
 
 

Delft University of Technology

On the worst-case complexity of the gradient method with exact line search for smooth
strongly convex functions

De Klerk, Etienne; Glineur, François; Taylor, Adrien B.

DOI
10.1007/s11590-016-1087-4
Publication date
2016
Document Version
Final published version
Published in
Optimization Letters

Citation (APA)
De Klerk, E., Glineur, F., & Taylor, A. B. (2016). On the worst-case complexity of the gradient method with
exact line search for smooth strongly convex functions. Optimization Letters, 11(7), 1185–1199.
https://doi.org/10.1007/s11590-016-1087-4

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s11590-016-1087-4
https://doi.org/10.1007/s11590-016-1087-4


Optim Lett (2017) 11:1185–1199
DOI 10.1007/s11590-016-1087-4

ORIGINAL PAPER

On the worst-case complexity of the gradient method
with exact line search for smooth strongly convex
functions

Etienne de Klerk1,2 · François Glineur3 ·
Adrien B. Taylor3

Received: 29 June 2016 / Accepted: 6 October 2016 / Published online: 14 October 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We consider the gradient (or steepest) descent method with exact line
search applied to a strongly convex function with Lipschitz continuous gradient. We
establish the exact worst-case rate of convergence of this scheme, and show that this
worst-case behavior is exhibited by a certain convex quadratic function. We also give
the tight worst-case complexity bound for a noisy variant of gradient descent method,
where exact line-search is performed in a search direction that differs from negative
gradient by at most a prescribed relative tolerance. The proofs are computer-assisted,
and rely on the resolutions of semidefinite programming performance estimation prob-
lems as introduced in the paper (Drori and Teboulle, Math Progr 145(1–2):451–482,
2014).
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1186 E. de Klerk et al.

1 Introduction

The gradient (or steepest) descent method for unconstrained method was devised by
Augustin–Louis Cauchy (1789–1857) in the nineteenth century, and remains one of
the most iconic algorithms for unconstrained optimization. Indeed, it is usually the
first algorithm that is taught during introductory courses on nonlinear optimization. It
is therefore somewhat surprising that the worst-case convergence rate of the method
is not yet precisely understood for smooth strongly convex functions.

In this paper, we settle the worst-case convergence rate question of the gradient
descent method with exact line search for strongly convex, continuously differentiable
functions f with Lipschitz continuous gradient. Formally we consider the following
function class.

Definition 1.1 A continuously differentiable function f : R
n → R is called

L-smooth, μ-strongly convex with parameters L > 0 and μ > 0 if

1. x �→ f (x) − μ
2 ‖x‖2 is a convex function on Rn , where the norm is the Euclidean

norm;
2. ‖∇ f (x + �x) − ∇ f (x)‖ ≤ L‖�x‖ holds for all x ∈ R

n and �x ∈ R
n .

The class of L-smooth, μ-strongly convex functions on R
n will be denoted by

Fμ,L(Rn).

Note that, if f is twice continuously differentiable, then f ∈ Fμ,L(Rn) is equivalent
to

L I � ∇2 f (x) � μI ∀x ∈ R
n

where the notation A � B for symmetric matrices A and B means the matrix A − B
is positive semidefinite, and I is the identity matrix. Equivalently, the eigenvalues of
the Hessian matrix ∇2 f (x) lie in the interval [μ, L] for all x.

The gradient method with exact line search may be described as follows.

Our main result may now be stated concisely.

Theorem 1.2 Let f ∈ Fμ,L(Rn), x∗ a global minimizer of f onRn, and f∗ = f (x∗).
Each iteration of the gradient method with exact line search satisfies

f (xi+1) − f∗ ≤
(
L − μ

L + μ

)2

( f (xi ) − f∗) i = 0, 1, . . . (1)
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On the worst-case complexity of the gradient method 1187

Note that the result in Theorem 1.2, which establishes a global linear convergence
rate on objective function accuracy, is known for the case of quadratic functions in
Fμ,L(Rn), that is for functions of the form

f (x) = 1

2
xTQx + cTx

where c ∈ R
n , and the eigenvalues of the n × n symmetric positive definite matrix

Q lie in the interval [μ, L]; see e.g. [1, §1.3], [9, pp. 60–62], or [3, pp. 235–238].
Moreover, the bound (1) is known to be tight for the following example.

