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PISA design model for monopiles for offshore wind turbines:
application to a marine sand

HARVEY J. BURD�, DAVID M. G. TABORDA†, LIDIJA ZDRAVKOVIĆ†, CHRISTELLE N. ABADIE‡,
BYRON W. BYRNE�, GUY T. HOULSBY�, KENNETH G. GAVIN§, DAVID J. P. IGOE∥,

RICHARD J. JARDINE†, CHRISTOPHER M. MARTIN�, ROSS A. MCADAM�, ANTONIO M. G. PEDRO¶
and DAVID M. POTTS†

This paper describes a one-dimensional (1D) computational model for the analysis and design of
laterally loaded monopile foundations for offshore wind turbine applications. The model represents the
monopile as an embedded beam and specially formulated functions, referred to as soil reaction curves,
are employed to represent the various components of soil reaction that are assumed to act on the pile.
This design model was an outcome of a recently completed joint industry research project – known as
PISA – on the development of new procedures for the design of monopile foundations for offshore wind
applications. The overall framework of the model, and an application to a stiff glacial clay till soil, is
described in a companion paper by Byrne and co-workers; the current paper describes an alternative
formulation that has been developed for soil reaction curves that are applicable to monopiles installed
at offshore homogeneous sand sites, for drained loading. The 1D model is calibrated using data from
a set of three-dimensional finite-element analyses, conducted over a calibration space comprising
pile geometries, loading configurations and soil relative densities that span typical design values.
The performance of the model is demonstrated by the analysis of example design cases. The current
form of the model is applicable to homogeneous soil and monotonic loading, although extensions to
soil layering and cyclic loading are possible.

KEYWORDS: design; limit state design/analysis; numerical modelling; offshore engineering; piles & piling;
soil/structure interaction

INTRODUCTION
Monopiles are typically the preferred foundation option for
offshore wind turbine support structures in shallow coastal
waters. Current design procedures for monopile foundations
routinely employ a simplified analysis procedure, known as
the ‘p–y’ method, in which the foundation is modelled as an
embedded beam, with the lateral load–displacement inter-
action between the soil and pile represented by non-linear
functions known as ‘p–y curves’.

The p–y method was originally devised for the design of
the long, relatively flexible, piles that are typically employed
in offshore oil and gas structures. The method was initially

based on data from field tests reported some decades ago
(e.g. Matlock, 1970; Cox et al., 1974); early p–y curve
specifications were proposed by Matlock (1970) (for clays)
and Reese et al. (1974) (for sands). Although the method has
evolved in the intervening years (e.g. Doherty & Gavin,
2011), current standard forms of the p–ymethod as specified
in design guidance documents (e.g. API, 2010; DNV GL,
2016) remain broadly unchanged from this early work.
Certain questions exist, however, on the extent to which
standard forms of the method are applicable to offshore wind
turbine monopiles, which typically employ relatively large
diameters, D, and low values of L/D (where L is embedded
length) and are therefore relatively stiff. Evidence high-
lighting the shortcomings of the conventional p–y method
for monopile design applications has been observed in
laboratory tests (e.g. Choo & Kim, 2015; Klinkvort et al.,
2016) and at field scale (Kallehave et al., 2015; Li et al., 2017;
Hu & Yang, 2018).
This paper describes a new analysis procedure, referred to

as the ‘PISA design model’, for monotonic lateral and
moment loading of monopiles. This design model is an
outcome of a research project – known as PISA – that
included field testing (Burd et al., 2019; Byrne et al., 2019b;
McAdam et al., 2019; Zdravković et al., 2019a) at two
onshore sites (stiff clay at Cowden, dense sand at Dunkirk)
and three-dimensional (3D) finite-element modelling
(Taborda et al., 2019; Zdravković et al., 2019b). The PISA
design model retains the underlying simplicity of the p–y
method (in which the pile is modelled as an embedded
beam), but additional soil reaction components are incor-
porated to improve the model’s performance. The model is
calibrated with a set of 3D finite-element calibration
analyses; it therefore benefits from the realism that is
potentially achievable with 3D finite-element modelling,
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while also being rapid to compute. The PISA design model
supports a wide range of practical design calculations; it is
applicable to: (a) the determination of small displacement
foundation stiffness (relevant to the development of dynamic
models for the overall structure); (b) the analysis of service-
ability limit states (i.e. relating to the displacements that
occur under normal working conditions); and (c) analysis of
ultimate limit states (to check for overall stability).
This paper describes the development and implementation

of the PISA design model for monopiles installed in
homogeneous sand for drained monotonic loading. In a
companion paper, Byrne et al. (2020), the overall frame-
work of the PISA design model is described, together with a
calibration process for piles embedded in glacial clay till. The
approaches employed for the clay and sand PISA design
model formulations differ only in the manner in which the
soil reaction components are incorporated and the way in
which the model is calibrated. The particular aspects of the
model that relate to the sand implementation are referred to
in the current paper as the ‘sand modelling framework’.
To develop the PISA design model in a form that is

applicable to sands within a practical range of densities, a
set of four hypothetical representative offshore homogeneous
sand sites is established, each with a specific relative
density (DR of 45%, 60%, 75% and 90%). The geotechnical
conditions at these sites, and the modelling employed in the
3D calibration analyses, are based on the prior geotechnical
characterisation of the Dunkirk site (Zdravković et al.,
2019a) and the finite-element analyses that were shown in
the paper by Taborda et al. (2019) to provide a close
representation of the PISA test piles at Dunkirk. The PISA
design model calibration process therefore has a link, albeit
an indirect one, with observations on the performance of the
PISA test piles. Independent PISA design model calibrations
are described for each representative site, and an optimisation
process is employed to define a general model – referred to
as the ‘general Dunkirk sand model’ (GDSM) – that is
applicable to soils with an arbitrary value of relative density
in the range 45%�DR� 90%. The predictive capabilities of
the GDSM are demonstrated by conducting analyses for
monopile configurations within the calibration space, but
that differ from the calibration cases.

THE PISA DESIGN MODEL
Model overview
The PISA design model provides a one-dimensional (1D)

representation of a monopile foundation subject to the
application of a lateral load, H, applied at a distance h
above seabed level (referred to in this paper as ‘ground level’)
as illustrated in Fig. 1. The monopile is represented
as an embedded beam with moment MG and lateral force
HG applied to the pile at ground level, Fig. 2. Four
components of soil reaction are assumed to act on the
monopile. Consistent with the standard p–y method, a
distributed lateral load, p (units of force/length) acts on the
pile. Additionally, a distributed moment, m (units of
force� length/length) is applied; this distributed moment
arises as a consequence of the vertical tractions that are
induced on the pile perimeter when relative vertical displace-
ments occur at the soil–pile interface – for example, due to
local rotation of the pile cross-section. A lateral forceHB and
a momentMB acting on the base of the pile are also included.
The monopile is represented by Timoshenko beam theory;
this allows the shear strains in the pile to be incorporated in
the analysis in an approximate way. Since the influence of the
shear strains on the overall pile deformation is likely to
increase as L/D is reduced, the use of Timoshenko theory
provides a means of maintaining the robustness of the

approach as L reduces or D is increased (e.g. see Gupta &
Basu (2018)). A four-component model of this sort has
previously been employed for the design of drilled shafts for
onshore applications (e.g. Lam, 2013) and has been described
in the context of the PISA research by Byrne et al. (2015),
Byrne et al. (2017) and Burd et al. (2017). As discussed in the
paper by Byrne et al. (2020), vertical loads are assumed to
have an insignificant influence on the performance of the
monopile; they are therefore excluded from the model.
The soil reactions are applied to the embedded beam using

a generalised form of the Winkler assumption, in which the
force and moment reactions are assumed to be related only to
the local pile displacement and rotation. Functions employed
in the model to relate the soil reactions and the local pile
displacements (and rotations) are termed ‘soil reaction
curves’. Although the Winkler approach neglects the coup-
ling that inevitably occurs within the soil, it provides a
convenient basis for design calculations, as demonstrated by
the widespread use of the p–y method. A fundamental
feature of the approach, however, is that soil reaction curves
determined on the basis of the Winkler assumption are
unlikely to be unique. Appropriate soil reaction curves may
depend, for example, on the relative magnitude of the
translational and rotational movements of the pile. It is
considered necessary, therefore, to calibrate the soil reaction
curves using pile deformation modes that are representative
of those that are likely to be experienced by actual wind
turbine monopile foundations. The PISA design model is
therefore calibrated within a design space that is carefully
selected to represent realistic loading conditions.
The PISA design model reduces to the standard p–y

approach when m, HB and MB are set to zero (and
appropriate choices are made on the relationship between
the distributed lateral load, p, and the local lateral pile
displacement, v). Experience has shown, however, that the m,
HB and MB components become increasingly significant as

