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Abstract

Imaging Mass Spectrometry (IMS) is a spectral imaging technique, which enables detection
of the spatial distribution of molecules by collecting a mass spectrum for every pixel across a
tissue sample. As such, IMS enables the detection of disease-introduced anomalies in tissue
samples as well as the gaining of deeper insight on a molecular level into biological processes.
The dimensionality of IMS data is high, considering that every bin (or ion) along a mass
spectrum represents a separate image and the number of pixels per image is relatively high.
Manual analysis of the data suffers from this high dimensionality as visualization becomes
increasingly difficult. Furthermore, analysis of such large datasets becomes problematic or
infeasible for computational techniques both in time and computational resources. Moreover,
the dimensionality of current IMS measurements hampers new applications capturing even
more data.
Linear dimensionality reduction methods, such as Principal Component Analysis (PCA) and
Nonnegative Matrix Factorization (NMF), seek to reduce these datasets to a set of (princi-
pal) components. These components span an underlying feature subspace within the original
measurement space. Rank estimation determines the quantity of such components, estimat-
ing the number needed to represent the original dataset in a lower-dimensional space while
incurring minimal information loss. In the context of IMS, this task is typically performed
without the use of domain-specific knowledge.
Intensity-aware rank estimation seeks to utilize domain knowledge - in the form of an ion
intensity threshold - to help estimate the rank. This threshold emerges naturally from IMS,
due to prior knowledge on instrument and ionization process inaccuracies in the low ion
intensity region. The ion intensity threshold defines a lower bound for which variations in
measurements are reliable.
Establishing an intensity-aware version of rank estimation requires the threshold, defined in
the original measurement space, to be linked to the abstract feature subspace, defined by NMF
or PCA, where the rank estimation takes place. This connection is nontrivial to make and is,
therefore, a central topic of this thesis. Furthermore, intensity-aware rank estimation requires
the abstract subspace to represent the majority of the information above the threshold in the
first set of components, which is not guaranteed in pure NMF and PCA formulations.
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In this thesis, we demonstrate threshold-aware rank estimation and residual-fraction rank
estimation which make rank estimation for PCA intensity-aware. Threshold-aware rank esti-
mation applies a histogram transformation to the intensities in the original measurement space
to emphasize threshold-exceeding intensities. Consecutively, we estimate the rank based on
the percentage of explained variance. Residual-fraction rank estimation uses untransformed
measurements but instead estimates rank based on the ratio of the above- and below-threshold
residuals. We demonstrate that both rank estimations are able to find the correct rank in
a synthetic dataset. With threshold-aware rank estimation applied to an IMS dataset, we
show that the transformation before application of PCA leads to a lower overall estimate of
rank based on a percentage of the explained variance. With residual-fraction rank estimation
applied to an IMS dataset, we show that we can obtain rank estimates based on the structure
of dataset close to cross-validation rank estimates for the same dataset.
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“Poetry is the art of giving different names to the same thing. Mathematics is the
art of giving the same name to different things.”
— Henri Poincaré





Chapter 1

Introduction

Spectral imaging covers a set of different imaging techniques that collect a spectrum of in-
tensity values at every location or pixel of an image. A recently developed spectral imaging
technique, Imaging Mass Spectrometry (IMS), collects a mass-over-charge spectrum per pixel
covering the entire sample and thus allows detection of molecules across a biological tissue
sample section [1]. Figure 1-1 shows a schematic overview of an IMS process.

Figure 1-1: A schematic overview of an IMS experiment. The tissue section is obtained using a
microtome, mounted on a target plate, and an appropriate chemical matrix solution is applied to
enable ionization. The mass spectral measurements, data collection, and most low-level processing
of the mass spectra take place inside the mass spectrometer or its instrument computer [2].
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2 Introduction

For a pixel, the mass-over-charge (m/z) spectrum, or mass spectrum (since the charge is
often +1), reports the presence and abundance of ions (charged molecules) present at this
pixel location in a sample. This mass spectral signal is described by a finite set of mass-
over-charge bins, covering a mass range of interest. The intensity values along the spectral
dimension represent the (relative) quantities of the respective ions present in the sample at
a particular location. These spectra are acquired using a mass spectrometer, which pixel by
pixel desorps and ionizes the molecules (puts a charge on them). Electromagnetic fields then
accelerate the ions through a mass analyzer, which filters and sorts the ions by mass, and
moves them towards a detector which counts their occurrences. Ordering the ion count values
by their corresponding ion masses then creates the mass spectrum. This process continues
until all pixels in the sample are measured. A view on the distribution of the molecules over
the sample can be obtained by stacking the pixel mass spectra such that they form ion images
for everym/z bin in the mass spectrum. Examples of these ion images are shown in figure 1-2.

The measurement of the spatial distribution of biomolecules in a sample enables detection
and comparison of proteomic, peptidomic, lipidomic, and metabolomic content throughout
organic tissue sections, based on the molecular masses and without requiring a priori labeling
for target molecules [1]. As a result, IMS can be used as a tool to unravel and understand
processes in cells at a molecular level, and it is a potent tool for disease-related biomolecular
discovery [3]. For this reason, IMS is used in exploratory biomedical studies of diseases such
as Parkinson’s disease [4], Alzheimer’s disease [4], and cancer [5].

(a) (b) (c)

(d) (e) (f)

Figure 1-2: A set of typical ion images in a Coronal Rat Brain dataset. a: m/z = 1608.8, b:
m/z = 2029.1, c: m/z = 2063.0, d: m/z = 2396.2, e: m/z = 2490.1, f: m/z = 2759.4.

A growing issue in the IMS field is the high dimensionality of the datasets. The high di-
mensionality in IMS originates from the number of bins in each spectrum and the number of
pixels for which spectra are collected. Examples of problems arising with high dimensionality
are:

• IMS data can range from gigabytes to a few terabytes, depending on the image area

M.H. van Winden Master of Science Thesis
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and the spatial and spectral resolution [6]. As a result, analysis of such large datasets
becomes problematic and rapidly infeasible for computational techniques both in time
and computational resources [7].

• Manual analysis is impractical for humans for studies without an a priori hypothesis of
a target molecule associated with an ion image, or a target pixel spectrum, due to the
number of mass-bins in each spectrum and the number of pixels for which spectra are
collected.

• IMS suffers from the curse of dimensionality [8, 9]. The high dimensionality results in
a large volume of the measurement space and causes the available data only sparsely
describe this space. As a result of this sparsity, it becomes problematic to achieve
statistical significance and define similarity between measurements. Consequently, clas-
sification, segmentation, and other machine learning approaches require vast amounts
of training data [10].

• The inability to effectively handle the current dimensionality of IMS measurements
hampers the development of new applications capturing even more data, such as 3D
IMS [11] or connecting ion mobility detection to IMS [12]. Furthermore, these problems
are strengthened by the consistently increasing spatial and spectral resolutions of the
instrumentation [13].

Dimensionality reduction could ease these problems. In general, the motivation of dimen-
sionality reduction is to obtain a reduced set of components spanning an underlying lower
dimensional feature subspace within the original measurement space. Figure 1-3 shows a
schematic representation of a decomposition of the spectral measurements into a set of three
principal components. The idea is that these principal components capture the majority of
the information in the data, while requiring fewer dimensions to describe this information
[6]. This class of dimensionality reduction is comparable to lossy compression. Consequently,
this class of dimensionality reduction is always a trade-off between discarded information and
dataset dimensionality.
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Figure 1-3: Schematic overview of linear dimensionality reduction in which the dataset consisting
of stacked pixel spectra is decomposed into three components. The residuals on the right represent
the lost information as a result of dimensionality reduction.

