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Drag force on an accelerating submerged plate

E. J. Grift1,†, N. B. Vijayaragavan1, M. J. Tummers1 and J. Westerweel1

1Laboratory for Aero and Hydrodynamics, Delft University of Technology, 2628 Delft, The Netherlands

(Received 17 August 2018; revised 17 January 2019; accepted 30 January 2019;
first published online 12 March 2019)

We present results on the drag on, and the flow field around, a submerged rectangular
normal flat plate, which is uniformly accelerated to a constant target velocity along a
straight path. The plate aspect ratio is chosen to be AR= 2 to resemble an oar blade
in (competitive) rowing, the sport which inspired this study. The plate depth, i.e. the
distance from the top of the plate to the air–water interface, the plate acceleration
and the plate target velocity are varied, resulting in a plate width based Reynolds
number of 4× 104 .Re. 8× 104. In our analysis we distinguish three phases; (i) the
acceleration phase during which the plate drag is enhanced, (ii) the transition phase
during which the plate drag decreases to a constant steady value upon which (iii) the
steady phase is reached. The plate drag force is measured as function of time which
showed that the steady-phase plate drag at a depth of 1/5 plate height (20 mm
depth for a plate height of 100 mm) increased by 45 % compared to the plate top
at the surface (0 mm). Also, it is shown that the drag force during acceleration of
the plate increases over time and is not captured by a single added mass coefficient
for prolonged accelerations. Instead, an entrainment rate is defined that captures this
behaviour. The formation of starting vortices and the wake development during the
time of acceleration and transition towards a steady wake are studied using hydrogen
bubble flow visualisations and particle image velocimetry. The formation time, as
proposed by Gharib et al. (J. Fluid Mech., vol. 360, 1998, pp. 121–140), appears to
be a universal time scale for the vortex formation during the transition phase.

Key words: vortex shedding, wakes

1. Introduction
In (competitive) rowing athletes generate a propulsive force by means of a rowing

oar blade. During propulsion the oar blade is submerged close to the surface and the
athlete exerts a force on the handle of the oar. This causes a reaction force from the
water at the other end of the oar, the oar blade, which together with the force at
the handle generates the propulsive force at the oar lock, the pivot point on the boat.
For optimal performance it is essential to maximise the propulsion caused by this
hydrodynamic reaction force at the blade. To achieve this, understanding of the flow
field around the oar blade during this propulsive phase is vital. Although it appears
that a rowing oar blade moves along a circular path during the drive phase, its motion
is all but trivial. The circular path is only observed when moving with the boat.

† Email address for correspondence: e.j.grift@tudelft.nl
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When observed from an Earth-bound reference frame the blade moves along a
complex cycloid path and is subject to large accelerations and decelerations (Caplan,
Coppel & Gardner 2010). This makes the flow around an oar blade highly dynamic
and complex with the presence of a free surface possibly further complicating the
flow dynamics.

1.1. Previous work on hydrodynamics in rowing
The hydrodynamic forces in rowing, i.e. without the forces exerted by the athlete,
has been subject of both experimental and numerical research numerous times in the
past, as is shown in the review article by Caplan et al. (2010). The force due to a
steady flow on various rowing oar blades was investigated experimentally by Caplan
& Gardner (2007a,b). In their research a comparison is made between various rowing
oar blades using a water flume. Some differences in force response of the various
blades are observed due to a change in curvature. However, the flow field itself was
not investigated. A numerical study of a steady uniform flow over rowing oar blades
was performed by Coppel et al. (2008) in which unfortunately the chosen turbulence
model affected the obtained drag coefficients significantly and also the flow field
itself was not investigated. In a later numerical study of steady uniform flow over
an oar blade by Coppel et al. (2010) separation of the flow over the blade at high
angles of attack was identified by releasing path lines. Although these experiments
and simulations at steady flow conditions are a first step in understanding oar blade
hydrodynamics, they do not investigate the flow itself and do not account for a free
surface or acceleration of the oar blade.

Research on oar blade hydrodynamics that does account for a free surface and for
accelerations of the oar blade was performed by Sliasas & Tullis (2009). They
investigated both steady flow over an oar blade as well as unsteady flow, i.e.
simulating the actual path of a rowing oar blade, including a free surface using
commercially available software. In their research they found that the obtained lift
and drag coefficients in the steady and unsteady simulations differed substantially,
which is to be expected since the observed large accelerations during rowing cause
an increased force on the oar blade due to added mass. The deformation of the
free surface obtained from the unsteady simulations was found to match qualitatively
with actual rowing, but a detailed investigation of the flow field was not performed.
Barré & Kobus (2010) performed towing tank experiments in which a simplified oar
blade model moved along a simplified path. Although the path was simplified, the
motion was highly dynamic and near a free surface like in actual rowing. Although
during these experiments only force data were acquired and no flow analysis was
performed, in later research these force data were compared as a benchmark against
numerical simulations by Leroyer et al. (2010). From those numerical simulations
it was concluded that both free surface and unsteadiness effects are crucial features
in the generation of propulsive forces, since the simulations incorporating both
these features were the only ones to match reasonably well with the experimental
data. In a more recent study by Robert et al. (2014) a realistic oar blade path was
simulated using the same software as Leroyer et al. (2010). Again agreement between
experiments and simulations was fair. Both Leroyer et al. (2010) and Robert et al.
(2014) note that viscosity appeared to play a minor role in the obtained drag and
lift coefficients, and therefore an Euler method was used. Since vortex shedding is
observed during on-water rowing and the generation of vorticity is strongly linked
to viscosity, the choice of an inviscid method might be a reason why the numerical
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results only ‘fit fairly’ well when compared to experiments. On the other hand,
inviscid numerical models have been successfully used to describe a start-up vortex
during the self-similar stage, as reported by Pullin (1978), Krasny & Nitsche (2002)
and Luchini & Tognaccini (2002). The above overview shows that, despite the many
attempts, it proves difficult to determine the flow field around a rowing oar blade,
and the flow phenomena governing propulsion in rowing are still largely unknown;
reasons are the turbulent flow, i.e. a Reynolds number Re = O(105)–O(106), large
accelerations, the presence of a free surface and viscosity-driven phenomena like
vortex shedding which all complicate both experiments and numerical simulations.

1.2. A generalisation of the problem
In this study we investigate the effect of the free surface and the effect of the
acceleration on the generated drag force in a simplified geometry. Instead of a
rowing oar blade we use a rectangular plate with the same aspect ratio as an oar
blade (AR= 2) on a scale of 1 : 2, and instead of the complex cycloid path our plate
follows a linear path as is shown in figure 1. This linear path may not be very
representative of actual rowing at cruising velocity, but it is representative of the start
stroke of a race (where the boat is starting from rest). In that case, the oar blade
follows an approximately circular path and the oar blade is oriented perpendicular to
the flow. The plate is then submerged at different depths h and is accelerated with
an acceleration a towards a uniform velocity V , as shown in figure 2, such that the
flow becomes turbulent, at a Reynolds number Re> 104. This enables the assessment
of the effect of the free surface and acceleration on the plate drag in turbulent flow
conditions. Although this fundamental approach may not capture the intricate detailed
dynamics and flow patterns during actual rowing, it does isolate the principal effects
of the free surface and acceleration on the drag on an oar-like object.

By using a more general definition, the applicability of this study becomes broader.
For instance, in aquatic locomotion the Basilisk lizard, sometimes dubbed the
J.C. lizard, is able to run over water by generating a highly dynamic flow close
to the air–water interface (Hsieh 2003) through a mechanism called ‘surface slapping’
which generates force by buoyancy, added mass and inertia (Bush & Hu 2006).
The same mechanism forms the inspiration for water running robots (Kim, Jeong
& Seo 2017). Of course, also the design of more traditional maritime craft or the
field of coastal engineering profits from a better understanding of the effect of an
acceleration causing added mass and the presence of a free surface affecting the drag
force. Also in other sports where athletes generate a highly dynamic flow close to the
surface this study can be of interest, e.g. in swimming during breast stroke or front
crawl (Matsuuchi et al. 2009) or in canoeing (Tullis, Galipeau & Morgoch 2018).
Accelerating plates are also used to model insect flight or flapping wings of small
birds that both appear to have a remarkably high aerodynamic performance due to
a leading edge vortex enhancing lift (Dickinson & Götz 1993; Fernandez-Feria &
Alaminos-Quesada 2018).