L

h

D

Seabed level 
(ground level)

Embedded
monopile

Transition piece 
and tower

H

Fig. 1. Geometry for the monopile design problem. The monopile
consists of a circular tubewith outer diameter,D, wall thickness, t, and
embedded length, L. The height, h, of the load application is referred
to as load eccentricity
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L/D is reduced (Byrne et al., 2015, 2020). The distributed
moment component, for example, depends on pile diameter,
increasing as the pile diameter is increased. Similarly, the
force and moment reactions HB and MB at the base of the
pile become more significant as the pile diameter is increased.
The four-component model in Fig. 2(b) therefore provides
a rational way of addressing a shortcoming of the p–y
method, often referred to as the ‘diameter effect’, in which
the standard p–y curves (e.g. API, 2010; DNV GL, 2016)
are typically found to become increasingly unreliable as
the pile diameter is increased, or the length is reduced
(e.g. Alderlieste et al., 2011; Doherty & Gavin, 2011).

Soil reaction curves for the sand modelling framework
The soil reaction curves employed in the PISA design

model are based on the use of dimensionless forms of the
relevant soil reaction and displacement/rotation variables.
This provides a convenient means of developing standard
forms that, for numerical implementation, can be scaled to
represent the soil reactions acting on the pile at an arbitrary
depth. These dimensionless forms are specified in Table 1,
where σ′vi is the local value of initial vertical effective stress in
the soil, G0 is the local value of soil small-strain shear
modulus, and v and ψ are the local pile lateral displacement
and cross-section rotation, respectively.

The soil reactions are implemented in the model using an
appropriately calibrated algebraic function. The function
selected for this purpose is, to an extent, arbitrary, provided
that it is capable of providing a realistic representation of the
soil reactions for behaviour ranging from small displace-
ments (needed, e.g. to predict the natural frequencies of a

wind turbine structure) to the large displacement response
(required for the calculation of the ultimate limit state).
The current implementation of the PISA design model

employs the four-parameter conic function

� n
ȳ
ȳu

� x̄
x̄u

� �2

þ 1� nð Þ ȳ
ȳu

� x̄k
ȳu

� �
ȳ
ȳu

� 1
� �

¼ 0 ð1Þ

where x̄ signifies a normalised displacement or rotation
variable and ȳ signifies the corresponding normalised
soil reaction component, formulated in terms of the

Table 1. Dimensionless forms for the soil reaction curves

Normalised variable Dimensionless form

Distributed lateral load, p̄
p

σ′viD

Lateral displacement, v̄
vG0

Dσ′vi

Distributed moment, m̄
m
jpjD

Pile cross-section rotation, ψ̄
ψG0

σ′vi

Base horizontal load, H̄B
HB

σ′viD2

Base moment, M̄B
MB

σ′viD3

MG

HG

Tower

Ground level

M
on

op
ile Distributed

lateral load

Vertical shear
tractions at soil–

pile interface

Horizontal force and
moment at pile base

(a)

MG

HG

z,w
y,v

Distributed
lateral load
p(z,v) 

Distributed
moment
m(z,ψ)  

Base
horizontal

force HB(vB) 

Base moment
MB(ψB)

(b)

Timoshenko
beam

elements 

L

Nominal
centre of
rotation

D

Fig. 2. PISA design model: (a) idealisation of the soil reaction components acting on the pile; (b) 1D finite-element implementation of the model
showing the soil reactions acting on the pile. Note that the reactions are depicted in (a) as acting in the expected direction. In (b) the reactions are
shown in directions that are consistent with the coordinate directions shown (p and HB reacting positive v and vB; m and MB reacting positive
(clockwise) ψ and ψB)
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dimensionless forms in Table 1. The function is illustrated in
Fig. 3. The normalised soil reactions can be determined
explicitly from the normalised displacements by

ȳ ¼ ȳu
2c

�bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p ; x̄ � x̄uȳ ¼ ȳu; x̄ . x̄u ð2Þ

where

a ¼ 1� 2n ð3Þ

b ¼ 2n
x̄
x̄u

� 1� nð Þ 1þ x̄k
ȳu

� �
ð4Þ

c ¼ x̄k
ȳu

1� nð Þ � n
x̄2

x̄2u
ð5Þ

Each of the parameters ðk; ȳu; x̄u; nÞ has a straight-
forward interpretation. The parameter k specifies the initial
slope; ȳu is the ultimate value of the normalised soil reaction;
and x̄u is the normalised displacement (or rotation) at
which this ultimate value of soil reaction is reached. The
parameter n (0� n� 1) determines the shape of the curve;
for the extreme values n¼ 0 and n¼ 1, the function
reduces to the bilinear forms illustrated in Fig. 3(b). As
discussed in the paper by Byrne et al. (2020), no particular
importance is attached to the specific form that is chosen for
the parametric curve, and other similar parametric functions
would be possible.
For the distributed lateral load, and the base horizontal

load and moment components, dimensional forms of the
soil reaction curves, and their derivatives, for numerical
implementation of the model, are determined in a straight-
forward way using local values of G0 and σ′vi, on the basis of
the dimensionless forms in Table 1. The particular normal-
isation adopted for the distributed moment, however, means
that a different treatment is required in this case. During
the initial model development process, data from the 3D
calibration calculations suggested that the distributed
moment, m, appeared to scale with the current value of the
local distributed lateral load, p. Since the vertical tractions
induced on the pile perimeter arise as a consequence of
friction at the soil–pile interface, it seems plausible that the
magnitude of the distributed moment correlates with the
local normal tractions; in turn, these tractions are closely
related to the local distributed lateral load. It was therefore
decided to adopt a dimensionless form for the distributed
moment, m̄, by normalising the distributed moment by the
local value of the distributed load, as indicated in Table 1.
The use of this form for m̄ implies that the distributed
moment is a function of both the local displacement, v, and

the local pile cross-section rotation, ψ

m v;ψð Þ ¼ σviD2 p̄
vG0

Dσvi

� �����
����m̄ ψG0

σvi

� �
ð6Þ

This coupling has certain implications for the numerical
implementation of the model (described in the Appendix).

1D finite-element formulation for the sand
modelling framework
The PISA design model employs the 1D representation

finite-element framework illustrated in Fig. 2(b). The pile is
represented by a line mesh of two-noded Timoshenko beam
elements, employing the formulation in Astley (1992). The
calculations described in this paper were all conducted with a
shear factor κ¼ 0·5. In the current form of the model,
consistent with the shell element formulation employed in
the 3D finite-element calibration calculations, the structural
properties (area and second moment of area) are specified
for the beam elements using the thin-walled approximation.
Soil finite elements, with the same displacement and
rotation interpolation functions that are used for the beam
elements, are connected to the beam elements along the
embedded length of the pile. A virtual work statement of
the problem, and an outline of the development of the
finite-element equations in Galerkin form, is provided in the
paper by Byrne et al. (2020). Consistent with the approach
adopted for the clay framework described in the paper by
Byrne et al. (2020), four Gauss points per element are
adopted for both the beam and soil elements to determine the
stiffness matrices and internal force vectors. Further specific
implementation details for the sand modelling framework are
given in the Appendix.

