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Generating Nested Quadrature Rules with Positive Weights based on Arbitrary
Sample Sets\ast 

Laurent van den Bos\dagger \ddagger , Benjamin Sanderse\dagger , Wim Bierbooms\ddagger , and Gerard van Bussel\ddagger 

Abstract. For the purpose of uncertainty propagation a new quadrature rule technique is proposed that has
positive weights, has high degree, and is constructed using only samples that describe the probability
distribution of the uncertain parameters. Moreover, nodes can be added to the quadrature rule,
resulting in a sequence of nested rules. The rule is constructed by iterating over the samples of
the distribution and exploiting the null space of the Vandermonde system that describes the nodes
and weights, in order to select which samples will be used as nodes in the quadrature rule. The
main novelty of the quadrature rule is that it can be constructed using any number of dimensions,
using any basis, in any space, and using any distribution. It is demonstrated both theoretically and
numerically that the rule always has positive weights and therefore has high convergence rates for
sufficiently smooth functions. The convergence properties are demonstrated by approximating the
integral of the Genz test functions. The applicability of the quadrature rule to complex uncertainty
propagation cases is demonstrated by determining the statistics of the flow over an airfoil governed
by the Euler equations, including the case of dependent uncertain input parameters. The new
quadrature rule significantly outperforms classical sparse grid methods.
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1. Introduction. The problem of uncertainty propagation is considered, where the interest
is in the effect of uncertainties in model inputs on model predictions. The distribution of the
quantity of interest is assessed nonintrusively, i.e., by means of collocation. Problems of this
form occur often in engineering applications if boundary or initial conditions are not known
precisely. The canonical approach is first to identify uncertain input parameters, second to
define a distribution on these parameters, and finally to determine statistics of the quantity
of interest [42, 18, 23]. These statistics are defined as integrals and various techniques exist to
approximate these. However, in practice it often occurs that the distribution of the uncertain
parameters is known only through a sequence or collection of samples and that the distribution
is possibly correlated, e.g., the distribution is inferred through Bayesian analysis. The goal
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of this work is to construct collocation methods that are accurate for determining integrals
when only samples of the distribution are known.

Several approaches exist to tackle problems of this type. In many cases the well-known
and straightforward Monte Carlo approach is not applicable due to its low convergence rate
of 1/

\surd 
N (with N the number of model evaluations) and instead collocation techniques based

on polynomial approximation can be constructed to alleviate this for reasonably small dimen-
sionality. Often these techniques are based on knowledge about the input distribution, for
example, its moments. A popular technique to choose evaluation nodes is the sparse grid
technique [35, 26], which has been extended to a more general, correlated setting (mostly in a
Bayesian setting, e.g., [31, 43, 4, 10]), provided that high order statistics of the distribution are
known exactly. Other collocation techniques that can be applied to the setting in this work
are techniques to consider the collocation problem as a minimization problem of an integration
error [34, 16], to construct nested rules based on interpolatory Leja sequences [19, 24, 37], or
to apply standard quadrature techniques after decorrelation of the distribution [25, 9]. All
these approaches provide high order convergence, but require that the input distribution is
explicitly known.

On the other hand, procedures that directly construct collocation sequences on samples
without using the input distribution directly have seen an increase in popularity, possibly
due to the recent growth of data sets. A recent example is the clustering approach pro-
posed in [8]. Another technique is based on polynomial approximation directly based on
data [27] or iteratively with a focus on large data sets [33, 41]. These approaches do not
require stringent assumptions on the input distribution, but often do not provide high order
convergence.

In this article, we propose a novel nested quadrature rule that has positive weights. There
are various existing approaches to construct quadrature rules with positive weights. Examples
include numerical optimization techniques [17, 16, 30], where oftentimes the nodes and weights
are determined by minimization of the quadrature rule error. A different technique that is
closely related to the approach discussed in this article is subsampling [29, 32, 36, 39], where
the quadrature rule is constructed by subsampling from a larger set of nodes. Subsampling
has also been used in a randomized setting [41], i.e., by randomly removing nodes from a large
tensor grid, or to deduce a proof for Tchakaloff's theorem [1, 5].

The quadrature rule proposed in this work is called the implicit quadrature rule, because
it is constructed using solely samples from the distribution. The nodes of the rule form a
subset of the samples and the accompanying weights are obtained by smartly exploiting the
null space of the linear system governing the quadrature weights. Using a sample set limits
the accuracy of the rule to the accuracy of the sample set, but an arbitrarily sized sample set
can be used without additional model evaluations. The computational cost of our proposed
algorithm scales (at least) linearly in the number of samples and for each sample the null space
of a Vandermonde matrix has to be determined (whose number of rows equals the number
of the nodes of the quadrature rule). The main advantage of using a sample set is that the
proposed quadrature rule can be applied to virtually any number of dimensions, basis, space,
or distribution without affecting the computational cost of our approach. Moreover it can
be extended to obtain a sequence of nested distributions, allowing for refinements that reuse
existing (costly) model evaluations.D
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This article is set up as follows. In section 2 the nomenclature and properties of quadrature
rules that are relevant for this article are discussed. In section 3 the implicit quadrature rule is
introduced and its mathematical properties are discussed. The accuracy of the quadrature rule
is demonstrated by integration of the Genz test functions and by determining the statistical
properties of the output of a stochastic partial differential equation (PDE) modeling the
flow over an airfoil. The numerical results of these test cases are discussed in section 4 and
conclusions are drawn in section 5.

2. Preliminaries. The quantity of interest is modeled as a function u : \Omega \rightarrow \BbbR , where \Omega is a
domain in \BbbR d (with d = 1, 2, 3, . . . ). The parameters x \in \Omega are uncertain and their distribution
is characterized by an arbitrarily large set of samples, denoted by YK := \{ y0, . . . , yK\} \subset \Omega 
(with K \in \BbbN ). In other words, the parameters x have the following discrete distribution:

\rho K(x) =
1

K + 1

K\sum 
k=0

\delta (\| x - yk\| ),

where \delta denotes the usual Dirac delta function and \| \cdot \| denotes any norm (the only necessary
property is that \| a\| = 0 if and only if a \equiv 0). The function u is not known explicitly but can
be determined for specific values of x \in \Omega (e.g., it is the solution of a system of PDEs). The
goal is to determine statistical moments of u(x), e.g., to accurately determine

(2.1) \scrI (K)u :=

\int 
\Omega 
u(x) \rho K(x) dx =

1

K + 1

K\sum 
k=0

u(yk),

where higher moments can be determined by replacing u(x) with u(x)j for given j. Notice that
if yk are samples drawn from a known (possibly continuous) distribution \rho , (2.1) approximates
an integral weighted with this distribution, i.e.,

(2.2) \scrI (K)u =

\int 
\Omega 
u(x) \rho K(x) dx \approx \scrI u :=

\int 
\Omega 
u(x) \rho (x) dx.

We will assume throughout this work that a large number of samples can be determined
fast and efficiently or is provided beforehand. There exist various methods to construct sam-
ples from well known distributions (such as the Gaussian, Beta, and Gamma distribution) [6],
from general distributions by means of acceptance rejection approaches, or from unscaled
probability density functions by means of Markov chain Monte Carlo methods [22, 13]. An
example of acceptance rejection sampling that we will use throughout this text to visualize
our methods is depicted in Figure 1.

If K + 1 samples YK = \{ y0, . . . , yK\} are given, (2.1) could naively be evaluated by de-
termining u(yk) for all k. However, it is well known that such an approximation is very
computationally costly in many practical problems. Instead we approximate the moments by
means of a quadrature rule, i.e., the goal is to determine a finite number of nodes, denoted by
the indexed set XN = \{ x0, . . . , xN\} \subset \Omega , and weights, denoted by WN = \{ w0, . . . , wN\} \subset \BbbR 
such that

\scrI (K)u \approx 
N\sum 
k=0

u(xk)wk =: \scrA (K)
N u.
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Figure 1. The example used throughout this work: a uniform distribution restricted to the gray sets (with
1000 samples dotted in black).

The operator \scrA (K)
N is the quadrature rule operator using the nodal set XN . We omit the

number of samples K from the notation if it is clear from the context.
Three properties are relevant in deriving quadrature rules: accuracy, positivity, and nest-

ing. These properties are briefly discussed in subsections 2.1 to 2.3. The terms nodes and
samples are sometimes used interchangeably in a quadrature rule setting. This is not the case
in this article: samples are elements from sample sets statistically describing a distribution
(called YK), whereas nodes are the collocation points from a quadrature rule (called XN ).

2.1. Accuracy. We enforce that the quadrature rule is accurate on a finite-dimensional
function space, denoted by \Phi D := span\{ \varphi 0, . . . , \varphi D\} throughout this article. Here \varphi 0, . . . , \varphi D

are basis polynomials with deg\varphi j \leq deg\varphi k for j \leq k, such that \Phi D \subset \Phi D+1 for any D. In the
univariate case, this is equivalent to enforcing that the quadrature rule has degree D. In the
multivariate case, the quadrature rule has at least degree Q if dim\Phi D \geq 

\bigl( 
Q+d
d

\bigr) 
. The operator

\scrA (K)
N is linear, hence if D = N and K is given, the weights can be determined from the nodes

by solving the following linear system:

(2.3) \scrA (K)
N \varphi j = \scrI (K)\varphi j for j = 0, . . . , D.

In the univariate case, this linear system is nonsingular if all nodes are distinct. This does
not hold in general in the multivariate case or if D \not = N .