Example 1.3 Consider the following quadratic function from [1, Example on p. 69]:

f (x) = 1

2

n∑
i=1

λi x
2
i

where

0 < μ = λ1 ≤ λ2 ≤ · · · ≤ λn = L ,

and the starting point

x0 =
(
1

μ
, 0, . . . , 0,

1

L

)T

.

One may readily check that the gradient at x0 is equal to

∇ f (x0) = (1, 0, . . . , 0, 1)T

and that the minimum of the line-search from x0 in that direction is attained for step
γ = 2

L+μ
. One therefore obtains

x1 =
(
L − μ

L + μ

)
(1/μ, 0, . . . , 0,−1/L)T,

and, for all i = 0, 1, . . .

x2i =
(
L − μ

L + μ

)2i

x0, x2i+1 =
(
L − μ

L + μ

)2i

x1.

Since f∗ = 0, it is straightforward to verify that equality

f (xi+1) − f∗ =
(
L − μ

L + μ

)2

( f (xi ) − f∗) i = 0, 1, . . . ,

holds as required. ��
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1188 E. de Klerk et al.

•x∗
•x0 = [1/µ, 1/L]T

•x1

•x2

•x3

•x4

•x5

•x6

•x7

x1

x2

1√
L

1√
μ

Fig. 1 Illustration of Example 1.3 for the case n = 2 (small arrows indicate direction of negative gradient)

The construction in Example 1.3 is illustrated in Fig. 1 in the case n = 2, where the
ellipses shown are level curves of the objective function. Each step from xi to xi+1 is
orthogonal to the ellipse at xi (since it uses the steepest descent direction) and tangent
to the ellipse at xi+1 (because of the exact line-search direction), hence successive
steps are orthogonal to each other.

As an immediate consequence of Theorem 1.2 and Example 1.3, one has the fol-
lowing tight bound on the number of steps needed to obtain ε-relative accuracy on the
objective function for a given ε > 0.

Corollary 1.4 Given ε > 0, the gradient method with exact line search yields a
solution with relative accuracy ε for any function f ∈ Fμ,L(Rn) after at most N =⌈
1
2 log

( 1
ε

)
/ log

(
L+μ
L−μ

)⌉
iterations, i.e.

f (xN ) − f∗
f (x0) − f∗

≤ ε,

where x0 is the starting point. Moreover, this iteration bound is tight for the quadratic
function defined in Example 1.3.

For non-quadratic functions in Fμ,L(Rn), only bounds weaker than (1) are known.
For example, in [3, p. 240], the following bound is shown:

( f (xi+1) − f∗) ≤
(
1 − μ

L

)
( f (xi ) − f∗) i = 0, 1, . . .

In [8, Theorem 3.4] a stronger result than Theorem 1.2 was claimed, but this was
retracted in a subsequent erratum,1 and only an asymptotic result is claimed in the
erratum.

A result related to Theorem 1.2 is given in [5] where Armijo-rule line search is used
instead of exact line search. An explicit rate in the strongly convex case is given there

1 The erratum is available at: http://users.iems.northwestern.edu/~nocedal/book/2ndprint.pdf.
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On the worst-case complexity of the gradient method 1189

in Proposition 3.3.5 on page 53 (definition of the method is (3.1.2) on page 44). More
general upper bounds on the convergence rates of gradient-type methods for convex
functions may be found in the books [6,7]. We mention one more particular result by
Nesterov [7] that is similar to our main result in Theorem 1.2, but that uses a fixed
step-length and relies on the initial distance to the solution.