REPRESENTATIVE OFFSHORE SAND SITES
In connection with the PISA research, a series of pile tests

(McAdam et al., 2019) was conducted at an onshore site in
Dunkirk in northern France; at this site the soil consists
principally of a dense Flandrian sand with a surface layer
(about 3 m thick) of dense, hydraulically placed sand with
the same geological origin as the deeper Flandrian deposit
(Chow, 1997). This site was carefully characterised during the
field testing programme (Zdravković et al., 2019a); it was
convenient, therefore, to adopt the soil conditions at this site
as the basis of the representative offshore sites developed to
calibrate the PISA model for sand.
A detailed finite-element study (Taborda et al., 2019) was

undertaken during the PISA project to support the Dunkirk
pile tests. The constitutive model employed for these ana-
lyses, described in the paper by Taborda et al. (2014), is an
evolution of the bounding surface model originally proposed

Initial slope k

n

y

yu

y

yu

xu x xu x

Slope k

n =
 0

n = 1

(a) (b)

Fig. 3. Conic function adopted for the parametric soil reaction curves: (a) conic form; (b) bilinear form
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by Manzari & Dafalias (1997). A detailed procedure to
calibrate this constitutive model for the soil conditions at the
Dunkirk test site, described in the paper by Taborda et al.
(2019), was conducted. The constitutive model and associ-
ated parameters (see Table 3 later) that were developed to
model the Dunkirk test piles are adopted for the representa-
tive offshore site calibration calculations employed in the
current work.

The ground conditions at Dunkirk have certain features
not present at typical offshore sites. These are: (a) a very
dense, hydraulically placed surface layer; (b) the surface soil
layers are partially saturated, as a consequence of the water
table being observed to be 5·4 m below the ground surface;
and (c) the superficial layers are possibly lightly cemented.
Adjustments to the Dunkirk soil conditions were therefore
required to develop plausible representative offshore ground
models; these adjustments involved (a) excluding the surface
layer of hydraulic fill from the model, and (b) employing a
hydrostatic pore pressure distribution. Other aspects of the
representative offshore ground models were taken directly
from the data in the paper by Taborda et al. (2019) on the
naturally occurring Flandrian sand at Dunkirk. The con-
stitutive model and calibration data developed to support the
Dunkirk field tests (Taborda et al., 2019) were employed
directly to characterise the representative ground models for
the current study; the only parameter requiring adjustment is
the relative density.

The relative density for the natural Flandrian sand at
Dunkirk was estimated as DR¼ 75%; corresponding to an
initial void ratio, e0, of 0·629. This relative density was
adopted for one of the representative offshore ground models
for the current study. Three additional representative ground
models were developed, with DR¼ 45%, 60% and 90%; see
Table 2. The initial stresses were determined by adopting
hydrostatic pore pressure conditions with a submerged unit
weight of γ′¼ 10·09 kN/m3 and K0 = 0·4 (both values
correspond to data for the Dunkirk site). Variations in the
submerged unit weight of the sand due to different values
of relative density were not considered, as the effect of
varying this parameter is regarded as minimal with respect to
other aspects of sand behaviour. The small-strain shear
modulus, G0, is obtained from the local values of mean
effective stress p′ and initial void ratio e0 (from Table 2) using

the relationship proposed by Hardin & Black (1968)

G0 ¼ Bp′ref
0�3þ 0�7e20

ffiffiffiffiffiffiffiffi
p′
p′ref

s
ð7Þ

where B, determined from the site investigation data
(Zdravković et al., 2019a) and the calibration process
described in the paper by Taborda et al. (2019), is specified
in Table 3 and p′ref¼ 101·3 kPa.

3D FINITE-ELEMENT CALIBRATION
CALCULATIONS
Specification of the finite-element calculations
The 3D finite-element calibration calculations have

been conducted for a calibration space consisting of mono-
pile dimensions and load eccentricities, h, in the range
5 m�D� 10 m, 2�L/D� 6, 5� h/D� 15 for each repre-
sentative site. These dimensions were selected to span a
realistic design range for current and future monopiles, on
the basis of advice received from the project partners (listed
in the Acknowledgements). The configurations employed in
this set of pile calibration analyses, selected to provide
appropriate coverage of the selected calibration space, are
listed in Table 4. The analyses were conducted using the
finite-element software ICFEP (Potts & Zdravković, 1999,
2001). In total, 38 calibration analyses were conducted
(see Table 8 later).
Procedures to calibrate the model were initially developed

on the basis of the DR¼ 75% representative site. This initial
calibration exercise was conducted for all of the calibration
piles in Table 4. It is noted that piles C3 and C7 (incorporated
in the pile calibration set to check whether the inferred soil
reaction curves are influenced by pile wall thickness) are
similar to C1 and C6, respectively, except for differences in
wall thickness. Results from the DR¼ 75% calibration
indicated that the influence of wall thickness on the soil
reaction curves is negligible; piles C3 and C7 were therefore
excluded from the calibration sets employed for the other
representative sites.
Results from the DR¼ 75% calibration are employed later

in the paper to illustrate the various stages in the calibration
process.

Modelling procedures
The 3D finite-element calculations employed a critical state

constitutive model, based on the state parameter framework
for sands (Taborda et al., 2014), to represent the soil at the
representative sites. The state parameter framework employed
in the model ensures that the influence of soil void ratio, and
mean effective stress, on the mechanical behaviour of soil is
accounted for in a consistent way – that is without the need to
adjust the model parameters for soils with different relative

Table 2. Initial values of void ratio, e0, and relative density for the
representative offshore sites

Relative density, DR: % Initial void ratio, e0

45 0·741
60 0·685
75 0·629
90 0·573

Table 3. Constitutive parameters for the sand constitutive model (Taborda et al., 2014) employed in the 3D finite-element calibration analyses

Component Parameters

Critical state line p′ref¼ 101·3 kPa; eCS,ref¼ 0·910; λ¼ 0·135; ξ¼ 0·179
Strength Mc

c ¼ 1�28; Mc
e ¼ 0�92

Model surfaces kbc ¼ 2�70; kdc ¼ 0�88; m ¼ 0�065; p′YS¼ 1·0 kPa; A0¼ 1·30
Hardening modulus h0¼ 0·4; α¼ 1·0; γ¼ 0·0; β¼ 0·0; μ¼ 1·0
Non-linear elasticity – small-strain stiffness B¼ 875·0; ν¼ 0·17
Non-linear elasticity – shear stiffness degradation a1¼ 0·40; γ1¼ 1·031� 10�3; κ¼ 2·0
Fabric tensor H0¼ 0·0; ζ¼ 0·0

These parameters are identical to those that were determined, as described in the paper by Taborda et al. (2019), to conduct 3D finite-element
analysis of the PISA test piles at Dunkirk.
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densities. The constitutive parameters employed in the
analyses (determined as described in the paper by Taborda
et al. (2019)) are listed in Table 3. It is noted that these
constitutive parameterswere developed for monotonic loading
and have not been calibrated for cyclic loads.
A typical mesh employed for the calibration analyses (for

pile C4) is shown in Fig. 4. By exploiting symmetry in the
geometry and in the applied load, only half of the problem is
discretised. The soil domain is represented with 10 530
20-noded hexahedral displacement-based solid elements.
A refined mesh is employed for the soil in the region below
the base of the pile to ensure that the computed base
reactions are reliable. The embedded pile is discretised with
360 eight-noded shell elements (Schroeder et al., 2007)
arranged in 30 rings of elements; distributed load and
moment soil reactions curves could therefore be extracted
from the calibration analyses at 30 discrete depths. The
above-ground extension is modelled with 240 shell elements.
The interface between the soil and the pile exterior is
modelled with 360 16-noded zero-thickness interface
elements (Day & Potts, 1994). Fully rough boundary
conditions are prescribed to the base of the mesh and a
zero normal displacement boundary condition was pre-
scribed to the vertical cylindrical boundary (at a radial
distance of 100 m from the pile central axis).

No attempt is made to model the stress and state changes
that occur in the soil due to the pile installation process.
Instead, the monopile is modelled as ‘wished in place’; it is
incorporated in the finite-element mesh at the start of
the analysis in a fully plugged configuration. A similar
wished-in-place procedure was employed in the 3D
finite-element models that were developed to analyse the
Dunkirk PISA test piles (Taborda et al., 2019).
The interface between the exterior of the embedded

monopile and the soil is represented by an elasto-plastic
Mohr–Coulomb model. The elastic part of the interface
model is defined by a shear and a normal stiffness, both set
to 1·0� 105 kN/m3, and the plastic part by zero cohesion
(c′¼ 0) and an angle of shearing resistance (32°) that is equal
to the triaxial compression critical state friction angle. The
monopile is modelled as an elastic material with properties
representative of steel; Young’s modulus, E=200 GPa and
Poisson’s ratio, ν=0·3. The pile wall thickness is specified as
an additional model parameter.
Loading is applied to the top of the pile in a displacement-

controlled manner, by prescribing increments of uniform
horizontal displacements in the y-direction around the
half-perimeter of the pile. The resulting load is obtained as
a reaction to these prescribed displacements; its magnitude is
one half of the total lateral load, H, acting on the pile.