1.3. Previous work on accelerating plates
Obviously, we are not the first to investigate drag on a flat plate. Already at the
beginning of the previous century Ludwig Prandtl observed the behaviour of a flow
perpendicular to a plate normal to that flow in his work which translates as ‘Motion
of fluids with very little viscosity’ (Prandtl 1904). In the work of Hoerner (1965) an
overview of the research up to 1954 on the drag of plates normal to a steady flow
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FIGURE 1. (Colour online) Schematic of the experimental set-up. (a) Side view of the
set-up with the robot arm holding the plate moving from x1 to x2 at velocity V at a
distance from the free surface h. (b) Plate dimensions and orientation. (c) The top view
showing the horizontal light sheet used for particle image velocimetry (PIV) that crosses
the plate at half-height. The PIV camera images the field of view via a mirror. Both the
camera and mirror are positioned underneath the tank and are moved to different positions
for each field of view (C1, C2, C3). Also, the anode and the camera moving with the plate
for the flow visualisations are shown.

is found. For an accelerating motion, or flow depending on the frame of reference,
we expect an increase in drag on the plate due to added mass. Although the term
added mass, or alternatively hydrodynamic mass, is a common enough term in fluid
mechanics, little research has been done on added mass for accelerating plates. For
sufficiently small motions from rest the added mass effect can be captured by a single
coefficient which is fully defined by the plate geometry (Yu 1945; Patton 1965; Payne
1981).

The flow around and the drag on a uniformly accelerating plate during larger
motions has been of interest since the second half of the previous century of
which Koumoutsakos & Shiels (1996) provide a clear and concise summary of
both numerical and experimental work carried out. It is evident that a plate uniformly
accelerated from rest produces a vortex as was readily observed by Prandtl (1904).
The generation of this vortex has four stages, as defined by Luchini & Tognaccini
(2002). During the first three stages, i.e. the Rayleigh stage, viscous stage and the
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FIGURE 2. Plate velocity V (a) and plate acceleration a (b) as a function of time t.

self-similar inviscid stage, a vortex is formed and starts growing, but remains attached
to the body on which it is formed and is independent of geometry. Only during the
last stage, during the vortex expulsion, the vortex starts lagging behind the body. Most
experimental work and numerical work is limited in Reynolds number, Re≈ O(103),
or is on the very early stages of an accelerating plate, i.e. the first three stages of
vortex formation. However, the first three stages already occur within a small motion
of the plate, i.e. within a travelled distance of 0.5–1 times the plate height (Xu &
Nitsche 2015). Each of our experiments runs far into the fourth phase, which has not
been investigated in great detail.

In the work of Koumoutsakos & Shiels (1996) numerical simulations of an
accelerating plate in two-dimensional viscous flow were performed up to Re= 1000. It
was found that for a uniformly accelerated plate a Kelvin–Helmholtz-type instability
was induced in the separating shear layer, which appears to be intrinsic behaviour of
the flow. Previously, when this behaviour was observed during experiments by Lian
& Huang (1989), the same observed flow behaviour was attributed to experimental
defects. However, this behaviour being intrinsic to the flow was later disputed once
again by Xu & Nitsche (2015), as they showed that by increasing the simulation
resolution the instabilities disappear. However, Schneider et al. (2014) report that the
instabilities are affected by the shape of the plate tip which suggests that they are
intrinsic to the flow.

Koumoutsakos & Shiels (1996) also found that the scaled drag coefficient collapsed
onto a single curve in dimensionless time t∗ defined as t∗= at2/lb with acceleration a,
dimensional time t and plate height lb. The dimensionless time t∗ is essentially the
number of plate heights travelled by the plate. A similar notation was adopted by
Xu & Nitsche (2015) who reported that it was more suitable to compare results with
different accelerations at the same distances travelled than identical times travelled.
Gharib, Rambod & Shariff (1998) called this dimensionless time the formation time
where it proved to be a universal time scale for the generation of a vortex ring by
a piston. Also Ringuette, Milano & Gharib (2007) used the formation time t∗ to
identify vortex shedding events at the edges of a uniformly accelerated semi-infinite
plate normal to the flow. Also in this study the formation time appears to be a useful
scaling parameter with respect to vortex shedding. Throughout this study, parameters
and variables are expressed in their dimensional form unless their dimensionless
counterpart proves a valuable addition to the analysis, i.e. some universal scaling
becomes apparent by their use.
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The experiment carried out by Ringuette et al. (2007) somewhat resembles
our experiment. The main difference is that our plate is not semi-infinite but
three-dimensional, and our plate is not piercing the surface but is submerged below
the surface. Also the Reynolds number in our experiments are an order of magnitude
larger, i.e. O(104) versus O(103). In their work, force measurements are combined
with visualisation techniques and quantitative flow measurements by means of particle
image velocimetry (PIV). The latter is used to obtain the vorticity in the flow and
from there the dimensionless circulation which can be used to identify vortex shedding
events. In this study we use similar techniques to investigate the flow around the
plate.

2. Experimental set-up

Figure 1 shows the experimental set-up used in this study. All experiments are done
in an open-top glass tank with a horizontal cross-section of 2 m×2 m and a height of
0.6 m. The dimensions of the tank are chosen to be as large as practically possible to
avoid blockage effects and wall effects. The tank is filled with water up to a level of
0.5 m to avoid spilling over the edge of the tank. The flat plate used in this study has
a width la = 200 mm and a height lb = 100 mm which results in a surface blockage
ratio of 0.02, i.e. the ratio of the plate area (0.2 m × 0.1 m) over the tank cross-
section perpendicular to the direction of motion of the plate (2 m× 0.5 m). According
to literature, e.g. West & Apelt (1982), at this ratio the presence of the walls of the
tank do not have a significant effect on the drag. To match the rowing oar blade on
a 1 : 2 scale the plate thickness lc should be 2.5 mm. However, to avoid flapping or
flexing of the plate a compromise was reached at a plate thickness lc = 4 mm. The
plate is aligned such that its major dimensions la and lb are parallel to the y and
z direction, respectively, see figure 1(b). The plate is mounted to an industrial robot
arm (Reis Robotics RL50) with a streamlined strut piercing the air–water interface.
A force/torque transducer (F/T transducer) is installed between the robot arm and
the strut to measure the hydrodynamic forces acting on the plate. The hydrodynamic
forces on the streamlined strut are considered to be negligible compared to those on
the flat plate.

2.1. Kinematics
The robot moves the flat plate along a straight line in the x-direction, from x1 to
x2, over a distance of 1.4 m (figure 1), starting and stopping at a distance of three
times the plate height lb from the walls, such that the walls do not affect the flow
around the plate. The velocity fields obtained from the PIV measurements show that
the flow is unperturbed, i.e. a flow velocity magnitude <1 % of the plate velocity V ,
at 2.4 plate heights lb ahead of the plate. To investigate the effect of the free surface
on the drag, the immersion depth h, defined as the distance between the top edge of
the plate and the water surface, as shown in figure 1, is varied from 0 to 200 mm.
The plate is linearly accelerated to a velocity V = 0.30 m s−1; see figure 2. The
acceleration of the robot is set to a = 0.82 m s−2 so that the prescribed velocity of
V = 0.30 m s−1 is reached in 0.36 s. At V = 0.30 m s−1 the Reynolds number (using
the plate width la as a characteristic length) is Re= 60× 103, which is well into the
turbulent regime. Higher velocities would complicate the experiments by increasing
the settling time of the turbid water in the tank between experiments, and would
increase the risk of splashing and spills. During the experiments only very small
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capillary waves are observed, which hold very little energy. Due to the absence of
waves we expect a small Froude number, which is defined as

Fr=
V
√

gL
, (2.1)

where g is the gravitational acceleration, and L is a representative length scale.
However, it is hard to define a representative length scale in the geometry and/or
water depth used in this experiment. Instead of arbitrarily choosing a length scale
we reason that a critical Froude number Fr = 1 is reached at a critical length scale
Lcrit = V2/g = 0.302/9.81 = 0.009 m. Since the relevant major length scales in this
experiment, e.g. the major plate dimensions or the tank depth, are much larger than
this critical length scale, such that Fr� 1.

2.2. Force and path data acquisition
The robot itself provides the data on the position x(t) and the velocity V(t) at a default
rate of 92 Hz. The robot position data are within 0.1 mm repeatable, with a resolution
of 1 µm. To analyse the forces on the flat plate a force (AMTI 6-DOF) is used that
measures the force at a rate of 10 kHz.

