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Abstract: We present an investigation of the impact of partial coherence on
optical imaging systems with the focus on Whole Slide Imaging (WSI) systems
for digital pathology. The investigation is based on the analysis of the edge
response of the optical system, which gives rise to an apparent Optical Transfer
Function (OTF) that can be linked to two elementary complex functions Q and
U . The function Q is directly related to the Transmission Cross-Coefficient
(TCC) and can be identified with the performance function first introduced by
Kintner and Stillitto. The function U depends on the TCC in a more involved
way. When there are no aberrations the Q-function corresponds to the real
part of the apparent OTF and the U function to the imaginary part of the
apparent OTF. Close to the incoherent limit the effect of the U function is a
mere shift of the edge compared to the fully incoherent case. We propose a
new expression for the dependence of the Depth Of Focus (DOF) on spatial
frequency and on the partial coherence factor σ, and validate it by simulation.
Partial coherence effects are investigated experimentally on a WSI-system with
a compact LED-based Köhler illumination unit with variable condenser NA.
This unit incorporates a top hat diffuser for providing a reasonably uniform
illumination field, with variations below 10% across the imaged Field Of View
(FOV). The measurements of the apparent through-focus OTF derived from
edges on a custom resolution chart for different σ were substantially in agreement
with the simulations. Finding an optimal value for σ is not straightforward
as lateral resolution and the level of edge ringing improve with increasing σ,
whereas edge contrast and DOF improve with decreasing σ. We assess that the

1



tradeoff for the particular application of WSI systems for digital pathology is
optimized for a σ value in the range of 0.55 to 0.75.

1 Introduction

Partial coherence influences image formation in microscopy via the partial co-
herence factor σ = NAill/NA, the ratio between the illumination (condenser)
Numerical Aperture NAill and the imaging (objective) NA [1, 2, 3]. The imaging
system transmits spatial frequencies of the sample up to the cutoff (1+σ)NA/λ
(with λ the wavelength), so that the resolution increases towards the incoherent
limit. On the other hand, the sharpness in the image, that can be quantified by
the steepness of the edge response, improves towards the coherent limit. This
beneficial effect, however, is accompanied by edge ringing artefacts. A trade-off
between these effects can subjectively be defined based on the imaging appli-
cation that is considered. A general rule of thumb in the field of microscopy is
to slightly sacrifice resolution for image sharpness by reducing the illumination
NAill to about 0.75 times the imaging NA.

This partial coherence tradeoff becomes even more involved when aberra-
tions are taken into account. Several theoretical studies have appeared with
regard to this issue. Barakat [4] investigated the effect of defocus and coma on
amplitude edge and bar objects under partially coherent illumination. He found
that the edge in the image is shifted compared to the edge in the underlying
object towards the bright side of the edge, where the shift increases with de-
creasing σ. This topic has received further attention by Kirk [5] in the context
of linewidth measurements with a microscope. Ichioka and Suzuki [6] studied
complex periodic objects, and Hild et al. [7] studied the behavior of the intensity
distribution and its first derivative for amplitude, phase and amplitude/phase
bars. They found that the asymmetric behavior of the first derivative is strongly
correlated with σ and the phase content of the object.

In particular the sensitivity of the optical system with respect to defocus,
quantified by the Depth Of Focus (DOF), is a highly relevant parameter. It
appears that the DOF increases towards the coherent limit [8, 9], although no
comprehensive study has appeared on this aspect. In the field of lithography, an
optimum value for the imaging NA and σ is found based on a desired DOF and
a particular mask pattern [10, 11], even introducing novel metrics for DOF [12].
Von Waldkirch et al. [13, 14] investigated the influence of partial coherence on
the DOF for a retinal projection display. They showed that a value for σ between
0.35 and 0.5 provided the best DOF for text readability. Ren et al. [15] have
empirically studied the effect of the condenser NA on cytogenetic imaging with
a brightfield microscope and found an optimum value of the partial coherence
factor in the range 0.6 to 0.7. These examples imply that the optimum in the
partial coherence tradeoff apparently depends on the application requirements.

Previously, we proposed a method for testing and monitoring the optical
quality of Whole Slide Imaging (WSI) systems using a measurement of the
through-focus Optical Transfer Function (OTF) obtained from the edge response
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of a custom made resolution target [16]. In this analysis it was assumed that
the imaging system is incoherent. As a partially coherent system is non-linear
the OTF derived from the edge response is not a true transfer function but
rather an apparent OTF. It may be expected, however, that it is still possible
to use it to characterize the optical quality of the imaging system. Wernick and
Morris [17] have analyzed the effects of partial coherence on the apparent MTF
for square apertures, and found an increase in the apparent MTF for the lower
spatial frequencies with decreasing σ. This reflects the increase in edge steepness
towards the coherent limit. Kintner and Stillito [18] proposed to characterize
the edge response of a partially coherent optical imaging systems by a single
function, the so-called ”performance function”, for adequately describing the
cross-over between the incoherent and coherent limits.

So far, an in-depth investigation of the apparent OTF derived from the
edge response has not been reported. The impact of aberrations, in particular
defocus, on the apparent OTF has also remained unclear. The goals of this
paper are (i) to provide simulations and measurements of the effect of the partial
coherence factor σ on the apparent OTF, (ii) assess effects of aberrations in the
partial coherence regime, in particular the impact of defocus quantified by the
DOF, (iii) evaluate the partial coherence tradeoff for the application in Whole
Slide Imaging (WSI) systems for digital pathology.

This paper is structured as follows. In the theory and simulation section
we first briefly summarize partial coherence theory, focusing on the apparent
OTF derived from the edge response, and the effects of partial coherence on
edge ringing, DOF, and the impact of aberrations. In the experiments section,
we describe the design of a color sequential Köhler illumination unit used to
measure the effect of the partial coherence factor on the apparent OTF. Finally,
we will discuss the results and the implications for WSI systems.

