehicles travel at desired
inter-vehicle distances, with the same speed with directly preceding vehicles, and with
zero accelerations, as shown in Equation (5.7). The minimization of the three types
of deviations leads vehicles to longitudinally reach their equilibrium states gradually.
Lateral decisions are established based on the planned longitudinal acceleration tra-
jectory. ξi is 1 when the predicted inter-vehicle distances are larger than the accepted
inter-vehicle distances of vehicle i for changing lane during Tp. The inter-vehicle dis-
tances between vehicle i with both its directly predecessor and follower in the target
lane are considered. The accepted inter-vehicle distance for lane changing is the same
as given in 5.3.2. When ∆yi is not 0 and ξi is 1, vehicle i starts to turn to its target
lane. A lane changer follows a polynomial equation with a fixed time duration tm to
accomplish merging (Samiee et al., 2016; Chen et al., 2020a).

min
Uo

ζ (Zo,Uo) = min
Uo

(
∫ t0+Tp

t0
ψ(Zo,Uo)dt) (5.6)

ψ = c1 ·∑
i
(si− sd

i )
2 + c2 ·∑

i
∆v2

i + c3 ·∑
i

a2
i (5.7)

= c1 · (X1−Sd)2 + c2 ·X2
2 + c3 ·A2

subject to:

• the system longitudinal dynamics model shown in Equation (5.1).

• an initial state: Zo(t0) = Z̃o(t0).

• speed constraints: 0 ≤ vi ≤ vlimits.

• gap constraints: si ≥ s0 ·∑N1+N2+N3
j=1 Pj,i.

• acceleration constraints: amin ≤ ai ≤ asp
i . asp

i is the maximum value of amax and
the first value of the optimal solution to the following optimization problem:

min
a∗i

∫ t0+Tp
t0 ∑

N1+N2+N3
j=1 ((c1 ·∆V 2

i + c2 ·∆S2
i + c3 ·a2

i )

·(1− (∆Si ≤ 0∧a j < 0)) ·O j,i)dt
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where, Z̃o(t0) is the value of the state vector at updated time instant t0. c1, c2, and c3 are
weight parameters. The initial value of t0 is 0 s. Given ∆t as the control time step of the
operational controller, the control command is updated periodically with 1/∆t and t0
are multiples of ∆t. With X1 = (s1, · · · ,sN1+N2+N3)

T , Sd = (sd
1, · · · ,sd

N1+N2+N3
)T , X2 =

(∆v1, · · · ,∆vN1+N2+N3)
T , and A= (a1, · · · ,aN1+N2+N3)

T , vehicle longitudinal dynamics
can be described by Equation (5.8).

(
P1 · Ẋ1

Ẋ2

)
=

(
P1 ·X2

(P2)T ·A−A

)
(5.8)

where,

P1 =

PC
1 0 0

0 . . . 0
0 0 PC

N1+N2+N3

 ,

P2 =

 P1,1 · · · P1,N1+N2+N3
... . . . ...

PN1+N2+N3,1 · · · PN1+N2+N3,N1+N2+N3



5.4.1 Solution to the optimal control problem

Equation (5.6) is solved by using Pontryagin’s Minimum Principle (Wang et al., 2015;
Duret et al., 2019; Chen et al., 2018b). The corresponding Hamiltonian function of the
optimization problem is created as shown in Equation (5.9).

H = c1 · (X1−Sd)2 + c2 ·X2
2 + c3 ·A2

+ λ1
T ·P1 ·X2 +λ2

T · ((P2)T ·A−A) (5.9)

where, λ1 and λ2 are co-state cost of the first-order differential equations of P1 ·
X1 and X2, respectively. The necessary conditions for the optimal solutions are lis-
ted in Equation (5.10), with initial state Zo(t0) given, final time t0+Tp specified, and
λ1(t0)=0, λ2(t0)=0, λ1(t0 +Tp)=0, and λ2(t0 +Tp)=0. We are then faced with a two-
point boundary-value problem which is solved by using an iterative algorithm presen-
ted in detail in Duret et al. (2019).

a∗i = argmin
ai

H

−dλ1/dt = ∂H /∂ (P1 ·X1)

−dλ2/dt = ∂H /∂X2 (5.10)
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5.5 Experiment and numerical results

A micro-simulation environment is built by coding in MATLAB R2018a. The pro-
posed hierarchical cooperative merging control approach is then tested and validated
under different merging scenarios in the simulation environment.

5.5.1 Simulation set-up

Figure 5.1 and Figure 5.3 present the basic configuration of the simulated highway
on-ramp segment. Initially (See Figure 5.1) four CAVs are in lane 3 (N3=4), five CAVs
are in lane 2 (N2=5), and one CAV is considered in the on-ramp lane (N1=1).

Figure 5.3: Choices of initial position for the leader of inner platoon

To understand how a mainline CAV changes lane to facilate on-ramp merging, follow-
ing assumptions are made: 1) only one CAV in lane 2 may be instructed to change
lane to lane 3 for facilitating the merging process; 2) CAVs in lane 3 are not allowed
to change lane to the right in the mering section; 3) the on-ramp CAV has a following
CAV after merging, i.e. ∑

N1+N2+N3
j=1 P1, j=1. These assumptions reduce feasible dy-

namic vehicle sequences to Equation (5.5), and thus it can be solved effectively using
enumeration.

To validate whether extra improvement in traffic operations can be brought, the pro-
posed hierarchical cooperative merging control approach is compared with a control
method which uses a first-in-first-out rule to establish merging sequences and the op-
erational controller to regulate acceleration. The control zone used by the first-in-first-
out rule is plotted with red dotted lines in Figure 5.3. A vehicle enters into the control
zone first is instructed to leave first. When two vehicles enter into the control zone to-
gether, priority is given to the mainline vehicle. Vehicles in lane 2 are not instructed to
change lane to lane 3. To avoid confusion, the selected control method for comparison
is called the first-in-first-out method. Besides, a lower-level steering and longitudinal
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control controller is assumed to follow the planned trajectories precisely without any
delay.