Table 4. Pile geometry and loading eccentricities employed in the 3D finite-element calibration analyses

Pile reference D: m h: m h/D L: m L/D t: mm D/t

C1 10 50 5 20 2 91 110
C2 10 150 15 20 2 91 110
C3 10 50 5 20 2 125 80
C4 10 50 5 60 6 91 110
C5 10 150 15 60 6 91 110
C6 5 25 5 10 2 45 110
C7 5 25 5 10 2 83 60
C8 5 25 5 30 6 45 110
C9 5 75 15 30 6 45 110
C10 7·5 37·5 5 15 2 68 110
C11 7·5 37·5 5 45 6 68 110

X

Y

Z

200 m

10
0 

m

L 
(6

0 
m

)
h 

(5
0 

m
)

Fig. 4. Finite-element mesh for pile C4
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NUMERICAL SOIL REACTION CURVES
Numerical representations of the soil reaction curves

(referred to as ‘numerical soil reaction curves’) for the
distributed lateral load and moment components were
determined from the 3D finite-element analyses by extracting
the nodal forces acting at the soil–pile interface, and the
stresses in the interface elements between the pile exterior
and the soil. The force and moment reactions at the pile base
were determined by integrating the stresses in the layer of soil
elements immediately below the pile base, and incorporating
the reactions computed from the nodal forces at the base of
the shell elements representing the pile. Local lateral
displacements and cross-section rotations of the pile were
determined from the computed displacements of the relevant
shell element nodes by averaging over the cross-section (for
displacement) and by least-squares fitting on the vertical
displacements (for rotation).

Checkswere conducted to confirm that the computed nodal
forces acting on the monopile boundary were in equilibrium
with the externally applied lateral load (within an acceptable
tolerance). If boundary checks were satisfactory, then the data
were further processed to develop the soil reaction curves, as
described below. Alternatively, if this boundary equilibrium
check indicated the presence of unacceptable equilibrium
errors, then the 3D analyses were repeated using a tighter
calculation tolerance. For the calibration calculations (listed in
Table 8 later) a maximum equilibrium error of 1·81% was
achieved; this level of equilibrium error is considered to bewell
within the bounds of acceptability.

Check calculations were conducted using a form of the 1D
model, referred to as ‘1D (numerical)’, that is based directly
on the numerical soil reaction curves. In this approach,
dimensionless forms of the numerical soil reaction curves are
determined using the normalisations in Table 1. Normalised
numerical soil reaction curves at the depth location of each
Gauss point in the 1D model are computed by interpolation;
the corresponding dimensional forms are then determined
on the basis of the local values of σ′vi and G, and the
dimensionless form definitions in Table 1. The H–vG
performance (where vG is ground-level pile displacement)
computed using the 1D (numerical) model for piles C1
(L/D=2) and C4 (L/D=6) for DR¼ 75% is shown in Fig. 5.
The 1D (numerical) model is seen to provide a close fit to the
3D finite-element calibration data. A similarly close match is

obtained for other calibration piles (data not presented here).
These checks confirm that the procedures used to determine
the numerical soil reaction curves are robust. They also
indicate a likely upper bound on the accuracy of the PISA
modelling approach.
Separate 1D (numerical) calculations have been conducted

to investigate the significance of individual soil reaction
components. Example results for piles C1 and C4 for
DR¼ 75%, for cases where soil reaction components are
selectively excluded from the model, are also shown in Fig. 5.
In case P, only the distributed lateral load terms are included;
in case PM, only the distributed lateral load and distributed
moment terms are included. It is clear from Fig. 5(b) that the
lateral distributed load is the dominant soil–pile interaction
mechanism for the relatively long pile, C4 (i.e. the case P data
match closely the 1D (numerical) results). For the shorter pile
(C1) Fig. 5(a), however, the case P data differ significantly
from the 1D (numerical) model, indicating that, in this case,
neglecting the three other soil reaction components causes a
significant loss of fidelity. The case PM data provide an
improved fit for pile C1, indicating the importance of the
distributed moment in this case. These results confirm the
pattern observed in the paper by Byrne et al. (2020) for a stiff
glacial clay till, that for relatively long piles a p–y type
method (distributed lateral load only) is capable of providing
a robust model of the load–displacement behaviour, but that
additional soil reaction components need to be included for
piles with relatively low values of L/D.
Quantitative comparisons between the performance of the

1D and 3D models employ the ‘accuracy metric’, η

η ¼ Aref � Adiff

Aref
ð8Þ

where the meaning of Aref and Adiff are illustrated in Fig. 6.
A ‘ratio metric’, defined by

ρ ¼ H1D

H3D
ð9Þ

is also employed, where H1D and H3D are values of lateral
force, computed from the 1D and 3D models, respectively, at
particular values of vG, as shown on Fig. 6. The accuracy
metric, η, evaluates the precision of the overall fit (and is
expected to be close to 1), while the ratio metric, ρ, indicates
whether the model under-predicts (,1) or over-predicts (.1)
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the 3D finite-element model at a specified value of
ground-level pile displacement.
Accuracy metric values have been computed for the 1D

(numerical) model for ‘ultimate displacements’ ηult determined
for 0, vG,D/10 and ‘small displacements’, ηsd, determined
for 0, vG,D/10 000 for all of the piles in the calibration set
for all relative densities. For DR¼ 75%, the accuracy metrics
are in the range from 0·92 to 0·98 for ηult and from 0·89 to 0·98
for ηsd. Values of the ratio metric evaluated at vG¼D/10 and
vG¼D/10 000 forDR¼ 75%, are in the range from0·93 to 1·07
and from 0·88 to 1·08, respectively. These results indicate a
close match between the 1D (numerical) model and the 3D
calibration data. Similarly close agreement was obtained for
the other relative density cases.

PARAMETRIC SOIL REACTION CURVES
Selection and calibration of the parametric soil reaction curves
For a practical design tool, general forms of the soil

reaction curves are required that are applicable to pile
configurations not included in the calibration set. The
current form of the PISA design model employs the
four-parameter form in equation (1) to represent the soil
reaction curves. Soil reaction curves based on this function
are referred to as ‘parametric soil reaction curves’.
Values of the parameters required to fit the parametric soil

reaction curves to the numerical data for each particular
relative density are determined by way of a two-stage process,
conducted over the full set of piles in each calibration set.
A final, third, stage is employed to determine the calibration
parameters for the GDSM. These calibration procedures are
described below and summarised in Fig. 7.
The conic function employed to represent the soil reactions

is intended for x̄; ȳ � 0 only (i.e. in the positive quadrant).
Depending on the direction of the applied load and the
adopted sign convention, values of x̄; ȳ extracted from the
calibration analyses may be negative. Also, for the distributed
load and moment components, the direction of x̄; ȳmay vary
with position along the pile. The process of fitting the conic
function to the numerical data is conducted by first mapping
all of the numerical data into the positive quadrant. In the
subsequent implementation in the 1D finite-element model,
the soil reaction curves for the full range of x̄ (positive and
negative) are specified on the basis that the response in the
third quadrant (x̄; ȳ , 0) is identical to that in the first
quadrant, but with appropriate sign changes.

First-stage calibration
Distributed lateral load soil reaction curves. Example data,
for pile C4; DR¼ 75%, on the normalised distributed lateral

load numerical soil reaction curves at selected depths, z, are
shown in Fig. 8(a). At shallow depths, (i.e. z/D¼ 0·23 and
1·08) where the displacements are relatively large, a peak,
followed by post-peak softening, is apparent in the numerical
curves. This behaviour is likely to be associated with the
dilation characteristics of the soil as represented in the cali-
bration analyses, and was typically observed in the distributed
lateral load numerical data. Since softening cannot be
represented with the selected conic function, a simplified
representation is adopted. At greater depths (e.g. z/D¼ 2·33
and 5·97 in Fig. 8(a)) the soil reaction curve does not reach a
peak. The following calibration process is adopted.