Theorem 1.5 (Theorem2.1.15 in [7])Given f ∈ Fμ,L(Rn)andx0 ∈ R
n, the gradient

descent method with fixed step length γ = 2
μ+L generate iterates xi (i = 0, 1, 2, . . .)

that satisfy

f (xi ) − f∗ ≤ L

2

(
L − μ

L + μ

)2i

‖x0 − x∗‖2 i = 0, 1, . . .

Note that this result does not imply Theorem 1.2.

2 Background results

In this section we collect some known results on strongly convex functions and on the
gradient method. We will need these results in the proof of our main result, Theorem
1.2.

2.1 Properties of the gradient method with exact line search

Let xi (i = 1, 2, . . . , N ) be the iterates produced by the gradient method with exact
line search started at x0. Those iterates are defined by the following two conditions
for i = 0, 1, . . . , N − 1

xi+1 − xi + γ∇ f (xi ) = 0, for some γ ≥ 0, (2)

∇ f (xi+1)
T(xi+1 − xi ) = 0 (3)

where the first condition (2) states that we move in the direction of the negative
gradient, and the second condition (3) expresses the exact line search condition.

A consequence of those conditions is that successive gradients are orthogonal, i.e.

∇ f (xi+1)
T∇ f (xi ) = 0 i = 0, 1, . . . , N − 1. (4)

Instead of relying on conditions (2)–(3) that define the iterates of the gradient method
with exact line search, our analysis will be based on the weaker conditions (3)–(4),
which are also satisfied by other sequences of iterates.

2.2 Interpolation with functions in Fµ,L(R
n)

We now consider the following interpolation problem over the class of functions
Fμ,L(Rn).
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1190 E. de Klerk et al.

Definition 2.1 Consider an integer N ≥ 1 and given data {(xi , fi , gi )}i∈{0,1,...,N }
where xi ∈ R

n , fi ∈ R and gi ∈ R
n . If there exists a function f ∈ Fμ,L(Rn) such

that

f (xi ) = fi , ∇ f (xi ) = gi , ∀i ∈ {0, 1, . . . , N },

then we say that {(xi , fi , gi )}i∈{0,1,...,N } is Fμ,L -interpolable.

A necessary and sufficient condition for Fμ,L -interpolability in given in the next
theorem, taken from [11].

Theorem 2.2 ([11]) A data set {(xi , fi , gi )}i∈{0,1,...,N } is Fμ,L-interpolable if and
only if the following inequality

fi − f j − gTj (xi − x j ) ≥ 1

2(1 − μ/L)

×
(
1

L

∥∥gi − g j
∥∥2 + μ

∥∥xi − x j
∥∥2 − 2

μ

L
(g j − gi )T(x j − xi )

)

holds for all i �= j ∈ {0, 1, . . . , N }.
In principle, Theorem 2.2 allows one to generate all possible valid inequalities that

hold for functions in Fμ,L(Rn) in terms of their function values and gradients at a set
of points x0, . . . , xN . This will be essential for the proof of our main result, Theorem
1.2.

3 A performance estimation problem

The proof technique we will use for Theorem 1.2 is inspired by recent work on the
so-called performance estimation problem, as introduced in [2] and further developed
in [11]. The idea is to formulate the computation of the worst-case behavior of certain
iterative methods as an explicit semidefinite programming (SDP) problem. We first
recall the definition of SDP problems (in a form that is suitable to our purposes).