The initial setting for CAVs includes vehicular position, speed, and desired time gap
at 0 s. 528 different initial settings are chosen. The on-ramp CAV initially starts from
the upstream boundary of the control zone -L (See Figure 5.3). Two distinguishable
situations are considered based on the initial longitudinal position of the on-ramp CAV
1, mainline CAV 4 and 5: (a) the on-ramp CAV has the same value as mainline CAV 4
(See Figure 5.3), and (b) the on-ramp CAV is in the middle of the two mainline CAVs
(See Figure 5.1). The initial speed of the on-ramp CAV entering into the control zone
is given 15 m/s, 20 m/s, or 25 m/s.

The desired time gap for all CAVs is set to be 0.6 s, 0.8 s, 1 s, or 1.2 s. CAVs’
initial speeds in lane 2 are 25 m/s and inter-vehicle distances are desired values. CAV
2 keeps 25 m/s. Given inter-vehicle distances, CAV 1’s position, and (a) or (b), the
initial vehicular positions of CAVs in lane 2 are set by calculation.

Two types of situations are constructed in lane 3: (i) free flow where CAVs travel with
speed limits respectively and are sparsely distributed; and (ii) crowded traffic where
CAVs are traveling with speeds lower than the speed limits and are affected by their
directly preceding vehicles in the same lane. For the free flow situation, the CAVs
in lane 3 travel with vlimits, 30 m/s, and are far away downstream. By comparison,
for the crowded traffic situation, CAVs in lane 3 travel with 25 m/s and are close to
CAVs in lane 2. The longitudinal position of the first CAV in lane 3, CAV 7, is given 7
potential positions which are shown with numbered dots in Figure 5.3. Starting from
a dot with an odd number, it longitudinally has the same position as a mainline CAV
in lane 2; otherwise, it is in the middle of two consecutive mainline CAVs. The initial
inter-vehicle distance for CAV 8 is given three different options: equilibrium state, a
large gap, or a small gap, with time gap being 1, 2 or 0.5 times of its desired value,
respectively.

Table 5.1 shows the setting of one scenario. Under the scenario, the detailed perform-
ance of the controllers are analyzed in subsection 5.5.3.

Table 5.1: The setting of 1 scenario

Scenario type v2(0) v7(0) td RP v1(0) x1(0) x7(0)
Large gap 25 m/s 25 m/s 1 0% 25 m/s type (b) dot 2

The parameters selected for the defined variables are based on published literature or
off-line calibration. T =50 s, ∆t̂=0.5 s, Tp=6 s, ∆t=0.1 s, L=62 m, vlimits=30 m/s, s0=2
m, lveh=4 m, tm=2 s, D1=0.2, D2=0.7, D3=0.6, D4=0.8, D5=0.2, D6=0.5, D7=0, amax=2
m/s2, amin=-4 m/s2, xe=300 m, td

min=0.25 s, c1=0.1, c2=0.5, and c3=0.5. The simulation
time is 50 s.
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5.5.2 Overall simulation results

Figure 5.4 presents the overall performance comparison between the proposed hier-
archical cooperative merging control approach and the first-in-first-out method, by
considering the generated disturbances to upstream traffic caused by utilizing the two
control methods throughout simulation, respectively. The reduction rate is calculated
by dividing the difference between them by the disturbances caused by using the first-
in-first-out method and then multiplying the answer by 100. The negative values, from
-11% to -91%, show the reduction in disturbances with the the hierarchical cooperative
merging control approach.
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Figure 5.4: Performance comparison between the proposed hierarchical cooperative
merging control approach and the first-in-first-out method

The first-in-first-out method assigns the on-ramp CAV to follow CAV 4 under all sim-
ulation scenarios. By comparison, the hierarchical cooperative merging control ap-
proach schedules different dynamic vehicle sequences based on all CAVs’ vehicular
states. Under equilibrium scenarios, it tends to make CAV 1 accelerate to a higher
speed if CAV 1’s initial speed is low or gives CAV 1 a small vehicle order in lane 2 ,
without making a mainline CAV change lane. For the remaining simulation scenarios,
when no mainline CAV is instructed to change lane, vehicular states in lane 3 do not
influence the scheduled merging sequences and thus the merging sequences are given
the same as the equilibrium scenarios, respectively. Under small gap scenarios, for 70
out of the 168 scenarios, a mainline CAV in lane 2 is instructed to change lane to lane 3.
Because the existence of small gaps introduces extra disturbances to lane 3 compared
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with the equilibrium scenarios, the average reduction in disturbances does not excel
the equilibrium scenarios obviously (See Figure 5.4). However, instructing a mainline
CAV in lane 2 to change lane when a small gap exists in lane 3 during merging may
bring extra benefits, which is shown by the outliers in Figure 5.4). Obviously, large re-
duction rate in disturbances shows up when a large space exists in lane 3. The average
reduction rates in disturbances for the large gap are bigger than equilibrium scenarios,
even though large gaps, like the small gaps, also introduce extra disturbances to lane
3. Under the large gap scenarios, a mainline CAV in lane 2 is instructed to change lane
during merging for 109 out of the 168 scenarios. Compared with the small gap scen-
arios, large gap scenarios have higher potential to further reduce disturbances through
lane changing behavior of mainline CAVs (See Figure 5.4). For the free flow scenarios,
the on-ramp CAV occupies the gap created by a lane changer in lane 2, thus bringing
even bigger reduction rates in disturbances.
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Figure 5.5: Correlation between lane change time of CAV 1 and the corresponding
mainline lane changer under the 109 large gap scenarios and free flow scenarios

Figure 5.5 visualizes the correlation between time instants to change lane of the on-
ramp CAV and the mainline lane changers under the 109 large gap scenarios and free
flow scenarios. Under these scenarios, CAV 1’s lane change time is at least 1 s later
than the mainline lane changer. Noticeably, mainline lane changers are given 2 s to
accomplish lane changing. 1 s after their lane change time instants, they have already
left lane 2, respectively. To this end, the on-ramp CAV 1 starts to change lane after
mainline lane changers have left lane 2, respectively. This indicates that disturbances
to upstream traffic in lane 2 can reduce with a large gap following or being utilized
by CAV 1. Under free flow scenarios, the deviation of the two lane changers’ lane
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change time is 1 s and CAV 1 utilizes the slots created by mainline lane changers for
merging. For free flow scenarios, lane changers do not bring extra disturbances to
lane 3; and thus, the control target relaxes to reduce disturbances to upstream traffic
in lane 2. A small vehicle order is given to CAV 1 to further reduce disturbances.
The mainline lane changers start to change lane when CAV 1’s target lane changes to
lane 2. The differences in lane change times for mainline lane changers are caused by
the differences in on-ramp CAV 1’s initial speed and position. For the 109 large gap
scenarios, the behavior of a mainline lane changer may reduce disturbances in lane 3.
As a result, the lane change times for lane changers are results of trade-offs to have
minimal disturbances to upstream traffic.