2.3. Hydrogen bubble flow visualisation
To visualise the flow we use hydrogen bubble flow visualisation. Installed on the front
face of the plate (facing the positive x-direction) is a 0.6 mm thick copper wire mesh
that acts as the cathode. A 1.8 m long stainless steel screen that is placed parallel
to the plate path at a distance of 0.6 m acts as the anode, see figure 1. Using an
electric potential of 30 V hydrogen bubbles are created at the front surface of the
plate. To increase the bubble production rate to a level suitable for visualisation the
conductivity of the water was increased by adding 2.5 kg of sodium sulphate. The
hydrogen bubbles were illuminated through the glass bottom of the tank using flood
lights (3 × 400 W). Images of the hydrogen bubbles were taken with a high-speed
camera (Phantom VEO 640L with a 105 mm Nikon lens) at a frame rate of 500
frames per second (f.p.s.). During the recording the camera moved (manually) with
the plate in the positive x-direction such that the plate and its wake remained in the
camera’s field of view.

2.4. Particle image velocimetry
To quantify the flow field we used planar particle image velocimetry (PIV). The
field of view is in the horizontal x, y-plane through the centre of the plate. A
4 megapixel high-speed camera (LaVision Imager Pro HS) was used to capture the
flow through the glass bottom upwards in the positive z-direction at a frame rate
of 1000 f.p.s. To capture the entire run of the plate over 1.4 m we captured the
flow at three different locations along the x-axis, each time using a field of view of
approximately 0.6 m × 0.6 m, and these were stitched together to cover the entire
run, as shown in figure 1. Neutrally buoyant fluorescent spherical tracer particles
(Cospheric UVPMS-BR-0.995, 53–63 µm diameter) were added to the flow (10 g)
and were illuminated using a 532 nm Nd-YAG 150 W laser (Litron LDY304-PIV).
The acquired images were analysed using commercial software (LaVision DaVis 8.4).
To create image pairs from the sequential images acquired at 1000 f.p.s. every nth
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frame was paired with the (n+ 6)th frame resulting in a 6 ms exposure time delay 1t
to ensure sufficient displacement of the particle images in the region of interest, i.e.
the wake behind the plate. A multi-pass correlation based PIV algorithm was used to
obtain the flow velocity field from the image pairs. The interrogation windows of the
three subsequent passes were 48× 48 pixels for the first pass, and 24× 24 pixels for
the second and third passes. A 50 % overlap between adjacent interrogation positions
was used. This resulted in velocity vector fields with a vector spacing of 3.2 mm and
a cumulative first and second vector choice of >98 % in the area of interest, i.e. in
the wake of the plate.

3. Results
3.1. Typical result from the force measurements

During each run the instantaneous force Fx (perpendicular to the plate surface)
is sampled at a rate of 10 kHz. The grey line in figure 3 represents Fx as a
function of time for an experiment with a velocity V = 0.30 m s−1, a plate depth of
h = 100 mm and an acceleration of a = 0.82 m s−2. As one can see, the 10 kHz
sampled raw signal shows significant fluctuations. All calculations and analyses are
performed using the unfiltered signals. However, for better readability the signal is
filtered using a second-order Savitzky–Golay filter (Savitzky & Golay 1964) with
a filter width of 201 samples, i.e. 0.02 s. The black line in figure 3 represents the
filtered signal. The force signal exhibits a clear initial peak at 0.36 s which coincides
with the time when the plate reaches its maximum velocity of V = 0.30 m s−1; see
figure 3(b). The initial peak is due to the added mass and the acceleration of the
plate, as is discussed in detail in § 3.7. The time interval 0 < t < 0.36 s is called
the ‘acceleration phase’ and is indicated by A in figure 3. After the peak, the force
gradually decreases and finally reaches a steady value for t & 3.4 s. This phase is
called the ‘steady phase’ and is indicated by C. The time interval in between the
initial peak and the beginning of the steady phase (0.36 s < t < 3.4 s) is called the
‘transition phase’ and is indicated by B. The measurement ends at t = 4.6 s. It is
noted that the force signal shows two distinct local maxima during the transition
phase B, indicated as ‘peak 1’ and ‘peak 2’ in figure 3. In § 3.6 it is shown that
these peaks are related to the development of large flow structures in the wake of
the plate. Also, throughout the experiment, high-frequency oscillations are present
in the force signal, which is due to Kelvin–Helmholtz-like instabilities in the shear
layer, which is further discussed in § 3.4. Right after starting the plate we observe
a local peak followed by a dip in the force signal, i.e. a step response as indicated
in figure 3. This is a result of the finite stiffness of the plate, the force transducer
and the streamlined strut that connects the two. This finite stiffness causes a typical
response of a mass–spring–damper system to a step function; in this case the sudden
acceleration of the plate causes a sudden force due to the hydrodynamic mass and
mass of the plate (Meirovitch 2001).

3.2. The effect of the plate depth on the steady-phase drag
The plate is moved through the tank for different immersion depths h to investigate
the effect of the free surface on the drag on the plate. The immersion depth h is varied
between 0 and 200 mm in a randomised order. In total 140 runs were carried out.

The drag force Fx during the steady phase is expressed as

Fx =
1
2ρV2CDA, (3.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

, o
n 

29
 M

ar
 2

01
9 

at
 1

8:
02

:0
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.102
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Drag on an immersed flat plate 377

5

4

3

2

1

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.2

F x
 (N

)
V 

(m
 s-

1 )

t (s)

(a)

(b)

A B

Initial peak

Peak 1

Peak 2

Step response

Raw
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C

FIGURE 3. (a) A typical unfiltered force signal Fx sampled at 10 kHz (grey) and the
filtered force signal (black). Throughout the force signal high-frequency oscillations are
present which are caused by Kelvin–Helmholtz-like instabilities in the shear layer as
discussed in § 3.4. Right after starting the plate we observe a step response due to the
finite stiffness of the plate, force transducer and the strut which connects the two. (b) The
plate velocity V as a function of time.

where ρ is the fluid density, V the plate velocity, A the frontal area of the plate and CD

the steady-phase drag coefficient. For each run the steady-phase drag coefficient CD is
calculated and plotted in figure 4 using open markers, where each marker represents
CD of a single run at a given depth h. The steady phase drag coefficient CD reaches a
minimum value of CD= 1.10 for h= 0, i.e. when the top of the plate is at the surface.
For larger values of h, i.e. when the plate is submerged, the drag coefficient increases
to a peak value of CD= 1.60 at a depth h= 20 mm; a relative increase of 45 %. When
the plate is submerged further below the surface the drag coefficient decreases, and a
constant value of CD = 1.3 is reached for large h.

To the knowledge of the authors, the observed behaviour of CD with respect to
the plate depth h has not been reported previously. However, to be able to make a
comparison with the literature we consider two limiting cases. The first limiting case
occurs for large h where the free surface does not affect the drag on the plate any
more. For the deep water cases we found CD = 1.30, which is in close agreement
with a value of CD= 1.26–1.32 for a fully submerged plate with AR= 6 (Schubauer &
Dryden 1937) and CD= 1.2–1.26 for square plates (Bearman 1971). Another limiting
case occurs for h= 0 mm, where we compare the measured drag coefficient with that
of a fence, as if the free surface acts as a wall such that the flow does not pass over
the top of the plate. Again the found drag coefficient CD = 1.10 matches well with
values found in the literature CD = 1.05–1.12 (Jacobs 1985). The assumption that the
plate acts like a fence is verified by letting the plate pierce the surface such that no
water flows over the plate, i.e. h< 0. The drag coefficients for a partially submerged
plate are represented by the closed markers in figure 4. Of course, for this surface
piercing case the frontal projected area of submerged part of the plate is used for
calculating CD.
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FIGURE 4. The steady-phase drag coefficient CD as function of plate depth h. For
reference the dashed line gives the CD value for flow over a fence (CD = 1.10) and the
solid line the CD value for flow around a 1 : 2 aspect ratio plate (CD = 1.30).