3.1 Semidefinite programs

We will consider semidefinite programs (SDPs) of the form

max
X=(xi j )∈Sn ,X�0,u∈R�

⎧⎨
⎩

n∑
i, j=1

ci j xi j +cTu

∣∣∣∣∣∣
n∑

i, j=1

a(k)
i j xi j +aTk u≤bk k=1, . . . ,m

⎫⎬
⎭ ,

(5)

where Sn is the set of symmetric matrices of size n, and matrices Ak =
(
a(k)
i j

)
∈ S

n

and the matrix C = (ci j ) ∈ S
n are given, as well as the scalars bk and vectors ak ∈ R

�

(k = 1, . . . ,m), and c ∈ R
�.
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On the worst-case complexity of the gradient method 1191

Since every positive semidefinite matrix X ∈ S
n is a Gram matrix, there exist

vectors v1, . . . , vn ∈ R
n such that xi j = vTi v j for all i, j . Thus the SDP problem (5)

may be equivalently rewritten as

max
vi∈Rn ,u∈R�

⎧⎨
⎩

n∑
i, j=1

ci jvTi v j + cTu

∣∣∣∣∣∣
n∑

i, j=1

a(k)
i j vTi v j + aTk u ≤ bk k = 1, . . . ,m

⎫⎬
⎭
(6)

which features terms that are linear in the inner products vTi v j in the objective function
and constraints. The associated dual SDP problem is

min
y∈Rm ,y≥0

{
bTy

∣∣∣∣∣
m∑

k=1

yk Ak − C � 0,
m∑

k=1

ykak = c

}
. (7)

We will later use the fact that each dual variable yk may be viewed as a (Lagrange)
multiplier of the primal constraint

∑n
i, j=1 a

(k)
i j vTi v j + aTk u ≤ bk .

3.2 Performance estimation of the gradient method with exact line search

Consider the following SDP problem, for fixed parameters N ≥ 1, R > 0, μ > 0 and
L > μ:

max fN − f∗
subject to

gTi+1(xi+1 − xi ) = 0 i ∈ {0, 1, . . . , N − 1}
gTi+1gi = 0 i ∈ {0, 1, . . . , N − 1}
{(xi , fi , gi )}i∈{∗,0,1,...,N } is Fμ,L -interpolable
g∗ = 0
f0 − f∗ ≤ R,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

where the variables are xi ∈ R
n , fi ∈ R and gi ∈ R

n (i ∈ {∗, 0, 1, . . . , N }).
Note that this is indeed an SDP problem of the form (6), with dual problem of the

form (7), since equalities and interpolability conditions are linear in the inner products
of variables xi and gi .

Lemma 3.1 The optimal value of the above SDP problem (8) is an upper bound on
f (xN ) − f∗, where f is any function from Fμ,L(Rn), f∗ is its minimum and xN is
the Nth iterate of the gradient method with exact line search applied to f from any
starting point x0 that satisfies f (x0)− f∗ ≤ R.

Proof Fix any f ∈ Fμ,L(Rn), and let x0, . . . , xN be the iterates of the gradientmethod
with exact line search applied to f . Now a feasible solution to the SDP problem is
given by

xi , fi = f (xi ), gi = ∇ f (xi ) i ∈ {∗, 0, . . . , N }.
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1192 E. de Klerk et al.

The objective function value at this feasible point is fN = f (xN ), so that the optimal
value of the SDP is an upper bound on f (xN ) − f∗. ��

We are now ready to give a proof of our main result. We already mention that the
SDP relaxation (8) is not used directly in the proof, but was used to devise the proof,
in a sense that will be explained later.

4 Proof of Theorem 1.2

A little reflection shows that, to proveTheorem1.2,we need only consider one iteration
of the gradient method with exact line search. Thus we consider only the first iterate,
given by x0 and x1, as well as the minimizer x∗ of f ∈ Fμ,L .