The linear system (2.3) will be used often in this work to ensure the accuracy of the con-
structed quadrature rules. The matrix of this system is called the (multivariate) Vandermonde
matrix VN . If a basis \varphi 0, . . . , \varphi D is given, the system of (2.3) can be alternatively written as

VD(XN )w :=

\left(   \varphi 0(x0) \cdot \cdot \cdot \varphi 0(xN )
...

. . .
...

\varphi D(x0) \cdot \cdot \cdot \varphi D(xN )

\right)   
\left(   w0

...
wN

\right)   =

\left(   \mu 
(K)
0
...

\mu 
(K)
D

\right)   .
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Here, \mu 
(K)
j are known as the (multivariate) raw moments of the samples YK , i.e.,

\mu 
(K)
j :=

1

K + 1

K\sum 
k=0

\varphi j(yk) = \scrI (K)\varphi j .

Throughout this article it is assumed that \Phi D is a polynomial space of minimal degree
and that \varphi k is a monomial for each k. Multivariate polynomials are sorted using the graded
reverse lexicographic order. All methods discussed in this article can also be applied if the
polynomials are sorted differently (i.e., a sparse or an orthonormal basis is considered) or if
the basis under consideration is not polynomial at all (e.g., sinusoidal). The only imposed
restriction is that \varphi 0 is the constant function.

The matrix VD(XN ) might become ill-conditioned if it is constructed using monomials
even for small N . Since this matrix is used to construct quadrature rules in this article,
this can limit the applicability of the methods discussed here. In this article, all quadrature
rules have been constructed using (products of) Legendre polynomials, which resulted in a
sufficiently well-conditioned matrix for moderately large N and D.

2.2. Positivity, stability, and convergence. Any constructed quadrature rule in this ar-
ticle has solely positive weights for two reasons: stability and convergence. We call such a
quadrature rule simply a positive quadrature rule. Both stability and convergence follow from

the fact that the induced\infty -norm of \scrA (K)
N (which is the condition number of \scrA (K)

N as \mu 
(K)
0 = 1)

equals the sum of the absolute weights, i.e.,

\| \scrA (K)
N \| \infty := sup

\| u\| \infty =1
| \scrA (K)

N u| =
N\sum 
k=0

| wk| , with \| u\| \infty := max
x\in \Omega 
| u(x)| .

This norm is minimal for quadrature rules with positive weights. In these cases, we have that
for all K,

(2.4) \| \scrA (K)
N \| \infty =

N\sum 
k=0

| wk| =
N\sum 
k=0

wk = 1 = \scrI (K)1.

If a function u is perturbed by a numerical error \varepsilon , say, \~u = u+ \varepsilon , this does not significantly

affect \scrA (K)
N u:

| \scrA (K)
N u - \scrA (K)

N \~u| \leq \| \scrA (K)
N \| \infty \| u - \~u\| \infty = \varepsilon .

This demonstrates that a quadrature rule with positive weights is numerically stable, regard-
less of the nodal set under consideration.

Convergence can be demonstrated similarly. This can be observed by applying the Lebesgue
inequality [2]. To this end, let qD be the best approximation of u in \Phi D, i.e.,

qD = argmin
q\in \Phi D

\| u - q\| \infty .
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Here, we assume without loss of generality that this best approximation exists. By using

\scrA (K)
N qD = \scrI (K)qD, the Lebesgue inequality follows:

| \scrI (K)u - \scrA (K)
N u| = | \scrI (K)u - \scrI (K)qD + \scrI (K)qD  - \scrA (K)

N u| 
= | \scrI (K)u - \scrI (K)qD +\scrA (K)

N qD  - \scrA (K)
N u| 

\leq | \scrI (K)u - \scrI (K)qD| + | \scrA (K)
N qD  - \scrA (K)

N u| 
= | \scrI (K)(u - qD)| + | \scrA (K)

N (qD  - u)| 
\leq \| \scrI (K)\| \infty \| u - qD\| \infty + \| \scrA (K)

N \| \infty \| u - qD\| \infty .

If wk = | wk| , it holds that \| \scrA (K)
N \| \infty = \| \scrI (K)\| \infty = 1 (see (2.4)) and convergence follows readily

if \| u - qD\| \infty \rightarrow 0 for D \rightarrow \infty , i.e.,

(2.5) | \scrI (K)u - \scrA (K)
N u| \leq 2 inf

q\in \Phi D

\| u - q\| \infty .

The rate of convergence depends on the specific characteristics of u: if the space \Phi D (here
polynomials) is suitable for approximating u, the error of the quadrature rule will decay fast
(e.g., exponentially fast if u is analytic). It is well known that u can be approximated well
using a polynomial if among others u is absolute continuous in a closed and bounded set \Omega ,
but various other results on this topic exist [14, 38, 2].

Notice that the error of the quadrature rule \scrA (K)
N u with respect to \scrI (K)u does not depend

on the accuracy of the moments \mu 
(K)
j , i.e., on whether the number of samples is large enough to

resolve \mu 
(K)
j accurately. This can be seen as follows. Assume the samples YK are drawn from

a distribution \rho : \Omega \rightarrow \BbbR and let \scrI be the integral from (2.2) weighted with this distribution.
Even though | \scrI \varphi j  - \scrI (K)\varphi j | can become large for increasing j, the error of the quadrature
rule is not necessarily large:

| \scrI u - \scrA (K)
N u| \leq | \scrI u - \scrI (K)

u| \underbrace{}  \underbrace{}  
\mathrm{S}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}

+ | \scrI (K)
u - \scrA (K)

N u| \underbrace{}  \underbrace{}  
\mathrm{Q}\mathrm{u}\mathrm{a}\mathrm{d}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e} \mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}

.

The error depends on two components. The sampling error describes whether the number of
samples is large enough to approximate the integral of u (which is independent of \varphi j), whereas
the quadrature error describes whether the quadrature rule is accurate (which depends on \varphi j ,
but not through the samples; see (2.5)). The quadrature error is conceptually different from
the sampling error and often decreases much faster in N than the sampling error does in
K. As we assume an arbitrarily sized sequence of samples is readily available to make the
sampling error sufficiently small, this article will focus on the quadrature error.

2.3. Nesting. Nesting means that XN1 \subset XN2 for some N1 < N2, i.e., the nodes of a
smaller quadrature rule are contained in a larger quadrature rule. This allows for the reuse
of model evaluations if the quadrature rule is refined by considering more nodes. We will call
such a quadrature rule, with a little abuse of nomenclature, a nested quadrature rule (because
strictly speaking it is a nested sequence of quadrature rules).D
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A nested quadrature rule has the additional favorable property that it can be used to
provide an error estimate of the approximated integral. If the quadrature rule converges to
the true integral, i.e., \scrA Nu\rightarrow \scrI u, then | \scrA N1u - \scrA N2u| should converge to 0:

| \scrA N1u - \scrA N2u| \leq | \scrA N1u - \scrI u| + | \scrA N2u - \scrI u| \rightarrow 0, for N1, N2 \rightarrow \infty .

Therefore, the quantity | \scrA N1u  - \scrA N2u| can be used to estimate the accuracy of AN2u. If
XN1 \subset XN2 , this error estimation can be calculated without any additional model evaluations.

3. Implicit quadrature rule. The implicit quadrature rule is a quadrature rule that is
constructed using an arbitrarily sized sequence of samples. The crucial equation in the method
is (2.3), which can be written as

(3.1)
N\sum 
k=0

\varphi j(xk)wk = \mu 
(K)
j , with \mu 

(K)
j =

1

K + 1

K\sum 
k=0

\varphi j(yk), for j = 0, . . . , D.

Given a sequence of basis functions \varphi 0, . . . , \varphi D, the left-hand side of this equation only depends
on the quadrature nodes XN and weights WN , whereas the right-hand side of the equation
only depends on the samples YK . The goal is to determine, based on the K + 1 samples in
the set YK , a subset of N +1 samples that form the nodes XN of a quadrature rule in such a
way that (3.1) is satisfied and such that the corresponding weights are positive. The existence
of such a subset is motivated by the Tchakaloff bound [5], which states that there exists a
quadrature rule with positive weights with N = D if \Phi D encompasses polynomials (as in this
article).

The approach to determine the quadrature rule is to use an iterative algorithm: starting
from an initial quadrature rule, the nodes and weights are changed iteratively while new
samples yk are added. Redundant nodes are removed while ensuring that the accuracy of the
quadrature rule does not deteriorate. This iterative step, which is the key idea of the proposed
algorithm, is sketched in Figure 2. By repeatedly applying this step, a quadrature rule that
validates (3.1) is obtained.

Our algorithm is explained in the next two sections. First, in subsection 3.1 we propose
a method for a slightly simpler problem: we fix D (or \Phi D) and determine at which nodes

A(K)
N A(K+1)

N+1 A(K+1)
N

K ← K + 1

yK+1

remove

Figure 2. The implicit quadrature rule proposed in this work. Given a quadrature rule that integrates K
samples (\scrA (K)

N ), a node yK+1 is added such that a rule is obtained of one more node (\scrA (K+1)
N+1 ). Finally, one

or more nodes are removed to obtain a quadrature rule of fewer nodes (\scrA (K+1)
N ).D
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the model should be evaluated to integrate the sample moments while preserving positivity
of weights. Second, in subsection 3.2 this method is extended to create sequences of nested
quadrature rules with increasing D, increasing K, or both. In other words, given N model
evaluations, we determine a subset of the samples such that (3.1) is satisfied and the provided
N model evaluations are reused.

3.1. Fixed implicit rule. The goal is to construct a positive quadrature rule integrating
all \varphi \in \Phi D exactly, where D is provided a priori. The quadrature rule will consist of (at
most) D + 1 nodes in this case. Without loss of generality, it is assumed that D < K, i.e.,
the number of available samples is at least as large as the dimension of \Phi D.