(a) The value of the ultimate normalised lateral load, p̄u, is
taken as the value of the numerical soil reaction curve at
large displacement (i.e. the final increment of the
analysis). For softening behaviour, this value of p̄u is
initially reached earlier in the analysis; in this case the
ultimate normalised displacement v̄pu is selected as the
value at the first increment of the numerical soil reaction
curve at which p̄u is exceeded. Otherwise v̄pu is taken as
the value at the final analysis increment.
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(b) The initial stiffness kp is determined by proportional
least-squares fitting the linear expression p̄ ¼ kpv̄ to the
numerical soil reaction curve for 0 , p̄ , 0�1.

(c) The curvature parameter, np, is determined by
minimising the proportional least-square error between
the numerical data and the conic function, for the full
range of the data.

Distributed lateral load parameters determined for all of the
piles in the calibration set, for DR¼ 75%, are plotted in
Fig. 9. To develop functions (referred to as ‘depth variation
functions’) to represent the dependency of the parameters
on depth, z, it is convenient to employ normalised depth
parameters that collapse the data (as far as possible) onto a
single variable. Adopting a normalised depth z/D for kp and
np, and an alternative normalised depth z/L for v̄pu and p̄u,
appeared to provide the best approach; the parameters
are plotted with respect to these normalised depth variables
in Fig. 9 for all of the piles in the calibration set for
DR¼ 75%.

The data in Fig. 9 exhibit a certain amount of variability
and scatter along the pile. Some of these patterns can be
related directly to physical aspects of the problem. For
example, the cluster of points in Fig. 9(a) with relatively high
values of kp close to z/D¼ 2 all relate to the short monopiles
L/D¼ 2 employed in the calibration set. It appears that these
short, relatively stiff, monopiles attract a larger lateral soil
stiffness near their base than the more flexible L/D¼ 6 piles.
The apparent discontinuity in the kp data close to z/D¼ 2·6 is
associated with the behaviour of the L/D¼ 6 piles near the
pivot point (where the direction of the lateral displacements
changes sign with increasing depth). A similar influence of
the pivot point (the location of the pivot tends to increase in
depth as displacements increase) is seen in the data in
Fig. 9(c). Other features of Fig. 9 relate to the calibration
process. For example, the soil near the base of the L/D¼ 6
piles was not taken to failure in the calibration analyses (since
the lateral displacements induced near the base of the piles
were relatively small). As a consequence, the p̄u data in
Fig. 9(c) for relatively large depths seem unrealistically low.
This is actually of little consequence for the PISA design
model, since the model provided is only used within the

calibration space, soil failure will not be approached near the
pile base in any design calculations. A further aspect of
the data relates to the actual physics of the problem being
represented by an imperfect (Winkler) model. It is assumed
in the current model, for example, that the lateral distributed
load depends only on the lateral displacement, but there is
likely also to be a dependency on local rotation. Additionally,
the data are normalised with respect to the local soil stiffness
and strength; the actual lateral distributed load as deter-
mined from the finite-element analysis doubtless depends on
non-local spatial stiffness/strength variations. Moreover, the
spatial coupling within the soil is ignored. The influences of
these various approximations will be likely to vary with the
dimensions of the pile and the loading eccentricity. These
factors combine to generate the significant scatter observed
in Fig. 9 data.
Linear depth variation functions determined by least-

squares fitting to these data are also indicated in Fig. 9.
Although more complex depth variation functions could be
employed, the overall pile behaviour can be captured
remarkably well using just a simple linear fit, as discussed in
the paper by Burd et al. (2017) and further demonstrated
later in this paper. This is in spite of the significant variability
in the individual soil reaction curve parameters. Also shown in
Fig. 9, for comparison purposes, are the depth variation
functions determined using the final GDSM calibration.

Distributed moment curves. An example set of numerical
distributed moment soil reaction curves, for pile C4;
DR¼ 75%, is shown in Fig. 8(b). The response typically
tends to a limiting value after a sharp initial rise. At shallow
depths a peak is observed in the response. A bilinear form
of the parametric curve (nm=0) was selected in this case;
only two parameters therefore require calibration, as follows.

(a) A high value of initial stiffness is chosen, arbitrarily, as
km=20.

(b) The ultimate normalised moment, m̄u, is selected as the
mean of the values that satisfy m̄ . 0�9m̄final at each soil
reaction depth, where m̄final is the value of distributed
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moment at a given depth at the last computed
increment.

Base horizontal load curves. The base horizontal load
numerical soil reaction curves extracted from all of the
calibration analysis for DR¼ 75% are shown in Fig. 10(a).
Soil reaction curve parameters are determined as follows.

(a) The initial stiffness kH is selected by proportional
least-squares fitting the expression H̄B ¼ kHv̄H to the
numerical data for 0 , H̄B , 0�01.

(b) A displacement v̄HðH�maxÞ is established at which the
peak value of H̄B is first reached. The normalised
ultimate response parameter, H̄Bu, is calculated as the
average of the normalised base horizontal force values
for v̄H . v̄HðH�maxÞ.

(c) The ultimate displacement v̄Hu is selected as the first
normalised displacement at which the normalised
numerical soil reaction is equal to H̄Bu.

(d ) The curvature parameter, nH, is determined by
minimising the proportional least-square error between
the numerical data and the conic function.

Base moment curves. The base moment reaction curves
extracted from the calibration analyses for DR¼ 75% are

shown in Fig. 10(b). Soil reaction curve parameters are
determined as follows.

(a) The initial stiffness, kM, is calculated using proportional
least-squares regression for 0 , ψ̄M , 0�05.

(b) A value of ultimate rotation parameter is selected,
arbitrarily, at ψ̄Mu ¼ 50. This value exceeds the
computed normalised rotations and allows
reasonable values of the curvature parameter to be
selected.

(c) The curvature parameter, nH, and the ultimate
response parameter, M̄Bu, are selected by
minimising the proportional least-square
error between the numerical data and the conic
function.

It is seen from the above that threshold values for the
distributed lateral load (p̄ , 0�1), base horizontal force
(H̄B , 0�01) and base moment (M̄B , 0�05) were adopted
to determine the relevant initial stiffness parameters. These
threshold values are essentially arbitrary and were selected
for the current work, on the basis of experimentation, to
ensure a satisfactory match between the finite-element
calibrations and the calibrated 1D model, for small
displacements.
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Second-stage optimisation
To improve the fit between the 1D model and the 3D

finite-element calibration data, adjustments are made to the
depth variation function parameters to minimise the cost
function, kp2¼�0·9178

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

1� ηult;i
� �2

vuut þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

1� ηsd;i
� �2

vuut ð10Þ

where ηult,i and ηsd,i are the ultimate and small displacement
accuracy metrics, respectively, for pile Ci, i¼ 1:N and the
summation is taken over the piles in the calibration set
(N¼ 11 forDR¼ 75% andN¼ 9 for the other relative density
cases). This process was conducted, separately, for each
relative density using optimisation routines implemented in
Matlab.

The parameters from the first-stage calibration were used
as initial values for this optimisation process. All parameters
were allowed to vary by up to ± 50% of their initial value,
subject to an upper limit of 1·0 on the curvature parameters,
and the need for the soil reaction curve parameters to be
non-negative at all pile locations.

The form of the depth variation functions developed
during this process is indicated in Table 5. These functions
require the specification of a total of 22 parameters;
parameter values determined for DR¼ 75% at the end of
this second stage (stage 2) are listed in Table 5. Values
calculated at the ground surface and at the base of a pile of
length L/D¼ 2 and L/D¼ 6, for DR¼ 75%, are also
tabulated.