5.5.3 A large gap scenario

The performance of the hierarchical cooperative merging control approach is presented
in detail for a large gap scenario (See Table 5.1). The large gap scenario has the
following initial settings: 1) all CAVs start from 25 m/s; 2) the on-ramp CAV’s position
type is (b); 3) longitudinal position of 7 starts from dot 2 in Figure 5.3; 4) the desired
time gap is 1 s.

Planner results

Before 0.5 s, the planner instructs no CAV to change its target lane. At 0.5 s, the CAV
3 is instructed to follow CAV 7. At 3 s, the on-ramp CAV’s target preceding vehicle is
given CAV 4. The vehicle orders of other CAVs in each lane change accordingly when
a CAV’s desired vehicle sequence changes.

Trajectories

Figure 5.6 and Figure 5.7 show the acceleration and position trajectories in lane 1, lane
2, and lane 3, respectively, with the first-in-first-out method. Figure 5.6(b) shows CAV
1’s acceleration in lane 1 with black dashed line when CAVs in lane 2 and lane 1 affect
each other to generate acceleration.

Acceleration trajectories are reasonable based on the control objective of the opera-
tional controller with the first-in-first-out method. The first-in-first-out method assigns
the on-ramp CAV to follow CAV 4 at 0 s. As a result, the initial gap errors for CAV
1 and 5 are negative. They decelerate and CAV 4 accelerates to reduce the gap errors.
The deceleration of CAV 5 makes CAV 6’s relative speed positive and gap error neg-
ative, and thus CAV 6 decelerate. Similarly, because the acceleration of CAV 4 makes
its relative speed negative and gap error negative, CAV 3 accelerates. CAVs in lane 2
relax to equilibrium states respectively at around 20 s. At 5.2 s, CAV 1 is on the accel-
eration lane and has large enough inter-vehicle distances to CAV 4 and 5 respectively,
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Figure 5.6: Acceleration trajectories with the first-in-first-out method
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Figure 5.7: Position trajectories with the first-in-first-out method

and thus CAV 1 starts to turn left (See Figure 5.7(b)). In lane 3, initially CAV 8 has
positive gap error and thus it accelerates. This makes CAV 9’s relative speed and gap
error negative, and thus CAV 9 accelerates. Likewise, CAV 10 accelerates to reduce
negative relative speed and gap error brought by CAV 9’s acceleration.

Figure 5.8 and Figure 5.9 illustrate the acceleration and position trajectories with the
proposed hierarchical cooperative merging control approach in lane 1, lane 2, and lane
3, respectively. To clear show the interaction of CAVs from two different lanes during
lane changing processes, Figure 5.8(b) uses black dashed line to show corresponding
CAV 1’s acceleration trajectory in lane 1; Figure 5.8(c) uses red dashed line to show
corresponding CAV 3’s acceleration trajectory in lane 2.
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Figure 5.8: Acceleration trajectories with the proposed hierarchical cooperative mer-
ging control approach

Figure 5.8(b) shows three different obvious stages divided by 0.5 s, 1.5 s, and 3 s. At
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Figure 5.9: Position trajectories with the proposed hierarchical cooperative merging
control approach

0.5 s, CAV 3 is given CAV 7 as its desired directly preceding CAV. CAV 4 has a positive
gap error and it is instructed to accelerate if the acceleration constraints are ignored.
CAV 5 and CAV 6 accelerate accordingly to reduce gap errors and relative speeds
caused by their directly preceding vehicles’ acceleration, respectively. However, CAV
3 decelerates with -4 m/s2, CAV 4 is constrained to not accelerate, thus remaining
0 m/s2. At 0.5 s, CAV 3 has large enough inter-vehicle distances to its surrounding
vehicles and starts to turn left (See Figure 5.9(b) and Figure 5.9(c)). At 1.5 s, CAV
3 is in lane 3, it no longer affects CAV 4 and CAV 4 starts to accelerate to reduce its
gap error. Before 3 s, the CAV 1 accelerates to reach the speed limits. At 3 s, the on-
ramp CAV is given CAV 4 as its desired directly preceding vehicle. CAV 4 still has a
positive gap error and it accelerates. CAV 1 has negative gap error (See Figure 5.9(b))
and negative relative speed, and thus it decelerates. CAV 5 has negative relative speed,
and thus it decelerates. CAVs in lane 2 relax to their equilibrium states respectively at
around 17 s, quicker than the situation with the first-in-first-out method.

In lane 3, before 0.5 s, CAV 8 accelerates to reduce its positive gap error. CAV 9
and 10 accelerates as well to lessen their gap error and relative speed caused by their
preceding vehicle’s acceleration, respectively. At 0.5 s, CAV 3 has negative gap error
and decelerates. CAV 8 still has a positive gap error and accelerates (See Figure 5.9(c)
and Figure 5.6(c)). CAVs in lane 3 relax to their equilibrium states respectively at
around 15 s, quicker than the situation with the first-in-first-out method.

Performance indicators

The total disturbances for the upstream traffic during simulation and average speed
before leaving the end of the acceleration lane are selected by comparison. Their values
are recorded to the nearest two decimal points. With the first-in-first-out method, the
overall disturbances is 10.40 m/s2 and the average speed is 25.03 m/s. The proposed
hierarchical cooperative merging control approach brings 6.45 m/s2 and 25.12 m/s.
By comparison, the hierarchical cooperative merging control approach reduces the
disturbances by 37.94% and improves average speed by 0.36%.
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5.5.4 Discussion

By considering only one on-ramp CAV and assuming one mainline CAV may change
lane to the left during merging, the possible combination of vehicle orders are count-
able and can be solved easily by enumeration. When more on-ramp CAVs are con-
sidered together and mainline CAVs are given more freedom to change lane, an effect-
ive solution for Equation (5.5) is needed to enhance computation efficiency.