Rank estimation, the focus of this thesis, attempts to estimate in a linear setting the optimal
number of these principal components to select for minimizing the dimensionality of a dataset,
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while at the same capturing all relevant information. We expect that incorporating prior
knowledge about on the relevant intensity range of the data into this process could further
improve the low dimensional approximation and the associated rank estimate of a given
dataset. We refer to this approach as intensity-aware rank estimation. This approach intends
to incorporate this prior knowledge about the data into the process by taking into account
known instrument and experimental design properties when constructing a lower dimensional
representation and making an estimate of the rank.

In this thesis, we focus on intensity-aware rank estimation based upon Principal Component
Analysis (PCA) and Nonnegative Matrix Factorization (NMF) for which a minimum signal
intensity threshold for the obtained mass spectra is used as an example of such prior knowl-
edge. In an IMS mass spectrum, the region below this minimum intensity threshold can
typically not be used to support biological conclusions. This low-intensity region is largely
defined by instrument and experimental design properties, such as instrument sensitivity,
which cause this region to consist primarily of noise or low-reliability signals. The abstract
subspace found by the dimensionality reduction method should, therefore, emphasize values
above the intensity threshold to make the dimensionality reduction result consistent with the
measurement instrument properties.

1-1 Research Goal: Intensity-Aware Rank Estimation

The objective of this thesis is to select a minimal number of principal components span-
ning the lower dimensional feature subspace, while capturing the majority of the intensity-
threshold-exceeding intensity signal variation. With intensity-aware rank estimation, we take
into account the biological significance and signal reliability of the intensities as defined by
the ion intensity threshold.

Utilizing the ion intensity threshold for rank estimation is nontrivial due to the duality be-
tween the original measurement space, in which the threshold is defined, and the lower dimen-
sional feature subspace produced by the dimensionality reduction. Figure 1-3 shows that the
abstract subspace of rank K describes the original data as weighted combinations of K vec-
tors. This description is not suited for thresholding, because one scalar value in the abstract
subspace describes a linear combination of multiple values in the original measurement-space.
Also, we have no guarantee on the existence of a rank for which all threshold-exceeding in-
tensities are only described in the weighted combination of the first K vectors. On the other
hand, utilizing a threshold directly in the original measurement space, before dimensionality
reduction, changes the distribution of the data and could cause overly harsh cropping of the
lower dimensional subspace. Particularly, an increase in the variance or area under the curve,
due to the manipulation for a specific entry in the mass spectrum in the measurement space,
could boost that elements significance or weight in the abstract space.

Furthermore, general rank estimation is nontrivial since it is not only affected by the prior
knowledge about the data, but also by the motivation behind the reduction of dimensionality.
In other words, the optimal number of principal components can be dependent on the appli-
cation. For example, the optimal rank estimate to find distinct patterns in the preprocessing
phase leading up to clustering with k-means differs from the optimal rank for compression
of the original dataset focused on the reconstruction of that dataset. The former requires a
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number of, potentially uncorrelated, principal components highlighting the distinctions be-
tween the measurements of interest. The latter requires a number of components resulting in
a minimal residual of the intensities of interest.

In this thesis, we target the nature of the data, but we bear in mind the application-
dependence of rank estimation. We have investigated rank estimation by two different ap-
proaches in the form of intensity-aware dimensionality reduction and intensity-aware rank
estimation based on PCA. Within these approaches, we introduce respectively a threshold-
shifted and residual-fraction rank estimation and argue that their applicability is dependent
on the aforementioned context of the application.

In threshold-shifted rank estimation, we apply a transformation in the original measurement
space before dimensionality reduction and thus modify the obtained abstract subspace. The
applied transformation is a downwards-shift on the intensity values by a threshold τ (the
ion intensity relevance threshold) and subsequently setting any negative values to zero. This
transformation reduces the area under the curve for ions with low-intensity values more than
for their high-intensity counterparts. As a result of this transformation, we can obtain a
set of principal components emphasizing the intensities in the spectrum above the intensity
threshold. Subsequently, we estimate the rank by specifying a required percentage of the
captured variance in the transformed space.

In residual-fraction rank estimation, we focus on rank estimation without manipulation of
the data in the original measurement space. Instead, we intend to estimate the rank by
minimizing the fraction of residuals of threshold-exceeding intensities relative to the residuals
of the below-threshold intensities as captured in the traditional threshold-unaware abstract
subspace.

1-2 Related work and Contributions

The large body of work focused on the dimensionality reduction of IMS datasets, in order
to ease the problems with analysis arising with dimensionality, demonstrates the importance
of this topic. Furthermore, several publications have explicitly stressed the importance for
more and improved dimensionality reduction techniques [7, 10, 5]. The application of different
matrix factorization methods, such as PCA [6, 14, 15] and NMF [16, 17], other linear methods,
such as Probabilistic Latent Semantic Analysis (PLSA) [14] and Linear Discriminant Analysis
(LDA) [15] and random projections [8], and nonlinear methods, such as autoencoders [7]
and t-Distributed Stochastic Neighbors Embedding (t-SNE) [5] to IMS datasets have been
evaluated. In the context of IMS, a more memory efficient version of PCA has been proposed
[6]. PCA has been used as an unsupervised dimensionality reduction before clustering [18]
and trend detection [19].

For example, Klerk et al. have applied PCA, NN-PARAFAC, and PCA+VARIMAX for eval-
uation of large SIMS and LDI datasets [20] and estimated the rank based on the cumulative
percentage of variance. McCombie et al. have used the cumulative variance for component
selection in PCA [18]. Hanselmann et al. have estimated the rank via the Akaike Information
Criterion (AIC) [21] for PLSA with nonnegativity constraints closely related to NMF for IMS
data [22]. Harn et al. proposed a dictionary learning method in which the rank is imposed by
the dictionary to unravel molecular structures [23]. In a similar spectral imaging technique,
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Hyperspectral Imaging (HSI), commonly used in remote sensing, dimensionality reduction
based on NMF was applied using an empirical rank estimate [24, 25].
In this thesis, we focus on linear dimensionality reduction methods PCA and NMF, The
additional challenges posed by nonlinear methods, especially due to the dimensionality of the
problem, are not the focus of this thesis. We deem linear methods a good starting point
to derive an initial intensity-aware rank estimation method and leave a possible nonlinear
generalization for future research.
We believe most applications of dimensionality reduction to IMS lack a formal rank estimation
procedure for IMS datasets. For this reason, we propose two methods to establish a more
formal rank estimation procedure for PCA-based dimensionality reduction for IMS with the
help of the ion intensity threshold. This approach differs from the aforementioned techniques,
where the rank is often determined empirically. In other cases, traditional methods available
from the literature, that do not take into account contextual information about the datasets,
were used.
Outside of the context of IMS, a wide range of rank estimation methods for dimensionality
reduction based on decomposition has been developed. Contrary to Cross-Validation (CV)
[26, 27, 28] and Bootstrapping [29, 30, 31], our approach towards intensity-aware rank esti-
mation is not based on computationally intensive iterative decomposition for evaluation of a
prediction error, nor does it assume a statistical model about the data, such as Maximum
Likelihood Estimation (MLE) [32], Minimum Description Length (MDL) [33, 34], Stein’s
Unbiased Estimator (SURE) [35], Bayesian Model Selection [36] and Automatic Relevance
Determination (ARD) [37, 38, 39]. We deem threshold-shifted rank estimation an extension of
variance-based thresholding methods [40, 41] built around the intensity threshold. Residual-
fraction rank estimation differs from the aforementioned methods, as it is solely based on the
distribution of the residuals over the intensities.
With threshold-shifted rank estimation, we show that reducing dimensionality and estimating
rank in a manner that reflects the biological significance of the intensity values can lead to
a lower overall estimate of rank for a given dataset, when compared to threshold-unaware
dimensionality reduction. The lower rank is a consequence of the abstract subspace that
captures less of the intensity values below the intensity threshold. With the residual-fraction
rank estimation, we show that the effect of low-reliability intensities in the data can be used
to obtain a subset of principal components maximally reflecting above-threshold intensities
in traditional PCA. Furthermore, we demonstrate that residual-fraction rank estimates are
similar to rank estimates as obtained with cross-validation.