Set fi = f (xi ) and gi = ∇ f (xi ) for i ∈ {∗, 0, 1}. Note that g∗ = 0. The following
five inequalities are now satisfied:

1 : f0 ≥ f1 + gT1 (x0 − x1) + 1

2(1 − μ/L)

×
(
1

L
‖g0 − g1‖2 + μ‖x0 − x1‖2 − 2

μ

L
(g1 − g0)T(x1 − x0)

)

2 : f∗ ≥ f0 + gT0 (x∗ − x0) + 1

2(1 − μ/L)

×
(
1

L
‖g∗ − g0‖2 + μ‖x∗ − x0‖2 − 2

μ

L
(g0 − g∗)T(x0 − x∗)

)

3 : f∗ ≥ f1 + gT1 (x∗ − x1) + 1

2(1 − μ/L)

×
(
1

L
‖g∗ − g1‖2 + μ‖x∗ − x1‖2 − 2

μ

L
(g1 − g∗)T(x1 − x∗)

)

4 : −gT0 g1 ≥ 0

5 : gT1 (x0 − x1) ≥ 0.

Indeed, the first three inequalities are the Fμ,L -interpolability conditions, the fourth
inequality is a relaxation of (4), and the fifth inequality is a relaxation of (3).

We aggregate these five inequalities by defining the following positive multipliers,

y1 = L − μ

L + μ
, y2 = 2μ

(L − μ)

(L + μ)2
, y3 = 2μ

L + μ
, y4 = 2

L + μ
, y5 = 1, (9)

and adding the five inequalities together after multiplying each one by the correspond-
ing multiplier.
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On the worst-case complexity of the gradient method 1193

The result is the following inequality (as may be verified directly):

f1 − f∗ ≤
(
L − μ

L + μ

)2

( f0 − f∗) − μL(L + 3μ)

2(L + μ)2

×
∥∥∥∥x0 − L + μ

L + 3μ
x1 − 2μ

L + 3μ
x∗− 3L + μ

L2 + 3μL
g0 − L + μ

L2 + 3μL
g1

∥∥∥∥
2

− 2Lμ2

L2 + 2Lμ − 3μ2

∥∥∥∥x1 − x∗ − (L − μ)2

2μL(L + μ)
g0 − L + μ

2μL
g1

∥∥∥∥
2

. (10)

Since the last two right-hand-side terms are nonpositive, we obtain:

f1 − f∗ ≤
(
L − μ

L + μ

)2

( f0 − f∗).

Since x0 was arbitrary, this completes the proof of Theorem 1.2. ��

4.1 Remarks on the proof of Theorem 1.2

• First, note that we have proven a bit more than what is stated in Theorem 1.2.
Indeed, the result in Theorem 1.2 holds for any iterative method that satisfies the
five inequalities used in its proof.

• Although the proof of Theorem 1.2 is easy to verify, it is not apparent how the
multipliers y1, . . . , y5 in (9) were obtained. This was in fact done via preliminary
computations, and subsequently guessing the values in (9), through the following
steps:
1. The SDP performance estimation problem (8) with N = 1 was solved numer-

ically for various values of the parameters μ , L and R—actually, the values
of L and R can safely be fixed to some positive constants using appropriate
scaling arguments (see e.g., [11, Section 3.5] for a related discussion).

2. The optimal values of the dual SDPmultipliers of the constraints corresponding
to the five inequalities in the proof gave the guesses for the correct values
y1, . . . , y5 as stated in (9).

3. Finally the correctness of the guess was verified directly (by symbolic compu-
tation and by hand).

• The key inequality (10) may be rewritten in another, more symmetric way

( f1 − f∗) ≤ ( f0 − f∗)
(
1 − κ

1 + κ

)2

− μ

4

(
‖s1‖2
1 + √

κ
+ ‖s2‖2

1 − √
κ

)
,

where κ = μ/L is the condition number (between 0 and 1) and slack vectors s1
and s2 are

s1 = − (1 + √
κ)2

1 + κ

(
x0 − x∗ − g0/

√
Lμ

)
+

(
x1 − x∗ + g1/

√
Lμ

)
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1194 E. de Klerk et al.

s2 = (1 − √
κ)2

1 + κ

(
x0 − x∗ + g0/

√
Lμ

)
−

(
x1 − x∗ − g1/

√
Lμ

)
.