The initial step is to consider YD and to construct the following quadrature rule forN = D:

X
(D)
N = YD = \{ y0, . . . , yD\} ,

W
(D)
N = \{ 1/(D + 1), . . . , 1/(D + 1)\} .

The upper index describes the set of samples used for the construction, in this case YD, and
the lower index describes the number of nodes of the quadrature rule (i.e., x0, . . . , xN ). This
initial rule simply approximates the moments by means of Monte Carlo and it is obvious that
(3.1) holds for K = D.

The iterative procedure works as follows. Assume X
(K)
N , W

(K)
N form the positive quad-

rature rule integrating all \varphi \in \Phi D exactly. This quadrature rule has the property that

\scrA (K)
N \varphi j = \mu 

(K)
j for j = 0, . . . , D. The goal is to construct a quadrature rule that also has this

property, but with the moments \mu 
(K+1)
j as the right-hand side. To this end, let yK+1 be the

next sample and straightforwardly determine X
(K+1)
N+1 and W

(K+1)
N+1 as follows:

(3.2)

X
(K+1)
N+1 = X

(K)
N \cup \{ yK+1\} ,

W
(K+1)
N+1 =

\biggl( \biggl( 
K + 1

K + 2

\biggr) 
\cdot W (K)

N

\biggr) 
\cup 
\biggl\{ 

1

K + 2

\biggr\} 
,

i.e., yK+1 is ``added"" to X
(K)
N (hence xN+1 = yK+1) and the weights are changed such that

the quadrature rule again integrates the sample moments. The latter can be seen as follows:

N\sum 
k=0

\varphi j(xk)
K + 1

K + 2
wk +

1

K + 2
\varphi j(xN+1) =

K + 1

K + 2

N\sum 
k=0

\varphi j(xk)wk +
1

K + 2
\varphi j(xN+1)

=
K + 1

K + 2

\Biggl( 
1

K + 1

K\sum 
k=0

\varphi j(yk)

\Biggr) 
+

1

K + 2
\varphi j(yK+1)

=
1

K + 2

K+1\sum 
k=0

\varphi j(yk) = \mu 
(K+1)
j .

Here, wk are the weights from the original quadrature rule, i.e., wk \in W
(K)
N . We will use vk

to denote the weights from the updated quadrature rule, i.e., vk \in W
(K+1)
N+1 .D
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If W
(K)
N consists of positive weights, then so does W

(K+1)
N+1 . The problem with this simple

update is that, compared to the original nodal set, the quadrature rule now requires an
additional node to integrate all \varphi \in \Phi D exactly, resulting in a total of N + 2 nodes.

In order to construct a quadrature rule that requires only N + 1 nodes (while preserving

positive weights and integrating \mu 
(K+1)
j exactly), one node will be removed from the extended

rule X
(K+1)
N+1 , following the procedure outlined in [36]. The procedure has an insightful geo-

metric interpretation, as it is based on Carath\'eodory's theorem and convex cones. In this
article the linear algebra interpretation is used in order to facilitate the removal of multiple
nodes later in this work.

The Vandermonde matrix of the extended quadrature rule, i.e., VD(X
(K+1)
N+1 ), is as follows:

VD(X
(K+1)
N+1 ) =

\left(   \varphi 0(x0) . . . \varphi 0(xN ) \varphi 0(xN+1)
...

. . .
...

...
\varphi D(x0) . . . \varphi D(xN ) \varphi D(xN+1)

\right)   .

This is a (D + 1) \times (N + 2)-matrix (with N = D), so at least one nontrivial null vector
c = (c0, . . . , cN+1)

\mathrm{T} of this matrix exists, i.e.,\left(   \varphi 0(x0) . . . \varphi 0(xN ) \varphi 0(xN+1)
...

. . .
...

...
\varphi D(x0) . . . \varphi D(xN ) \varphi D(xN+1)

\right)   
\left(     

c0
...
cN
cN+1

\right)     = 0.

Any multiple of c is also a null vector. Hence it holds for any \alpha \in \BbbR that\left(   \varphi 0(x0) . . . \varphi 0(xN ) \varphi 0(xN+1)
...

. . .
...

...
\varphi D(x0) . . . \varphi D(xN ) \varphi D(xN+1)

\right)   
\left(     

\alpha c0
...

\alpha cN
\alpha cN+1

\right)     = 0,

and by combining this with (3.1), but now for \mu 
(K+1)
j , we obtain the following:\left(   \varphi 0(x0) . . . \varphi 0(xN ) \varphi 0(xN+1)

...
. . .

...
...

\varphi D(x0) . . . \varphi D(xN ) \varphi D(xN+1)

\right)   
\left(     

v0  - \alpha c0
...

vN  - \alpha cN
vN+1  - \alpha cN+1

\right)     =

\left(   \mu 
(K+1)
0
...

\mu 
(K+1)
D

\right)   .

This equation can be interpreted as a quadrature rule depending on the free parameter \alpha with

nodes X
(K+1)
N+1 and weights \{ vk  - \alpha ck | k = 0, . . . , N + 1\} . The parameter \alpha can be used to

remove one node from the quadrature rule, as nodes with weight equal to zero can be removed
from the quadrature rule without deteriorating it. There are two options, \alpha = \alpha 1 or \alpha = \alpha 2:

\alpha 1 = min
k

\biggl( 
vk
ck
| ck > 0

\biggr) 
=:

vk1
ck1

,

\alpha 2 = max
k

\biggl( 
vk
ck
| ck < 0

\biggr) 
=:

vk2
ck2

.
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The sets \{ vk - \alpha 1ck\} and \{ vk - \alpha 2ck\} consist of nonnegative weights and (at least) one weight
equal to zero. Both \alpha 1 and \alpha 2 are well defined, because c has both positive and negative
elements. The latter follows from the fact that \varphi 0 is assumed to be a constant and that c is
not equal to the zero vector, i.e.,

0 =

N+1\sum 
k=0

\varphi 0(xk)ck = \varphi 0

N+1\sum 
k=0

ck.

The desired quadrature rule that integrates all \varphi \in \Phi D exactly and consists of N = D
nodes can be constructed by choosing either i = 1 or i = 2 and determining the nodes and
weights as follows:

X
(K+1)
N = X

(K+1)
N+1 \setminus \{ xki\} ,

W
(K+1)
N = \{ vk  - \alpha ick | k = 0, . . . , ki  - 1, ki + 1, . . . , N + 1\} .

This rule has N + 1 nodes and integrates the moments \mu 
(K+1)
j for j = 0, . . . , D exactly. Note

that to include the case of two weights becoming zero simultaneously (e.g., the symmetric
quadrature rules of [36]), these sets can be implicitly defined as follows:

X
(K+1)
Q =

\Bigl\{ 
xk | xk \in X

(K+1)
N+1 and vk > \alpha ick

\Bigr\} 
,

W
(K+1)
Q =

\Bigl\{ 
vk  - \alpha ick | vk \in W

(K+1)
N+1 and vk > \alpha ick

\Bigr\} 
with Q \leq N \leq D. Without loss of generality, we assume that Q = N throughout this article.

The correctness of this method follows from the fact that the first D+1 sample moments of
the first K samples are integrated exactly using the constructed quadrature rule after iteration
K. Therefore by construction the following theorem is proved.

Theorem 1. Let \scrA (K)
N be a positive quadrature rule operator such that

\scrA (K)
N \varphi j = \mu 

(K)
j for j = 0, . . . , D

with N = D. Then after applying the procedure above, a positive quadrature rule operator

\scrA (K+1)
N is obtained such that

\scrA (K+1)
N \varphi j = \mu 

(K+1)
j for j = 0, . . . , D.

For different sample sets, even when drawn from the same distribution, the procedure
constructs different quadrature rules. If desired, this nondeterministic nature of the quad-
rature rule can be eradicated by using deterministic samplers, such as quasi Monte Carlo
sequences [3]. These are not used in the quadrature rules constructed in this article, as these
sequences are generally not straightforward to construct for distributions with a noninvertible
cumulative distribution function. Another aspect of the algorithm that can create variation
in the resulting quadrature rules is the choice of the parameter \alpha . It is possible to incorpo-
rate knowledge about the integrand in the choice for \alpha at each iteration, but in this articleD
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Algorithm 1. The implicit quadrature rule.

Input: Samples \{ y0, . . . , yK\mathrm{m}\mathrm{a}\mathrm{x}\} , \Phi D = span\{ \varphi 0, . . . , \varphi D\} 
Output: Positive quadrature rule XN = \{ x0, . . . , xN\} , WN = \{ w0, . . . , wN\} with N = D

1: Initialize X
(D)
N = \{ y0, . . . , yD\} 

2: Initialize W
(D)
N = \{ 1/(D + 1), . . . , 1/(D + 1)\} 

3: for K = D, . . . ,K\mathrm{m}\mathrm{a}\mathrm{x}  - 1 do

4: Add node: X
(K+1)
N+1 \leftarrow X

(K)
N \cup \{ yK+1\} 

5: W
(K+1)
N+1 \leftarrow (K + 1)/(K + 2)W

(K)
N \cup \{ 1/(K + 2)\} 

6: Update weights: Construct VD(X
(K+1)
N+1 )

7: Determine (nontrivial) c such that VD(X
(K+1)
N+1 )c = 0

8: \alpha 1 \leftarrow mink(vk/ck | ck > 0), with vk \in W
(K+1)
N+1

9: \alpha 2 \leftarrow maxk(vk/ck | ck < 0), with vk \in W
(K+1)
N+1

10: Choose: Either \alpha \leftarrow \alpha 1 or \alpha \leftarrow \alpha 2

11: Remove node: X
(K+1)
N \leftarrow 

\Bigl\{ 
xk | xk \in X

(K+1)
N+1 and wk > \alpha ck

\Bigr\} 
12: W

(K+1)
N \leftarrow 

\Bigl\{ 
wk  - \alpha ck | wk \in W

(K+1)
N+1 and wk > \alpha ck

\Bigr\} 
13: end for
14: Return X

(K\mathrm{m}\mathrm{a}\mathrm{x})
N , W

(K\mathrm{m}\mathrm{a}\mathrm{x})
N

the smallest value is used, because it is assumed that we do not have a priori knowledge
about the integrand.