Simulation results show that the proposed hierarchical cooperative merging control
approach outperforms the first-in-first-out method to reduce disturbances to upstream
traffic (See Figure 5.4). This implies that extra improvement in traffic operations can
be achieved by exploring an optimal or a sub-optimal merging sequence.

By observation, the hierarchical cooperative merging control approach tends to make
the on-ramp CAV (CAV 1) have a small vehicle order in lane 2 under equilibrium
situations or when no mainline CAV is instructed to change lane, and allows CAV 1
to accelerate for several seconds to get closer to downstream mainline CAVs in lane
2. The on-ramp CAV can reach the speed limits 30 m/s before it is given its desired
future directly preceding vehicle or a merging sequence. Compared with the situations
when a small gap exists in lane 3, when a large space exists in lane 3, the hierarchical
cooperative merging control approach is more likely to instruct a mainline CAV close
to the large gap in lane 2 to change lane. Besides, the on-ramp CAV is given a new
merging sequence no earlier than the mainline lane changer. The possibility that the
on-ramp CAV utilizes the space generated by the mainline lane changer is high.

Under the 109 large gap scenarios and free flow scenarios where a mainline CAV is
instructed to change lane by the hierarchical cooperative merging control approach, the
on-ramp CAV 1 waits to change lane until the mainline lane changers have left lane 2
(See Figure 5.5). However, under some scenarios, the CAV 1 do not directly use the
gap created by the mainline lane changers to change lane. Compared with the choices
of not allowing a mainline CAV to change lane, disturbances to upstream traffic have
obviously reduced (See Figure 5.4). This implies that the existence of large gaps in
lane 2 during on-ramp merging is helpful to reduce traffic disturbances. Assuming not
taking other measures, if a mainline CAV’s lane changing behavior does not add much
disturbances to lane 3, making it to change lane may improve overall traffic operations
during on-ramp merging.

Optimal merging sequences are affected by both the planner’s control objectives and
the restrictions on mainline CAVs. The disturbances to upstream traffic are selected as
a performance indicator to choose an optimal merging sequence by the planner. Be-
sides, average speed, total travel time, control objectives of the operational controller,
or time duration for on-ramp CAVs to accomplish merging can also be chosen as a
performance indicator. The optimal merging sequences can be different accordingly
(Chen et al., 2020a; Athans, 1969; Awal et al., 2013; Duret et al., 2019; Chen et al.,
2020b; Ding et al., 2021). Distinguishing which performance indicators are critical
in traffic management is an important research direction. When a mainline CAV is
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allowed to change lane, traffic operations can be further improved (See Figure 5.4).
Relaxing restriction on lane changing maneuvers of mainline CAVs during merging is
a promising research direction for efficient on-ramp merging in the future.

In subsection 5.5.3, the hierarchical cooperative merging control approach reduces the
disturbances by 37.94%. Surprisingly, the average speed is only improved by 0.36%.
To this end, attenuating traffic disturbances during merging may not bring significant
improvement in average speed.

CAVs in lane 2 may change lane to improve merging efficiency when a CAV’s inter-
vehicle distance is smaller than its desired value in lane 3 (See Figure 5.4). Existing
lane changing models cannot cover this point. To this end, exploring new lane chan-
ging models for CAVs which consider possible cooperation among CAVs is another
promising research direction for merging.

5.6 Conclusion and outlook

The proposed hierarchical cooperative merging control approach has a maneuver plan-
ner and an operational trajectory controller which are formulated as model-based op-
timization, respectively. Importantly, the planner uses a linear prediction model to
represent interactions among CAVs during merging. The planner, thus, can evalu-
ate different dynamic vehicle sequences with a performance indicator (See Equation
(5.5)), and then establish optimal dynamic vehicle sequences in multiple lanes in a long
time horizon. The operational controller regulates longitudinal acceleration trajector-
ies and time instants for lane changers to change lane by utilizing model predictive
control, subject to admissible gap, speed, and acceleration constraints.

Figure 5.4 shows that the proposed hierarchical cooperative merging control approach
may outperform the first-in-first-out method under 528 different initial settings includ-
ing desired time gap, speed, and position of CAVs, bringing 11% to 91% reduction
ratios in traffic disturbances.

Remarkably, the hierarchical control approach does not have restrictions on formu-
lations of controllers, vehicle types, road layouts, or assumptions on lane changing
choices. To this end, it can be easily extended. To adapt to mixed traffic conditions,
the hierarchical control approach can be further extended by including the interaction
between automated vehicles and human-driven vehicles in the planner and operational
controller, respectively. This will be addressed in our future research. In the next
chapter, the main findings of this thesis are summarized and future research directions
are given.





Chapter 6

Conclusions

The thesis is motivated by the research needs in cooperative merging control for CAVs
near on-ramps outlined in Chapter 1. The main objective is to design cooperative
driving strategies for CAVs near on-ramps considering controller performance, safe
lane changing, maneuver planning, and trajectory control. Four sub-objectives are
stated under the research objective. They are answered by chapters 2-5. This chapter
summarizes the main findings in Section 6.1. Section 6.2 draws conclusions based on
the findings. The implications of the thesis work for practice are discussed in Section
6.3. Section 6.4 recommends future research directions.
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6.1 Findings

This thesis deals with the development of coordination strategies near on-ramps. They
mainly focus on different aspects regarding controller performance, safe lane changing
conditions, merging sequence, and acceleration trajectory control. Their performance,
impacts on traffic operations, and flexibility to adapt to mixed traffic are examined via
numerical simulations. The main findings are highlighted here. We structure the main
findings around a number of contributions.

Robust control approach

Chapter 2 addresses the first sub-objective to develop a robust platooning control
method by design a robust MPC controller. The key feature of the approach is that
at each control time step, a Min-Max MPC problem is solved, which entails predicting
the behavior of involved vehicles based on the current vehicular states and generating
optimal acceleration trajectories by minimizing the maximum value of a cost function
brought by model uncertainties. At the following new control time step, the optimal
trajectories are computed with updated measurements. The cost function reflects con-
trol objectives, such as maximizing efficiency, keeping safety, and minimizing control
effort. In mixed traffic, the behavior of human-driven vehicles is roughly predicted
with a car-following model. In comparison to a nominal MPC method that using a
nominal model, the experimental results have shown that the proposed approach has
superiority and is robust to have string stability regardless of model uncertainties and
feedback delay in both 100% CAV environment and mixed traffic.