Third stage optimisation; relative density functions
The GDSM employs simple functions – linear and

constant – to represent the dependency of each depth
variation parameter on relative density; these are referred
to as ‘relative density functions’. If linear functions were to be
adopted for all of the (22) model parameters, then a total of
44 relative density parameters would require calibration. It is
desirable, therefore, to reduce the calibration space by

assigning at least some of the relative density parameters to
be constant.
The relative density function forms were chosen in two

stages. Initially (stage 3a) the m, HB and MB components
were considered. (The relative density functions for the
distributed lateral load – the dominant reaction component
in terms of overall pile response – were determined in a
subsequent process.) Depth variation parameters, from
stage 2, for m, HB and MB were inspected. Some of the
depth variation parameters – for example, the parameter nM
plotted in Fig. 11(a) – indicated a dependency on relative
density; linear relative density functions were assigned to
these parameters. In other cases – for example, the parameter
kM plotted in Fig. 11(b) – where no obvious trend was
apparent, constant relative density functions were assigned.
An initial set of calibrated relative density functions for the
m, HB and MB components, based on these chosen relative
density function forms, was then determined by least-squares
fitting to the stage 2 data.
In a subsequent stage (stage 3b) choices were made on the

relative density forms for the distributed lateral load. This
was done by re-determining the individual depth variation
parameters for the distributed lateral load only, for each
reference relative density, by minimising the cost function in
equation (10). These computations employed the relative
density functions from stage 3a to define the model
parameters for m, HB and MB. It was discovered that this
process reduced the scatter in the distributed lateral load
depth variation parameters and therefore facilitated the
selection of appropriate relative density function forms for
this component. Distributed lateral load parameters which,
at this stage, exhibited a consistent dependency on relative
density (e.g. the parameter np), Fig. 12(a), had a linear
function of relative density assigned to them. The one
parameter that did not exhibit an obvious trend (kp2 shown
in Fig. 12(b)) was assigned to be a constant.
The system of relative density functions developed in

this way is specified by a set of 39 parameters. A final
optimisation (stage 3c) was conducted over all of these
parameters to minimise the cost function in equation (10).
The relative density functions employing this final set
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of GDSM parameters are specified in Table 6. Note that
the fitting process across the relative densities leads
to marginal differences between the evaluation of the
functions in Table 6 (stage 3c) and the results shown in
Table 5 (stage 2).

Convergence study
An indicative convergence study has been conducted in

which the 1D (GDSM) model (i.e. a form of the 1D model in

which the soil reaction curves are determined by the GDSM)
is employedwithDR¼ 75%, for piles C1 and C4, to investigate
the sensitivity of the results to the size of the embedded pile
and soil elements employed in the model. Calculations were
conducted for embedded element lengths of between 0·1 m
and 10 m for C1 (L¼ 20 m) and between 0·5 m and 20 m for
C4 DR¼ 75%. Computed values of the lateral loads ηsd and
Hsd at vG¼D/10 and vG¼D/10 000, respectively, are listed in
Table 7; this table also lists errors in the computed lateral load
relative to the finest mesh used in each case.

Table 5. General forms of depth variation functions employed in the sand modelling framework, calibrated within the parameter space set out in
Table 4

Soil reaction
component

Soil reaction parameter Depth variation
functions

Depth variation
parameters for
DR = 75%

Value
at

surface

Value at
base of
L/D = 2

pile

Value at
base of
L/D = 6

pile

Distributed
lateral load, p

Ultimate displacement, v̄pu v̄pu v̄pu ¼ 64�78 64·78 64·78 64·78

Initial stiffness, kp kp1 þ kp2
z
D

kp ¼ 8�64� 0�81 z
D

8·64 7·02 3·78

Curvature, np np np¼ 0·966 0·966 0·966 0·966

Ultimate reaction, p̄u p̄u1 þ p̄u2
z
L

p̄u ¼ 20�86� 5�83 z
L

20·86 15·03 15·03

Distributed
moment, m

Ultimate rotation, ψ̄mu ψ̄mu n/a n/a n/a n/a

Initial stiffness, km km km¼ 18·1 18·1 18·1 18·1

Curvature, nm nm nm¼ 0·0 0·0 0·0 0·0

Ultimate moment, m̄u m̄u1 þ m̄u2
z
L

m̄u ¼ 0�23� 0�05 z
L

0·23 0·18 0·18

Base horizontal
force, HB

Ultimate displacement, v̄Hu v̄Hu1 þ v̄Hu2
L
D

v̄Hu ¼ 2�13� 0�31 L
D

n/a 1·51 0·27

Initial stiffness, kH kH1 þ kH2
L
D

kH ¼ 3�28� 0�37 L
D

n/a 2·54 1·06

Curvature, nH nH1 þ nH2
L
D

nH ¼ 0�83� 0�058 L
D

n/a 0·714 0·482

Ultimate reaction, H̄Bu H̄Bu1 þ H̄Bu2
L
D

H̄Bu ¼ 0�63� 0�07 L
D

n/a 0·49 0·21

Base moment,
MB

Ultimate rotation, ψ̄Mu ψ̄Mu ψ̄Mu ¼ 49�4 n/a 49·4 49·4

Initial stiffness, kM kM kM¼ 0·30 n/a 0·30 0·30

Curvature, nM nM nM¼ 0·86 n/a 0·86 0·86

Ultimate reaction, M̄Bu M̄Bu1 þ M̄Bu2
L
D

M̄Bu ¼ 0�39� 0�05 L
D

n/a 0·29 0·09

Depth variation parameters for DR¼ 75% determined from the stage 2 optimisation, with values for selected cases also listed.
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–0·5

0
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Fig. 12. Example data for the variation of soil reaction curve
parameters with relative density. (a) Indicates data on np and (b)
indicates data on kp2, both sets determined at stage 3b. For
comparison purposes the relative density functions corresponding to
the GDSM are also indicated
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Fig. 11. Example data for the variation of soil reaction curve
parameters with relative density. (a) Indicates data on nM and (b)
indicates data on kM, both determined at the end of stage 2. For
comparison purposes, the relative density functions corresponding to
the GDSM are also indicated
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The results indicate that Hult is remarkably tolerant of
employing a relatively coarse mesh for both piles. In all cases,
even for the coarsest meshes, the error is less than 1%. The
small displacement response appears more sensitive to
element size, however. In this case, for both piles, embedded
element lengths of 5 m or less are required to achieve an error
of less than 1%.

The process conducted to calibrate the GDSM employed a
standard embedded element length of 2·5 m. This conver-
gence study suggests that modelling errors associated with
mesh discretisation effects in the model calibration process
are likely to be negligible.

ANALYSIS OF THE CALIBRATION CASES USING
THE GDSM
The H–vG performances of piles C1 (D=10 m, L=20 m)

and C4 (D=10 m, L=60 m) computed using the 1D
(GDSM) model for DR¼ 75% are shown in Fig. 13. A
close fit is obtained between the 1D model and the
calibration data. The numerical soil reaction curves, together
with the parametric curves determined using the GDSM, for
the distributed lateral load, are plotted in Fig. 14(a) (for the
full range of displacements) and in Fig. 14(b) (for small
displacements). It is clear that differences exist between
the two sets of data. Although the GDSM soil reaction

Table 6. Relative density functions for the GDSM, calibrated for 2� (L/D)� 6; 5� (h/D)� 15; 45%�DR� 90%

Soil reaction component Soil reaction parameter Relative density functions

Distributed lateral load, p Ultimate displacement, v̄pu v̄pu ¼ 146�1� 92�11DR
Initial stiffness, kp kp1¼ 8·731� 0·6982DR

kp2¼�0·9178
Curvature, np np¼ 0·917þ 0·06193DR
Ultimate reaction, p̄u p̄u1 ¼ 0�3667þ 25�89DR

p̄u2 ¼ 0�3375� 8�900DR
Distributed moment, m Ultimate rotation, ψ̄mu Given by m̄u=km