The steps of the method are outlined in Algorithm 1 and examples of implicit quadrature
rules obtained using sample sets drawn from well-known distributions are depicted in Figures 3
and 4. In Figure 3, the nodes and weights are shown for various polynomial degrees D,
based on K\mathrm{m}\mathrm{a}\mathrm{x} = 105 samples drawn from several common univariate distributions. For
the distributions with compact support, the nodes cluster at the boundaries of the domain.
However, the nodes exhibit an irregular pattern upon increasing the degree, and determining

0 0.2 0.4 0.6 0.8 1
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8

10

12
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0 0.2 0.4 0.6 0.8 1

(a) U [0, 1]

0 0.2 0.4 0.6 0.8 1
4

6

8

10

12

D

0 0.2 0.4 0.6 0.8 1

(b) β(10, 10)

−4 −2 0 2 4
4

6

8

10

12

D

0 0.2 0.4 0.6 0.8 1

(c) N (0, 1)

Figure 3. Examples of implicit quadrature rules for various degrees, using the same 105 samples for each
degree.D
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Figure 4. Three implicit quadrature rules of 25 nodes (using different symbols) determined using the
bivariate uniform distribution restricted to the gray area, using three different permutations of a set of 105

samples.

a quadrature rule with a higher degree does not result in a nested rule (this will be addressed
in subsection 3.2). In the second example, nodal sets are generated in two dimensions on two
different irregular domains; see Figure 4. This shows a major strength of the proposed implicit
quadrature rule: it can be applied to arbitrary sample sets, including domains that are not
simply connected, and positive weights are still guaranteed. Depending on the ordering of the
samples in the set, different nodes and weights are obtained, indicating that the quadrature
rules for these sets are not unique. It is generally not possible to obtain exactly the same
quadrature rule for two permutations of the sample set, since choosing either \alpha 1 or \alpha 2 can
be exploited to preserve only a single node in the rule. Theoretically this can be resolved by
removing multiple nodes from the rule, as will be done in the next section, though it is often
unfeasible to do so.

3.2. Nested implicit rule. The approach of the previous section can be used to construct
a quadrature rule given the number of basis vectors D and a fixed number of samples K.
For varying D these quadrature rules are, however, not nested. In this section the algorithm
is extended such that the constructed quadrature rules contain nodes that can be provided
beforehand. By providing the nodes of an existing quadrature rule, a sequence of nested
quadrature rules can be constructed.

The problem setting is as follows. Let XN be an indexed set of quadrature rule nodes
and assume a desired number of basis vectors D is specified, with D \geq N . The goal is to
add M nodes to XN in order to obtain a positive quadrature rule with nodes XN+M (so
XN \subset XN+M ) that integrates all \varphi \in \Phi D exactly. Note that in general all weights will differ,
i.e., WN \not \subset WN+M . We desire to add a small number of nodes, thus M to be small, but it is
straightforward to observe that M is bounded as follows:

D \leq N +M \leq N +D + 1.

The first bound D \leq N+M describes that a quadrature rule constructed with our algorithms
does not integrate more basis functions exactly than its number of nodes. The second bound
N +M \leq N +D+ 1 describes that it is possible to simply add a quadrature rule with D+ 1
nodes to the existing quadrature rule by setting all existing weights to 0. This is often notD
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desired in applications but provides a theoretical bound on the number of nodes obtained
using our algorithms.

Algorithm 1 can be straightforwardly extended to incorporate nodes that are provided
beforehand. The algorithm proceeds as usual, with the difference that nodes can be removed
only if they were added during the algorithm but not if provided in advance. This approach
yields a sequence of nested quadrature rules but is not optimal because it results in a quad-
rature rule with (possibly many) more nodes than necessary. Therefore the null space of the
Vandermonde matrix VD(XN ) is multidimensional. In such a case there are multiple nodes
that can be removed together, even though removing the nodes individually yields a quad-
rature rule with negative weights. For example, removing two nodes from the rule yields a
positive rule, but removing only one of the two yields a negative rule.

In this section the focus is therefore on the removal step of Algorithm 1, which is ex-
tended to incorporate the removal of multiple nodes. By combining such an algorithm with
Algorithm 1 the nested implicit quadrature rule is obtained.

Sequentially removing multiple nodes that result in a positive quadrature rule can result
in intermediate quadrature rules with negative weights. Therefore the first step is to extend
the removal procedure outlined in subsection 3.1 such that it supports negative weights. This
is discussed in subsection 3.2.1. The main algorithm that generalizes the approach of the basic
implicit rule is presented and discussed in subsection 3.2.2. With this algorithm, the nested
implicit quadrature rule follows readily, which is discussed in subsection 3.2.3.

3.2.1. Negative weight removal. The procedure from the previous section determines
\alpha 1 and \alpha 2 that can be used for the removal of a node. However, the equations for \alpha 1 and
\alpha 2 were derived assuming positive weights. In this section, similar equations will be derived
without assuming positive weights.

Let XN , WN be a quadrature rule with (possibly) negative weights. The goal is to remove
one node to obtain XN - 1 and WN - 1 such that the resulting quadrature rule has positive
weights and \scrA N - 1\varphi j = \scrA N\varphi j for j = 0, . . . , N  - 1. As introduced before, let VN - 1(XN ) be
the respective N \times (N +1) Vandermonde matrix and let c \in \BbbR N+1 be a nontrivial null vector
of that matrix. The goal is to have only positive weights; hence with the same reasoning as
before, we obtain the following bound:

wk  - \alpha ck \geq 0 for all k and a certain \alpha .

This translates into two cases:

\alpha 

\Biggl\{ 
\geq wk/ck for all k with ck < 0,

\leq wk/ck for all k with ck > 0.

Hence the following bounds should hold for any such \alpha :

\alpha \mathrm{m}\mathrm{i}\mathrm{n} \leq \alpha \leq \alpha \mathrm{m}\mathrm{a}\mathrm{x} with

\alpha \mathrm{m}\mathrm{i}\mathrm{n} = max
k

\biggl( 
wk

ck
| ck < 0

\biggr) 
=:

wk\mathrm{m}\mathrm{i}\mathrm{n}

ck\mathrm{m}\mathrm{i}\mathrm{n}

,

\alpha \mathrm{m}\mathrm{a}\mathrm{x} = min
k

\biggl( 
wk

ck
| ck > 0

\biggr) 
=:

wk\mathrm{m}\mathrm{a}\mathrm{x}

ck\mathrm{m}\mathrm{a}\mathrm{x}

.(3.3)
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Such \alpha does not necessarily exist, but if it does, either \alpha = \alpha \mathrm{m}\mathrm{i}\mathrm{n} or \alpha = \alpha \mathrm{m}\mathrm{a}\mathrm{x} can be
used to remove either the node xk\mathrm{m}\mathrm{i}\mathrm{n}

or xk\mathrm{m}\mathrm{a}\mathrm{x} , respectively, from the rule (as their weight
becomes 0). The case with only positive weights (which was considered in subsection 3.1) fits
naturally in this, with \alpha 1 = \alpha \mathrm{m}\mathrm{a}\mathrm{x} and \alpha 2 = \alpha \mathrm{m}\mathrm{i}\mathrm{n}. If all weights are positive, it is evident that
\alpha \mathrm{m}\mathrm{i}\mathrm{n} < 0 < \alpha \mathrm{m}\mathrm{a}\mathrm{x}.

Even a stronger, less trivial result holds: if \alpha \mathrm{m}\mathrm{a}\mathrm{x} < \alpha \mathrm{m}\mathrm{i}\mathrm{n}, then no node exists that results
in a positive quadrature rule after removal, and if \alpha \mathrm{m}\mathrm{i}\mathrm{n} < \alpha \mathrm{m}\mathrm{a}\mathrm{x}, there exist exactly two nodes
such that removing one of the two results in a quadrature rule with positive weights. In other
words, determining \alpha \mathrm{m}\mathrm{i}\mathrm{n} and \alpha \mathrm{m}\mathrm{a}\mathrm{x} as above yields all possible nodes that can be removed
resulting in a positive quadrature rule. The details are discussed in the proof of the following
lemma.

Lemma 2. Let XN , WN be a quadrature rule integrating all \varphi \in \Phi N exactly. The following
statements are equivalent:

1. \alpha min \leq \alpha max.
2. There exists an xk0 \in XN such that the quadrature rule with nodes XN \setminus \{ xk0\} that

integrates all \varphi \in \Phi N - 1 exactly has nonnegative weights.
3. Let any xk0 \in XN be given such that the quadrature rule with nodes XN \setminus \{ xk0\} that

integrates all \varphi \in \Phi N - 1 exactly has nonnegative weights. Then the weights of this rule,
say WN - 1, are formed by

WN - 1 = \{ wk  - \alpha ck | k \not = k0\} ,

where ck are the elements of a null vector of VN - 1(XN ) and either \alpha = \alpha min or
\alpha = \alpha max.