Note that the four expressions xi − x∗ ± gi/
√
Lμ expressions are invariant under

dilation of f , and that cases of equality in (10) simply correspond to equalities
s1 = s2 = 0.

• It is interesting to note that the known proof of Theorem 1.2 for the quadratic case
only requires the so-called Kantorovich inequality, that may be stated as follows.

Theorem 4.1 (Kantorovich inequality; see e.g. Lemma 3.1 in [1]) Let Q be a sym-
metric positive definite n × n matrix with smallest and largest eigenvalues μ > 0 and
L ≥ μ respectively. Then, for any unit vector x ∈ R

n, one has:

(xTQx)(xTQ−1x) ≤ (μ + L)2

4μL
.

Thus, the inequality (10) replaces the Kantorovich inequality in the proof of The-
orem 1.2 for non-quadratic f ∈ Fμ,L(Rn).

• Finally, we note that this proof can be modified very easily to handle the case
of the fixed-step gradient method that was mentioned in Theorem 1.5. Indeed,
observe that the proof aggregates the fourth and fifth inequalities with multipliers
y4 = 2

L+μ
and y5 = 1, which leads to the combined inequality

2

L + μ
(−gT0 g1) + gT1 (x0 − x1) ≥ 0 ⇔ gT1

(
x0 − 2

L + μ
g0 − x1

)
≥ 0.

Nownote that the gradientmethodwith fixed step γ = 2
L+μ

satisfies this combined
inequality (since the second factor in the left-hand side becomes zero), and hence
the rest of the proof establishes the same rate for this method as for the gradient
descent with exact line search.

Theorem 4.2 Let f ∈ Fμ,L(Rn), x∗ a global minimizer of f onRn, and f∗ = f (x∗).
Each iteration of the gradient method with fixed step length γ = 2

μ+L satisfies

f (xi+1) − f∗ ≤
(
L − μ

L + μ

)2

( f (xi ) − f∗) i = 0, 1, . . .

Note that Example 1.3 also establishes that this rate is tight. Hence we have the
relatively surprising fact that, when looking at the worst-case convergence rate of the
objective function accuracy, performing exact line-search is not better than using a
well-chosen fixed step length.

5 Extension to ‘noisy’ gradient descent with exact line search

Theorem 1.2 may be generalized to what we will call noisy gradient descent method
with exact linear search; see e.g. [1, p.59] where it is called gradient descent method
with (relative) error. Here the search direction at iteration i , say di , satisfies
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On the worst-case complexity of the gradient method 1195

‖ − ∇ f (xi ) − di‖ ≤ ε‖∇ f (xi )‖ i = 0, 1, . . . , (11)

where 0 ≤ ε < 1 is some given relative tolerance on the deviation from the negative
gradient. Note that the algorithm cannot be guaranteed to converge as soon as ε ≥ 1,
since di = 0 then becomes feasible.We recover the normal gradient descent algorithm
when ε = 0.

In the case of more general values of ε, one can for example satisfy the relative
error criterion by imposing a restriction of the type | sin θ | ≤ ε on the angle θ between
search direction di and the current negative gradient −∇ f (xi ).

Using a search direction di that satisfies (11) corresponds, for example, to an imple-
mentation of the gradient descent method where each component of −∇ f (xi ) is only
calculated to a fixed number of significant digits. It is also related to the so-called
stochastic gradient descent method that is used in training neural networks; see e.g.
[4] and the references therein.

Thus we consider the following algorithm:

One may show the following generalization of Theorem 1.2.

Theorem 5.1 Let f ∈ Fμ,L(Rn), x∗ a global minimizer of f onRn, and f∗ = f (x∗).
Given a relative tolerance ε, each iteration of the noisy gradient descent method with
exact line search satisfies

f (xi+1) − f∗ ≤
(
1 − κε

1 + κε

)2

( f (xi ) − f∗) i = 0, 1, . . . (12)

where κε = μ
L

(1−ε)
(1+ε)

.