2 Theory and simulation

2.1 Apparent transfer functions and performance function

According to Hopkins’ treatment of partially coherent optical imaging systems
[1, 2], the measured intensity on the detector is given by:

I (~r) =

∫
d2r1d

2r2 P (~r − ~r1)P ∗ (~r − ~r2) J (~r1 − ~r2)T (~r1)T (~r2)
∗

(1)

where P (~r) is the coherent Point Spread Function (PSF), J (~r) is the mutual
intensity, T (~r) is the complex amplitude transmission of the object, and where
~r, ~r1, and ~r2 are 2D position vectors. The integration domain is taken to extend
from −∞ to +∞ for all integration variables. We adopt this convention in this
paper unless the domain is specified explicitly. The Fourier Transform (FT) of
the coherent PSF as a function of spatial frequency ~q is:

P̂ (~q) = C (~qλ/NA) exp (2πiW (~qλ/NA) /λ) , (2)
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where W (~ρ) is the aberration function, depending on the normalized pupil
coordinates ~ρ = ~qλ/NA, and where C (~ρ) is the circle function (equal to one
inside the unit circle, equal to zero outside the unit circle). The FT of the
mutual intensity is:

Ĵ (~q) =
1

πa2
C (~qλ/ (σNA)) , (3)

where a = min (σ, 1) and σ is the partial coherence factor. The intensity can be
expressed in terms of the FT quantities as:

I (~r) =

∫
d2qd2q′ S (~q, ~q′) T̂ (~q) T̂ (~q′)

∗
exp (2πi (~q − ~q′) · ~r) , (4)

where ~q and ~q′ are 2D spatial frequency vectors and where the so-called Trans-
mission Cross Coefficient (TCC) is given by:

S (~q, ~q′) =

∫
d2q′′ Ĵ (~q′′) P̂ (~q + ~q′′) P̂ (~q′ + ~q′′)

∗
. (5)

The TCC can thus be evaluated from the overlap integral of the FT of the
mutual intensity with two displaced pupil functions (see Fig. 1a). The FT of the
mutual intensity is normalized such that S (0, 0) = 1, implying that a uniform
normalized object T (~r) = 1 gives rise to a uniform normalized intensity signal
I (~r) = 1. It may be deduced that object spatial frequencies below (1 + σ) NA/λ
contribute to the intensity signal and that the highest spatial frequency in the
intensity signal is 2NA/λ, regardless of the partial coherence factor σ. For σ = 0
we retrieve the fully coherent case, for σ → ∞ we retrieve the fully incoherent
case.

q
q’

s

a

ESF LSF apparent
OTF

FT
d

dx

b

Figure 1: (a) Schematic illustration for evaluating the TCC according to Eq. (5)
from the overlap integral of two displaced pupil functions with the FT of the
mutual intensity. (b) Illustration of the steps to compute the apparent OTF
from the measured amplitude edge response.

An important function in the subsequent analysis is:

Q̂ (~q) ≡ S (~q, 0) =

∫
d2q′ Ĵ (~q′) P̂ (~q′)

∗
P̂ (~q + ~q′) , (6)

Taking the inverse Fourier transform of this complex function gives:

Q (~r) = P (~r) P̃ (~r)
∗
, (7)
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where:

P̃ (~r) =

∫
d2q Ĵ (~q) P̂ (~q) exp (2πi~q · ~r) . (8)

The function Q (~r) is called the performance function by Kintner and Stillitto
[18]. For σ ≥ 1 it reduces to the incoherent PSF, for σ � 1 it reduces to the
coherent PSF. Sheppard arrives at (the FT of) the same function in the analysis
of the response to weak objects in the context of quantitative phase imaging [19]
and calls it the Weak OTF (WOTF).

We now apply this formalism to the analysis of the step response. First, we
use a change of integration variables to express the image as:

I (~r) =
1

4

∫
d2q1d

2q2 S

(
~q2 + ~q1

2
,
~q2 − ~q1

2

)
×T̂

(
~q2 + ~q1

2

)
T̂

(
~q2 − ~q1

2

)∗
exp (2πi~q1 · ~r) , (9)

For a step object we have:
T (~r) = θ (x) , (10)

with FT:

T̂ (~q) =
δ (qy)

2πi (qx − iε)
, (11)

and ε an infinitesimal real positive number. Inserting this expression in the
general formula for the intensity gives the Edge Spread Function ESF (x) ≡
I (x). The Line Spread Function then follows by differentiation as:

LSF (x) ≡ dI (x)

dx
=

∫
dqĤ (q, 0) exp (2πiqx) . (12)

where Ĥ (q, 0) is the apparent OTF extracted from the LSF, which is Hermitian
(Ĥ (q, 0) = Ĥ (−q, 0)

∗
) because the LSF is real. This apparent OTF can thus

be measured in a straightforward way by measuring the ESF, differentiation to
obtain the LSF, and finally Fourier Transformation (see Fig. 1b), an approach
we also follow in our experimental analysis. It is stressed that the quantity
measured in this way, and the associated apparent PSF, are not in any sense
a true OTF and PSF, because of the inherent non-linear nature of the image
formation process in partially coherent imaging systems.