Proof. The proof consists of three parts: 1 \rightarrow 2 \rightarrow 3 \rightarrow 1.
(1\rightarrow 2). Proving 1 \rightarrow 2 follows immediately from the removal step outlined above (see

(3.3)).
(2\rightarrow 3). Suppose 2 holds and let xk0 be given. Without loss of generality assume k0 = N .

Let WN - 1 be the weights of the quadrature rule nodes XN - 1 = XN \setminus \{ xN\} and let w
(N)
k \in WN

and w
(N - 1)
k \in WN - 1. It holds that the nodes XN and weights WN form a quadrature rule that

integrates all \varphi \in \Phi N exactly and that the nodes XN - 1 and weights WN - 1 form a quadrature
rule that integrates all \varphi \in \Phi N - 1 exactly. Therefore for j = 0, . . . , N  - 1 the following holds:

N\sum 
k=0

\varphi j(xk)w
(N)
k =

N - 1\sum 
k=0

\varphi j(xk)w
(N - 1)
k ;

so for these j it follows that

N - 1\sum 
k=0

\varphi j(xk)(w
(N)
k  - w

(N - 1)
k ) + \varphi j(xN )w

(N)
N = 0.

Hence the vector c \in \BbbR N+1 with elements ck = w
(N)
k  - w

(N - 1)
k (and cN = w

(N)
N ) is a null

vector of VN - 1(XN ). Then it follows that \alpha = 1. Without loss of generality, assume that
ck0 \not = 0.D
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The remainder of this part consists of demonstrating that either \alpha = \alpha \mathrm{m}\mathrm{i}\mathrm{n} or \alpha = \alpha \mathrm{m}\mathrm{a}\mathrm{x}.

Assume ck0 > 0 (with k0 = N). It holds that w
(N)
k0

= ck0 and w
(N)
k \geq ck for all other k. For

all k with ck > 0 (including k0), we therefore obtain

w
(N)
k

ck
\geq 1.

Equality is attained at k = k0, hence 1 = min(w
(N)
k /ck | ck > 0) = \alpha \mathrm{m}\mathrm{a}\mathrm{x}. In a similar way it

can be demonstrated that if ck0 < 0, we have 1 = max(w
(N)
k /ck | ck < 0) = \alpha \mathrm{m}\mathrm{i}\mathrm{n}, concluding

this part of the proof.
(3\rightarrow 1). Suppose 3 holds and let the weights be given as in the lemma. Let \alpha \mathrm{m}\mathrm{i}\mathrm{n}, \alpha \mathrm{m}\mathrm{a}\mathrm{x},

k\mathrm{m}\mathrm{i}\mathrm{n}, and k\mathrm{m}\mathrm{a}\mathrm{x} be given. By definition of \alpha \mathrm{m}\mathrm{a}\mathrm{x}, it holds that ck\mathrm{m}\mathrm{a}\mathrm{x} > 0 (see, (3.3)). So if
\alpha \geq \alpha \mathrm{m}\mathrm{a}\mathrm{x}, then wk\mathrm{m}\mathrm{a}\mathrm{x} \leq \alpha ck\mathrm{m}\mathrm{a}\mathrm{x} . So to have positive weights, we must have \alpha \leq \alpha \mathrm{m}\mathrm{a}\mathrm{x}.

Similarly we have that ck\mathrm{m}\mathrm{i}\mathrm{n}
< 0 and therefore if \alpha \leq \alpha \mathrm{m}\mathrm{i}\mathrm{n}, it holds that wk\mathrm{m}\mathrm{i}\mathrm{n}

\leq \alpha ck\mathrm{m}\mathrm{i}\mathrm{n}
.

So to have positive weights, we must have \alpha \geq \alpha \mathrm{m}\mathrm{i}\mathrm{n}.
If there exists an \alpha such that \alpha \mathrm{m}\mathrm{i}\mathrm{n} \leq \alpha and \alpha \leq \alpha \mathrm{m}\mathrm{a}\mathrm{x}, it must hold that \alpha \mathrm{m}\mathrm{i}\mathrm{n} \leq \alpha \mathrm{m}\mathrm{a}\mathrm{x}.

The lemma demonstrates that \alpha \mathrm{m}\mathrm{i}\mathrm{n} and \alpha \mathrm{m}\mathrm{a}\mathrm{x} from (3.3) can be used to determine whether
there exists a node that yields a positive quadrature rule after removal (i.e., if \alpha \mathrm{m}\mathrm{i}\mathrm{n} \leq \alpha \mathrm{m}\mathrm{a}\mathrm{x})
and if such a node exists, either \alpha \mathrm{m}\mathrm{i}\mathrm{n} or \alpha \mathrm{m}\mathrm{a}\mathrm{x} can be used to determine it (by determining
k0 as in the proof). If \alpha \mathrm{m}\mathrm{a}\mathrm{x} > \alpha \mathrm{m}\mathrm{i}\mathrm{n}, no such node exists, but this is not an issue, since the
algorithm to construct quadrature rules discussed in this article does by construction not end
up in this case.

3.2.2. Removal of multiple nodes. Let XN and WN form a positive quadrature rule. In
this section, the goal is to determine all subsets of M nodes that have one specific property in
common: removing those M nodes results in a positive quadrature rule of N + 1 - M nodes
that exactly integrates all \varphi \in \Phi N - M . We call a subset with this property an M -removal.
Hence in the previous section a procedure has been presented to determine all 1-removals.

Lemma 2 is the main ingredient for deriving all M -removals. The idea boils down to the
following. Let an M -removal be given, say, (q1, . . . , qM ) \subset XN . If the first M  - 1 nodes from
this M -removal are removed, the Mth node qM can be determined straightforwardly using
\alpha \mathrm{m}\mathrm{i}\mathrm{n} or \alpha \mathrm{m}\mathrm{a}\mathrm{x} from (3.3). There are two possible values of \alpha (namely either \alpha \mathrm{m}\mathrm{i}\mathrm{n} or \alpha \mathrm{m}\mathrm{a}\mathrm{x}),
hence there exists a second node, say, \^qM , such that (q1, . . . , qM - 1, \^qM ) is also an M -removal.
The order in which the nodes are removed is irrelevant, so each node qk can be replaced in
this way by a different node \^qk resulting in a valid M -removal, i.e., a set of M nodes that can
be removed while preserving positive weights and obtaining a quadrature rule that exactly
integrates all \varphi \in \Phi N - M .

We denote the procedure of obtaining a different M -removal from an existing one by the
operator F : [XN ]M \rightarrow [XN ]M , where [XN ]M denotes the set of all M -subsets of XN . If
(q1, . . . , qM ) is an M -removal, applying F yields the M -removal (q1, . . . , qM - 1, \^qM ). Such an
operator is well defined, since Lemma 2 prescribes that there exist exactly two M -removals
whose first M  - 1 elements equal q1, . . . , qM - 1. Notice that the operator F , which depends
on the nodes and weights of the quadrature rule, can be computed by determining \alpha \mathrm{m}\mathrm{i}\mathrm{n} and
\alpha \mathrm{m}\mathrm{a}\mathrm{x} from Lemma 2 after removal of q1, . . . , qM - 1.D
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By permuting the M -removal before applying F , one M -removal yields (up to a permuta-
tion at most) M other M -removals. These M -removals can be considered in a similar fashion
and recursively more M -removals can be determined. This procedure yields all M -removals,
which is demonstrated in the following lemma.

Lemma 3. Let (q1, . . . , qM ) and (s1, . . . , sM ) be any two different M -removals of the posi-
tive quadrature rule XN , WN . Let the operator F : [XN ]M \rightarrow [XN ]M , as described in the text,
be such that

F (q1, . . . , qM - 1, qM ) = (q1, . . . , qM - 1, \^qM )

for a given M -removal (q1, . . . , qM ), i.e., it replaces qM by \^qM such that (q1, . . . , qM - 1, \^qM ) is
an M -removal. Then there exists a finite number of permutations \sigma 1, . . . , \sigma n such that

(\sigma 1 \circ F \circ \sigma 2 \circ F \circ \cdot \cdot \cdot \circ F \circ \sigma n - 1 \circ F \circ \sigma n)(q1, . . . , qM ) = (s1, . . . , sM ).

Proof. Let Fk : [XN ]M \rightarrow [XN ]M be the operator that first permutes qk to the end of the
M -removal and second applies F , i.e.,

Fk(q1, . . . , qM ) = F (q1, . . . , qk - 1, qk+1, . . . , qM , qk) = (q1, . . . , qk - 1, qk+1, . . . , qM , \^qk).

Notice that Fk = F \circ \pi k, where \pi k denotes the permutation that appends qk. Hence if there
exist k1, . . . , kn such that Fk1 \circ \cdot \cdot \cdot \circ Fkn(q1, . . . , qM ) equals (s1, . . . , sM ) up to a permutation,
the proof is done.

Consider WN = \{ w0, . . . , wN\} and let VN - M (XN ) be the Vandermonde matrix with re-
spect to this quadrature rule. This is an (N  - M + 1) \times (N + 1)-matrix, so there exist M
linearly independent null vectors c1, . . . , cM \in \BbbR N+1. We use the following notation for the
vector ck:

ck = (ck0, . . . , c
k
N )

\mathrm{T}
.

Let \bfitalpha = (\alpha 1, . . . , \alpha M ) be an M -tuple and consider the following set:

S =

\left\{   \bfitalpha = (\alpha 1, . . . , \alpha M )
\bigm| \bigm| \bigm| for all k = 0, . . . , N withwk  - 

M\sum 
j=1

\alpha jc
j
k \geq 0

\right\}   .

The set S is a closed simplex, as it is formed by a finite number of linear inequalities.
Moreover it is nonempty, as (0, . . . , 0) \in S (this follows from the fact that wk \geq 0 for all k).