3.3. Instantaneous force signals for selected depths
Three cases are selected for further analysis: the surface case h=0 mm, the maximum
drag case h = 20 mm and the case h = 100 mm, which equals one blade height lb.
The surface case (h = 0 mm) corresponds to the neutrally buoyant position of an
actual rowing oar blade, h= 100 mm, i.e. one blade height, is the practical limit of
immersion during actual rowing, and the maximum drag case (h = 20 mm) would
be optimal for propulsion. Note that a local minimum and trend break can be seen
at h = 50 mm. Although not investigated in this study, we speculate that two drag
enhancing mechanisms play a role at this depth as further discussed in § 3.6. The flow
visualisations in § 3.5 show that the case of h= 100 mm develops a symmetric wake
(top–bottom) which suggests it may also be representative for a fully submerged plate.
The three cases are indicated in figure 4. For the three selected depths, i.e. h= 0 mm,
h= 20 mm and h= 100 mm, experiments are carried out at a velocity V= 0.30 m s−1

and an acceleration a = 0.82 m s−2. The instantaneous drag force profiles for these
three cases are shown in figure 5. It is observed that for all three cases the plate
drag is rapidly increasing during the acceleration phase (A), and the maximum drag is
reached at the end of this phase. For the case h= 0 mm, the drag force is significantly
lower during most of the transition phase (B) and during the steady phase (C). For
the case h = 20 mm the drag is higher than in the other cases for t > 1.5 s, which
also follows from figure 4. Significant differences occur during the transition phase.
The force signals show a very different decay to their steady-phase values. The case
h= 0 mm initially shows the slowest decay but reaches the lowest steady state drag
value, while the case h = 100 mm shows the fastest decay but eventually reaches
a relatively high steady-phase drag value. Also, the peaks 1 and 2 are only present
during the transition phase (B) of the case h= 100 mm.

The drag signals for the three selected cases all show a steep increase during
the acceleration phase and a relatively gradual decrease during the transition phase
towards the steady phase. Traditionally, the steady-phase drag force is described
by (3.1). However, when dealing with an accelerating object in a quiescent fluid
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FIGURE 5. (Colour online) The drag force signals Fx(t) for the three selected plate depths,
h= 0 mm, h= 20 mm and h= 100 mm. The vertical dashed lines indicate time instances
t1, t2 and t3 when snapshots of the hydrogen bubble flow visualisation were taken as
discussed in § 3.5.

the effect of the added mass must be incorporated into the description of the drag
force Fx:

Fx(t)= FCD(t)+ Fvm(t)= 1
2ρV(t)2CDA︸ ︷︷ ︸

FCD(t)

+

mv︷ ︸︸ ︷
(mp +mh) a(t)︸ ︷︷ ︸

Fvm(t)

, (3.2)

where FCD is the steady-phase drag force and Fvm the product of the virtual mass
mv and the plate acceleration a. The virtual mass mv is the sum of the plate mass
mp and the hydrodynamic mass mh. All variables in (3.2) are known except for the
hydrodynamic mass mh. The plate velocity V(t) and the plate acceleration a are
prescribed as previously shown in figure 2. For each run the value for CD is taken
from figure 4. The plate mass mp = 0.400 kg, while the hydrodynamic mass mh

for a submerged geometry accelerating from rest is estimated by using an empirical
correlation. For a rectangular flat plate with an aspect ratio of AR = 2 for inviscid
frictionless flow the hydrodynamic mass is modelled as (Patton 1965):

mh(Patton) = 0.84
π

4
ρlal2

b = 1.3 kg, (3.3)

where la and lb are the major dimensions of the plate (with la > lb). Alternatively, Yu
(1945) provides an empirical correlation valid for arbitrary plate aspect ratio and plate
thickness lc:

mh(Yu) = ρ

[
0.788

l2
al2

b

(l2
a + l2

b)
1/2
+ 0.0619lalbl1/2

c

]
. (3.4)

Figure 6 shows the measured drag force Fx(t) for h= 100 mm, next to the theoretical
drag force, equation (3.2) with mh according to (3.4). The predicted initial peak in
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FIGURE 6. The experimentally determined drag force signal Fx(t) for h = 100 mm
together with the theoretical drag force and its components FCD and Fvm according to
(3.2) with the hydrodynamic mass mh according to (3.4).

drag force of 2.8 N significantly underestimates the measured peak of 3.6 N. When
using expression (3.3) for the hydrodynamic mass, the initial peak is estimated to
be even lower at 2.6 N. Also, the predicted force shows a sharp drop as soon as
the acceleration of the plate ends at t= 0.36 s. This is because a force is no longer
required for accelerating the virtual mass mv. However, in the measurements a much
more gradual decrease in drag force after the initial peak at t = 0.36 s is observed.
During experiments, upon accelerating the plate for h = 0 mm and h = 20 mm,
a vortex pair is visible at the free surface which is a viscous effect, potentially
explaining the mismatch between theory and experiment since the correlations for
the hydrodynamic mass are for inviscid flow only. The formation of these vortices is
further addressed in § 3.5.

3.4. Shear layer instabilities
As described in the introduction, many studies investigating accelerating flat plates
encounter vortices which are formed in the shear layer between the wake of the plate
and the flow separating at the plate edge, e.g. Lian & Huang (1989). The mechanism
by which these vortices are generated is similar to that of the Kelvin–Helmholtz
instability and is depicted in figure 7(a). These shear layer instabilities are very close
to the plate and can be seen in the force signal; see figure 3. These are also visible
in the flow visualisations discussed in § 3.5, where the hydrogen bubbles end up in
the vortex cores; see figure 7(c). Not only during the acceleration phase, but also
during the other phases, i.e. where the plate travels at constant velocity, the secondary
vortices are generated in the shear layer at a consistent frequency. When the starting
vortex has disintegrated the generated secondary vortices are simply shed into the
wake, as shown in figure 7(b). The frequency at which the vortices are generated
was determined based on the flow visualisations for each h at a = 0.82 m s−2 and
V = 0.20−1 and 0.30 m s−1 and was found to be 17 Hz. The power spectrum of the
drag force signal consistently shows a peak at this frequency for all runs. The power
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FIGURE 7. (a) The flow separates at the plate edge. At some distance from the plate
instabilities in the shear layer evolve into Kelvin–Helmholtz-like vortices. (b) At constant
velocity small vortices are generated in the shear layer and shed into the wake, similar
to the observations by Prandtl (1904). (c) The smaller secondary vortices generated in the
shear layer during the acceleration phase roll up in the large starting vortex in a very
similar way as was observed by Lian & Huang (1989).

spectra determined for different values of acceleration, velocity and immersion
depth, were all similar, i.e. the eight most dominant frequencies all lie in the range
of 13–20 Hz with the most dominant frequency at approximately 17 Hz. Minor
variations between runs are observed. We hypothesise that these variations are due
to perturbations introduced by the experimental apparatus that might be different for
each run; see also Lian & Huang (1989).

3.5. Flow visualisations
To determine what causes the discrepancy between the predicted plate drag (based
on a constant added mass coefficient) and measured plate drag, the flow around
the plate is visualised for the three selected plate depths, h = 0 mm, h = 20 mm
and h = 100 mm. The acceleration is again set to a = 0.82 m s−1 and the velocity
V = 0.30 m s−1 for all three runs. During each run the camera moves with the
plate while viewing the plate and its wake from the right-hand side. Snapshots
are taken at three different time instants, i.e. (i) t1 = 0.35 s, close to the end
of the acceleration phase (A), (ii) at t2 = 0.8 s during the transition phase (B),
(iii) and t3 = 4.0 s during the steady phase (C): t1, t2 and t3 are also marked in
figure 5. Flow visualisation movies are available in the supplemental material at
https://doi.org/10.1017/jfm.2019.102, for h= 0 (movie 1), 20 (movie 2) and 100 mm
(movie 3).

Figure 8(a–c) shows the development of the flow for the deep water case
h = 100 mm. Immediately after setting the plate in motion (t = 0 s) a vortex
ring forms at the plate edges, closely trailing behind the plate until the end of
the acceleration phase; see figure 8(a). During the transition phase this vortex ring
deforms: the top and bottom of the ring move away from the plate, while the part
of the ring that formed at the left and right edges of the plate contracts towards the
centre of the plate, remaining close to the plate surface; see figure 8(b). During the
transition phase the vortex ring continues to stretch and finally breaks up after which
the wake gradually assumes its steady shape; see figure 8(c).