When ε = 0, the rate becomes 1−κ
1+κ

= L−μ
L+μ

, which matches exactly Theorem
1.2, and the proof of Theorem 5.1 is a straightforward generalization of the proof
of Theorem 1.2. The key is again to consider a wider class of iterative methods that
satisfies certain inequalities. Here we use the inequalities:
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1196 E. de Klerk et al.

1 : f0 ≥ f1 + gT1 (x0 − x1) + 1
2(1−μ/L)

( 1
L ‖g0 − g1‖2 + μ‖x0 − x1‖2 − 2 μ

L (g1 − g0)T(x1 − x0)
)

2 : f∗ ≥ f0 + gT0 (x∗ − x0) + 1
2(1−μ/L)

( 1
L ‖g∗ − g0‖2 + μ‖x∗ − x0‖2 − 2 μ

L (g0 − g∗)T(x0 − x∗)
)

3 : f∗ ≥ f1 + gT1 (x∗ − x1) + 1
2(1−μ/L)

( 1
L ‖g∗ − g1‖2 + μ‖x∗ − x1‖2 − 2 μ

L (g1 − g∗)T(x1 − x∗)
)

4 : 0 ≥ gT1 (x1 − x0)
5 : 0 ≥ gT0 g1 − ε‖g0‖‖g1‖.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(13)

The first four inequalities are the same as before, and the fifth is satisfied by the iterates
of the noisy gradient descent with exact line search. Indeed, in the first iteration one
has:

0 = dT
0

g1
‖g1‖ (exact line search)

= (d0 + g0)T
g1

‖g1‖ − gT0 g1
‖g1‖

≤ ε‖g0‖ − gT0 g1
‖g1‖ [by Cauchy–Schwartz and (11)].

We rewrite the fifth inequality as the equivalent linear matrix inequality:

(
ε‖g0‖2 gT0 g1
gT0 g1 ε‖g1‖2

)
� 0. (14)

We first aggregate the first four inequalities in (13) by adding them together after
multiplication by the respective multipliers:

y1 = ρε, y2 = 2κε

1 − κε

(1 + κε)2
, y3 = 2κε

1 + κε

, y4 = 1,

where Lε = (1 + ε)L , με = (1 − ε)μ, κε = με

Lε
and ρε = 1−κε

1+κε
.

Next we define a positive semidefinite matrix multiplier for the linear matrix
inequality (14), namely (

aρε −a
−a a

ρε

)
� 0, (15)

with a = 1
Lε+με

, and add nonnegativity of the inner product between the left-hand-
side of (14) and the multiplier matrix (15) to the aggregated constraints. It can now be
checked that the resulting expression is the following (slight) generalization of (10)

f1 − f∗ ≤ ρ2
ε ( f0 − f∗) − Lμ(Lε − με)(Lε + 3με)

2(L − μ)(Lε + με)2

× ‖x0 + α1x1 − (1 + α1)x∗ + α2g0 + α3g1‖2

− 2Lμμε

(L − μ)(Lε + 3με)
‖x1 − x∗ + α4g0 + α5g1‖2,
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with the appropriate coefficients

α1 = − Lε + με

Lε + 3με

, α2 = −4L − Lε + με

L(Lε + 3με)
,

α3 = (Lε + με)(−4L + 3Lε + με)

L(Lε − με)(Lε + 3με)
,

α4 = − (L − μ)(Lε − με)

2Lμ(Lε + με)
,

and α5 = − L+μ
2Lμ

. This completes the proof. ��
To conclude this section, the following example, based on the same quadratic func-

tion as Example1.3, shows that our bound (12) for the noisy gradient descent is also
tight.

Example 5.2 Consider the same quadratic function as in Example 1.3:

f (x) = 1

2

n∑
i=1

λi x
2
i where 0 < μ = λ1 ≤ λ2 ≤ · · · ≤ λn = L .