The boundary of S, i.e., \partial S, is of special interest. If (\alpha 1, . . . , \alpha M ) \in \partial S, it holds that
wk  - 

\sum M
j=1 \alpha jc

j
k = 0 for at least one k. At vertices of the simplex, the highest number of

weights, namely M , is 0. The operator Fk can be used to traverse the vertices of the simplex.
The simplex S for determining a 2-removal for a quadrature rule of three nodes is sketched in
Figure 5.

Consider an M -removal q = (q1, . . . , qM ). There is exactly one M -tuple \bfitalpha = (\alpha 1, . . . , \alpha M )
resulting in the removal of these nodes. These \alpha 's coincide with a vertex of simplex S.
Applying Fk to q yields a different M -tuple. These two M -tuples are connected through an
edge of the simplex. Due to Lemma 2 all M -tuples that are connected to \bfitalpha through an edge
can be found. Therefore, for a given vertex, the operator Fk yields all connected vertices and
can be used to traverse the boundary of the simplex. This concludes the proof.D
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w1 = αc1

w2 = αc2

w0 = αc0

α1

α2

F0

F1

F2

Figure 5. Graphical sketch of the simplex describing the removal of two nodes from a quadrature rule of
three nodes. The gray area describes the simplex where all values of (\alpha 1, \alpha 2) yield positive weights. The operator
Fk (see proof of Lemma 3) can be used to traverse the boundary of the simplex.

The statement of the lemma is constructive: given a single M -removal, all M -removals can
be found. By repetitively constructing a 1-removal using the methods from subsection 3.2.1,
an initial M -removal can be obtained (which is a vertex of the simplex S discussed in the
proof). Lemma 3 ensures that any other M -removal can be reached from this removal. An
outline of this procedure can be found in Algorithm 2. The computational cost of calculating
the null vectors can be alleviated by decomposing VN - M (XN - M ) (e.g., using an LU or QR
decomposition) once and computing the null vectors of VN - M (XN - M+1) in the loop by reusing
this decomposition.

The time complexity of this algorithm is\scrO (Z logZ+Z(N - M)3), where Z is the number of
M -removals. Here, the term Z logZ originates from storing all visited M -removals efficiently
using a binary search tree (which results into Z lookups that scale with logZ) and the term
Z(N - M)3 is obtained by factorizing VN - M (XN - M ) and repeatedly computing the null vector
of VN - M (XN - M+1) using this factorization. Algorithm 2 always terminates, as the number
of subsets of M nodes is strictly bounded. Combining this with the proof of Lemma 3 proves
the following theorem.

Theorem 4. On termination, Algorithm 2 returns all M -removals of the positive quadrature
rule XN , WN .

Theoretically, Algorithm 2 can be used to determine all quadrature rules \scrA (K)
N with

\scrA (K)
N \varphi = \scrI (K)\varphi for all \varphi \in \Phi D. All these rules are obtained by computing all M -removals

with M = K  - N of the quadrature rule XK = YK with wk = 1/(K +1) for all k = 0, . . . ,K.
However, in practice this is intractable, as the number of M -removals grows rapidly in M and
K  - N is typically a large quantity.

3.2.3. The nested implicit quadrature rule. In this section the key algorithm of this
paper is presented, namely the nested implicit quadrature rule for arbitrary sample sets. It
is constructed by combining the algorithms from the previous sections. Given a quadrature
rule, two different refinements (or a combination of both) are considered. First, the number

of samples K can be increased to obtain a more accurate estimate of \mu 
(K)
j . Second, D can be

increased to obtain a more accurate quadrature rule.
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Algorithm 2. Removing multiple nodes.

Input: Positive quadrature rule XN , WN , integer M with 1 \leq M < N + 1
Output: All M -removals of XN , WN

1: Construct VN - M (XN )
2: Determine M independent null vectors ck of VN - M (XN )
3: Construct an M -removal, say q\leftarrow (q1, . . . , qM ) \subset XN (e.g., by repeatedly using Lemma 2)
4: I \leftarrow \{ q\} , the set containing all queued removals
5: R\leftarrow \emptyset , the set containing all processed removals
6: while I \not = \emptyset do
7: Get the first removal from I, say q\leftarrow (q1, . . . , qM ) \subset XN

8: Remove q from I, i.e., I \leftarrow I \setminus \{ q\} .
9: for i = 1, . . . ,M do

10: Construct XN - M+1 and WN - M+1 by removing (q1, . . . , qi - 1, qi+1, . . . , qM )
11: Determine c such that VN - M (XN - M+1)c = 0
12: Compute \alpha \mathrm{m}\mathrm{i}\mathrm{n}, \alpha \mathrm{m}\mathrm{a}\mathrm{x}, k\mathrm{m}\mathrm{i}\mathrm{n}, k\mathrm{m}\mathrm{a}\mathrm{x} from (3.3)
13: if qi = xk\mathrm{m}\mathrm{a}\mathrm{x} then
14: \^qi \leftarrow xk\mathrm{m}\mathrm{i}\mathrm{n}

15: else
16: \^qi \leftarrow xk\mathrm{m}\mathrm{a}\mathrm{x}

17: end if
18: \^q\leftarrow (q1, . . . , qi - 1, \^qi, qi+1, . . . , qM ), which is an M -removal
19: if \^q /\in I and \^q /\in R then  \triangleleft NB: this means we have not visited vertex \^q yet.
20: Add \^q to I, i.e., I \leftarrow I \cup \{ \^q\} 
21: end if
22: end for
23: R\leftarrow R \cup \{ q\} 
24: end while
25: Return R

The set-up is similar to the one used so far, i.e., let \{ yk\} be a sequence of samples, X
(K)
N

be a set of nodes, and W
(K)
N be a set of nonnegative weights and assume the following holds

for a certain D:

N\sum 
k=0

\varphi j(xk)wk = \mu 
(K)
j , for j = 0, . . . , D, xk \in X

(K)
N , and wk \in W

(K)
N .

Let D+ and K+ be the desired number of basis vectors and (possibly larger) number of

samples, respectively, and assume D+ \geq D. The goal is to determine X
(K+)
N+M and W

(K+)
N+M such

that W
(K+)
N+M is nonnegative, X

(K)
N \subset X

(K+)
N+M , and

N+M\sum 
k=0

\varphi j(xk)wk = \mu 
(K+)
j , for j = 0, . . . , D+, xk \in X

(K+)
N+M , and wk \in W

(K+)
N+M .
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In other words, we consider K+ samples YK+ and want to determine a positive quadrature
rule that integrates all \varphi \in \Phi D+ exactly by adding M nodes to XN (with M minimal).

The iterative procedure is similar to Algorithm 1 and consists of four steps: (i) determine
or obtain the next sample yK+1, (ii) update the nodes and weights according to (3.2), (iii)
determine all possible removals (see Algorithm 2), and finally (iv) remove nodes such that
the obtained quadrature rule is as small as possible. The last step consists of finding the M -

removal such that X
(K+)
N+M \setminus X

(K)
N (i.e., the set of new nodes) becomes as small as possible. If a

node xk \in X
(K)
N is part of the M -removal, its weight is simply set to 0 (this is not problematic:

the weights change again in subsequent iterations).
The initialization of the algorithm depends on whether more basis vectors are considered,

a larger number of samples is considered, or the set of samples is changed (e.g., the sequence
of samples is redrawn):

1. If D+ = D and K+ > K, the procedure is a continuation of the original Algorithm 1
and no initialization is necessary.

2. If D+ > D, we need to reiterate over all samples to determine \mu 
(K)
j for j > D. The

algorithm can be initialized using X
(K)
N as nodes, using all weights equal to 1/(N +1),

and using the samples YK+ \setminus X
(K)
D .

3. If the sequence of samples is regenerated from the underlying distribution, then in

general X
(K)
N \not \subset YK+ . Therefore, the algorithm is initialized with X

(K+1)
N \cup \{ y0\} and

W
(K+1)
N = \{ 0, . . . , 0, 1\} .

The outline of this algorithm is provided in Algorithm 3, which is a straightforward ex-
tension of Algorithm 1 with additional bookkeeping to incorporate the removal of multiple
nodes. Some examples of nested sequences are gathered in Figures 6 and 7. In the first figure
all three nodal sequences are initialized with the nodes 0, 1/2, and 1. If these nodes are used
to construct conventional interpolatory quadrature rules, then the quadrature rule is positive
if the uniform or Beta distribution is used but has negative weights if the normal distribution
is considered (the weights are 3,  - 4, and 2, respectively). However, the proposed algorithm
incorporates these nodes without difficulty in subsequent quadrature rules, resulting in posi-
tive weights. Note that the quadrature rules of polynomial degree 4 have six nodes in case of
the Beta and normal distribution. The subsequent quadrature rules of the normal distribution
have a higher number of nodes than the degree, which is due to the ``bad"" initial set of nodes.

A two-dimensional example is presented in Figure 7. Here, the initial quadrature rule is
depicted with closed circles and its extension thereof with open circles.

Again it holds that different sample sets produce different quadrature rules. Similarly as
in subsection 3.1, this can be eradicated by using deterministic samplers. An additional degree
of freedom arises when choosing the M -removal, as there might be several M -removals that

remove the largest number of nodes from X
(K+)
N+M \setminus X

(K)
N . In the quadrature rules constructed

in this work, we select one randomly.
The large advantage of the nested implicit quadrature rule is that it is dimension agnostic,

basis agnostic, space agnostic, and distribution agnostic, which are properties it carries over
from the basic implicit quadrature rule. Virtually any space and any distribution can be used,
as long as the distribution has finite moments and a set of samples can be generated, can be
determined, or is available.D
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Algorithm 3. The nested implicit quadrature rule.