1-3 Outline

In this chapter, we have introduced dimensionality reduction, rank estimation and motivated
why dimensionality reduction is essential. Furthermore, we have motivated why dimension-
ality reduction aware of the instrument properties could be beneficial in the case of IMS. For
the remainder of the thesis, the outline is as follows:

• In chapter 2, we introduce the mathematical concept of rank, discuss the origin of the
threshold, and outline the datasets used to evaluate our method.
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1-3 Outline 7

• In chapter 3, we introduce PCA and NMF, show how PCA and NMF capture intensities
based on the residuals and demonstrate why the intensity capturing is problematic for
pure intensity-aware rank estimation. As an alternative, we propose residual-fraction
rank estimation.

• In chapter 4, we outline Threshold-Aware Principal Component Analysis (TAPCA)
and introduce the particular class of transformations to make the lower-dimensional
abstract subspace emphasize threshold-exceeding intensities. Consecutively, we show
three different examples of such transformations, that enable emphasis on the threshold-
exceeding intensities. Furthermore, we discuss the problems in other dimensionality
reduction methods that we have tested to create a lower-dimensional abstract subspace
aware of the intensity threshold.

• In chapter 5, we compare the threshold-shifted method for constructing the abstract
subspace with standerd dimensionality reduction based on PCA in terms of residuals.
Furthermore, we use a synthetic dataset with known rank to evaluate both threshold-
shifted and residual-fraction rank estimation. Finally, we apply both the threshold-
shifted and residual-fraction rank estimation methods to a real IMS dataset and discuss
the results.

• In chapter 6, we summarize our observations on intensity-aware rank estimation and
list our conclusions and recommendations for future work.
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Chapter 2

Fundamentals

2-1 Dimensionality Reduction

Feature extraction and feature selection are typical strategies for dimensionality reduction
[31]. Feature selection intends to find a subset of the original measured variables by detecting
and picking relevant features for a task at hand. Feature extraction, on the other hand,
transforms the data typically from a high- to a lower-dimensional space, potentially generating
new variables in the process. Feature extraction methods are the focus of this thesis since,
one, many feature selection methods are supervised, and two, the goal is to retain as much of
the original data, while reducing dimensionality in an unsupervised manner. In this section,
we define the concept of rank in the context of linear dimensionality reduction based on
the feature extraction methods Principal Component Analysis (PCA) [40] and Nonnegative
Matrix Factorization (NMF) [42]. Furthermore, we introduce the concept of intensity-aware
rank estimation based on this mathematical concept of rank.

Rank

The rank R of a matrix M is the number of linearly independent rows or columns of M.
In the context of decomposition or factorization, the rank R of M is equal to the minimal
number of rank-one matrices F required to reconstruct M exactly. A matrix is rank-one if it
can be expressed as the nonzero outer product w × h of a column vector w and a row vector
h. For example, if M has rank three (R = 3), we require the sum of three rank-one matrices
or equivalently the sum of three outer products of two vector pairs to reconstruct the matrix
M exactly. Equation (2-1) shows a matrix notation of the R pairs of column vectors wi and
rows vectors hi represented as matrices W ∈ RN×R and H ∈ RR×M if M ∈ RN×M . An
alternative formulation of the rank of matrix M is the number of nonzero eigenvalues of M
or MTM.

M =
R∑
i=1

Fi =
R∑
i=1

wihi = WH (2-1)
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10 Fundamentals

Throughout this thesis, and in the context of PCA, we also refer to the rank-one matrices
Fi, or the combinations of wi and hi, as principal components, principal patterns or principal
factors.

Linear Dimensionality Reduction and Rank Estimation

In Linear Dimensionality Reduction (LDR) based on feature extraction with decomposition
or factorization, we strive towards a lower dimensional approximation M̂ of the matrix M
such that rank K of M̂ is smaller than rank R of M, while incurring minimal information-loss.
For this reason, dimensionality reduction intends to utilize a lower number of components wi
and hi to approximate the matrix M.

M ≈ M̂ =
K∑
i=1

Fi =
K∑
i=1

wi · hi = WH (2-2)

with M ∈ RN×M , M̂ ∈ RN×M , W ∈ RN×K , H ∈ RK×M , rank(M̂) = K and rank(M) = R
with R ≤ min(N,M). This process is visualized in figure 2-1.

In equation (2-2), the components wi and hi span an underlying abstract feature subspace
within the original measurement space of M. In this representation the components wi and
hi describe the matrix M̂ as a weighted combination of K vectors. The way the components
wi and hi, and consequently these rank-one matrices Fi, are constructed, is determined by
the underlying LDR technique and discussed in the section about PCA and NMF.

In the context of LDR, rank estimation determines the number K of these rank-one matri-
ces Fi required to obtain a sufficiently close approximation M̂ of the original matrix M for
minimal information loss given that K < R. As introduced before, we consider the defini-
tion of minimal information loss depends on the context, such as the motivation behind the
application of dimensionality reduction and the nature of the data.

Intensity-Aware Rank estimation

Intensity-aware rank estimation seeks to add some of the aforementioned context about the
data in the form of a reliability-threshold on the intensity values. We can interpret this
threshold as lowered interest in all sub-threshold intensities in matrix M in equation equa-
tion (2-2). Consequently, we intend the reconstruction matrix M̂ to particularly capture
threshold-exceeding intensities, while neglecting the sub-threshold fluctuations. In this the-
sis, we approach this in two ways which can be explained based on equation (2-2):

Intensity-aware Rank Estimation does standard LDR, but attempt to use the intensity
threshold in helping to pick a set of components that preferentially represent above-
threshold structure in the signal. The components wi and hi are constructed using
the traditional linear feature extraction methods PCA and NMF and intend to find a
rank K for which matrix M̂ has sufficiently captured the threshold-exceeding intensities
in M̂. In chapter 3, we outline why selecting a rank based on sufficient capturing of
threshold-exceeding intensities is troublesome. As an alternative, we propose a residual-
fraction-based method to estimate the rank.
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Figure 2-1: Schematic overview of a low-rank approximation of stacked pixel spectra in D by a
decomposition into three rank-one matrices constructed by the components wi and hi resulting
in a reduction of dimensionality. The choice of the factors wi and hi is dependent on the chosen
dimensionality reduction algorithm.

Intensity-aware Dimensionality Reduction integrates the intensity threshold directly
in the LDR process, steering towards customized components that inherently repre-
sent primarily above-threshold structure in the signal. The components wi and hi are
constructed such that they specifically emphasize the threshold-exceeding intensities by
customization of PCA. Consecutively, we intend to find a rank K for which matrix M̂
has sufficiently captured the majority threshold-exceeding intensities in M. In chap-
ter 4, we demonstrate a PCA-based threshold-shifted dimensionality reduction method
to modify the component wi and hi supported by the ion intensity threshold. Sub-
sequently, we estimate the rank based on the threshold-exceeding contribution to the
explained variance.

Intensity-aware Rank Estimation uses the intensity-related information post-LDR, while
Intensity-aware Dimensionality Reduction uses this information for the LDR process itself.