The difference between the Min-Max MPC controller and a nominal MPC control-
ler, which uses a nominal model for prediction without considering uncertainty, is the
Min-Max formulation. To this end, the robustness of a MPC approach to model uncer-
tainties can be ensured by adding Min-Max. This finding may support researchers in
ignoring the robustness of a MPC approach to mainly focus on other control objectives
in the design stage.

Safe merging condition

In Chapter 3, longitudinal acceleration trajectories for CAVs are generated by using
our MPC controller. We present a safe merging evaluation approach based on pre-
dicted vehicular states. An on-ramp CAV meets its safe lane changing condition when
its predicted inter-vehicle time gaps with surrounding vehicles are larger than the ac-
cepted time gaps for merging. The acceptable time gap decreases while it is approach-
ing the end of the acceleration lane. When its safe merging condition is met, it is
instructed to follow a lateral trajectory equation to achieve automatic merging. To this
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end, the second sub-objective, to develop a cooperative merging strategy which al-
lows on-ramp CAVs to merge before they reach their desired inter-vehicle distances
to preceding vehicles and their desired speeds, and assists CAVs to accomplish mer-
ging automatically, is achieved. Noticeably, the traffic efficiency is not sacrificed for
merging safety in the merging process. Simulation experiments showed no collision
existed with the corresponding merging strategy and on-ramp CAVs can merge safely
with shorter inter-vehicle distances than their desired values.

Hierarchical control architecture

A hierarchical control architecture is proposed in Chapters 4 and 5. It is generic and has
no restrictions on control approaches for its two layers. The generality and application
of it are shown in Chapters 4 and 5. In Chapters 4 and 5, the upper-level controller
establishes optimal merging sequences for two streams of traffic or vehicle sequence
in each lane. The lower-level controller generates longitudinal acceleration trajectories
and time instants for lane changers to change lane. The two controllers work together
to coordinate trajectories of CAVs to improve traffic operations near on-ramps.

Without repeating future detailed merging process exhaustively, the optimal merging
or vehicle sequence can be established. Surrogate linear models of real vehicle traject-
ories regulated by the lower-level controller have been used to predict future vehicles’
cruising, car-following, and cooperative lane changing maneuvers during the man-
euver planning stage. Simulation results showed that the established optimal merging
or vehicle sequences outperformed those generated by applying the f irst− in− f irst−
out rule to improve traffic operations.

Using different control objectives, the established optimal merging sequences by the
upper-level controller can be different. Chapter 4 focuses on exploring a new approach
to have optimal merging sequences. Thus, optimal merging sequences are established
to minimizing the same objective function as the lower-level controller. By observing
the optimal merging sequences, we found that on-ramp CAVs with lower initial speeds
were given time to reduce the speed difference with the mainline traffic. Besides, relat-
ive positions affected the given vehicle sequence for an on-ramp CAV after it finished
cruising. If it was around the middle of two mainline CAVs longitudinally, it was
potentially instructed to follow the mainline downstream CAV. The sub-objective to
develop a cooperative merging strategy which uses a new approach to seek the op-
timal merging sequence and regulates CAVs’ lateral and longitudinal trajectories to
accomplish merging is achieved.

By comparison, Chapter 5 establishes optimal dynamic vehicle sequences by minim-
izing disturbances to upstream traffic. Mainline CAVs may change lane to facilitate
the merging of on-ramp CAVs. Simulation results have shown that a mainline CAV
may be instructed to change lane to facilitate the merging of on-ramp CAVs when its
left lane has large gaps. If no mainline CAV changes lane, on-ramp CAVs are found
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to have a small vehicle sequence in their final target lanes. Note it is allowed to cruise
for several seconds to be close to downstream mainline vehicles before its target lane
changes. The sub-objective to develop a cooperative merging strategy which allows
mainline CAVs to change lane to facilitate the merging process of on-ramp CAVs is
fulfilled.

Computational performance of centralized control approaches

In Chapter 4, centralized control approaches are used in formulating both the upper-
level and lower-level controllers. The upper-level controller has a looking-ahead hori-
zon 50 seconds (s) and the lower-level controller’s control time horizon is 6 s. When
one on-ramp CAV and five mainline CAVs exist, the computation time of the upper-
level controller is 0.32 s and the computation time of the lower-level controller is 0.91
s. When the number of on-ramp CAVs increases to two, the computation times for the
two controllers become 4.8 s and 1.12 s. The incremental computation for the upper-
level controller may be caused by the increasing numbers of possible combinations and
by utilizing the enumeration algorithm as a solution approach. The computation times
of the centralized control approaches are not small enough to be negligible.

Initiation time for cooperation

According to the optimal merging or vehicle sequence in the simulation experiments
of Chapters 4 and 5, on-ramp CAVs were allowed to cruise for several seconds to
increase speed, adjust position, or get close to downstream traffic. Even though the
optimal merging sequence relates to the constructed control objectives of the upper-
level controller, the observed phenomenon is sufficient to show that allowing on-ramp
CAVs to cruise can bring benefits to improve traffic operations.

6.2 Conclusions

This thesis has proposed several control strategies for CAVs to improve traffic oper-
ations near on-ramps on motorways. We present the main conclusions here based on
the formulations of those control strategies and findings.

In Chapter 2, the Min-Max MPC controller seemed to have robust performance to keep
string stability in 100% CAV environment and mixed traffic. This may suggest the
Min-Max MPC controller is robust and flexible to different traffic scenarios, although
only two simulation experiments were conducted. Noticeably, the difference between
Min-Max MPC and MPC is the Min-Max formulation. This may show that MPC
approaches can ignore robustness at design stages.
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In Chapter 3, on-ramp CAVs merged by accepting smaller time gaps than their desired
values and accomplished merging automatically without collision. Possible collisions
were prevented by checking the predicted time gaps were all larger than the accep-
ted one. This suggests with model-based prediction, on-ramp CAVs can merge with
smaller time gaps, and thus merging efficiency can be improved. Besides, safe lat-
eral maneuvers were accomplished by following trajectory equations which generate
human-like lateral trajectories for people.