The apparent OTF can be related to the TCC by:

Ĥ (q, 0) =
i

π

∫ +∞

−∞
dq′

qS ((q′ + q) /2, 0, (q′ − q) /2, 0)

q′2 − (q − iε)2
. (13)

Using the Plemelj formula of complex analysis:

1

q − iε
= P

(
1

q

)
+ iπδ (q) , (14)
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where ‘P ’ indicates the principal value, it may be shown that:

Ĥ (q, 0) =
1

2

(
Q̂ (q, 0) + Q̂ (−q, 0)

∗
)

+ Û (q, 0) , (15)

with:

Û (q, 0) =
i

π
P

∫ +∞

−∞
dq′

qS ((q′ + q) /2, 0, (q′ − q) /2, 0)

q′2 − q2
. (16)

a Hermitian function of q (Û (q, 0) = Û (−q, 0)
∗
). Apparently, the first term

on the right hand side of Eq. (15) can be directly related to the TCC and the
performance function, but the second term on the right hand side of Eq. (15)
is considerably more involved. The apparent OTF can be generalized from the
x-oriented edge giving the apparent OTF at spatial frequency vectors ~q = (q, 0)
to an arbitrary edge orientation giving the apparent OTF at spatial frequency
vectors ~q = (qx, qy) as:

Ĥ (~q) =
1

2

(
Q̂ (~q) + Q̂ (−~q)∗

)
+ Û (~q) , (17)

The edge response and the LSF derived from it depend on the edge type for
partially coherent systems. Repeating the previous analysis for a general edge
profile T (x, y) = a− b/2+ bθ (x) with a and b arbitrary complex numbers, gives
a LSF:

dI (x)

dx
= Re {2a∗bQ (x, 0)}+ |b|2 U (x, 0) , (18)

where U (~r) is the inverse FT of Û (~q). The apparent OTF for an arbitrary edge
orientation then follows as the linear combination:

Ĥ (~q) = a∗bQ̂ (~q) + ab∗Q̂ (−~q)∗ + |b|2 Û (~q) . (19)

The amplitude edge case, for which the Hermitian part of the performance
function appears, is retrieved for a = 1/2 and b = 1. For a π/2 phase edge
(a = 1, b = 2i) the ant-Hermitian (imaginary & antisymmetric) part of the
performance function appears rather than the Hermitian part. For a π phase
edge (a = 0, b = 2i) the performance function plays no role at all. In the weak
object limit (|a| � |b|) the partially coherent system becomes linear and the
LSF is fully determined by the performance function.

For the unaberrated case it appears that Q̂ (~q) is real and symmetric, and
Û (~q) is imaginary and antisymmetric. It follows that the real symmetric part
of the apparent OTF is determined by the FT of the performance function, and
the imaginary antisymmetric part of the apparent OTF is determined by the
transfer function Û (~q). An asymptotic analysis of Eq. (16) in the limit σ � 1
(see Appendix) results in an apparent Phase Transfer Function (PTF) equal to:

arg
{
Ĥ (~q)

}
= − qλ

πNAσ
, (20)

which implies that close to the incoherent limit the primary effect of partial
coherence is an apparent shift of the edge over a distance ∆x = λ/

(
2NAπ2σ

)
6



σ =04λ/NA σ =0.254λ/NA

σ =0.54λ/NA σ =0.754λ/NA

σ =14λ/NA σ =24λ/NA

Figure 2: Simulated images of a phantom object for different values of the partial
coherence factor.

towards the bright side of edge. This provides a quantitative description of
the edge shifting effect first noted by Barakat [4]. It is noteworthy that this
apparent edge shift persists for all finite σ, even though the real part of the
OTF remains equal to the incoherent OTF for all σ ≥ 1.

For the purpose of illustration simulated images of a phantom object for
different values of σ are shown in Fig. 2, showing the effects of edge ringing and
edge shift for the smaller values of σ.

2.2 Edge ringing

For the aberration-free case the FT of the performance function corresponds to
the overlap integral of two displaced pupils, one with normalized radius equal to
one, and the other with normalized radius equal to σ. An analytical expression
for this overlap integral has been derived by Sheppard [19]:

Q̂ (~q) =
1

πσ2

[
arccos

(
ρ2 + 1− σ2

2ρ

)

+σ2 arccos

(
ρ2 − 1 + σ2

2σρ

)
−

√
ρ2 −

(
ρ2 + 1− σ2

2

)2
 , (21)
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with the normalized spatial frequency ρ = |~q|λ/NA, and where 1−σ ≤ ρ ≤ 1+σ.
For ρ < 1 − σ we have Q̂ (~q) = 1 and for ρ > 1 + σ we have Q̂ (~q) = 0, giving
a spatial frequency cutoff equal to (1 + σ) NA/λ. Figure 3 shows the effective

Modulation Transfer Function (MTF)
∣∣∣Q̂ (~q)

∣∣∣ according to Eq. (21) for different

σ values, showing the crossover from the fully coherent behavior at σ = 0 to
the fully incoherent behavior at σ = 1 . The performance function for the
non-aberrated system appears to be the product of two Airy-distributions:

Q (~r) = π

[
2J1 (2πrNA/λ)

2πrNA/λ

] [
2J1 (2πrσNA/λ)

2πrσNA/λ

]
. (22)

0 0.5 1 1.5 2

spatial frequency (NA/λ)

0

0.2

0.4

0.6

0.8

1

F
T

 o
f p

er
fo

rm
an

ce
 fu

nc
tio

n

σ = 0
σ = 0.25
σ = 0.5
σ = 0.75
σ = 1

Figure 3: FT of the performance function, equal to the real part of the apparent
OTF, as a function of spatial frequency of aberration-free in-focus partially
coherent imaging systems for different values of the partial coherence factor σ.

Kintner and Stillitto [18] have derived a condition on the performance func-
tion that is necessary and sufficient for avoiding edge ringing. This condition
is:

Re {Q (~r)} ≥ 0 (23)

for all positions ~r. The performance function of Eq. (22) can become negative
for any value σ < 1, thereby violating Kintner and Stillitto’s condition. It may
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be concluded that edge ringing can never be completely avoided in partially
coherent imaging systems. The appearance of edge ringing may also be related
to violations of the so-called Lukosz-bound [20]. We propose that a practical
tolerance limit to avoid edge ringing may be derived by requiring that the first
minimum of the first Airy distribution in Eq. (22) at r = 0.817λ/NA coincides
with the first zero of the second Airy distribution in Eq. (22) at r = 0.610λ/σNA,
implying that σ = 0.610/0.817 ≈ 0.75. The rule-of-thumb is therefore that edge
ringing will only become appreciable if σ drops below this critical value. The
limit of σ = 0.75 corresponds to the actual practice in microscopy.