2-2 Datasets

2-2-1 MALDI Dataset

Over the past half-century different Imaging Mass Spectrometry (IMS) technologies with
their own applications, advantages, and disadvantages have been developed. Major ones
are Desorption Electrospray Ionization (DESI), Matrix Assisted Laser Desorption Ioniza-
tion (MALDI), and Secondary Ion Mass Spectrometry Imaging (SIMS). In this thesis, we
specifically demonstrate the application of the proposed intensity-aware dimensionality re-
duction techniques on a dataset obtained by MALDI IMS applied to mammalian tissue. The
technique proposed in this thesis, is also readily applicable to other types of IMS.

Master of Science Thesis M.H. van Winden



12 Fundamentals

MALDI IMS [1] is a specific IMS technique, which obtains a direct spatial mapping of ions
from a tissue section by using the molecular specificity and sensitivity provided by a mass
spectrometer. This mapping can obtained by the following consecutive steps. First a chemical,
the matrix solution, is deposited on the sample. This matrix solution, when being irradiated
with laser light, helps ionize the biological molecules in the sample. The mass spectrometer
can then detect these biological ions for the irradiated pixel in question. This process is
repeated pixel by pixel until a full image of the sample is obtained. A schematic overview of
the process can be found in figure 1-1.
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Figure 2-2: Schematic overview of the IMS dataset tensor and the matrix formulation used in
this thesis.

Dataset Format

The pixel spectra measured during an IMS experiment are commonly organized as a 3-mode
array, or tensor, D ∈ RI×J×M with two spatial dimensions of respectively I pixels lines and
J pixel columns and one spectral m/z dimension with M mass-bins. Each scalar value dijm
in the tensor depicts the intensity in arbitrary units of a particular mass peak at a pixel-row
position i and pixel-column position j in mass-bin m. A visualization of the data format is
shown in figure 2-2.

We focus on dimensionality reduction based on matrix factorization and decomposition and
leave the higher-order variants, such as tensor factorization, for future research. For this
reason, we ravel or fold the 3-mode tensor D into a 2-mode array, or matrix, Dr ∈ RS×M
by reordering the pixel associated with spatial positions i and j into a long vector of length
S = I × J . The matrix Dr is a stacked representation with the S spectra, as row obtained
from the I pixel lines and J pixel columns, and the M m/z bins as columns. This operation
is reversible, and we can obtain the original ion images by the reverse unfolding operation.

Not all pixels in the ion images cover the tissue sample, and for this reason, we mask these
empty pixels on the raveled array Dr into D. The matrix D ∈ RN×M only contains the
N pixel spectra that report the molecular composition of the sample. Throughout the rest
of this thesis, we switch between the masked representation D ∈ RN×M for dimensionality
reduction and the tensor representation D ∈ RI×J×M for visualization of the distribution of
molecules for a particular mass-bin. We use the notation dn· to denote the spectrum at pixel
n, d·m to denote the intensities in a particular mass-bin j and dnm to denote an individual
intensity at pixel n in mass-bin m.
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Motivation behind the ion intensity threshold

In this thesis, the ion intensity threshold defines a minimum intensity level above which
the difference in the concentration between two different molecules can be reliably discerned
in the mass spectral signal. The ion intensity threshold is connected to the concepts of
Level of Blank (LOB), Level of Detection (LOD), and Level of Quantitation (LOQ), which
together describe the smallest abundance of a measurand that can reliably be detected by
an analytical procedure [43]. The ion intensity threshold is linked to LOQ, as it describes
the lowest abundance at which the analyte can be reliably detected and which meets some
predefined constraints for bias and imprecision [43].

In the context of IMS, the LOQ can be dependent on mass analyzer type, detector type, speci-
men preparation, experiment design, as well as chemical properties such as LOD and chemical
noise in the specimen. For this reason, this intensity threshold is as a general guide determined
by the mass spectrometer operator and falls therefore under expert and case-study-specific
knowledge. The intensities below this intensity threshold are considered unreliable, biased,
or imprecise, and these intensities can usually not be used to support biological conclusions.
Therefore, it stands to argue that these low-intensity values are redundant for manual and
computational analysis and hence the focus of this thesis on using this intensity margin to
further improve rank estimation.

Coronal Rat Brain dataset preparation

In this study, we use the same IMS dataset as was used by Verbeeck et al. for connecting
medical atlases to IMS measurements [44]. The study of Verbeeck et al. stated the following
sample preparation steps:

"The brain tissue sections were collected from a rat PD model in which the
adult male Sprague Dawley rats were anesthetized with isoflurane, pretreated with
desmethylimipramine (12.5 mg/kg, ip) and placed in a stereotaxic frame. After an
incision of the dorsal surface of the skull and placement of a burr hole, animals
were again injected with despramine. 10 min later 1.5:L of 6-hydroxydopamine
HBr (6-OHDA; 4.0:g/uL, free base) was unilaterally injected into the substantia
nigra (AP:–5.4; L:2.3; DV:–8.4) to selectively destroy nigrostriatal dopaminergic
neurons. Although there is a crossed-nigrostriatal pathway, it is quite small, con-
tributing well under 5% of the dopamine content to the contralateral striatum, and
thus the contralateral striatum is usually referred to as the intact (control) side.
All in-house animal experiments were performed with approval by the Vanderbilt
Institutional Animal Care and Use Committee. Brain tissue was harvested, snap
frozen using liquid nitrogen, and stored at −80 ◦C until use. Frozen brain tis-
sue was sectioned in the coronal plane at 10 µm using a cryostat (−20 ◦C, Leica
CM3050S; Buffalo Grove, IL, USA) and thaw mounted onto conductive Indium-
tin-oxide coated glass slides (Delta Technologies, Loveland, CO, USA). Samples
were washed to remove interfering lipids and salts in sequential washes of 70%
ethanol (30 s), 100% ethanol (30 s), Carnoy’s fluid (6:3:1 ethanol:chloroform:
acetic acid) (2 min), 100% ethanol (30 s), water with 0.2% TFA (30 s), and 100%
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Figure 2-3: The intensity histograms of the three datasets with different number of mass-bins
associated with different peak-picking thresholds of respectively 10 (M = 4048), 20 (M = 2611),
and 100 (M = 809) in bins with width 500 truncated at intensity 5× 104.

ethanol (30 s) [45]. The MALDI matrix 2,5-dihydroxyacetphenone (DHA, Sigma-
Aldrich Chemical CO., St. Louis, MO, USA) was applied using a TM Sprayer
(HTX Technologies, Carrboro, NC, USA) and rehydrated as described previously
[46, 47, 45]. MALDI IMS images were collected using a 15 T Fourier transform
ion cyclotron resonance (FTICR) mass spectrometer (Bruker Daltonics, Billerica,
MA, USA) with a spatial sampling resolution of 75 µm(laser spot size ∼ 50 µm)
and a mass resolving power of 50,000 (m/FWHM) at m/z 5000. The molecular
images focused on a m/z range of 1300 to 23,000 with a total of ∼ 20, 000 pixels.
The instrument was tuned for protein imaging as described previously [45, 46].
After IMS acquisition, matrix was removed using 100% ethanol and the tissue
was stained with hematoxylin and eosin (H&E stain) for histological analysis."

This data was then imported into MATLAB 2015b (TheMathworks Inc., Natick, MA) in
which they were normalized to Total Ion Current (TIC) and peak picked with a range of
thresholds 100, 20, and 10, resulting in dataset sizes with respectively 809, 2611 and 4084
mass-bins. We use the different peak picking thresholds to show the influence of the number
of mass-bins on the intensity-aware rank estimate. The histograms of this dataset with the
different peak picking thresholds are depicted in figure 2-3.