In Chapter 4, our hierarchical model-based control approach seems to establish op-
timal merging sequence and generate plausible behaviors for CAVs during on-ramp
merging. In fact, simulation results have shown the established merging sequence im-
proves traffic operations better than that by using the first-in-first-out rule. We found
that surrogate linear models instead of the detailed MPC approach may be used to
predict future merging process. Besides, coordination between mainline and on-ramp
CAVs to prepare for merging started when on-ramp CAVs had close speeds to main-
line traffic. We could guess that allowing on-ramp CAVs with lower speeds to cruise
for several seconds to increase their speeds brought benefits in improving traffic oper-
ations.

In Chapter 5, with our proposed maneuver planning strategy, lane changing behaviors
of mainline CAVs brought extra improvement in traffic operations. When a large gap
existed in the left main lane, a mainline CAV in the right main lane potentially changed
lane. Safe and plausible trajectories of CAVs during merging were observed. This
suggests that our trajectory control approach is feasible. Chapters 4 and 5 together
suggest that using different objective functions may generate different decisions on
lateral maneuvers.

6.3 Implications for practice

The findings and conclusions of this thesis provide several practical implications re-
garding the design and assessment of cooperative merging strategies for CAVs. The
proposed robust control strategy can be referred to or applied by researchers, CAV
developers, fleet owners, and vehicle manufacturers to develop robust controllers for
CAVs. Traffic operators and policymakers are supported to design different test fields
and assess manufactured CAVs under different road and weather conditions. They are
advised to admit those manufactured CAVs only if they maintain string stability in all
the tests.

Researchers are provided with a prediction-based approach to check whether accepting
a gap for lane changing is safe. It can be utilized by researchers: (i) to evaluate whether
collisions are avoidable when a lane changer uses a gap for lane changing; (ii) to design
new efficient cooperative merging strategies for CAVs; (iii) to design new safe lane
changing strategies for CAVs in mixed traffic.



108 Coordination Strategies of Connected and Automated Vehicles

Merging sequences or vehicle sequences matter in improving traffic operations. The
best location for the upper-level controllers of our hierarchical control approaches is
a roadside infrastructure near the start of the acceleration lane. The road operator is
advised to deploy a roadside infrastructure that can contain the upper-level centralized
controller in the future. We have given recommendations on using the first-in-first-out
rule to establish merging sequences based on the simulation results. Those recom-
mendations can be used by traffic operators and researchers. Besides, researchers and
traffic operators can use our upper-level controllers to schedule merging or vehicle
sequences.

The designed hierarchical control architecture support researchers to design new co-
operative merging strategies. Besides, the centralized trajectory control approach for
CAVs in three different lanes is presented in Chapter 5. This approach can be referred
to or used by researchers in designing new cooperative merging strategies that allow
mainline CAVs to change lane.

6.4 Recommendations for future research

This thesis presents a robust Min-Max MPC controller for homogeneous and hetero-
geneous platooning control by considering parametric uncertainties of the vehicle dy-
namics model. Noticeably, unmeasured disturbance or noises may exist in driving
environments and affect the performance of designed controllers. To this end, a future
step is to design a robust MPC controller considering both model uncertainties and
unmeasured noises. Besides, future research is recommended to investigate analytic
approaches using Lyapunov theory to guarantee string stability of vehicle platoons and
robust lane change control in mixed traffic to improve traffic operations.

The proposed flexible cooperative merging strategy checks lane changing safety by
using predicted vehicular states. It is tested without considering possible model mis-
matches. A future research direction is to construct a robust control approach based on
it if necessary. Besides, it is designed considering a 100% CAV environment. When
human-driven vehicles exist and the market penetration of the CAVs is low, safe lane
changing conditions are still challenging. A future step is to design a merging strategy
which ensures safe lane changing in mixed traffic. A trade-off between safety and
traffic efficiency should be considered in the design.

Optimal merging sequences for two streams of traffic are considered by this thesis in
100% CAV market penetration. Centralized control methods are utilized by the tac-
tical layer controller and the operational layer controller to plan lateral maneuvers and
control trajectory. A future research direction can be to develop decentralized control
methods to achieve the same functions because the computation time of the centralized
control approaches are found computationally complex. In mixed traffic, determining
optimal merging sequences or planning safe trajectories for on-ramp CAVs during mer-
ging becomes challenging because human-driven vehicles cannot be controlled and
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possible cooperation among CAVs is thus limited. Consequently, a future direction
is to investigate optimal merging sequences and design trajectory control methods in
mixed traffic.

This thesis have constructed a uniform prediction model for vehicular behavior anti-
cipation during merging in the planner. The operational controller is formulated to
easily implement established dynamic vehicle sequences in a centralized way. Both
the planner and the operational controller can address complex merging scenarios al-
lowing mainline CAVs to change lane. To have insights on the correlation between
on-ramp lane changers and mainline lane changers, only one mainline CAV is assumed
to change lane and it is only allowed to turn left during each control cycle of the plan-
ner. A future research direction is to relax constraints on the number of mainline lane
changers and lane changing directions to systematically explore how mainline CAVs
behave to have a safe and efficient merging process. Apart from that, a future research
direction is to explore decentralized control approaches to establish lane changing de-
cisions for mainline CAVs and/or on-ramp CAVs to improve traffic operations near
on-ramps under different CAV market penetrations.
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Summary

The aim of the thesis is to design coordination strategies for connected automated
vehicles near on-ramps considering controller performance, safe lane changing con-
ditions, maneuver planning, and trajectory control. CAVs have enhanced situation
awareness with their onboard detection units and vehicle-to-everything communica-
tions. They have the potential to improve traffic operations by manoeuvring together
under a common goal and by accepting a small time gap. Existing model predictive
control controllers rarely check their controllers’ robustness considering the mismatch
between vehicle dynamics and prediction models. The existing cooperative merging
strategies constrain that on-ramp CAVs merge into mainline traffic after reaching the
final desired inter-vehicle distance and/or (merging) speed. That constraint may make
them not be applied to scenarios where the length of the on-ramp lane is short and
on-ramp CAVs cannot reach desired states before merging. Few methods investigate
optimal merging sequences for two conflicting streams of traffic. Besides, mainline
CAVs are rarely allowed to change lane during cooperation. This thesis consecutively
tackles the aforementioned four points by presenting four coordination strategies that
address the mentioned limitations. It consists of four stand-alone research papers cor-
responding to chapters 2-5.