In digital imaging the edge ringing fringes in the measured step response
are smoothed because the signal is integrated over the non-zero pixel size. We
have performed a numerical simulation to assess this effect. First, the TCC
is evaluated from Eq. (5) for a range of spatial frequencies ~q1 = (q1x, 0) and
~q2 = (q2x, 0) typically on a 257×257 grid of q1x × q2x values. Next, the 2D-
FT of this array is computed using the chirp z-transform method [21] on a
1039×1039 grid of x1 × x2 points, where the spacing of the grid points is 15
times smaller than the Nyquist sampling distance λ/4NA. Then, the sum is
taken over the matrix elements with x1 > x and x2 > x to obtain the ESF. A
convolution over the pixel size λ/4NA, in agreement with the Nyquist criterion,
is done to take into account the finite pixel size. This convolution reduces the
number of true data points to 1025, taking the discrete derivative gives the LSF
in 1024 data points. Finally, applying a Tukey window, and again an FT using
the chirp z-transform method gives the apparent OTF on a line of 257 spatial
frequency points.

Figure 4a shows the numerically simulated edge response taking the smooth-
ing effect into account, and Fig. 4b shows the corresponding edge overshoot
values for different σ. We assume a pixel size λ/4NA, in agreement with the
Nyquist criterion. It is mentioned that the highest spatial frequency in the in-
tensity signal I (~r) for an arbitrary 2D-object is 2NA/λ for all σ, even though
the highest spatial frequency of the complex amplitude object function T (~r)
contributing to the intensity signal is (1 + σ) NA/λ. This justifies the use of
the same Nyquist size pixels for all values of σ. It may be seen that the edge
overshoot approaches zero when σ → 1 and remains below 20% for all σ, for
σ = 0.75 the edge overshoot is just 3.4%. Figure 4c shows the apparent MTF,
and Fig. 4d shows the apparent PTF derived from the edge responses shown in
Fig. 4a. The MTF-curves confirm that the signal contains spatial frequencies up
to 2NA/λ, the non-zero PTF-curves result from the asymmetry in the LSF and
approach the linear slope of Eq. (20) close to the incoherent limit. The increase
in the apparent MTF for the lower spatial frequencies with decreasing σ agrees
with the findings of Ref. [17] for the square aperture case. For σ < 1 the OTF is
fully imaginary for spatial frequencies q > (1 + σ) NA/λ, giving a plateau equal
to −π/2 in the PTF (up to numerical errors of a few degrees). Figure 4e and f
show the numerically simulated real and imaginary part of the apparent OTF.
The real part of the apparent OTF substantially agrees with the theoretical
curves shown in Fig. 3, the non-zero imaginary part of the apparent OTF prove
that the FT of the performance function is not identical to the apparent OTF
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for an amplitude edge.

2.3 Depth Of Focus

The next important factor to investigate is the dependence on defocus. There
are two complications in this analysis. The first is that the edge response and
the attendant LSF depend on the object type and appear to depend on the FT
of the performance function Q̂ (~q) for a weak edge, or generally on the transfer
function Û (~q) as well. The second is that the sensitivity to defocus appears to
depend on the spatial frequency.

We will first focus our attention on the transfer function Q̂ (~q) defined by
the overlap integral Eq. (6) between a circle with unit radius and a circle with
radius σ displaced over a distance ρ = |~q|λ/NA. The aberration function for
defocus in the paraxial limit of low NA is:

W (x, y) =
1

2
zNA2

(
x2 + y2

)
. (24)

with z the defocus and ~ρ = (x, y) the normalized pupil coordinates. The phase
in the overlap region of the two circles with unit radius and radius σ then is:

∆Φ (ρ, x, y) =
2π

λ
(W (x, y)−W (x− ρ, y))

=
πzNA2

λ

(
2ρx− ρ2

)
, (25)

which has a maximum value in the overlap region at (x, y) = (1, 0) and a
minimum at (x, y) = (ρ− σ, 0), giving a peak-valley value:

Φp−v (ρ) = ∆Φ (ρ, 1, 0)−∆Φ (ρ, ρ− σ, 0)

=
2πzNA2ρ (1 + σ − ρ)

λ
. (26)

A significant decay of the modulus
∣∣∣Q̂ (~q)

∣∣∣ due to a defocus z may be typically

found if the distribution of phases in Eq. (25) across the overlap region spans
the range from 0 to βπ, where β is a numerical factor on the order of unity.
Requiring Φp−v (q) = βπ results in an ‘in-focus’ layer ∆z/2 ≤ z ≤ ∆z/2 for
which −βπ ≤ Φp−v (q) ≤ βπ with thickness:

∆z =
βλ

NA2ρ (1 + σ − ρ)
. (27)

The minimum of this defocus range as a function of normalized spatial frequency
ρ occurs at ρ = (1 + σ) /2 and may be identified with the Depth Of Focus:

DOF =
4βλ

NA2 (1 + σ)
2 . (28)
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The numerical factor β takes different values depending on the degree of defocus
which is tolerated. The analog to Maréchal’s diffraction limit may be found
by requiring a peak-valley phase in the overlap integral Φp−v (q) = π, which
corresponds to the crossover point from constructive to destructive interference.
This results in a value β = 1/2. Capturing the largest fraction of the ’in-focus’
layer typically corresponds to β = 2, i.e. four times larger than the diffraction
limit. It appears empirically that the Full Width Half Maximum (FWHM) of

the through-focus transfer function
∣∣∣Q̂ (~q)