2-2-2 Synthetic Dataset

We use a synthetic dataset to obtain a deeper insight in, evaluate, and make a fair comparison
of the intensity-aware rank estimation methods and standard rank estimation. The synthetic
dataset has a known rank and ion intensity threshold and as such allows for validation of
sufficient capturing in the low-rank approximation of the threshold-exceeding intensities in
the intensity-aware methods. With this synthetic dataset, we aim to provide a toy-example
for investigation of the influences of noise and the choice of threshold to simplify analysis.
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The toy-example approach requires this synthetic dataset to be simple, neglecting many of
the effects present in IMS. We intend with this synthetic dataset to only model a difference
in information-content above and below the threshold, because capturing the majority of the
threshold-exceeding information is the focus of this thesis. The distribution of the intensities
over the intensity range affects the rank estimation as it changes the number of intensities
below and above the threshold. For this reason, we use an approximation to an exponential
distribution similar to the intensities in the IMS dataset, while manually introducing a region
with low-reliability. Contrary to IMS, this dataset does not contain spatial autocorrelation
[48]. Furthermore, for simplicity, we assume the noise is Gaussian distributed, instead of
Poisson distributed as in the case of an IMS dataset [49]. These simplifications make the
synthetic dataset less representative for the IMS, but we prioritize validation of the mechanism
capturing the majority of the threshold-exceeding information.
A standard way of constructing a synthetic dataset for validation of rank estimation in di-
mensionality reduction is to define a matrix with known rank K, which we consider the signal,
and let noise distort this signal matrix. As a result of this distortion, the final measurement
matrix becomes full rank. Then with rank estimation, we intend to find the underlying signal
rank K again from the distorted measurements. In the case of intensity-aware rank estima-
tion, we extend this procedure to specifically model the difference in information content in
above versus below-threshold intensities in the underlying signal matrix. For this reason, we
have formulated a synthetic dataset directly in matrix form using:

Dorig
syn = fperturbation(Xsignal) + σnoiseXnoise (2-3)

in which Xsignal denotes the low-rank matrix representing the biological signal, fperturbation(•)
denotes a function to model intensity dependent perturbations, Xnoise denotes Gaussian dis-
tributed noise, and σnoise defines the variance of this noise.
In this formulation, we intend the effect of the threshold to be dominant over the noise
intensity. To assert every intensity is positive after application of the Gaussian noise we set
any negative value for pixel n and mass-bin m in Dorig

syn to zero:

dsyn,nm =
{
dorig

syn,nm dorig
syn,nm ≥ 0

0 otherwise (2-4)

In the next paragraphs, we discuss the specific choices on the signal construction, noise
perturbations and the dataset size to construct the dataset with the histogram shown in
figure 2-4.

Signal The spectral signal is represented by a rank-K matrix and contains the principal
patterns that we aim to unravel with dimensionality reduction. The histograms in figure 2-
3 show that IMS datasets are generally sparse, containing many low-intensity values and a
limited number of high intensities. To obtain a similar distribution and sparsity, we have
modeled the low-rank signal as the multiplication of two exponentially distributed matrices
W and H. The exponential distributions ensure that the dataset can have a limited number of
threshold-exceeding intensities and a large quantity of below-threshold intensities, depending
on the choice of intensity threshold.

Xsignal = αWH (2-5)
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Figure 2-4: The histogram of a synthetic dataset Dsyn ∈ R50×25 with rank (Dsyn) = 5, SNR =
∞, α = 10 and 10% sparsity. The intensities below the ion intensity threshold τ = 5 are shown
in red.

with Xsignal ∈ RN×M , rank (Xsignal) = K, W ∈ RN×K , W ∼ E(1), H ∈ RK×M and H ∼
E(1) in which ∼ E(•) denotes an exponentially distributed signal. We use α to scale the
intensities, such that a distribution of threshold-exceeding and below-threshold relative to
the selected threshold can be chosen. Additional sparsity is added by randomly setting a
percentage of entries in either the W and H matrix to zero. The multiplication of two
exponential distributions is not exponential. However, figure 2-4 demonstrates the manually
imposed sparsity on the matrices W and H results in a close approximation of the exponential
distribution.

Perturbations The function fperturbation is intended to distort the below-threshold intensities
and break the patterns apparent in the signal matrix Xsignal in the below-threshold region.
The threshold-exceeding intensities are left undistorted. To model the distortion, we have
chosen to randomly permute the entries in the below-threshold region. The permutations
break the patterns apparent in the dataset, while keeping the exponential distribution in the
total dataset Xsignal intact.

fperturbation(x) =
{

Random sample of T x ≤ τ
x otherwise (2-6)

where τ is the intensity threshold, and T = {Xsignal ≤ τ} is the set of elements of Xsignal
below threshold τ .
This perturbation model ensures that the below-threshold intensities become unstructured,
while the threshold-exceeding intensities remain intact. The model assumes no structure in
the below threshold region. We are aware that this perturbation model is not realistic for a
real IMS dataset, which we expect to contain a continuous transition from more unreliable to
more reliable intensities. However, we have chosen this approach to demonstrate intensity-
aware methods at work in this simple case and simplify the analysis of the toy example.
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Extensions could be made to this perturbation model to support an intermediate situation in
which below-threshold intensities still contain some structure.

An example of such an extension is to do only permutations of intensities within a similar
intensity range. These permutations limit the randomness of the below-threshold intensity
dependent on what intensity range the intensity is in. The creation of several below-threshold
intensity ranges in decreasing size with increasing intensity allows a more gradual increase in
reliability, as a result of the size of the intensity range. However, verification of the broken
patterns in below-threshold intensities as a result of this perturbation is not straightforward.
It is nontrivial to choose the intensity ranges in such a manner that randomness of the below-
threshold is still dominant over the randomness as a result of the added noise. For this
reason, we have chosen the simplified perturbation model and see more natural modeling of
below-threshold perturbations as a topic for future research.

Noise The addition of intensity independent noise ensures that also threshold-exceeding
intensities are perturbed and that the to be captured pattern is somewhat distorted. The
additive noise allows independent modification of the strength of the intensity-independent
noise and the introduced intensity-dependent perturbations. The noise strength is chosen on
a fixed signal-to-noise ratio based on the original signal in equation (2-5) with:

σnoise =
‖fpertubation(Xsignal)‖F√

SNR ‖Xnoise‖F
(2-7)

with ‖•‖F representing the Frobenius norm.

Size Dimensionality reduction requires sufficient support for the patterns in the threshold-
exceeding intensities. As a result, we have chosen the synthetic dataset size based on sufficient
sampling of the threshold-exceeding region, while at the same time enabling thresholds to
be larger than the noise intensity originating from the Signal-to-Noise Ratio (SNR). High
thresholds for the synthetic dataset, and as such little proof for the patterns we aim to
capture cause LDR to fail to capture the majority of the pattern. However, low thresholds
are potentially in the noise region and hamper objective validation of the threshold-aware
LDR techniques.

Empirically, we have found that a dataset with N = 50 rows, M = 25 columns, and rank
K = 5 provides sufficient sampling above the threshold, choices of threshold, and choices of
SNR. The histogram of an example dataset is shown in figure 2-4. Throughout the rest of this
thesis we investigate effects of the variation of SNR and threshold choice on rank estimation.
Other parameters are fixed at α = 10 and 10% sparsity.
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Chapter 3

Intensity-aware Rank Estimation

In this chapter, we focus on intensity-aware rank estimation, which intends to estimate the
rank using unmodified Linear Dimensionality Reduction (LDR), while capturing the majority
of the intensity-threshold-exceeding information. It attempts to use the intensity threshold to
pick a set of components the preferentially represent above-threshold structure. This approach
uses the intensity-related information post-LDR whereas intensity-aware dimensionality re-
duction, discussed in the next chapter, uses this information for the LDR itself.