Chapter 2 proposes a robust platooning control approach. It can be used for homogen-
eous and heterogeneous platooning control. In a homogeneous platoon, all vehicles
are CAVs. CAVs and human-driven vehicles coexist in a heterogeneous platoon. The
proposed control approach explicitly considers parametric uncertainties of the vehicle
dynamics model. Human-driven vehicles’ behavior cannot be controlled but can be
affected by preceding CAVs. The intelligent driver model plus is used to represent
the behavior of human-driven vehicles. The parameters of IDM+ are not perfect and
thus uncertainties exist. A min-max MPC formulation is presented. At each control
time step, optimal acceleration trajectories are generated by minimizing the maximum
value of a cost function brought by model uncertainties. The cost function is construc-
ted by using the predicted behavior of involved vehicles based on the current vehicular
states and the generated accelerations. Simulation results suggest the proposed control
approach may be robust to keep string stability.

In Chapter 3, a virtual platoon formed by mainline and on-ramp CAVs is controlled,
with an assumed merging sequence. Longitudinal acceleration trajectories of CAVs are
generated by using MPC. We present a new prediction-based merging condition. An
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on-ramp CAV steers towards mainline traffic in the acceleration lane when its predicted
inter-vehicle time gaps with surrounding vehicles are larger than its accepted time gap
for merging. Like human drivers, it accepts a smaller time gap than its desired time
gap for merging while it is approaching the end of the acceleration lane. The lateral
maneuver of the on-ramp vehicle is accomplished by following a human-like trajectory
equation without the intervention of a driver. Simulation results show that on-ramp
CAVs accomplish merging automatically and safely with our proposed control strategy.

Chapter 4 addresses the optimal merging sequences for two conflicting streams of
traffic. A hierarchical control approach is proposed. A tactical layer controller seeks
the optimal merging sequences for two conflicting streams of traffic by solving a
model-based optimization problem. Future vehicles’ behavior during merging is es-
timated by using surrogate linear models of real vehicle trajectories regulated by an
operational layer controller. During the planning process, on-ramp CAVs are allowed
to cruise for several seconds to adjust their positions and speeds before being coordin-
ated to merge into target slots, respectively. The operational layer controller is de-
signed based on MPC. It regulates optimal acceleration trajectories for CAVs and time
instants for on-ramp CAVs to change lane. Both the controllers explicitly consider safe
interaction among vehicles and constraints on speed, acceleration, and safety. Without
changing the operational layer controller, the decisions from the tactical layer con-
troller outperform those from the first-in-first-out merging rule in improving traffic
operations.

Chapter 5 extends the hierarchical control approach in Chapter 4 to allow mainline
CAVs to change lane to facilitate merging of on-ramp CAVs. A uniform linear model
is constructed to represent cruising, car-following, and cooperative lane changing man-
euvers of vehicles. A planner optimizes dynamic vehicle sequences in each lane
by minimizing predicted disturbances reflected by negative acceleration to upstream
traffic in a long time horizon. An operational controller is designed based on MPC. It
regulates acceleration trajectories and time instants for lane changers to change lane.
Simulation results have shown, lane changing behaviors of mainline CAVs can im-
prove traffic operations. Our control approach outperforms the first-in-first-out mer-
ging rule to schedule vehicle sequences in each lane under 528 different initial settings
including desired time gap, speed, and position of CAVs, bringing 11% to 91% reduc-
tion ratios in traffic disturbances.

The main findings and conclusions are drawn in Chapter 6. We suggest that developed
CAVs should be assessed under different scenarios and be admitted to the market when
they are robust to have string stability. Low-speed on-ramp CAVs should be allowed
to accelerate to reach the speed of the mainline traffic before they are coordinated with
mainline CAVs for merging. Future research directions include investigating analytic
approaches using Lyapunov theory to guarantee string stability of vehicle platoons,
robust lane change control in mixed traffic, designing safe lane changing conditions in
mixed traffic, and formulating cooperative merging strategies in mixed traffic.



Samenvatting

Het doel van dit proefschrift is om coördinatiestrategieën te ontwerpen voor ‘connec-
ted automated vehicles’ nabij opritten, rekening houdend met de prestaties van de voer-
tuigbesturing, veiligheid van rijstrookwisselingen, manoeuvreplanning en het volgen
van een trajectorie. CAVs hebben een verbeterd situatie bewustzijn met hun inge-
bouwde sensoren en draadloze communicatie met andere voertuigen en wegkantsyste-
men. Ze hebben het potentieel om de verkeersafwikkeling te verbeteren door samen
te werken bij manoeuvres met een gemeenschappelijk doel en door snel te kunnen
reageren. Bestaande regelaars voor ‘Model Predictive Control’ zijn zelden robuust,
door de discrepantie tussen voertuigdynamica en voorspellingsmodellen. Bestaande
coöperatieve invoegstrategieën laten CAVs pas vanaf de toerit invoegen in het hoofd-
verkeer na het bereiken van de uiteindelijke gewenste afstand tussen voertuigen en/of
(invoeg)snelheid. Die beperking kan ertoe leiden dat ze niet geschikt zijn voor situ-
aties waarin de lengte van de toerit kort is en CAVs op de toerit de gewenste volgaf-
stand en invoegsnelheid niet kunnen bereiken voordat kan worden ingevoegd. Er zijn
maar weinig methoden die de optimale invoegvolgorde onderzoeken voor twee con-
flicterende verkeersstromen. Bovendien mogen CAVs op de hoofdrijbaan tijdens de
samenwerking zelden van strook wisselen. Dit proefschrift behandelt achtereenvol-
gens de bovengenoemde vier punten door vier coördinatiestrategieën te presenteren
die de genoemde beperkingen aanpakken. Het bestaat uit vier op zichzelf staande
wetenschappelijke artikelen.