∣∣∣ corresponds to β ≈
√

2. The use

of a threshold on the through-focus MTF for defining a DOF metric has been
proposed for incoherent imaging systems previously by Qiu et al. [22]. The

scaling of Eq. (28) with σ as 1/ (1 + σ)
2

has also been found by Ren et al. [15].
This analysis may be generalized to focusing into a medium with refractive

index n and beyond the paraxial limit. The aberration function for defocus is
then:

W (x, y) = nz

(
1−

√
1−NA2 (x2 + y2) /n2

)
, (29)

where NA < n in order to restrict the discussion to propagating waves only
(evanescent waves are explicitly ruled out). This results in a predicted allowable
defocus range:

∆z = βλ

[√
n2 −NA2 (1− ρ)

2
+

√
n2 −NA2 (σ − ρ)

2

−
√
n2 −NA2 −

√
n2 − σ2NA2

]−1
. (30)

At normalized spatial frequency ρ = (1 + σ) /2 we find the DOF as:

DOF = βλ

[
2

√
n2 −NA2 (1− σ)

2
/4

−
√
n2 −NA2 −

√
n2 − σ2NA2

]−1
. (31)

This analysis points to two salient features. First, the decay of the through-

focus transfer function
∣∣∣Q̂ (~q)

∣∣∣ as a function of defocus depends on the spatial

frequency: For the middle spatial frequencies the decay is steep, for low and
high spatial frequencies the decay is only mild. Second, for low σ the decay of

the through-focus transfer function
∣∣∣Q̂ (~q)

∣∣∣ with defocus is steeper than for high

σ, implying that the DOF increases toward the coherent limit.
These predictions may be tested with a numerical computation of the through-

focus transfer function
∣∣∣Q̂ (~q)

∣∣∣ for different σ. Figure 5 shows these numerical

results for a range of σ values. We have taken NA = 0.15 so as be close to
the paraxial limit. Figure 6 shows the FWHM-values as a function of spatial
frequency numerically determined from the through-focus transfer function, and
the model curves according to Eq. (27) with β =

√
2. The agreement between
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the curves is very good for σ ≥ 0.5 and describes the trend qualitatively for
σ < 0.5.

As mentioned before, the transfer function Q̂ (~q) does not fully describe the
LSF derived from the edge response. Figure 7 shows the apparent through-focus

MTF
∣∣∣Ĥ (~q)

∣∣∣ derived from the amplitude edge response, and Fig. 8 shows the

numerically determined FWHM-values as a function of spatial frequency. It
appears that for spatial frequencies q < NA/λ the dependence of the FWHM
on spatial frequency and partial coherence factor agrees reasonably well with
the FWHM derived from the FT of the performance function. For larger spatial
frequencies, typically above NA/λ, the FWHM drops to levels comparable to
the FWHM for σ = 1 for all σ.

Focus errors in whole slide scanning occur for two reasons. First, the stan-
dard thickness of a tissue slide in pathology applications is 4 µm, which usually
exceeds the DOF. Second, there are topography variations in the tissue layer
across the total area of the tissue slide. Usually, an autofocus system is em-
ployed to let the objective lens follow these topography variations, but there
may be residual focus errors, especially close to folds in the tissue layer where
there is a steep rise in the topography. For these reasons it is advantageous to
have a large DOF, because then focus errors have less impact on overall im-
age quality. For example, it may be required that spatial details in the tissue
structure down to about 2 µm remain clearly visible across a focus range equal
to twice the tissue thickness of 4 µm (in order to be robust against topogra-
phy variations and focus errors). Taking λ = 0.56µm, NA = 0.75 and n = 1.5
this corresponds to a spatial frequency of about 0.37NA/λ and a defocus range

of ±2.99λ/2
(
n−

√
n2 −NA2

)
. From Eq. (30) it may then be inferred that

the upper limit for σ should be in the range 0.65-0.70, somewhat smaller than
typically used in microscopy.

2.4 Aberration estimation

Partial coherence also poses a challenge for extracting the primary aberrations
from the through-focus apparent OTF derived from the step response, as pro-
posed in our previous work [16]. In that work we described a method to measure
coma from the maximum and minimum value of a third order polynomial fitted
through the PTF. For σ values close to one or exceeding one it appears the
apparent PTF in the aberration free case is more or less linear, pointing to an
apparent shift in the edge position. It follows that this does not affect the esti-
mation of coma. Figure 4 shows that for σ values considerably below one this
is no longer the case.

Figure 9 shows the in-focus apparent PTF in case of 72 mλ root mean
square (rms) coma for different values of the partial coherence factor σ and
the coma estimated from these PTF-curves. The linear term in the PTF as
a function of spatial frequency is calibrated by requiring the PTF to be zero
at q = NA/2λ, which determines the apparent edge shift. It appears that the
procedure cannot be reliably used for σ < 0.5, as the PTF curve can then have
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multiple local maxima/minima. For values 0.5 < σ < 1 the procedure results
in an underestimation of the true coma with errors up to a factor of 3. Clearly,
depending on the value of σ the conversion factor between the coefficient of the
third order polynomial that describes the PTF and the amount of coma must
be adapted.

Spherical aberration deforms and bends the through-focus MTF pattern
towards one focus side [16] resulting in a parabolic shape for the best focus
line (which is defined as the maximum in the MTF as a function of defocus
for each spatial frequency). The curvature of the best focus line appears to be
a measure for spherical aberration [16]. Figure 10 shows a simulated through-
focus apparent MTF in the presence of 72mλ rms spherical aberration. The best
focus lines and the estimated spherical aberration according to the curvature
of the best focus line for the different σ are plotted in Fig. 11. It can be seen
that the curvature of the parabolic shape of the best focus curve decreases with
decreasing σ, leading to an underestimation of the spherical aberration when
the method of Ref. [16] is used. For small σ, typically for σ < 0.5, the best focus
curve is even better approximated with a linear curve than a parabolic curve.
So, similar to the case of coma, we may infer that the aberration estimation is
unreliable for σ < 0.5 and the conversion factor between the parabolic curvature
of the best focus line and the amount of spherical aberration must be adapted
to the value of σ in the range 0.5 < σ < 1.