In the h = 0 mm case, the top face of the plate coincides with the air–water
interface. Therefore, during the acceleration of the plate, the formation of a closed
vortex ring, as found in the deep water case h = 100 mm, is prevented. Instead,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

h = 100 mm, t = 0.35 s h = 100 mm, t = 0.80 s h = 100 mm, t = 4.00 s

h = 0 mm, t = 0.35 s h = 0 mm, t = 0.80 s h = 0 mm, t = 4.00 s

h = 20 mm, t = 0.35 s h = 20 mm, t = 0.80 s h = 20 mm, t = 4.00 s

FIGURE 8. Flow visualisations using hydrogen bubbles generated at the plate surface
for each selected depth h, at a plate acceleration a = 0.82 m s−2, and plate velocity
V = 0.30 m s−1. The hydrogen bubbles collect in the cores of the vortices that are formed
in the shear layer and wake. (a,d,g) Acceleration phase; (b,e,h) transition phase; (c, f,i)
steady phase.

a U-shaped starting vortex is formed, of which the free ends attach to the air–water
interface and produce strong depressions in the interface; see figure 8(d). A schematic
side-by-side comparison of the vortices in the h = 0 and the h = 100 mm cases is
given in figure 9. During the transition phase the U-shaped vortex detaches and
quickly loses strength, visible as the flattening of the bottom of the surface vortices,
meaning that they are no longer connected to a strong vortex below; see figure 8(e).
Also it appears that the vortex cores are no longer strong enough to capture the
hydrogen bubbles in a well-defined core. The shifting away of the surface vortices
as well as the break-up of the U-shaped vortex continues until a steady-phase wake
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Vortex ring

Plate Plate

VV

U-shaped vortex

Surface
depressions

(a) (b)

FIGURE 9. (Colour online) Vortex formation during the acceleration phase. In the case of
h=100 mm (a) the plate is fully submerged and a closed vortex ring is formed behind the
plate. In the case of h= 0 mm (b) the top of the plate coincides with the water surface,
and a closed vortex ring cannot be formed. Instead, a U-shaped vortex ring is formed,
which attaches to the surface with both ends, creating surface depressions.

similar to that of the deep water case is formed, except that in the case of h= 0 mm
the wake is limited by the free surface, effectively cutting off part of the wake; see
figure 8( f ).

In the h= 20 mm case, i.e. the case with maximum drag during the steady phase,
the flow behaviour is a mixture of features observed in the flows for the deep
water (h = 100 mm) and surface cases (h = 0 mm). During the acceleration phase
both a vortex ring and vortices connected to the air–water interface are formed; see
figure 8(g). During the transition phase the surface vortices shed more quickly than in
the h= 0 mm case, deforming the vortex ring in streamwise direction; see figure 8(h).
After the vortex ring disintegrates a steady wake is formed similar to that of the
h = 0 mm case. However, the gap between the top of the plate and the air–water
interface causes a flow over the plate creating a large circulation zone closely trailing
the plate as indicated in figure 8(i). This creates a low pressure region on the wake
side of the plate explaining the maximum drag during the steady phase found for
this case.

3.6. Large flow structures
Figure 5 shows that the maximum drag is reached at the end of the acceleration
phase for all three cases. During the acceleration phase the drag is mainly due to
acceleration of the plate mass mp and the hydrodynamic mass mh. One would expect
the plate deepest submerged to entrain most water and therefore to have the largest
hydrodynamic mass. However, it is clear that both the h= 0 mm and the h= 20 mm
cases have a higher initial peak. This is caused by the observed strong surface vortices
formed in these two cases, resulting in strong low pressure zones close to the plate,
and thus creating a larger drag. One more difference is the observed peaks 1 and 2 in
the drag force signal for the h= 100 mm case, which are not observed in the force
signals for the h = 0 mm and h = 20 mm cases. It is observed that in the case of
h= 100 mm several large vortical structures are formed and shed during the transition
phase, instead of just the formation of a starting vortex. The structures are of similar
size and shape as the starting vortex, although less defined, and their creation and
shedding coincides with peaks 1 and 2.

Coming back to the observed trend break at h= 50 mm in figure 4, we speculate
that at this depth two drag enhancing mechanisms play a role as stated in § 3.3.
Firstly, a circulation zone is formed close to the plate, as is discussed in § 3.5. This
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circulation zone increasingly enhances plate drag from h = 0 to h = 20 mm where
this effect reaches its maximum. We further speculate that as the gap between the top
of the plate and the free surface increases, from h= 20 to h= 50 mm, the circulation
zone weakens and consequently the plate drag decreases. The second drag enhancing
mechanism is the growth of the wake size, i.e. the wake height, with increasing
plate depth. Since the separation points on the flat plate are well defined due to the
sharp edges of the plate, unlike e.g. the separation points on a cylinder which vary
with Reynolds number (Williamson 1996), the drag on the flat plate and the wake
size of the flat plate, i.e. the wake height, are positively correlated. At larger plate
depths a smaller part of the wake is clipped by the free surface, and consequently,
a larger mass of water is entrained in the plate wake thus increasing the plate drag.
Figure 4 indicates that the drag during the steady phase for the h = 0 mm case is
significantly lower than that for the deep water case (h = 100 mm). The wake size
of the surface case (h= 0 mm), is only approximately 75 % of the size of the deep
water case (h = 100 mm); see figures 8(c) and 8( f ). The ratio of drag coefficients
CD0mm/CD100mm ≈ 0.8 reflects the ratio of the wake sizes in the vertical direction
(≈0.75), which is in accordance with our hypothesis that the drag and wake size are
positively correlated. Finally, in figure 4 a local maximum at h = 100 mm can be
seen, although less pronounced than the maximum at h = 20 mm. We hypothesise
that this local maximum or trend break is caused by weakening interactions between
the plate wake and the free surface.

In the next sections (§§ 3.7 and 3.8) the instantaneous force signal during the
acceleration and transition phase is discussed. For a further analysis of the large
structures on the basis of PIV measurements we refer the reader to §§ 3.9 and 3.10.

3.7. Alternative modelling of the hydrodynamic mass
As observed in the flow visualisations the entrained mass in the wake of the plate
during the acceleration phase is not constant, but grows larger over time, and so
does the plate drag force. This suggests an increasing hydrodynamic mass mh over
time, instead of a constant hydrodynamic mass as suggested by Patton (1965) and
Yu (1945). Moreover, due to the acceleration strong vortices are formed close to the
plate that increase the drag on the plate even further through their pressure fields. To
investigate the variation of the hydrodynamic mass over time, experiments are carried
out for different combinations of plate velocity, acceleration and plate depth. Each
combination of velocity (V = 0.20, 0.25, 0.30, 0.35, 0.40 m s−1) and acceleration
(a= 0.41, 0.62, 0.82, 1.02 1.23, 1.44, 1.64 m s−2) is tested for each depth (h= 0, 20,
100 mm) resulting in 105 measurements. Figure 10 shows the effects of variations in
acceleration a and target velocity V on the drag force Fx as function of time; note that
from here on, all force signals are filtered to improve readability using a second-order
Savitzky–Golay filter with a 0.1 s window. During the steady phase the plate drag
scales with Fx ∼ V2 as is expected from (3.2); see figure 10(b). However, during the
acceleration phase, the plate drag appears to increase linearly with time Fx ∼ t which
for constant acceleration is identical to Fx ∼ V (figure 10b), and is not in agreement
with (3.2). Also, the increase of the plate drag with respect to time, i.e. the rate of
change dF/dt, appears to scale with acceleration dFx/dt∼ a; see figure 10(a).

To investigate the increase in force with time during the acceleration phase, the
common force decomposition (3.2), is rewritten such that a residual force due to the
acceleration of the hydrodynamic mass mh is defined:

Fmh = Fx −mpa(t)︸ ︷︷ ︸
Fmp

−
1
2ρV(t)2CDA︸ ︷︷ ︸

FCD

. (3.5)
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FIGURE 10. (Colour online) Drag force signals Fx(t) measured at plate depth h=100 mm.
(a) Fx(t) for various accelerations towards a fixed plate velocity V = 0.30 m s−1. (b) Fx(t)
for a fixed acceleration of a= 0.82 m s−2 towards various plate velocities V .