Hoofdstuk 2 formuleert een robuuste benadering voor het regelen van homogene en
heterogene pelotons. In een homogeen peloton zijn alle voertuigen CAVs. In een het-
erogeen peloton rijden CAVs en Human Driven Vehicles. De voorgestelde regelbena-
dering houdt expliciet rekening met parametrische onzekerheden van het voertuigdy-
namicamodel. Het gedrag van HDVs wordt niet direct geregeld maar wel beı̈nvloed
door voorafgaande CAVs. Het intelligent driver model wordt gebruikt om het gedrag
van HDVs weer te geven. Door een min-max MPC-formulering worden bij elke re-
geltijdstap optimale versnellingstrajecten gegenereerd door het minimaliseren van de
maximale waarde van een kostenfunctie die wordt veroorzaakt door modelonzeker-
heden. De kostenfunctie wordt geconstrueerd door gebruik te maken van het voor-
spelde gedrag van betrokken voertuigen op basis van de huidige voertuigtoestanden
en de gegenereerde versnellingen. Simulatieresultaten laten zien dat deze robuuste
aanpak leidt tot een beter stabiliteit van het verkeer.
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In Hoofdstuk 3 wordt een virtueel peloton bestuurd dat bestaat uit CAVs op de hoof-
drijbaan en CAVs op de toerit met een gegeven invoegvolgorde. De longitudinale
versnellingen van de CAVs worden gegenereerd met behulp van een MPC model. Een
CAV voegt van de toerit in op de hoofdrijbaan wanneer de voorspelde volgtijden met
andere voertuigen groter zijn dan een minimaal geaccepteerde volgtijd voor invoe-
gen. Net als bij HDVs wordt de minimaal geaccepteerde volgtijd kleiner naarmate
het einde van de toerit wordt genaderd. De laterale manoeuvre van het voertuig op
het oprit wordt gemodelleerd door een automatische verplaatsing langs een baan die
vergelijkbaar is met een menselijke rijstrookwisseling. Simulatieresultaten laten zien
dat CAVs met de voorgestelde controle strategie automatisch en veilig invoegen,

Hoofdstuk 4 bestudeert de optimale invoegvolgorde voor twee conflicterende verkeersstro-
men door een hiërarchische regelaanpak. Een tactische regelaar zoekt de optimale
invoegvolgorde door een modelgebaseerd optimalisatieprobleem op te lossen. Het
gedrag van de voertuigen tijdens het samenvoegen wordt geschat met behulp van
vereenvoudigde lineaire modellen van de voertuigtrajectoriën die worden gemodelleerd
door een operationele regelaar. Tijdens het planningsproces hebben CAVs op de oprit
enkele seconden om hun posities en snelheden aan te passen voordat ze worden gecoördin-
eerd om respectievelijk in te voegen in een geselecteerd hiaat tussen twee voertuigen
op de hoofdrijbaan. De operationele regelaar is ontworpen op basis van MPC. Het re-
gelt optimale acceleratietrajectoriën voor CAVs en tijdsmomenten voor CAVs om van
de toerit om naar de hoofdrijbaan te wisselen. Zowel de tactische als de operationele
regelaar houden expliciet rekening met een veilige interactie tussen voertuigen en be-
grenzingen ten aanzien van snelheid, acceleratie en veiligheid. De resultaten laten zien
dat de tactische regelaar tot een betere verkeersprestatie leidt vergeleken met een first-
in-first-out invoegtactiek, wanneer gebruik gemaakt wordt van dezelfde operationele
regelaar.

Hoofdstuk 5 breidt de hiërarchische regelaanpak van hoofdstuk 4 uit door CAVs op
de hoofdrijbaan toe te staan om van rijstrook te wisselen om het invoegen van CAVs
vanaf de toerit te vergemakkelijken. Er wordt een eenvoudig lineair model opgesteld
om weef, volg en coöperatieve rijstrookwisselmanoeuvres te representeren. Een plan-
ner optimaliseert de dynamische voertuigvolgorde in elke rijstrook door voorspelde
verstoringen te minimaliseren, in de vorm van negatieve versnellingen van stroomop-
waarts verkeer over een langere tijdshorizon. Een operationele regelaar op basis van
MPC regelt acceleraties en tijdstippen voor CAVs om van rijstrook te wisselen. Sim-
ulatieresultaten tonen aan dat rijstrookwisselingen door CAVs op de hoofdrijbaan de
verkeersprestatie kunnen verbeteren. De gecombineerde planner en regelaar plant de
voertuigsequenties in elke rijstrook beter dan een first-in-first-out onder 528 verschil-
lende initiële instellingen voor gewenste volgtijd, snelheid en positie van CAVs. Dit
leidt tot 11% tot 91% vermindering in verstoringen.

Hoofdstuk 6 vat de belangrijkste bevindingen en conclusies samen. CAVs moeten
onder verschillende scenario’s worden beoordeeld om hun robuustheid en stabiliteit in
het verkeer te kunnen vaststellen. Toeritten moeten ruimte bieden voor acceleraties van
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CAVs om vanaf lage snelheid de snelheid van verkeer op de hoofdrijbaan te bereiken
voordat ze worden gecoördineerd met CAVs op het hoofdrijbaan om in te voegen.
Toekomstige onderzoeksrichtingen omvatten het onderzoeken van analytische bena-
deringen met behulp van de Lyapunov-theorie om de stabiliteit van voertuigpelotons
te garanderen en het ontwerpen van robuuste, veilige en coöperatieve rijstrookwisselin-
gen in gemengd verkeer.
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Pudāne, B., Time Use and Travel Behaviour with Automated Vehicles, T2021/21, July
2021, TRAIL Thesis Series, the Netherlands

Gent, P. van, Your Car Knows Best, T2021/20, July 2021, TRAIL Thesis Series, the
Netherlands

Wang, Y., Modeling Human Spatial Behavior through Big Mobility Data, T2021/19,
June 2021, TRAIL Thesis Series, the Netherlands

131



132 Coordination Strategies of Connected and Automated Vehicles

Coevering, P. van de, The Interplay between Land Use, Travel Behaviour and Atti-
tudes: a quest for causality, T2021/18, June 2021, TRAIL Thesis Series, the Nether-
lands

Landman, R., Operational Control Solutions for Traffic Management on a Network
Level, T2021/17, June 2021, TRAIL Thesis Series, the Netherlands

Zomer, L.-B., Unravelling Urban Wayfinding: Studies on the development of spatial
knowledge, activity patterns, and route dynamics of cyclists, T2021/16, May 2021,
TRAIL Thesis Series, the Netherlands
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