3 Experiment

3.1 Scanner with compact flat-field Khler illumination unit

The experimental setup in use for whole slide imaging setup has been described
in detail elsewhere [16]. Briefly, slides are imaged with a a Nikon 20X/NA0.75
Plan Apochromat objective lens and a double back-to-back achromat tube lens
(two Thorlabs AC508-500-A, 500 mm focal length). The image data is captured
using a Dalsa Piranha HS-40-04k40 TDI line scan sensor (4096 pixels, pixel size
7 µm×7 µm, maximum frame rate 36 kHz) using pushbroom scanning. The
apparent through-focus OTF is derived from the amplitude edge response of a
custom-built resolution target that is imaged through-focus with 0.2 µm steps
[16]. The resolution target consists of edges parallel and perpendicular to the
scan direction. As the line sensor that scans the object is perpendicular to the
scan direction the edges parallel to the scan direction are tangentially oriented
w.r.t. the position in the Field Of View (FOV) of the objective lens and the
edges perpendicular to the scan direction are sagittally oriented in the FOV of
the objective lens. Both types of edges therefore give rise to an apparent OTF
for two mutually perpendicular cross-sections of the pupil plane (the qx and
qy directions). Both edges are measured for three positions in the FOV of the
objective lens (x± 0.5 mm and x = 0 mm field position).

We have developed an illumination unit with the capacity to individually
address the three primary colors red, green and blue. This can be used to

13



test chromatic aberration effects with a single camera and eventually to make
color sequential scanning possible. Figure 12(a-b) show the realized illumination
unit. It consists of three white LEDs selected from the Philips Luxeon Rebel
series: cool white PWC1-0120, neutral white PWN1-0100, and warm white
PWW1-0060 which are labeled as LED1, LED2, and LED3 respectively. Each
LED has a 12 degree parabolic diffuse collimator (185-Polymer optics). A pair
of dichroic filters from the Semrock catalog, FF495 (dichroic 1) and FF593
(dichroic 2), are used to divide the broad input light spectrum into the required
red, green and blue bands. A photodiode sensor (PDA36A, Thorlabs), not
drawn in Fig. 12b, monitors the light output of the LEDs. This photosensor
is needed to guarantee a stable output with variable temperature and drift
and to adjust relative intensities for maintaining color fidelity in a final RGB
image generated with this illumination unit. Each LED is controlled by one
general purpose laser diode driver (WLD-3343, Wavelength Electronics). It
can modulate the LED current (maximum amplitude 3A) through an input
voltage signal with a bandwidth limit of 2 MHz for a continuous sinusoidal
signal, or 1 MHz for a square pulse train. A small mechanical mount for each
LED-collimator assembly with 5 degrees of freedom alignment (xyzαβ) was
constructed in order to align the beam profile of each LED at the entrance
aperture of the condenser.

The collimated LED beams pass a circular top hat diffuser (ED1-C20, Thor-
labs) with an engineered surface that provides a uniform angular distribution
of the scattered light with a 20 degree scatter angle. As the top hat diffuser is
placed at the back focal plane of the condenser this will result in a flat illumi-
nation field at the front focal plane with an inherent field stop with a diameter
of 17 mm defined by the maximum scattering angle of the top-hat diffuser and
the condenser focal length. The spectrum measured with an optical spectral
analyzer (AQ-6315, Yokogawa) is shown in Fig. 12c. The three channels ap-
pear to cover and divide the entire visible spectrum in a reasonably acceptable
way. The line profiles of the illumination beam at the targeted sample plane are
shown in Fig. 12d-e. The illumination intensity across the imaged FOV (with
diameter of about 1 mm) has good uniformity (variations typically below 10%)
because of the top-hat diffuser.

The condenser is a triplet design of ordinary CVI-MellesGriot catalogue BK7
plano-spheres, one f=15mm/D=12.5mm lens and two f=37.5mm/D=25.0mm
lenses, producing a condenser with NA = 0.75 and an overall focal length
F = 10 mm. ZEMAX ray tracing simulations are shown in Fig.12f. This
condenser design provides sufficient alignment margins and opportunities for
creating a uniform intensity in the FOV and for providing Khler-illumination to
a good degree. Placing an aperture stop at the entrance pupil allows for precise
tuning of the partial coherence factor σ. The condenser NA for the complete
set of apertures used was determined from a calibration measurement. For a
set of apertures the condenser NA was measured by placing a pinhole at the
focal plane of the condenser and a paper screen at a given distance d from the
pinhole. The image of the projected circle on the screen is captured by a cam-
era, which is used to calculate the radius a. The condenser NA then follows
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as sin(θ) = a/
√
a2 + d2. For each aperture stop, the displayed NA data point

is the average value of estimations for different distances d. The measurement
result are shown in Fig.12g along with the corresponding NA values from a
ZEMAX ray tracing simulation. The variation of the condenser NA with aper-
ture stop radius R for an ideal condenser follows from the Abbe sine condition
[3]. According to this condition the ratio of the off-axis object height (here the
aperture radius R) to the sine of the angle of the rays in image space (here
the condenser NA) must be constant to have the optical system free of aber-
rations (coma) to first order in the field coordinates. This ratio is the effective
focal length of the condenser. This implies a linear relation NA = R/F , with
R the aperture radius and F the condenser focal length. It appears that the
estimated NA from the ray tracing simulation deviates from the aplanatic line,
which possibly indicates inherent spherical aberration in the condenser design.
The deviation in the measured NA is even a bit larger. This can possibly be
due to misalignment induced spherical aberration in the experimentally realized
condenser. The calibration data can be reasonably fitted with a straight line
0.077+R/(13.0mm). This linear fit is subsequently used to assess the condenser
NA for apertures used in the measurements of the through-focus apparent OTF.
The aperture diameters equal to 4.0, 7.0, 8.5, 10,0, 11.5, 14.0, and 17.0 mm then
result in partial coherence factors σ equal to 0.31, 0.46, 0.54, 0.62, 0.69, 0.82,
0.97, respectively.