This modelling choice effectively isolates the increase in drag due to unsteady effects.
For small movements starting from rest, the residual force Fmh matches the product
of the acceleration a and the hydrodynamic mass mh from (3.4) as proposed by Yu
(1945); see the markers in figure 11(a). Note that a small offset in time, equal to tsr=

0.07 s, takes into account the step response. Since the behaviour of the force signal
during the acceleration phase is independent of the target velocity V (figure 10b),
we use the measurements with the highest target velocity of V = 0.40 m s−1 to fit a
model, as these data contain the longest acceleration time. Figure 11(a) shows linear
fits through the theoretical added mass as proposed by Yu (1945), with a fit for each
signal defined as:

Fmh =
dFmh

dt
(t− tsr)+mh(Yu)a, (3.6)

where the only free fitting parameter is the rate of change of the residual force
dFmh/dt. In figure 11(b) all found rates of change of force dF/dt are plotted as
a function of acceleration a. The markers show the values of dF/dt for different
accelerations for the three selected depths, while the lines indicate the clear linear
behaviour of dF/dt with respect to acceleration. To give a physical interpretation
to this, it is assumed that the residual force Fmh during the acceleration phase is
due to the acceleration of the hydrodynamic mass in the wake of the plate. Note
that this assumption does not necessarily capture the intricate phenomena of the
formation of the ring vortex or the subsequent deformation of the free surface, which
possibly increase the plate drag via other mechanisms than entrainment. However,
this assumption does enable us to model the enhanced plate drag in a simple and
convenient manner. We define the residual force as:

Fmh =mha, (3.7)

where the hydrodynamic mass mh is time dependent since the acceleration a is
constant for each measurement, while Fmh is increasing in time. This leads to the
definition of the entrainment rate of mass in the wake of the plate:

dmh

dt
=

1
a

dFmh

dt
, (3.8)

shown as a function of the acceleration a in figure 11(c). When the plate is at the
free surface (h = 0 mm) the entrainment rate dmh/dt is strongly enhanced when
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FIGURE 11. (Colour online) (a) The solid line represents the residual force Fmh
as function of time (t) for different accelerations towards a fixed plate velocity
V = 0.40 m s−1 at plate depth h = 0 mm. The markers represent the force due to
hydrodynamic mass as proposed by Yu (1945). The dashed line represents a linear fit
through the force signal Fmh(t) during the acceleration phase. The vertical dotted line
marks the time offset tsr to account for the step response. (b) The rate of change of force
dF/dt as function of the accelerations a for the selected plate depths. (c) The entrainment
rate dmh/dt as function of acceleration a for the three selected plate depths.

compared to the deeper immersed plates; at lower accelerations this almost doubles.
Also, we show that for all three selected plate depths the entrainment rate is gradually
increasing with acceleration up to a ≈ 1 m s−2, while for higher accelerations the
entrainment rate has a constant value. At a higher entrainment rate the wake grows
more rapidly over time thus faster increasing the plate drag force. The maximum force
experienced by the plate during uniform acceleration is the sum of the steady phase
drag force FCD and the residual force Fmh, which are both dependent on immersion
depth h as shown in figures 4 and 11(c), respectively. The maximum force achieved
at some depth h is then dependent on the set target velocity V and acceleration a.
Apparently a trade-off exists between steady-phase drag and entrainment, e.g. the case
h= 0 mm has the lowest steady-phase drag coefficient but has the highest entrainment
rate.

3.8. Force during the transition phase
Figure 11(a) shows that the residual force Fmh does not vanish immediately after the
plate reaches its target velocity (i.e. when a reaches 0 m s−2), although this would
be expected from the general definition; see (3.7). Instead, the force Fmh appears
to drop sharply to a non-zero value and then gradually decays to zero, after which
the total force Fx equals the steady-phase drag force FCD. The force which vanishes
immediately upon a reaching 0 we call a ‘force due to added mass’, since it relates
to the acceleration of the plate. The gradually decreasing force we call a ‘history
force’, which is due to the developing wake caused by the past acceleration of the
plate, which exists long after the plate reaches its target velocity. This is analogues to
the virtual mass force for a spherical particle: F = (ρcVp/2)(Du/Dt − dv/dt) (Crowe
et al. 2011), where ρcVp/2 is the displaced fluid mass, dv/dt the particle acceleration
(added mass term) and Du/Dt the material derivative of the fluid (history term).

We assume that the plate reaches the constant target velocity at time tc and
location xc. As discussed in § 3.5 the acceleration and transition phase are dominated
by the formation and shedding of vortices. As discussed in § 1.3, a suitable
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FIGURE 12. (Colour online) The residual force in dimensional form Fmh (a,c) and
non-dimensional form F∗ (b,d) as a function of the post-acceleration time t − tc or
formation time t∗ − t∗c for different accelerations towards a fixed plate velocity V =
0.30 m s−1 (a,b) or towards different velocities at a fixed acceleration a = 0.82 m s−2

(c,d) for plate depth h= 100 mm. In (a,b) the dashed line indicates the dimensionless step
response time t∗sr. In (d) the dotted lines indicate the locations of peak 1 and peak 2 which
for different velocities coalesce in non-dimensional time. (a) Residual force as function
of post-acceleration formation time for h= 100 mm, velocity V = 0.30 m s−1 and varying
accelerations. (b) Normalised residual force as function of post-acceleration formation time
for h = 100 mm, velocity V = 0.30 m s−1 and varying accelerations. (c) Residual force
as function of post-acceleration time for h = 100 mm, acceleration a = 0.82 m s−2 and
varying velocities. (d) Normalised residual force as function of post-acceleration formation
time for h= 100 mm, acceleration a= 0.82 m s−2 and varying velocities.

dimensionless time to describe these flow phenomena is t∗, i.e. the ‘formation time’,
defined as

t∗ =
1
lb

∫ t

0
V(τ ) dτ , (3.9)

where V(t) is the instantaneous velocity at time t, and lb a characteristic length, which
here is chosen to be the plate height. The non-dimensional time t∗ is then effectively
the number of plate heights travelled, which is identical to the non-dimensional time
used in the simulations by Koumoutsakos & Shiels (1996).

Figure 12 shows the drag force signal as a function of the post-acceleration
formation time t∗− t∗c during the early transition phase for a plate depth h= 100 mm
and a velocity V = 0.30 m s−1. Note that t∗ at constant velocity linearly increases
with dimensional time t. As shown in figure 12(a) the force signals Fmh quickly
decrease when the acceleration ends and converge after t∗ − t∗c ≈ 1, i.e. when the
plate has travelled at constant velocity V over a distance of a single plate height lb.
This implies that the varying accelerations at which the plate accelerated to its target
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velocity do not cause lasting effects in the flow beyond the travelled distance of a
single plate height lb. Next, we introduce the normalised force F∗ defined as

F∗ =
Fmh

Fmh(tc)
, (3.10)

where the residual force Fmh is normalised by its maximum value at time tc. In
figure 12(b) it can be seen that the normalised force F∗ immediately after the
acceleration ends, thus within the step response time of the force signal due to the
abrupt change in force on the plate (indicated by the dashed line), the force has
decreased by 50–70 %. The initial decrease appears to scale with acceleration, i.e.
force signals based on a higher acceleration have a larger initial decrease, while for
lower acceleration the initial decrease is smaller. This implies that the added mass
force is dominant for higher accelerations, while for lower accelerations Fmh is more
like a history force.

The force Fmh as a function of t− tc does not converge for different velocities when
a remains constant (see figure 12c). The normalised force F∗ as a function of t∗ − t∗c
does not converge for different velocities either, but the low-frequency peaks, indicated
as peak 1 and peak 2, now nicely align in dimensionless time (see figure 12d). Those
peaks are associated with the formation and shedding of large vortical structures in
the wake, see § 3.6. It appears that the formation time t∗, as proposed by Gharib et al.
(1998) and applied to a vortex ring generated by a jet, also is a universal time scale
for the development of the vortical structures in the wake of the plate. Also, the lower
velocities show a larger initial decrease than the higher velocities, indicating that for
lower velocities the residual force Fmh acts more like a force due to added mass than
like a history force.

Figure 13(a) shows that, also for the case of h= 0 mm for different accelerations
towards a fixed plate velocity of V = 0.30 m s−1, the force signals converge after the
plate has travelled at constant velocity over a distance of a few plate heights, i.e. the
plate drag force is no longer affected by the initial acceleration by which the plate
reached its target velocity. However, when considering the normalised force F∗ for
the case h= 0 mm, shown in figure 13(b), it is obvious that the initial decrease, i.e.
the decrease within the step response time t∗sr, is much smaller than for the case of
h= 100 mm (see figure 12b); 20 %–40 % for h= 0 mm, compared to 50 %–70 % for
h=100 mm. This indicates that the effect of added mass is far less pronounced for the
surface case (h= 0 mm) than it is for the deeper immersed plate (h= 100 mm) and
that the residual force Fmh for h= 0 mm acts more like a history force than a force
due to added mass. Despite the difference in the initial decrease of the residual force
and the absence of peak 1 and peak 2 in the force signal for the case of h= 0 mm,
the force signal is similar to that of the h= 100 mm case with respect to changing
acceleration: the relative initial decrease is proportional to acceleration.