Input: Samples \{ y0, . . . , yK\mathrm{m}\mathrm{a}\mathrm{x}\} , quadrature nodes XN , \Phi D = span\{ \varphi 0, . . . , \varphi D\} 
Output: Positive quadrature rule XN+M , WN+M

1: Initialize X
(N)
N and W

(N)
N , e.g., X

(N)
N \leftarrow XN , W

(N)
N \leftarrow \{ 1/(N + 1), . . . , 1/(N + 1)\} 

2: M \leftarrow 0
3: for K = N, . . . ,K\mathrm{m}\mathrm{a}\mathrm{x} do

4: Add node: X
(K+1)
N+M+1 \leftarrow X

(K)
N+M \cup \{ yK - N\} 

5: W
(K+1)
N+M+1 \leftarrow (K + 1)/(K + 2)W

(K)
N+M \cup \{ 1/(K + 2)\} 

6: M \leftarrow M + 1
7: Update weights: Construct VD(X

(K+1)
N+M )

8: Determine null vectors c1, . . . , cM and determine all M -removals
9: Choose: Let q = (q1, . . . , qM ) be an M -removal

 \triangleleft NB: we choose the one that makes X
(K+1)
N+M \setminus XN the smallest.

10: Remove node: Let (\alpha 1, . . . , \alpha M ) such that wk =
\sum M

j=1 \alpha jc
j
k for all k with xk \in q

11: \^M \leftarrow \#
\Bigl\{ 
xk \in X

(K+1)
N+M | xk /\in XN and wk  - 

\sum M
j=1 \alpha jc

j
k = 0

\Bigr\} 
12: X

(K+1)

N+ \^M
\leftarrow 
\Bigl\{ 
xk \in X

(K+1)
N+M | wk  - 

\sum M
j=1 \alpha jc

j
k > 0 or xk \in XN

\Bigr\} 
13: W

(K+1)

N+ \^M
\leftarrow 
\Bigl\{ 
wk  - 

\sum M
j=1 \alpha jc

j
k | xk \in X

(K+1)

N+ \^M

\Bigr\} 
14: M \leftarrow \^M
15: end for
16: Return X

(K\bfm \bfa \bfx )
N+M , W

(K\bfm \bfa \bfx )
N+M

0 0.2 0.4 0.6 0.8 1
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(a) U [0, 1]

0 0.2 0.4 0.6 0.8 1
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0 0.2 0.4 0.6 0.8 1

(b) β(10, 10)

−4 −2 0 2 4
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(c) N (0, 1)

Figure 6. Examples of nested nodal sets constructed with 105 samples. The initial nodes are in all three
cases [0, 1/2, 1].

4. Numerical examples. Two different types of test cases are employed to demonstrate
the discussed properties of our proposed quadrature rule, in particular the independence from
the underlying distribution.

The first class of cases consists of explicitly known test functions and distributions to
assess the accuracy of the quadrature rule for integration purposes. To this end, the GenzD
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Figure 7. The implicit quadrature rule of 25 nodes (closed circles) and 50 nodes (open and closed circles)
respectively determined using the uniform distribution restricted to the gray area, using 105 samples. The colors
refer to the weights of the largest quadrature rule.

integration test functions [11] are employed and a comparison is made with a Monte Carlo
approach. Moreover, it is instructive to see how the convergence compares with that of a
sparse grid, although the comparison is strictly incorrect, as a Smolyak sparse grid converges
to the true integral.

Second, a PDE with random coefficients is considered, where the goal is to infer statistical
moments about the solution of a PDE with random boundary conditions. The equations under
consideration are the inviscid Euler equations modeling the flow around an airfoil, where the
inflow parameters and the shape of the airfoil are assumed to be uncertain.

The Genz integration test functions are studied in subsection 4.1. The Euler equations
are considered in subsection 4.2.

4.1. Genz test functions. The Genz integration test functions [11] are a set of test func-
tion to assess the accuracy of numerical integration routines; see Table 1. Each test function
has a certain attribute that is challenging for most numerical integration routines. The exact
value of the integral of any of these test functions on the unit hypercube can be determined

Table 1
The test functions from Genz [11]. All d-variate functions depend on the d-element vectors \bfa and \bfb . The

vector \bfb is an offset parameter to shift the function. The vector \bfa describes the degree to which the family
attribute is present.

Integrand family Attribute

u1(x) = cos
\Bigl( 
2\pi b1 +

\sum d
i=1 aixi

\Bigr) 
Oscillatory

u2(x) =
\prod d

i=1

\bigl( 
a - 2
i + (xi  - bi)

2
\bigr)  - 1

Product peak

u3(x) =
\Bigl( 
1 +

\sum d
i=1 aixi

\Bigr)  - (d+1)

Corner peak

u4(x) = exp
\Bigl( 
 - 
\sum d

i=1 a
2
i (xi  - bi)

2
\Bigr) 

Gaussian

u5(x) = exp
\Bigl( 
 - 
\sum d

i=1 ai| xi  - bi| 
\Bigr) 

C0 function

u6(x) =

\Biggl\{ 
0 if x1 > b1 or x2 > b2

exp
\Bigl( \sum d

i=1 aixi

\Bigr) 
otherwise

Discontinuous
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exactly. In this section, these functions are used to test the implicit quadrature rule. The goal
is to assess the absolute integration error for increasing number of nodes in a five-dimensional
setting, i.e., to assess

eN =

\bigm| \bigm| \bigm| \bigm| \bigm| \scrA (K\mathrm{m}\mathrm{a}\mathrm{x})
N u - 1

K\mathrm{m}\mathrm{a}\mathrm{x} + 1

K\mathrm{m}\mathrm{a}\mathrm{x}\sum 
k=0

u(yk)

\bigm| \bigm| \bigm| \bigm| \bigm| ,
for samples y0, . . . , yK\mathrm{m}\mathrm{a}\mathrm{x} and various increasing N . The number of samples is chosen such that
the quadrature error dominates and the sampling error | \scrI (K\mathrm{m}\mathrm{a}\mathrm{x})u - \scrI u| is small. We compare
the approximation with that of a Monte Carlo approach, where we assess the following error:

eN =

\bigm| \bigm| \bigm| \bigm| \bigm| 1

N + 1

N\sum 
k=0

u(yk) - 
1

K\mathrm{m}\mathrm{a}\mathrm{x} + 1

K\mathrm{m}\mathrm{a}\mathrm{x}\sum 
k=0

u(yk)

\bigm| \bigm| \bigm| \bigm| \bigm| ,
i.e., it is considered as a quadrature rule with nodes \{ yk\} and weights 1/(N+1). If the under-
lying distribution is tensorized, we also study the Smolyak sparse grid, which is constructed
using exponentially growing Clenshaw--Curtis quadrature rules in conjunction with the com-
bination rule [26]. The sparse grid converges to the true value of the integral and therefore
we use the true value of the integral to assess its convergence, even though the comparison is
not completely fair in this case.

The numerical experiment is repeated twice for two different input distributions. First,
the uniform distribution is used to be able to compare the methodology with conventional
quadrature rule methods. Second, a highly correlated multivariate distribution (inspired by
Rosenbrock function) is used to demonstrate the independence of the convergence rate from
the input distribution.

To obtain meaningful results, the offset and shape parameters a and b of the Genz func-
tions are chosen randomly and the numerical experiment is repeated 50 times. The obtained
50 absolute integration errors are averaged. The vector a is obtained by first sampling uni-
formly from [0, 1]5 and second scaling a such that \| a\| 2 = 5/2. The vector b is uniformly
distributed in [0, 1]5 without further scaling, as it is an offset parameter.

The implicit quadrature rule is generated with K\mathrm{m}\mathrm{a}\mathrm{x} = 104 samples drawn randomly from
the two input distributions respectively and the Monte Carlo approximation is determined
using a subset of these samples, such that both the Monte Carlo approximation and the
implicit quadrature rule converge to the same result. The initial quadrature rule of one
single node is determined randomly and the rule is extended by applying Algorithm 3. Each
extension is such thatD doubles, up toD = 210 = 1024, but we emphasize that any granularity
can be used here. Recall that \Phi D = span\{ \varphi 0, . . . , \varphi D\} , where \varphi j are d-variate polynomials
sorted graded reverse lexicographically. Hence each extension integrates a larger number of
polynomials exactly. For sake of completeness, a comparison is made with a nonnested implicit
quadrature rule, which is regenerated for each D by means of Algorithm 1.

4.1.1. Uniform distribution. The multivariate uniform distribution in [0, 1]d (with d =
5 in this case) can be constructed by means of a tensor product of multiple univariate
uniform distributions. It is therefore possible to approximate the integral using the well-
known Smolyak sparse grid. The results of the four integration routines under considerationD
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(Monte Carlo, nested and nonnested implicit quadrature rules and Smolyak sparse grid) are
depicted in Figure 8. Here, N denotes the number of nodes of the quadrature rules and the
Smolyak sparse grid is refined by increasing the sparse grid level equally in all dimensions.

The accuracy of a quadrature rule is highly dependent on the analyticity and smoothness
of the integrand. Globally analytic functions can be approximated well using polynomials,
i.e., infq\in \Phi D

\| q  - u\| \infty decays fast. This property is reflected in the results.
The first four Genz functions (i.e., u1, u2, u3, and u4) are smooth and therefore the most

suitable for integration by means of a quadrature rule. The best convergence is observed
for the oscillatory, product peak, and Gaussian function, which are analytic. The corner
peak is analytic, but has very slowly decaying derivatives, such that the quadrature rule
approximation only converges exponentially fast for very large numbers of nodes (which are
not considered here).