3.2 Experimental results

A typical example of the measured edge response is shown in Fig.13, which
shows measured intensity profiles at the center of the FOV of the objective lens
for tangentially oriented edges. It appears that the edge overshoot is typically
below 10% for all σ values tested, a bit lower than expected from the simulations.
The edge overshoot does vary with edge orientation, FOV position, and color,
occasionally giving rise to higher values for the edge overshoot.

Figure 14 and 15 show the measured apparent MTFs and PTFs at the best
focus for different values of σ for both tangentially and sagittally oriented edges
for three positions in the FOV. Overall we observe an increase in the appar-
ent MTF with decreasing σ for spatial frequencies below NA/λ, in agreement
with theoretical expectations, but the flat plateau for spatial frequencies be-
low (1− σ) NA/λ is in most cases not seen. The apparent PTF also increases
in absolute value with decreasing σ, but only slightly. The apparent PTF is
determined with the procedure outlined in Ref. [16], which effectively cancels
the PTF term linear in spatial frequency (the apparent edge shift) described in
the theory section. The residual PTF that depends non-linearly on spatial fre-
quency appears to be somewhat smaller than expected from theory. It is noted
that the overall edge response and edge overshoot, as well as the apparent MTF
and PTF vary quite a bit with edge orientation and FOV position. This is
indicative for field-dependent aberrations. Applying the estimation method of
Ref. [16] to the PTF-data for σ = 0.97 results in rms tangential coma values
that vary linearly with the field coordinate between 35± 24 mλ rms for the left
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position in the FOV to −53± 24 mλ for the right position in the FOV. Sagittal
coma is largely independent of the field position and takes a rms value equal
to −5± 13 mλ. The dependence of these aberrations on the field coordinate is
in good agreement with so-called Nodal Aberration Theory (NAT) [23], which
describes the impact of misalignment on the field dependence of the primary
aberrations following from basic optical theory [3].

The overall through-focus apparent MTF data for tangentially and sagittally
oriented edges is shown in Fig. 16 and Fig. 17, respectively. The overall shape fits
reasonably well with the expectations from theory and simulation. Differences
may be attributed to aberrations. For example, the mild curvature of the best
focus lines for σ = 0.97 and the small asymmetry between the apparent MTF
above and below best focus indicates the presence of spherical aberration. Av-
eraging the spherical aberration estimates for all recorded through-focus edges
in the resolution target gives an estimate of 49±17 mλ rms spherical aberration.
The difference between the best focus curves for tangentially and sagittally ori-
ented edges is indicative for astigmatism. It appears that the astigmatism is
below 10 mλ at the center of the FV and close to the diffraction limit at ±0.5 µm
in the FOV. This corresponds to a difference in best focus between sagittally
and tangentially oriented edges of about 1.5 µm. The overall dependence of
astigmatism (and field curvature) on the field coordinate is well described by a
quadratic function, in agreement with basic optical theory [3, 23].

The sensitivity to defocus in the experiment is also analyzed. Figure 18
shows the FWHM of the apparent MTF as a function of spatial frequency for
different σ. The FWHM increases with decreasing spatial frequency (in the
range below NA/λ) and with decreasing partial coherence factor, roughly in
agreement with the simulation data shown in Fig. 8. The FWHM data for σ
close to one appears to follow the theoretical prediction of Eq. (30) rather well.
This is reasonable as for higher values of σ the apparent MTF closely resembles
the modulus of the FT of the performance function. The increase of the FWHM
with decreasing σ, however, is steeper than the typical 1/ (1 + σ)

2
factor derived

for the axial width of the FT of the performance function. Close to the spatial
frequency NA/λ the FWHM for all σ values reach the same minimum value of

about λ/
√

2/
(

1−
√

1−NA2
)

.

4 Discussion

We have presented results concerning the effect of partial coherence on edge con-
trast, edge overshoot, and tolerance for defocus via a study of the through-focus
apparent OTF derived from the response of the imaging system to amplitude
edges. The analytical, numerical and experimental data agree reasonably well,
where the deviations of the experiment from theory and simulation is attributed
to aberrations.

There are several shortcomings to our experimental analysis. First of all, the
measured edge response is somewhat undersampled, which makes the apparent
OTF for the aliased higher spatial frequencies unreliable and which complicates
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the quantitative assessment of edge overshoot. In future studies it may be
advisable to implement the slanted edge approach in measuring the apparent
OTF [24, 25]. The second aspect concerns the experimental assessment of the
mutual intensity. Although the back aperture of the condenser is well filled
and the condenser NA is determined from an experimental calibration, we have
not actually measured the distribution of illumination light over the different
illumination angles, let alone quantitatively measured the correlation between
the light field at different positions in the illuminated FOV. So, the use of the
mutual intensity following from Eq. (3) described by a single experimentally
determined parameter σ may be too idealized.