Figure 13 shows the change in force signals during the transition phase for different
velocities and a fixed acceleration of a = 0.82 m s−2 for the case h = 0 mm.
Comparison of figures 13(b) and 12(b) shows that the initial decrease for all
velocities is again smaller for the case of h = 0 mm than for the deeper immersed
plate h = 100 mm. However, in each case the initial decrease is largest for the
smallest velocity and becomes smaller with increasing velocity. Contrary to the
deeper immersed plate h= 100 mm, the force signal of the h= 0 mm case shows no
peaks during its decrease in magnitude from acceleration phase to steady phase. Not
unexpectedly due to the absence of characteristic features during the transition phase,
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FIGURE 13. (Colour online) The residual force in dimensional form Fmh (a,c) or
non-dimensional form F∗ (b,d) as a function of the post-acceleration time t − tc or
formation time t∗ − t∗c for different accelerations towards a fixed plate velocity V =
0.30 m s−1 (a,b) or towards different velocities at a fixed acceleration a = 0.82 m s−2

(c,d) for plate depth h = 0 mm. In (a,b) the dashed line indicates the dimensionless
step response time t∗sr. (a) Residual force as function of post-acceleration formation
time for h = 0 mm, velocity V = 0.30 m s−1 and varying accelerations. (b) Normalised
residual force as function of post-acceleration formation time for h= 0 mm, velocity V =
0.30 m s−1 and varying accelerations. (c) Residual force as function of post-acceleration
time for h = 0 mm, acceleration a = 0.82 m s−2 and varying velocities. (d) Normalised
residual force as function of post-acceleration formation time for h= 0 mm, acceleration
a= 0.82 m s−2 and varying velocities.

introducing the formation time t∗ does not seem to better align the force signals in
time during the transition phase.

When considering the force–time signal of the entire run at a depth of h= 0 mm
for different accelerations towards a target velocity of V = 0.30 m s−1, shown in
figure 14(a), we see that the signals do not converge until t= 1.5 s. However, when
introducing the formation time t∗ we clearly see that all force signals collapse on a
single curve during the transition phase; see figure 14(b). Different target velocities
each appear to have their own unique curve to which force signals from different
accelerations collapse, as shown in figure 15. The curve to which all signals collapse
are of the form c1/(x− c2)

2 with c1 and c2 increasing with increasing target velocity
V . The fitting coefficients are shown in the legend of figure 15. The shapes of these
curves appear to be determined in full by the target velocity. The formation number
from which a force signal starts following this curve depends on the acceleration
only. We consider a scaling argument to interpret the behaviour of the force signal by
1 ∼ 1/x2. From the definition of the formation time t∗, equation (3.9), it is obvious
that t∗ is identical to the plate travel distance x(t) expressed in the number of plate
heights lb. The flow visualisation showed that the acceleration phase is dominated
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FIGURE 14. (Colour online) Force versus time t and the formation time t∗ for varying
accelerations towards V = 0.30 m s−1 at depth h = 0 mm. (a) Dimensional time t.
(b) Formation time t∗.
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FIGURE 15. (Colour online) Force signal Fmh versus formation time t∗ during the
transition phase for different accelerations towards different velocities (solid lines). Fits of
the form c1/(t∗− c2)

2 through each set of force signals corresponding to a single velocity
(dashed lines).

by the generation of a large starting vortex which is shed upon reaching the target
velocity; see § 3.5. Upon shedding this starting vortex quickly becomes irrotational
since it is no longer subject to an external force. Let U be the flow velocity of
such an irrotational vortex that scales with the inverse of the distance to this vortex
U ∼ 1/x. Since dynamic pressure q scales with velocity squared q∼U2 we can state
that the dynamic pressure at the wake side of the plate due to the shed vortex scales
with q ∼ 1/x2. For the sake of simplicity we assume that we can use Bernoulli’s
principle for incompressible irrotational flow such that the total pressure P is constant
throughout the flow, i.e. P= p+ q. We state that the static pressure p increases over
plate travel distance as q decreases by ∼1/x2. Since the plate drag is the difference
in static pressure over the plate, an increase in static pressure at the wake side of the
plate implies a decrease in drag force on the plate. This scaling argument matches
the observed behaviour Fmh ∼ 1/x2.

3.9. Vorticity
The flow field was analysed using PIV to provide a quantitative insight and
to reveal the more intricate structures in the flow that were not captured by
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the visualisations. Although the flow is highly three-dimensional, as is evident
from figure 8, two-component planar PIV still reveals interesting differences, and
similarities, between the three selected cases h= 0, 20 and 100 mm.

The PIV measurements are done in the horizontal mid-plane of the plate for
all three selected plate depths h = 0, 20 and 100 mm, at an acceleration of
a = 0.82 m s−1, and a target plate velocity V = 0.30 m s−1. The chosen parameters
correspond with the three force measurement results shown in figure 5 and discussed
in § 3.3. The PIV results are represented through the vorticity ωz based on the local
flow circulation by an 8-point estimation (Luff et al. 1999). A discrete representation
is used (Adrian & Westerweel 2011) since it allows for different spacing between
vectors in the x- and y-directions. In the here presented results the dimensionless
vorticity

ω∗z =
ωzlb

V
(3.11)

is used, similar to Ringuette et al. (2007). The locations x and y are made
dimensionless by lb resulting in x∗ and y∗, respectively, such that the plate location
x∗ is identical to the formation time t∗, i.e. x∗(t∗)= t∗. The order of presentation of
the different depths is the same as in the results of the flow visualisation in § 3.5, i.e.
h= 100 mm, followed by h= 0 mm, and h= 20 mm.

Figure 16 shows the vorticity ω∗z for all three selected depths for different times t,
including the instances in time corresponding to those of the flow visualisations in
figure 8. Note that a movie of the time evolution of all three cases, side-by-side, is
available in the supplemental material (movie 4). For all three cases the formation of
a vortex pair during the acceleration phase, i.e. up to t= 0.35 s appears very similar
and matches to the cross-section of the vortex ring at the mid-plane of the plate, as
shown in figure 8(a,d,g).

When the plate approaches x∗= 2 at t= 0.80 s the wakes start to differ. The vortex
pair of the case h= 100 mm is still very close and concentrated to the mid-plane of
the plate, as is also seen in figure 8(b), while in both cases h= 0 and h= 20 mm the
vortices start to travel away from the plate and become less defined. This matches the
behaviour shown in figure 8(e,h).

For t∗ > 4 at t = 1.80 s, i.e. well into the transition phase, each wake becomes
very distinct. The vortices in the case of h= 100 mm are still attached to the plate,
but have moved inwards, i.e. the vortex ring has contracted in the y-direction, and
two large circulation zones around the vortex pair are formed in which the secondary
vortices formed in the shear layer are shed. During this contraction process the
two highly concentrated circulation zones move from the plate edge towards the
centre of the plate creating a strong and large low pressure zone. We speculate
that this is associated with a characteristic peak in the drag force at t∗ = 2.8, e.g.
shown as peak 1 in figure 12(d). At the same plate depth h = 100 mm, some time
after the situation at t = 1.80 s shown in figure 16, the two well-defined vortices
trailing closely behind the centre of the plate touch and collapse which may be
associated with a second peak in the drag force signal, e.g. shown as peak 2 in
figure 12(d). In the other two cases the circulation zones are not so concentrated.
The large circulation zones in the case of h= 0 mm stretch in streamwise direction
and detach, while the circulation zones in the case of h= 20 mm already disintegrate
into a chaotic wake.

Well into the steady phase, i.e. at t= 4.00 s where the plate passes x∗ = 11.5, the
wakes also look very distinct. The case of h = 100 mm shows an asymmetric wake
with what appears to be an oscillating tail, which is a well-known phenomenon for
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FIGURE 16. (Colour online) Dimensionless vorticity ω∗z for different instances in time t
at the three selected depths (a) h = 100 mm, (b) h = 0 mm and (c) 20 mm. The plate
location x∗ matches the formation time t∗, i.e. x∗(t∗)= t∗.

steady flow over a plate (Fage & Johansen 1927; Hemmati, Wood & Martinuzzi 2016).
The cases h= 0 mm and h= 20 mm both show a symmetric wake of similar size, but
the latter has a large amount of vorticity very close to the plate which, we conjecture,
(partially) explains the maximum steady-phase drag CD found for this plate depth
(h= 20 mm), see figure 4. Also, we note the difference in wake angle. Whereas the
wake angles in the vertical plane are quite similar, clearly visible in the visualisation
(figure 8), the wake angles in the horizontal plane differ substantially. It appears that
the case with the highest drag (h = 20 mm) has the smallest wake angle, while the
case with the lowest drag (h= 0 mm) has the largest wake angle, see figure 16.
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FIGURE 17. (Colour online) Dimensionless vorticity ω∗z for different instances in time t at
a selected depth of h= 100 mm. The flow behaviour appears to be very similar for both
realisations. Only in the steady phase t = 4.00 s the tail of the wake sweeps up in one
realisation (a) and down in the other (b) which matches the characteristic oscillating wake
as was already observed by Fage & Johansen (1927). The dashed line around the outer
border shows the area of integration S for which the circulation is obtained. The symmetry
line through y∗=0 is also marked and shows the dividing line between integration surfaces
S− and S+.