The continuous (but not differentiable) C0 function follows a similar reasoning. It is not
globally analytic, hence no exponential convergence is obtained. The Smolyak quadrature rule
has a slightly larger error in this case compared to the implicit quadrature rule (arguably due
to its negative weights), even though it seems that the rate of convergence is similar.

Integrating the discontinuous function by means of a positive quadrature rule does not
yield any improvement over Monte Carlo sampling. The Smolyak sparse grid performs worse
in this case due to its negative weights and usage of the Clenshaw--Curtis quadrature rule
(which is not suitable for integration of discontinuous functions).

4.1.2. Rosenbrock distribution. The large advantage of the implicit quadrature rule is
that it can be constructed using any arbitrary set of samples. In order to assess this applica-
bility to general distributions, the following distribution (which we will call the Rosenbrock
distribution) is considered:

\rho : \BbbR d \rightarrow \BbbR , defined by \rho (x) \propto exp [ - f(x)]\pi (x),
with \pi the PDF of the multivariate standard Gaussian distribution and f (a variant of) the
multivariate Rosenbrock function:

f(x) = f(x1, . . . , xd) =
d - 1\sum 
i=1

\bigl[ 
b (xi+1  - x2i )

2 + (a - xi)
2
\bigr] 
with a = 1 and b = 10.

The distribution \rho for d = 2 is depicted in Figure 9. This distribution is not optimal for
integration by means of a sparse grid as it is not tensorized. Integration by means of a sparse
grid converges prohibitively slow, even if the quadrature rules used for the construction are
based on the marginals of the distribution. Therefore these results are omitted.

The exact integral over the corner peak function u3 diverges in this case, so approximating
such an integral will result in a diverging quadrature rule. The results of the other functions
are gathered in Figure 10.

Similarly to the uniform case, the properties of the functions are reflected in the con-
vergence rates of the approximations. The integrals of the smooth functions converge fast
with a high rate, the convergence of the C0 function is smaller, and the convergence of the
discontinuous function is comparable to that of Monte Carlo. This result is significant, as

it demonstrates that the convergence rate of \scrA (K)
N to the sampling-based integral \scrI (K) for

N \rightarrow K shows no significant dependence on the sample set used to construct the rules.D
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Figure 8. Convergence of the absolute integration error for Genz test functions using the nested and
nonnested implicit quadrature rules, Monte Carlo sampling, and the Smolyak sparse grid using the uniform
distribution.D
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Figure 9. The bivariate Rosenbrock distribution.

4.2. Airfoil flow using Euler equations. In this section the flow over an airfoil is consid-
ered with uncertain geometry and inflow conditions. The quantity of interest is the pressure
coefficient of the airfoil. The problem is five-dimensional: two parameters model uncertain
environmental conditions and three parameters model the uncertain geometry of the airfoil.
The geometry is described by the 4-digit NACA profile and the equations governing the flow
are the inviscid Euler equations. Problems of this type are well known in the framework
of uncertainty propagation [20, 40, 21] and allow us to demonstrate the applicability of the
proposed quadrature rule to a complex uncertainty propagation test case in conjunction with
a complex underlying distribution.

The five uncertain parameters are summarized in Table 2. The angle of attack and Mach
number are distributed independently from the other parameters and describe uncertain inflow
conditions. The remaining three parameters define the 4-digit NACA airfoil [15]. A NACA
airfoil can be generated directly from these parameters and the mean of these parameters is
approximately a NACA2312 airfoil. In this work the NACA airfoil with closed tip is considered
by correction of the last parameter.

The compressible Euler equations are numerically solved using the finite volume solver
SU2 [7, 28]. The mesh is generated using gmsh [12]. The implicit quadrature rules are deter-
mined by means of K\mathrm{m}\mathrm{a}\mathrm{x} = 106 randomly drawn samples from the distributions described in
Table 2, which are also being reused for consecutive refinements.

The quantity of interest in this test case is the pressure coefficient on the surface of the
airfoil Cp(x), i.e., the scaled pressure such that zero pressure equals a nonobstructed flow:

Cp(x) =
p(x) - p\infty 
1
2\rho \infty V 2

\infty 
.

Here, p(x) is the pressure at location x, p\infty is the freestream pressure (i.e., the pressure on the
boundary in this case), \rho \infty is the freestream density of air, and V\infty is the freestream velocity
of the fluid. The quadrature rule is applied piecewise to this quantity, where all pressure
realizations are piecewise linearly interpolated onto the same mesh. Accuracy is measured byD
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Figure 10. Convergence of the absolute integration error for Genz test function using the nested and
nonnested implicit quadrature rules and Monte Carlo sampling using the Rosenbrock distribution.D
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Table 2
Uncertain parameters of the airfoil test case.

Parameter Distribution

\alpha Angle of attack Uniform in [0\circ , 5\circ ]
M Mach number Beta(4, 4) distributed in [0.4, 0.6]

t Maximum thickness of the airfoil Beta(4, 4) distributed in [0.11, 0.13]
m Maximum camber Beta(2, \cdot ) distributed in [0.02, 0.03] with mean:

\=m = 1/4t2 + 0.02
p Location of maximum camber Uniform distributed in [0.3, p\mathrm{m}\mathrm{a}\mathrm{x}] with

p\mathrm{m}\mathrm{a}\mathrm{x} = 1
2
(2t+ 16m)5 + 0.3

using the lift coefficient, which is the dimensionless coefficient relating the lift generated by
the airfoil with the farfield fluid density and velocity. It follows naturally by integrating the
pressure coefficient over the airfoil surface. In Figure 11(a) we used the quadrature rule \scrA Nu
with u = Cp and in Figure 11(b) we used the quadrature rule with u = Cl.

The number of nodes of the quadrature rule is doubled until the difference between two
consecutive quadrature rule estimations of the mean of the pressure coefficient is smaller than
10 - 2, which is the case at 512 nodes. The results are summarized in Figure 11 and high order
convergence is clearly visible. Both the mean and the standard deviation show convergence
with a larger rate than that of Monte Carlo (i.e., larger than 1/2). We want to emphasize the
importance of positive weights for this engineering test case, as it ensures the estimation of
the variance is nonnegative even in the presence of high nonlinearities.

The moments of the pressure coefficient around the airfoil are depicted in Figure 12, where
the airfoil geometry that is plotted is the overlap of all airfoils (such that all depicted flow
locations are in the flow for all quadrature rule nodes).

0 0.2 0.4 0.6 0.8 1
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−
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/
2
u
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(b)

Figure 11. Left: Mean \mu and standard deviation \sigma of the pressure coefficient (Cp) of the airfoil determined
using the finest quadrature rule. Right: Convergence of the mean \mu and standard deviation \sigma of the lift coefficient
(Cl) by calculating consecutive differences.D
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Figure 12. The first four centralized moments of the pressure coefficient around the airfoil.

The largest uncertainty of the flow is near the leading edge of the airfoil. This is in
contrast to higher Mach number flows, for which it has been observed that the region of largest
uncertainty occurs near the shock wave [37, 40]. The skewness of the pressure coefficient shows
that its distribution is slightly skewed near the stagnation point on the leading edge of the
airfoil. The skewness changes sign at the mean angle of attack. Moreover in the wake of theD
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airfoil the distribution has positive skewness, which means that outliers of the distribution will
more likely be larger than smaller compared to the average pressure coefficient. The kurtosis
demonstrates that in many regions of the flow the distribution has much less mass in the
tails than a Gaussian (and therefore more unlikely produces outliers). However, again near
the leading edge and trailing edge the distribution differs and the tails of the distributions
are significantly more influential. We cannot conclude that these locations are the regions of
highest uncertainty, as the standard deviation (which is the scaling factor of both the skewness
and the kurtosis) is very small in these regions. It is merely a sign that the uncertain behavior
of the flow cannot be fully captured by a Gaussian distribution.

5. Conclusion. In this article, a novel nested quadrature rule is proposed which is con-
structed by solely using samples from a distribution. As the weights of the rule are positive,
high order convergence is obtained for sufficiently smooth functions. The algorithm to con-
struct the quadrature rule ensures positive weights, high degree, and nesting regardless of the
sample set. The quadrature rules are very suitable for the purpose of nonintrusive uncer-
tainty propagation, because positive weights ensure numerical stability and nesting allows for
refinements that reuse computationally expensive model evaluations.

The results from integrating Genz test functions demonstrate that the convergence rate of
the quadrature rule is similar to that of the Smolyak sparse grid approach, if the underlying
sample distribution is uncorrelated and defined on a hypercube. The real advantage of the
proposed quadrature rule appears when this is not the case: for correlated distribution on
nonhypercube domains our method still converges at a rate similar to the uncorrelated case,
while a sparse grid quadrature rule hardly converges at all. Similar to the existing quadrature
rules, the convergence depends on the specific properties of the integrand, in particular on its
smoothness.

To demonstrate the applicability to practical test cases, the quadrature rule is used to
determine the statistical moments of an airfoil flow with both independent and dependent
input distributions. The results demonstrate the advantages of the quadrature rule: nesting
can be used for easy refinements, positive weights ensure stability and positive approximations
of positive quantities (such as the variance), dependency is naturally taken into account, and
the accuracy of the rule yields high convergence rates.

The proposed algorithms provide a framework for the construction of quadrature rules
that shows much potential for further extensions. For example, tailoring the basis to the
integrand can yield an adaptive quadrature rule without deteriorating the accuracy of the
rule as a whole. As the rule is solely based on sample sets, no stringent assumptions are
necessary to apply the quadrature rule in such a different setting.
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