This chapter introduces traditional LDR techniques Principal Component Analysis (PCA)
and Nonnegative Matrix Factorization (NMF) and shows that rank estimation solely based
on a choice of intensity threshold for PCA and NMF can be ambiguous.

3-1 Linear dimensionality reduction in Imaging Mass Spectrometry
(IMS)

3-1-1 Principal Component Analysis (PCA)

PCA is a popular multivariate analysis technique used for dimensionality reduction, based on
capturing the majority of variation in datasets consisting of possibly correlated variables. The
dimensionality reduction aspect is based on the transformation of these original variables to a
new and limited set of uncorrelated principal components, ordered by the amount of variance
they represent [40].

In the context of IMS, PCA is used to reduce the dimensionality of IMS datasets [18], in which
the principal components can be viewed as a set of uncorrelated biochemical trends within
the specimen [2]. PCA is also used for denoising, the identification of linearly dependent
molecules, and detection of spatial regions of interest [19, 15, 18].

In PCA, dimensionality reduction is achieved by a projection of the dataset onto a lower
dimensional orthogonal basis. The vectors in this basis, spanning a lower-dimensional latent
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subspace, are the consecutive axes of maximum variance. As a result, the maximum vari-
ance of the measurements possibly represented in the K-dimensional space is obtained by a
projection of the data on the first K latent basis vectors.
This basis aligned with the axes of maximum variance is identical to the change of basis matrix
C used to diagonalize the covariance matrix S of the measurements, or in other words, the
eigenvectors of the covariance matrix S. This covariance matrix is defined as:

S = 1
N − 1(D−D)T (D−D) or spq = 1

N − 1

N∑
n

(dnp − dp)(dnq − dq) (3-1)

in which the matrix S denotes the covariance matrix, spq denotes the covariance between
variables or mass-bins p and q, D ∈ RN×M denotes the IMS data matrix with N observations
or pixels and M variables or mass-bins, D denotes the column or mass-bin average, dp and dq
denote respectively the average of the columns or mass-bins p and q, and dnp and dnq denote
the intensity at pixel j for respectively mass-bin p and mass-bin q. As a result, the individual
entries of the covariance matrix spq are dependent on the combination of the deviations of
the mean from mass-bin p and mass-bin q.
Overall, the procedure of PCA-based dimensionality reduction is to construct the covariance
matrix S, obtain the basis aligned with the axes of maximum variance C ∈ RM×M and
project the deviations from the mean D∗ = D − D on a subset of basis vectors. PCA is
usually implemented as a Singular Value Decomposition (SVD) of the mean centered data
D∗ matrix or eigenvalue decomposition of the covariance matrix S [40].

Dimensionality Reduction and Rank Estimation

This section extends the mathematical concept of rank as introduced in section 2-1 for PCA
and introduces the terminology used in the rest of the thesis. Similar to the definition of rank
in section 2-1, PCA decomposes the IMS measurement matrix D∗ ∈ RN×M for rank M into
M rank-one matrices or factors F so that they sum up to the original matrix D∗:

D =
M∑
i=1

Fi =
M∑
i=1

wihi = WH (3-2)

Generally, in PCA, the column vectors wi and the row vectors hi are commonly named the
score vectors and the loading vectors respectively. The scores and loadings for a rank-K
reduction are constructed by taking K basis vectors CK ∈ RM×K from the basis C obtained
from the covariance matrix S. The loading vectors are the first K row vectors H = CT

K of
the basis matrix CT . The score vectors are the projection of the deviations from the mean
D∗ on the K basis vectors CK so that we obtain W = D∗CK . Utilizing the matrix notation,
the decomposition of the matrix D∗ into K principal components can be represented as:

D∗ = D∗K + E = WH + E = D∗CKCT
K + E =

K∑
i=1

D∗cicTi + E (3-3)

in which E denotes the residuals between the rank-K approximation D∗K and D∗. The
rank-K approximation D̂K of the IMS matrix D can be obtained by addition of the means
D̂K = D̂∗K + D.
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In PCA, each column vector ci in C is commonly referred to as a principal component of
the matrix D and is associated with a coefficient λi indicating the explained variance by this
component. These coefficients stem from the eigenvalues of the covariance matrix S and order
the individual principal components ci based on the represented variance. As a result, the
current principal component always represents more variance than the next one.

As introduced before, we are interested in selecting the number of vector pairs wi or hi, or
rank-one matrix Fi, to obtain a lower dimensional representation of the matrix D to capture
the majority of the threshold-exceeding information. In the context of PCA, this means an
estimate of the number of basis vectors, columns of C, as a result of the relation of the vector
pairs wi or hi with the basis vectors ci shown in equation (3-5). Due to the association of every
component Fi with a coefficient λi in PCA, selecting a rank implies capturing a percentage
of the total variance due to the associated explained variance coefficient with each principal
component. This total captured variance is inversely related to the magnitude of the total
residual between the low-rank approximation and the original dataset by definition of PCA
[40]. For this reason, we investigate in section 3-2 the relation of the intensity and rank.

Variable Weights

The covariance matrix used for constructing the basis C is not scaling invariant, meaning
the different magnitudes of the individual entries dnp and their deviations from the mean
dp determine the magnitude of the covariance matrix entries cpq. An alternative is using
the correlation matrix R instead of the covariance matrix S. The correlation matrix is
a normalization of the covariance matrix such that covariances spq are normalized by the
standard deviations of the variables p and q to correlations rpq ∈ [−1, 1]. As pointed out in
[2], this normalization makes sense in the case of mostly heterogeneous data with different
amplitudes, but not in the case of spectrometry where the data has a physical relationship
and are directly comparable. In this thesis especially, we are interested in capturing the
threshold-exceeding peaks and as a result the relative scale of the individual variables.

The two approaches towards intensity-aware rank estimation outlined in section 2-1 can be
extended for PCA. In this chapter, we assume the variable weights in the covariance matrix
as-is and intend to estimate the rank without modification of the variable weights. In chapter 4
we explicitly modify the variable weights to emphasize threshold-exceeding intensities.

Optimization Formulation

To obtain a similar problem formulation as NMF, PCA can also be formulated as an opti-
mization problem. The result obtained with the SVD of mean-centered matrix D∗ or the
eigenvalue decomposition of the covariance matrix S is the guaranteed global optimum of
this optimization problem [50]. The approach of finding the linear subspace that maximizes
the variance is equivalent to finding the linear subspace that minimizes the least-squares
divergence of the projection C [40].

minimize
C

∥∥∥D∗ −D∗CCT
∥∥∥2

F

subject to CTC = I
(3-4)
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3-1-2 Nonnegative Matrix Factorization (NMF)

NMF was first developed by Paatero and Tapper [51] in the form of Positive Matrix Factoriza-
tion and later extended as NMF by Lee and Seung [42]. NMF factors the IMS measurement
matrix D in two strictly nonnegative components W ∈ RN×K and H ∈ RK×M . In a similar
sense to, equation (2-2), NMF can reduce the dimensionality by choosing rank K lower than
the respective dimensions M and N , resulting in a lossy compression of the original matrix
according to:

D ≈ D̂ =
K∑
i=1

Fi =
K∑
i=1

wihi = WH with W ≥ 0,H ≥ 0 (3-5)

As a result of the nonnegativity, the approximation to the IMS measurement matrix D̂ is
composed by additions of parts [42]. In the context of IMS dataset D, NMF can be interpreted
as unmixing of pixel spectra as combinations of spars spectral sub-signatures hi. In traditional
NMF, these sub-signatures are typically ion spectra describing one or a set features appearing
in one or more pixels. These pixels then show a membership wi to these signatures, defining
the pixel as a composition of sub-signatures. The nonnegativity constraint allows a more
biologically valid representation of these sub-signatures than PCA. Due to this grouping and
the nonnegativity constraint, NMF is a relatively interpretable decomposition for nonnegative
measurement data contrary to PCA, which can yield negative-valued signatures.