To test the reproducibility of the PIV measurements, the experiments were
performed three times for each plate depth h. The realisations at the same depth
are highly reproducible. Only at a plate depth of h = 100 mm around t = 4.00 s a
clear difference between realisations is found, as shown in figure 17. The two different
realisations are very similar except that the tail of the wake of the realisation shown
in the top figure sweeps up, while in the figure at the bottom the tail sweeps down.
A sweeping tail which starts in an arbitrary direction shows that this is not due to
imperfections in the experimental set-up.

3.10. Circulation and shedding events
In previous studies (Gharib et al. 1998; Ringuette et al. 2007) the total circulation
Γ was used to identify vortex shedding events. The total circulation is obtained by
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integrating the local vorticity over a surface, i.e.

Γ =

∫
S
ωz dS. (3.12)

The dimensionless circulation Γ ∗ is obtained by integration of ω∗z (defined in (3.11))
over the dimensionless flow field area S formed by the entire range of x∗ and y∗.
Kelvin’s circulation theorem states that integration over S should yield a net circulation
of Γ ∗ = 0 if the integration boundary is along a material contour (Cohen & Kundu
2007) as long as the flow is symmetric, i.e. produces no lift. The flow conditions for
the theorem to hold, i.e. inviscid and barotropic flow, are fulfilled by choosing the
material contour along the boundaries of the field of view of the PIV measurements,
where the flow is at rest, indicated by the dashed line along the outer border in
figure 17(b).

The grey lines in figure 18 show the circulation Γ ∗ as a function of the formation
time t∗ for h= 100, 0 and 20 mm, respectively. For all three plate depths, throughout
each realisation, the total circulation Γ ∗ is very close to zero. However, at the
intervals 4.8 < t∗ < 6 and t∗ > 9.4 the measured circulation Γ ∗ does not appear to
be conserved perfectly. This deviation between measurements and theory is explained
by measurement errors (random noise). The non-zero total circulation based on S
coincides with the stitching seams of the flow field as indicated by the dashed
vertical lines in figure 18, showing that the flow field is not stitched seamlessly. In
the case of h = 20 mm the trailing vortex, as shown in figure 8(i), might cause
large out of plane motion which also affects the measurement accuracy (Adrian &
Westerweel 2011).

As was noted before, the flow field maintains symmetrical well into the steady
phase. To quantify this symmetry and to identify vortex shedding events, the flow
field area S is subdivided into two areas along the symmetry plane of the plate, S−
and S+, corresponding to y∗ < 0 and y∗ > 0, respectively (figure 17b). Integration of
the vorticity over each area results in the total circulation Γ ∗ of each region, as shown
in figure 18. Throughout all runs, i.e. for all cases and each realisation, the circulation
is Γ ∗ > 0 for area S+ and Γ ∗ < 0 for area S−. Clearly, for t∗ < 4.8 all cases behave
very similar with virtually no difference between realisations.

The ability of the total circulation Γ ∗ to identify vortex shedding becomes clear
at 6 < t∗ < 8 for the case h = 100 mm, where a temporary decrease in circulation
occurs due to the two touching vortices as described in § 3.9. The same mechanism
is described by Ringuette et al. (2007) as an ‘inward’ pinch-off. They obtained a
circulation profile with ‘inward’ pinch-off occurring at t∗ ≈ 4 where in this study the
pinch-off occurs at t∗≈ 6. Their circulation profile is very similar in shape compared
to the one presented here, even though the plate in their work pierces the surface and
has different dimensions, i.e. la = 0.127 m and height lb = 0.0635 m. In the case of
h= 20 mm an ordinary pinch-off occurs at t∗= 8, identified by an interval of constant
total circulation (Gharib et al. 1998). For the case of h= 0 mm shedding events were
not observed in the vorticity field, nor were indications of those events present in the
measured circulation.

Apart from identifying shedding events, the total circulation in S− and S+ in
figure 18 quantitatively shows that the experiments are well reproducible, although
the circulation increasingly deviates for larger times t∗. This deviation is smallest for
the case h= 0 mm, which suggests that the free surface suppresses this deviation.
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FIGURE 18. The grey lines show the circulation Γ ∗ as a function of formation time t∗
based on the total flow field S, while the black lines show the circulation Γ ∗ based on
the top half-area S+ and bottom half-area S− as indicated in the figure. The three different
realisations at each depth are represented by different line styles. A break-up event in the
case h= 100 mm is clearly visible around t∗= 7, as is a pinch-off event around t∗= 8 in
the case h= 20 mm. The vertical dashed lines show the stitching seams of the flow field.

4. Discussion and conclusion
In this study the flow around plates accelerating at a towards a fixed plate velocity

V at various submerged depths h is investigated using measurement techniques that
complement each other. The drag force on the plate as a function of time is measured,
the three-dimensional flow around the plate is visualised using hydrogen bubble flow
visualisation and the two-dimensional flow field in the horizontal mid-plane of the
plate is measured quantitatively using PIV from which the vorticity ωz and total
circulation Γ are derived.

The steady-phase drag coefficient is found to have a remarkable peak at a plate
depth of h = 20 mm, i.e. 45 % higher than the drag at the surface (h = 0 mm) and
20 % higher than when the plate is submerged one plate height h= 100 mm (h/lb= 1).
The definition of the steady phase t > 3.4 s (t∗ > 10) based on the measured force
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signals matches with the flow visualisations (figure 8, and movies available in the
supplemental material as movie 1, movie 2 and movie 3) and the vorticity fields
(figure 16, supplemental material movie 4). The drag force during the acceleration
phase appears to be very complex but is shown to be well behaved:

Fx(t)=mpa(t)︸ ︷︷ ︸
Fmp

+
1
2
ρV(t)2CDA︸ ︷︷ ︸

FCD

+
dmh

dt
a(t)(t− tsr)+mh(Yu)a︸ ︷︷ ︸

Fmh

. (4.1)

We showed that the force due to added mass Fmh is constant for small t∗ and
matches results reported by Yu (1945). For t∗ the expression is expanded based on
an entrainment rate dmh/dt that models an increasing mass in the wake of the plate.
This entrainment rate appears to be independent of velocity and almost constant
for different accelerations a. We conclude that the entrainment rate is an important
parameter to predict the maximum hydrodynamic forces on plate-like geometries
and that the entrainment rate is strongly enhanced by the vicinity of a free surface;
at the surface, for a plate depth of h = 0 mm, the entrainment rate is found to be
50 % larger than for plate depths of h = 20 and h = 100 mm. During the transition
phase the force decreases for the case of h = 100 mm along a distinct profile with
two large peaks, peak 1 and peak 2. These are associated with vortex shedding
events visible in both the visualisations, the vorticity field and the circulation profiles.
For different velocities these peaks perfectly align in time by use of the formation
time t∗, as shown in figure 12(d). Also, the force due to hydrodynamic mass during
the transition phase appears to scale with the formation time as Fmh ∼ 1/t∗2, where
t∗ is essentially the distance travelled by the plate. This scaling is hypothesised to
be due to the plate moving away from the shed starting vortex. A scaling argument
supports this hypothesis and in the visualisations it is shown that a large vortex in
the vertical plane is indeed shed.

The motivation for this study stems from (competitive) rowing. During rowing
the oar blade moves along a complicated cycloid path not only producing drag, but
also lift, making a comparison with an accelerating flat plate along a straight path
somewhat complicated. However, during the start of a rowing match the oar blade
accelerates from rest along a more linear path and travels ≈10 times the blade height
before the next stroke (t∗ ≈ 10); very much like the flat plate in this study. It stands
to reason that for a rowing oar blade an optimal depth exists, which is a trade-off
between decreasing entrainment rate and increasing steady-phase drag with increasing
depth h. Also the starting technique where athletes use several short strokes to achieve
cruising speed as fast as possible seems hydrodynamically advantageous. The drag on
the plate is at its maximum while accelerating and up to the steady phase a history
force is present. This means that while accelerating the plate and during the transition
phase the generation of drag force is more efficient, i.e. the plate produces a higher
force at an equal or lower velocity than in the steady phase. During the acceleration
phase this effect is strongest, so with several short strokes the oar blade spends a
longer time in the acceleration phase and early transition phase, and would thus be
more efficient.
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Supplementary movies

Supplementary movies are available at https://doi.org/10.1017/jfm.2019.102.
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