Initial stiffness, km km¼ 17·00
Curvature, nm nm¼ 0·0
Ultimate moment, m̄u m̄u1 ¼ 0�2605

m̄u2 ¼ �0�1989þ 0�2019DR
Base horizontal force, HB Ultimate displacement, v̄Hu v̄Hu1 ¼ 0�5150þ 2�883DR

v̄Hu2 ¼ 0�1695� 0�7018DR
Initial stiffness, kH kH1¼ 6·505� 2·985DR

kH2¼�0·007969� 0·4299DR
Curvature, nH nH1¼ 0·09978þ 0·7974DR

nH2¼ 0·004994� 0·07005DR
Ultimate reaction, H̄Bu H̄Bu1 ¼ 0�09952þ 0�7996DR

H̄Bu2 ¼ 0�03988� 0�1606DR
Base moment, MB Ultimate rotation, ψ̄Mu ψ̄Mu ¼ 44�89

Initial stiffness, kM kM¼ 0·3515
Curvature, nM nM¼ 0·300þ 0·4986DR
Ultimate reaction, M̄Bu M̄Bu1 ¼ 0�09981þ 0�3710DR

M̄Bu2 ¼ 0�01998� 0�09041DR

Note: In these relative density functions, the value of DR is expressed as a decimal (i.e. DR¼ 0·75 for sand with 75% relative density). The
relative density functions relate to the depth variation function forms specified in Table 5. The relative density functions are specified in the
table to a precision of four significant figures; parameters with this precision were adopted in the 1D model computations described in the
current paper. This relatively precise form of the data, selected to be suitable for numerical computations, should not be interpreted as being
indicative of the perceived accuracyof these expressions. For a general consideration of the trends and characteristics of the soil reaction curves,
employing the data at a lower level of precision (e.g. two significant figures) might be more appropriate.

Table 7. Convergence study results for piles C1 and C4; DR= 75%

Number of
embedded
elements

Embedded element
size: m

Hult: MN Errorult: % Hsd: MN Errorsd: %

C1
200 0·1 25·5510 0·0000 0·5384 0·0000
40 0·5 25·5507 �0·0012 0·5385 0·0054
20 1 25·5491 �0·0077 0·5386 0·0209
10 2 25·5529 0·0074 0·5388 0·0739
4 5 25·6273 0·2986 0·5410 0·4812
2 10 25·6202 0·2707 0·5487 1·8962

C4
120 0·5 174·3406 0·0000 0·7556 0·0000
60 1 174·3434 0·0016 0·7557 0·0119
24 2·5 174·3623 0·0124 0·7562 0·0902
12 5 174·4155 0·0429 0·7583 0·3591
6 10 174·7061 0·2096 0·7666 1·4576
4 15 174·8272 0·2791 0·7873 4·1995
3 20 175·2942 0·5470 0·8153 7·9028

BURD, TABORDA, ZDRAVKOVIĆ ETAL.1060
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curves are tailored to provide a representation of the 3D
finite-element data across the complete set of calibration
analyses, they can exhibit a tendency, apparent in Fig. 14, to

depart from the 3D calibration data for individual piles at a
local level. Experience from the use of the 1D model
indicates, however, that it is able to reproduce the overall
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Fig. 13. Comparisons between the 3D finite-element calibration analyses and the 1D (GDSM) model, DR= 75%: (a), (b) show data for pile C1
(D = 10 m, L = 20 m); (c), (d) show data for pile C4 (D = 10 m, L = 60 m)
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behaviour of the calibration piles to a high accuracy,
although at a local level, significant differences can exist
between the calibration data and the parametric soil reaction
curves.

Table 8 provides the performance metrics for the appli-
cation of the GDSM to the full range of calibration piles,
showing an excellent fit of the model to the data.

DESIGN EXAMPLES
To demonstrate the predictive capability of the 1D

(GDSM) model, various design examples have been con-
sidered. The geometries of these example cases, specified in
Table 9, are selected to fall within the calibration space but to
differ from the geometric conditions employed for the

calibration piles. Values of relative density have been
chosen that fall within the calibration space but not at the
original calibration densities.
The load–displacement responses computed for pile D2t

using the 1D (GDSM) model and, separately, with corres-
ponding 3D finite-element models, are shown in Fig. 15, for
relative densities 55% and 85%. A close match is observed
between the two data sets. Fig. 15 also shows excellent
agreement of the bending moments induced in the embedded
portions of the piles, determined for DR¼ 85% (whereHult is
the lateral load determined from the 3D finite-element
analysis at vG¼ 0·1D) and also for H¼ 0·5Hult.
Values of accuracy and ratio metrics for a set of 13 design

example cases are listed in Table 10. These data, which
indicate a close match between the 1D (GDSM) model and
corresponding 3D finite-element results, support the assump-
tion implicit in the PISA methodology, that the 1D model
provides an efficient means of interpolating the overall pile
response computed using the 3D calibration calculations
to other pile geometries and relative densities within the
calibration space.

DISCUSSION AND CONCLUDING REMARKS
The PISA design model provides a rapid means of

conducting design calculations for monopile foundations
for offshore wind turbines. This paper demonstrates an
application of the model to homogeneous marine sand
sites, complementing the modelling approach described in
the paper by Byrne et al. (2020) for glacial clay till soils. The
model is capable of delivering predictions of performance
that closely match the results obtained from equivalent 3D
finite-element models.
The paper describes a calibration process based on the soil

conditions at the PISA sand site in Dunkirk. This calibration
is considered to provide a realistic model for monopiles
installed at offshore sand sites where the characteristics of the
sand are similar to the Flandrian sand encountered at
Dunkirk and where the monopile dimensions fall within
the calibration space. In other cases, application of the model
may require a separate calibration exercise. The model
has been demonstrated for monopiles with uniform wall
thickness. However, the model can be applied straight-
forwardly, to piles with variations in wall thickness along
their embedded length, by the specification of appropriate
structural properties for the beam elements in the 1D model.
The normalisations employed in the model do not explicitly
include the load eccentricity, h, although the optimised
calibration parameters are likely to depend on the range of
h/D employed in the calibration process. It therefore follows
that the model should not be used for values of h/D
(or indeed any other pile parameters) that fall outside the
calibration space.
The PISA design model is shown to reproduce the overall

behaviour of the calibration piles, even though at a local level
significant differences can exist between the numerical soil
reaction curves and the calibrated model. This apparently
well-conditioned aspect of the model is considered to be
due to the overall pile performance being obtained by

Table 8. Accuracy and ratio metrics determined for the 1D (GDSM)
model for all calibration piles

Relative
density

Pile
reference

ρsd ρult ηsd ηult

DR¼ 45% C1 0·96 1·09 0·96 0·93
C2 0·93 1·09 0·93 0·93
C4 1·03 1·04 0·97 0·95
C5 0·99 1·03 0·99 0·96
C6 1·02 0·98 0·98 0·98
C8 1·09 1·00 0·91 0·98
C9 1·05 0·99 0·94 0·99
C10 0·98 1·05 0·98 0·96
C11 1·05 1·03 0·95 0·96

DR¼ 60% C1 0·94 1·08 0·95 0·96
C2 0·92 1·07 0·92 0·96
C4 1·01 1·03 0·99 0·97
C5 0·98 1·02 0·98 0·98
C6 1·00 0·93 0·99 0·91
C8 1·07 0·98 0·92 0·99
C9 1·04 0·96 0·95 0·98
C10 0·96 1·02 0·97 0·98
C11 1·04 1·01 0·96 0·98

DR¼ 75% C1 0·93 1·02 0·94 0·97
C2 0·91 1·02 0·91 0·96
C3 0·94 1·02 0·95 0·96
C4 1·00 1·00 1·00 0·99
C5 0·97 0·99 0·97 0·99
C6 0·99 0·92 0·99 0·90
C7 1·00 0·89 0·98 0·88
C8 1·07 0·95 0·92 0·98
C9 1·03 0·94 0·96 0·97
C10 0·95 0·98 0·96 0·94
C11 1·03 0·98 0·97 0·99

DR¼ 90% C1 0·91 1·04 0·92 0·98
C2 0·89 1·04 0·89 0·99
C4 0·99 1·02 0·99 0·95
C5 0·95 1·01 0·95 0·97
C6 0·97 0·94 0·98 0·95
C8 1·05 1·00 0·94 0·97
C9 1·02 0·99 0·97 0·98
C10 0·93 1·00 0·95 0·99
C11 1·01 1·01 0·98 0·96