Let θ be an angle satisfying 0 ≤ θ < π
2 . Consider the noisy gradient descent method

where direction d0 is obtained by performing a counterclockwise 2D-rotation with
angle θ on the first and last coordinates of the gradient ∇ f (x0). As mentioned above,
this satisfies our definition with relative tolerance ε = sin θ . Define now the starting
point

x0 =
(
1

μ
, 0, . . . , 0,

1

L

√
1 − ε

1 + ε

)T

.

Tedious but straightforward computations show that

x1 =
(
1 − κε

1 + κε

) (
1

μ
, 0, . . . , 0,− 1

L

√
1 − ε

1 + ε

)T

where κε = μ

L

(1 − ε)

(1 + ε)
.

Moreover, if one chooses d1 by rotating the second gradient∇ f (x1) by the same angle
θ in the clockwise direction, one obtains

x2 =
(
1 − κε

1 + κε

)2
(
1

μ
, 0, . . . , 0,

1

L

√
1 − ε

1 + ε

)T

=
(
1 − κε

1 + κε

)2

x0.

A similar reasoning for the next iterates, alternating counterclockwise and clockwise
rotations, shows that

x2i =
(
1 − κε

1 + κε

)2i

x0, x2i+1 =
(
1 − κε

1 + κε

)2i

x1 for all i = 0, 1, . . .
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•x∗ •x0 = [1/µ, 1/L
√

1−ε
1+ε ]

T

•x1

•x2

•x3

•x4

•x5

•x6

•x7

x1

x2

1√
L

1√
μ

Fig. 2 Illustration Example 5.2 for n = 2 and ε = 0.3 (small arrows indicate direction of negative gradient)

and hence we have that equality

f (xi+1) − f∗ =
(
1 − κε

1 + κε

)2

( f (xi ) − f∗) i = 0, 1, . . .

holds as announced. Figure 2 displays a few iterates, and can be compared to Fig. 1.
��

6 Concluding remarks

The main results of this paper are the exact convergence rates of the gradient descent
method with exact line search and its noisy variant for strongly convex functions
with Lipschitz continuous gradients. The computer-assisted technique of proof is also
of independent interest, and demonstrates the importance of the SDP performance
estimation problems (PEPs) introduced in [2].

Indeed, to obtain our proof of Theorem 5.1, the following SDP PEP was solved
numerically for various fixed values of R, μ and L:

max f1 − f∗ subject to (13) and f0 − f∗ ≤ R.

It was observed that, for each set of values, the optimal value of the SDP corresponded
exactly to the bound in Theorem 5.1 (actually, for homogeneity reasons, L and R could
be fixed and onlyμ needed to vary). Based on this, a rigorous proof Theorem 5.1 could
be given by guessing the correct values of the dual SDP multipliers as functions of μ,
L and R, and then verifying the guess through an explicit computation.

We believe this type of computer-assisted proof could prove useful in the analysis
of more methods where exact line search is used (see for example [10] which studies
conditional gradient methods).

PEPs have been used by now to study worst-case convergence rates of several first-
order optimization methods [2,10,11]. This paper differs in an important aspect: the
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performance estimation problem considered actually characterizes a whole class of
methods that contains the method of interest (gradient descent with exact line search)
as well as many other methods. This relaxation in principle only provides an upper
bound on theworst-case of gradient descent, and it is the fact that Example 1.3matches
this bound that allows us to conclude with a tight result.

The reason we could not solve the performance estimation problem for the gradient
descent method itself is that Eq. (2), which essentially states that the step xi+1 − xi
is parallel to the gradient ∇ f (xi ), cannot be formulated as a convex constraint in the
SDP formulation. The main obstruction appears to be that requiring that two vectors
are parallel is a nonconvex constraint, even when working with their inner products.2

Instead, our convex formulation enforces that those two vectors are both orthogonal
to a third one, the next gradient ∇ f (xi+1).
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