NMF constructs factors W and H from a matrix V by solving the optimization problem:

minimize
W,H

D (V,WH) +R(V,W,H, . . . )

subject to W ≥ 0
H ≥ 0

(3-6)

in which D(A,B) denotes the divergence function between A and B and R(V,W,H, . . . )
denotes the additional regularization terms. V ∈ RN×M is the matrix to be factorized matrix,
W ∈ RN×K and H ∈ RK×M and K ≤ min(N,M) are the factors. In the default case, the
divergence function is commonly chosen as the Euclidian distance between V and WH and
no regularization terms R(V,W,H, . . . ) = 0 are included, resulting in:

D (V,WH) = ‖V−WH‖2F =
N∑
n=1

M∑
m=1

([V]nm − [WH]nm)2 (3-7)

The Euclidian Distance NMF optimization problem can be solved via Nonnegative Least
Squares (NNLS) with a multiplicative update algorithm [52] or alternatively via Alternating
Least Squares (ALS) [53], Hierarchical Alternating Least Squares (HALS), or Block Co-
ordinate Descent (BCD) algorithms [53]. For the results in this thesis, we have used the
multiplicative update algorithm:

W←W� (VHT )
(WHHT )

H← H� (WTV)
(WTWH) (3-8)

in which � denotes the element-wise product.
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3-2 Linear dimensionality reduction: intensity-dependent captur-
ing

In this section, we investigate how PCA and NMF capture different intensity ranges in a
dataset, spread over the different ranks. We propose that a rank estimate based on the prior
defined intensity threshold is required to report a rank for which the threshold-exceeding
intensities are sufficiently captured in the corresponding low-rank approximation. In linear
dimensionality reduction, the discrepancy between the original dataset and the low-rank ap-
proximation is the reconstruction error or the residuals. In the case of IMS, these residuals
depict quantitatively what intensities or part of intensities have been discarded from the
spectra by reducing the dimensionality. In this section, we use the residuals of the rank-
K approximation to quantify what intensities have been captured in the corresponding low
rank-approximation:

EK = D− D̂K (3-9)

in which EK ∈ RN×M denotes the residuals for the rank-K approximation, D ∈ RN×M
is the matrix representation of the IMS measurements and D̂K ∈ RN×M is the rank-K
approximation of these measurements.

In the case of intensity-aware rank estimation, we prioritize the reduction of residuals associ-
ated with threshold-exceeding intensities. For this reason, we bin these residuals enm in EK

into intensity windows εb−δ,b+δ of width 200 (δ = 100) by the corresponding intensity value
found in the original matrix dnm where n denotes the pixel and m the mass-bin. εb−δ,b+δ
denotes the set of residuals in the window in intensity range from b − δ to b + δ, in which δ
defines the window width and b the intensity bin. These intensity windows εb−δ,b+δ quantify
how well the low-rank approximation captures peaks in the spectra with respect to their in-
tensity. Moreover, these intensity windows describe how the distribution of these residuals
over the intensity range changes with a change of the chosen rank. The distribution of these
residuals allows us to determine if there is a relation between the rank-K approximation and
the intensity of the captured peaks. Consequently, we can observe how well traditional PCA
and NMF capture the threshold-exceeding peaks in the spectra.

Throughout this section we use the notion of bin and window in two ways:

Mass-bin The intensity values, or ion count, in one or more mass spectra in the dataset D
associated with a particular ion mass.

Intensity window A set values, in this case residuals, associated with individual intensities
dnm in one or more mass spectra in the dataset D, grouped by their original intensity
dnm.

We use the per-intensity window Root Mean Squared Residual (RMSR), rms(εb−δ,b+δ), and
Median Absolute Residual (MAR), median(|εb−δ,b+δ|), to construct a scalar value, represent-
ing the magnitude of the residuals in an intensity window. The RMSR is a notion for the
dispersion of the residuals in an intensity window, while the MAR reflects for the magnitude
of the residuals. We investigate both the RMSR with the MAR of the intensity windows to
gain more insight into the distribution of the residuals in the intensity windows. For exam-
ple, a large discrepancy between RMSR and MAR could demonstrate a few large residuals

Master of Science Thesis M.H. van Winden



24 Intensity-aware Rank Estimation

dominate the residuals in the intensity window. Alternatively, a smaller discrepancy between
RMSR and MAR could suggest more equally distributed residuals.

Another reason to combine MAR and RMSR is a comparison between intensity windows
independent of the number of peaks in the respective windows. All intensity windows εb−δ,b+δ
have width 2δ. Consequently, the number of peaks in all intensity windows is not equal.
The majority of the peaks in the IMS dataset are in the low-intensity windows, as shown in
the histograms in figure 2-3. An unequal peak-count in the window could possibly distort
the comparison of the residuals via RMSR over the different intensities. For example, the
low-intensity windows containing many peaks are less sensitive to outliers than the high-
intensity windows, containing fewer peaks. The opposite is also valid. A substantial group of
large residuals could vanish in the total residual, due to the number of peaks in the intensity
windows. With the comparison of both measures, we aim to mitigate these issues.

In the context of intensity-dependent capturing of the data structure by PCA and NMF, we
are most interested in the differences in the residuals in the region around the threshold. For
this reason, we have focused on the intensity region [0, 104] and intensity windows of equal
width δ = 200.

3-2-1 PCA intensity-dependent capturing

Figure 3-1 displays the RMSR and MAR of the binned residuals εb−δ,b+δ for the three IMS
datasets with respectively 809, 2611, and 4048 mass-bins. The following paragraphs describe
several observations on the residuals in these intensity windows to understand the mechanics
of intensity capturing in PCA. Consecutively, we discuss the implications of these observations
on intensity-aware rank estimation.

High RMSR and MAR for high intensities in low-rank approximations. All graphs in
figure 3-1 demonstrate that both the RMSR and MAR for high intensities (dnm ≥ 4000)
are relatively high compared to their low-intensity (dnm < 4000) counterparts for low-rank
approximations of K ≤ 10, K ≤ 10, K < 16 for respectively the datasets with 809, 2611,
4084 mass-bins.

The high RMSR and MAR for high intensities for low-rank approximations originate from
the nature of PCA. In the strictly nonnegative IMS dataset, particular ion bins with high
intensities and associated high dispersion contribute more variance than lower intensities. As
PCA obtains a low-rank approximation by projecting the dataset on the consecutive axes of
maximum variance, PCA is expected to mainly describe intensities contributing large portions
of variance. In the case of the low-rank approximations for high RMSR and MAR for high
intensities, we expect that the majority of the variance has not been captured. As such, a
portion of the high-intensity peaks in the spectra have not been fully captured, resulting in
large residuals for these high-intensity peaks.

RMSR and MAR decreasing more for high intensities with increasing rank. For high
intensities (dnm ≥ 2000), both the binned RMSR and binned MAR decrease at a higher rate
for increasing rank when compared to the low intensities (dnm < 2000)
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Figure 3-1: The binned Root Mean Squared Residual (RMSR) and Median Absolute Residual
(MAR) obtained from the residuals EK = D − D̂K between the original dataset Y and the
rank-K reconstruction D̂K obtained via PCA for three different dataset sizes. These residuals are
binned by the original intensity in D in 50 bins with equivalent width in the range of [0, 104]. The
graphs display RMSR and MAR per bin to give an idea about how the reconstruction of different
intensities in the spectrum evolve for different ranks.
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We believe the rate of decrease in the binned RMSR and binned MAR can be partially
attributed to the different amount of peaks in respectively the high and low-intensity windows,
as discussed in the previous section.
Furthermore, in a similar sense to the previous paragraph, we expect a mass-bin with high-
intensity peaks to individually contribute more variance when compared to a mass-bin with
low-intensity peaks. Consequently, we expect that these values are reconstructed in the first
set of PCA components, representing large quantities of variance. As such, RMSR could be
initially high and reducing at a high rate in the first set of components.