Several factors have to be taken into account in order to determine the op-
timum value for σ for the application in WSI systems for digital pathology. A
larger value of σ is beneficial for lateral resolution and edge ringing, whereas a
smaller value of σ is beneficial for the edge contrast and DOF. It is questionable
whether sufficient signal-to-noise ratio can be achieved for the very highest spa-
tial frequencies in the range (1.75− 2) NA/λ, corresponding to spatial details
in the range (0.37− 0.42) µm for λ = 0.56 µm and NA = 0.75. This implies
that σ values above 0.75 hardly have an impact on the practical lateral resolu-
tion, even though the theoretical limit increases as (1 + σ) NA/λ. On the other
hand, the edge contrast, which is correlated to the transfer for lower spatial
frequencies, typically up to NA/λ (spatial detail down to 0.75 µm), improves
when σ is decreased to even lower values than 0.75 (see Fig. 14). The DOF
also improves for this lower range of spatial frequencies. The DOF quantified
by the FWHM of the through-focus apparent MTF (see Fig. 17) improves by
20 to 60%, depending on spatial frequency, when σ is lowered from 0.75 to 0.5.
It appears that the FWHM of the apparent through-focus MTF is about equal
to the typical tissue thickness of 4 µm for spatial details on the order of 2 µm
when σ is decreased to about 0.5 for the set of imaging parameters used in the
experiments. The major drawback of this further lowering of σ is the increase
in edge ringing. The edge overshoot percentage used to quantify edge ringing
is below 10% in simulation when σ > 0.55, and even a bit lower in the actual
experiment. Taking all these factors into account it seems a reasonable assess-
ment that the optimum value of the partial coherence factor σ is in the range
0.55-0.75. Although the research methods differ, this is substantially the same
result as found by Ren et al. [15].

The current analysis has focused exclusively on circular apertures. An ex-
tension to different illumination apertures, in particular annular apertures and
other variants of off-axis illumination, may have relevance to applications using
such apertures. Starting point in that direction may be the work of Watanabe,
who has analyzed the effects of partial coherence on DOF for an illumination
system with one on-axis beam and two off-axis beams [26]. An entirely different
generalization of the treatment described in this paper is towards other object
types than edge objects. Point objects or periodic objects, for example, may
lead to alternative approaches for measuring and monitoring optical image qual-
ity in the framework of a particular application. For any object w (~r) against a
uniform background (object function T (~r) = a+ bw (~r)) the term in the image
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signal linear in w (~r) is in fact the real part of the convolution of the object
function and the performance function Re {a∗bQ (~r)⊗ w (~r)}. For a weak ob-
ject (|b| � |a|) this convolution term contains all the relevant information on
the object, making the performance function the weak object PSF and its FT
the weak object OTF [19]. In that sense the FT of the performance function is
the most relevant transfer function to assess the effects of partial coherence in
general. An alternative may be found in the phase-space imaging kernel recently
proposed in Ref. [27]. Finally, a comparison of our description of the effect of
the finite degree of coherence on DOF to the theory of focusing of partially
coherent waves with e.g. the Gaussian Schell-model [28, 29] may also offer new
insights.
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4.1 Appendix

Here we present the asymptotic analysis for the imaginary part of the aberration
free OTF for σ � 1. The TCC may generally be written as:
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Substituting in the expression for the transfer function Û (q, 0) Eq. (16) gives:
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with the weighting factor:
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where a = min (σ, 1). With ~q′′ = (qx, qy) and Eq. (3) we find that:
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where τ = σNA/λ. We may now use that:
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to find:
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For σ � 1 we may approximate this factor as:

R (~q′′, q′) ≈ 1

2π
log

∣∣∣∣τ − qτ + q

∣∣∣∣ ≈ − q

πτ
. (38)

It then follows that:
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{
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}
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Re
{
Ĥ (q, 0)

}
, (39)

giving as final result Eq. (20).
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Figure 4: (a) Numerically computed edge response for different values of the
partial coherence factor σ. (b) Edge overshoot as a function of the partial co-
herence factor σ. (c-d) Apparent MTF and PTF derived from the edge response
for different values of the partial coherence factor σ. (e-f) Real and imaginary
part of the apparent OTF derived from the edge response for different values of
the partial coherence factor σ.

22



0.1

0.1

0.1 0.1

0.5
0.5 0.9
0.9

-6 -4 -2 0 2 4 6

z (λ/NA2)

0

0.5

1

1.5

2

q 
(N

A
/λ

)

0.
1

0.1

0.
1 0.1

0.5

0.5 0.90.9

-6 -4 -2 0 2 4 6

z (λ/NA2)

0

0.5

1

1.5

2

q 
(N

A
/λ

)

0.1

0.1

0.5

0.5 0.9

-6 -4 -2 0 2 4 6

z (λ/NA2)

0

0.5

1

1.5

2

q 
(N

A
/λ

)

0.1

0.1

0.1
0.5

0.5 0.9

-6 -4 -2 0 2 4 6

z (λ/NA2)

0

0.5

1

1.5

2

q 
(N

A
/λ

)

σ =0.25 σ =0.5

σ =0.75 σ =1

Figure 5: Numerically computed absolute value of the FT of the through-focus

transfer function
∣∣∣Q̂ (~q)

∣∣∣ for different values of the partial coherence factor σ.
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Figure 14: Measured in-focus apparent MTF curves for the green channel and
for tangentially and sagittally oriented edges for the left (-0.5 mm), center and
right (+0.5 mm) of the FOV for different values of the partial coherence factor
σ. The dashed lines indicates the spatial frequency NA/λ.
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Figure 15: Measured in-focus apparent PTF curves for the green channel and
for tangentially and sagittally oriented edges for the left (-0.5 mm), center and
right (+0.5 mm) of the FOV for different values of the partial coherence factor
σ. The dashed lines indicates the spatial frequency NA/λ.
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Figure 16: Measured through-focus apparent MTF curves for the green channel
and for tangentially oriented edges in the center of the FOV for different values of
the partial coherence factor σ. The dashed lines indicates the spatial frequency
NA/λ.
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Figure 17: Measured through-focus apparent MTF curves for the green channel
and for sagittally oriented edges in the center of the FOV for different values of
the partial coherence factor σ. The dashed lines indicates the spatial frequency
NA/λ.
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