Average 0·99 1·00 0·96 0·96
CoV 5·14% 4·52%

Table 9. Pile geometries and load eccentricity for the design example piles

Pile reference D: m h: m h/D L: m h/L L/D t: mm D/t

D1 7·5 37·5 5 22·5 1·67 3 68 110
D2 8·75 87·5 10 35 2·5 4 91 96
D2t 8·75 87·5 10 35 2·5 4 150 58
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integrating the soil reaction curves along the entire length of
the foundation. Provided that significant systematic errors
are absent, this averaging process appears to have the
consequence that the model is remarkably tolerant of
imperfect fitting of the data at a local level.
The approximate nature of the Winkler modelling

approach adopted in the PISA design model has a number
of implications. First, as is indicated by the considerable
scatter in the data in Fig. 9, the model is unable to represent
the pile–soil interaction at all points along the pile in a
high-fidelity manner. The stage 1 calibration process is
modestly successful at representing the overall monopile
performance, but the performance of the model was found

to be enhanced by the use of a further optimisation process
stage 2. Although the stage 2 process (and to an extent the
stage 3 process) improves the overall performance of the
model, it does not necessarily lead to an improved represen-
tation of the actual physics of the local soil–pile interaction.
Instead, the stage 2 and stage 3 optimisation should be
understood as a pragmatic expedient to calibrate an
imperfect model (Winkler) to provide high-fidelity predic-
tions of behaviour within a predefined calibration space. It is
also necessary to recognise that any modelling errors inherent
in the 3D finite-element calibration analyses will be inherited
by the design model.
The current form of the PISA design model is restricted

to monotonic loading. Extensions to cyclic loading are
feasible – for example by the development of cycle-by-cycle
soil reaction curves, or the implementation of approaches in
which the (monotonic) soil reaction curves are modified to
reflect the influence of previous load cycling. The model
is demonstrated for homogeneous soil deposits only, whereas
offshore sites usually consist of layered profiles, often
involving interbedded clays and sands. This can be addressed
using the PISA design model by assigning clay soil reaction
curves (Byrne et al., 2020) to the clay layers and employing
the current model for the sand layers; Byrne et al. (2019a)
describe an initial evaluation of this approach.
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Table 10. Accuracy and ratio metrics determined for the design
examples

Relative
density

Pile
reference

ρsd ρult ηsd ηult

DR¼ 45% D1 0·97 1·04 0·97 0·96
D2 1·03 1·06 0·97 0·94
D2t 1·07 1·06 0·93 0·94

DR¼ 60% D1 0·95 0·99 0·96 0·99
D2 1·02 1·01 0·98 0·98

DR¼ 75% D1 1·03 0·93 0·96 0·95
D2 1·01 0·96 0·99 0·98

DR¼ 90% D1 0·92 0·96 0·93 0·97
D2 0·99 1·00 0·99 0·96
D2t 1·02 0·99 0·98 0·96

DR¼ 55% D2t 1·05 1·04 0·94 0·96
DR¼ 70% D2t 1·04 0·97 0·95 0·98
DR¼ 85% D2t 1·02 0·97 0·97 0·98
Average 1·01 1·00 0·96 0·97
CoV 4·13% 4·15%
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APPENDIX: IMPLEMENTATION DETAILS FOR THE
SAND MODELLING FRAMEWORK

The dependence of distributed moment on the distributed lateral
soil reaction in the sand modelling framework requires some special
consideration for the numerical implementation of the PISA design
model. The finite-element formulation adopted for the model
employs soil finite elements that have compatible displacements
with the finite elements used to model the pile (see Byrne et al.
(2020) for further details). A soil finite element of length Le
connected to nodes 1 and 2 with depth coordinates Z1 and Z2,
respectively, is illustrated in Fig. 16.

The lateral displacement within this soil element is defined by the
interpolation

v ¼ N1V1 � N2Ψ1 þ N2 þN4ð Þγ0 þ N3V2 � N4Ψ2 ð11Þ
where V1, V2 are the values of lateral displacement and Ψ1, Ψ2 are
the pile cross-section rotation at nodes 1 and 2, respectively. The
functions Ni are the conventional set of Hermite cubic interpolation
polynomials, given by

N1 ¼ 1� 3α2 þ 2α3 ð12Þ

N2 ¼ αLeð1� 2αþ α2Þ

N3 ¼ 3α2 � 2α3

N4 ¼ αLeð�αþ α2Þ

where α¼ (z�Z1)/Le and z is a general depth coordinate of a point
within the element. The shear strain, γ0, is assumed constant within
each beam element; since the soil and beam elements share the same
interpolation, the shear strain γ0 in the beam elements also appears
as a degree of freedom for the soil elements in equation (11). The
local displacement v and rotation ψ within each soil element is given
by

v ¼ BU ð13Þ
where v ¼ ð v ψ ÞT is the local displacement/rotation vector, U ¼
ðV1 Ψ1 γ0 V2 Ψ2 ÞT is a vector containing the element
displacement degrees of freedom and

B ¼ N1

�N ′1

�N2

N ′2

N2 þN4ð Þ
�ðN ′2 þN ′4 � 1Þ

N3

�N ′3

�N4

N ′4

" #
ð14Þ

where N′i denotes a shape function derivative with respect to z. The
stiffness matrix k for the soil elements is determined from

k ¼
ðZ2

Z1

BTDB dz ð15Þ

where D is an appropriate constitutive matrix. The tangent
constitutive matrix, Dt, for the soil element is

Dt ¼ @p
@v

¼
dp
dv

dp
dψ

dm
dv

dm
dψ

2
6664

3
7775 ð16Þ

where p ¼ ð p m ÞT is the local distributed load/moment vector.
The terms in the first row of Dt are determined from the normalised
soil reaction curve for p̄ in a straightforward way as

dp
dv

¼ G0
dp̄
dv̄

;
dp
dψ

¼ 0 ð17Þ

As a consequence of the normalisation adopted for the distributed
moment (see equation (6)), the second row ofDt matrix contains two
non-zero terms which are evaluated as

dm
dv

¼ m̄DG0sgnðpÞ dp̄
dv̄

;
dm
dψ

¼ jpjDG0

σvi

dm̄
dψ̄

ð18Þ

where sgn(p) represents the signum function.

NOTATION
D constitutive matrix
Dt tangent constitutive matrix
D pile diameter

DR soil relative density
e0 initial soil void ratio
G0 small-strain soil shear modulus
H lateral load applied to pile

H1D lateral load applied to pile, computed with the 1D model
H3D lateral load applied to pile, computed with the 3D model
HB horizontal force at pile base
HG lateral load applied to pile at ground level
Hsd lateral load applied to pile at a ground-level displacement

of vG¼D/10 000
Hult lateral load applied to pile at a ground-level displacement

of vG¼D/10
h load eccentricity
k initial stiffness of parametric soil reaction curve
k soil finite-element stiffness matrix
L pile embedded length
Le length of soil finite element
MB moment at pile base
MG moment applied to pile at ground level
m distributed moment acting on monopile
Ni conventional set of Hermite cubic interpolation

polynomials
n curvature parameter for parametric soil reaction curve
p distributed lateral load applied to pile
p local distributed load/moment vector
su undrained shear strength of soil
t pile wall thickness
U vector containing element displacement degrees of

freedom
V1, V2 lateral displacement values

v lateral pile displacement
v local displacement/rotation vector

vB lateral pile displacement at pile base
vG ground-level lateral pile displacement
x̄u ultimate displacement for parametric soil reaction curve
ȳu ultimate load for parametric soil reaction curve

Z1, Z2 depth coordinates of nodes 1 and 2
z depth coordinate along the pile
α normalised depth coordinate
η accuracy metric

ηsd small displacement accuracy metric (ground-level pile
displacements up to D/10 000)

1 2

z

Le

Fig. 16. Illustration of a soil finite element within the PISA design
model implementation
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ηult ultimate displacement accuracy metric (ground-level pile
displacements up to D/10)

ρ ratio metric
ρsd small displacement ratio metric (ground-level pile

displacements up to D/10 000)
ρult ultimate displacement ratio metric (ground-level pile

displacements up to D/10)
σvi initial vertical effective stress in the soil

Ψ1, Ψ2 pile cross-section rotation at nodes 1 and 2
ψ rotation of the pile cross-section

ψB rotation of the pile cross-section at the pile base
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