Near-zero RMSR and MAR for the near-zero intensity values. All graphs demonstrate
in figure 3-1 that both the RMSR and MAR for near-zero intensity values (dnm < 1000) in
the spectra are close to zero. The near-zero residuals suggest near-perfect capturing for the
near-zero intensity values independently of the chosen rank, but there are few caveats.
First, the magnitude of the residuals itself has a relation to the associated intensity. A miss-
ing high-intensity peak results in a larger residual than a low-intensity peak. The near-zero
intensity windows contain predominantly low-intensity peaks. As such, when PCA insuffi-
ciently captures intensities in a particular mass-bin, we expect the residuals from the near-zero
intensities to be small.
Second, the near-zero intensity windows εb−δ,b+δ for b ≤ 1000 contain the majority of the
intensities the IMS dataset, as shown in figure 2-3. Due to the number of intensities in the
near-zero windows, the contribution of these intensity windows to the total sum of squared
residuals can be substantial when compared to the more high-intensity windows (dnm > 1000),
even when the RMSR and MAR are small. In other words, these near zero intensity windows
could still account for the majority of the total discrepancy between the original dataset and
the low-rank estimate.
Third, we expect the influence on the RMSR and MAR of few large residuals in a large pool of
low residuals to be limited, due to a large number of peaks in the low-intensity windows. As
such, additional components, decreasing these large residuals, reduce the RMSR and MAR
for the low-intensity only little when compared to intensity windows containing a low number
of peaks.

Bump in the RMSR and MAR for high ranks. For low intensities (dnm < 2000) and high
rank, respectively K ≥ 31, K ≥ 34, K ≥ 63, both the binned RMSR and binned MAR
have decreased at a higher rate for increasing rank when compared to the low intensities
(dnm < 2000). As a result, a bump appears in both the binned RMSR and the binned MAR
for low-intensity windows. This bump in residual fraction becomes more visible in the larger
dataset sizes. For even higher ranks, respectively K ≥ 96, K ≥ 108, K ≥ 251, the bump in
both the binned RMSR and binned MAR for low-intensity peaks moves towards the lowest
intensity-window and decreases slowly. At the same time, the high-intensity values have
reached very low residuals, which we can interpret as near perfect capturing.
We hypothesize that these intensities are largely noncovariant and related to the low-reliability
of intensities below the ion intensity threshold. We expect that these incoherent patterns do
not appear in a large number of mass-bins or other more high-intensity mass-bins. Conse-
quently, these low-intensity peaks contribute little in terms of covariance compared to more
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coherent patterns. As a result, PCA requires a significant number of principal components
to capture these patterns in the first set of principal components.

3-2-2 NMF intensity-dependent capturing

Figure 3-2 displays the RMSR and MAR of the binned residuals εb−δ,b+α in 50 bins of equal
width with δ = 100 in the range [0, 104] for a set of different ranks and for the two IMS
datasets with respectively 809 and 2611 mass-bins. This section zooms in on the differences
in these intensity-binned residuals with PCA between figure 3-2 and figure 3-1 to understand
the mechanics of intensity capturing in NMF.

Similar to PCA, we see for NMF initially high residuals for high-intensity windows as the
result of insufficient rank for NMF to capture these high intensities. However, at higher
ranks (8+) we see the MAR become approximately flat over the 1000+ intensities, whereas
PCA shows a higher reduction in residuals for these intensities. At the same time, the RMSR
shows a slightly positive relation with intensity, meaning high intensities have a slightly higher
RMSR than the lower intensities. Furthermore, for even higher ranks (24+) the decrease in
RMSR and MAR is limited compared to the initial decrease. PCA shows a more significant
reduction in residuals.

Two potential causes for these effects are the less-overfitting behavior of NMF, due to the
nonnegativity constraint and associated sparsity [54], and the non-convexity and increased
ill-posedness of NMF due to the enlarged parameter space associated with the higher rank
[24]. As a result of the less-overfitting behavior, the additional components do not neces-
sarily capture noise, but instead, improve the capturing of distinct patterns by for example
partitioning these patterns spatially or spectrally. As a result of the increased ill-posedness,
NMF is more likely to converge to local minima at higher ranks. A clear example of this
non-convexity is rank K = 300 resulting in higher residuals than rank K = 200.

3-2-3 Residuals and intensity-aware rank estimation

The RMSR and MAR for PCA in figure 3-1 and NMF in figure 3-2 both demonstrate that a
rank resulting in a reasonable reduction of dimensionality for which we obtain zero residuals
of the threshold-exceeding intensities, in other words, perfect capturing of these intensities,
is non-existent for PCA and NMF for an arbitrary choice of threshold. Consequently, tra-
ditional dimensionality reduction and estimating rank in an intensity-aware manner requires
an approximation of the threshold-exceeding intensities.

At the same time, the residuals show no clear relationship between an arbitrary reliability
threshold on the intensity and sufficiently small residuals for all threshold-exceeding intensi-
ties. We observe a substantial decrease in the residuals in the high-intensity windows, but the
rank at which we have sufficiently small residuals for the threshold-exceeding intensities is un-
certain. The absence of this relation suggests another measure is required to identify sufficient
capturing of the threshold-exceeding intensities in the low-dimensional abstract subspace for
both NMF and PCA.

The observations on the residuals in the intensity windows in the previous paragraph lead
to the following questions. The seemingly asymptotically decreasing rate in reduction of the
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Figure 3-2: The binned Root Mean Squared Residual (RMSR) and Median Absolute Residual
(MAR) obtained from the residuals EK = D − D̂K between the original dataset Y and the
rank-K reconstruction D̂K obtained via NMF for two different dataset sizes. These residuals are
binned by the original intensity in D in 50 bins with equivalent width in the range of [0, 104]. The
graphs display RMSR and Median Absolute Residual (MAR) per bin to give an idea about how
the reconstruction of different intensities in the spectrum evolves for different ranks.
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residuals associated with threshold-exceeding intensities extends the question of intensity-
aware rank estimation with at what rank is the capturing of the threshold-exceeding peaks
by traditional PCA sufficient and the residuals sufficiently small? This hypothesis can be
summarized in the following question.

• When is the low-rank capturing of the threshold-exceeding intensities sufficient to select
rank K over rank K+1 to capture the majority of the threshold-exceeding information?

In the case of PCA, we observe a bump in the residuals at a fixed low-intensity region,
for which the RMSR and MAR have reduced more slowly than for the high-intensities. The
appearance of this bump in RMSR and MAR raises the question if the rank could be estimated
in a data-driven manner, if the low-reliability of the below-threshold intensities reveals itself
as the bump in the intensity windows. This hypothesis can be summarized in the following
question.

• Gives the difference of the above-threshold residuals over the below-threshold residuals
a reason to select rank K over rank K + 1 to obtain low-rank approximate containing
maximal information of threshold-exceeding intensities?

To answer these questions based on these observations and considerations we have formulated
two approaches to relate rank defined in the abstract latent space, constructed by PCA, to
the ion intensity threshold existing in the original measurement space.

Data-data driven approach In the data-driven approach we continue with the principal
components as constructed by unmodified PCA. In this approach, we assume the exis-
tence of the threshold is based on its presence in the form of an unstructured region in
the measurement space of these datasets. As a result of this non-structure, we assume
these intensities to not appear in covariant patterns because of the low-reliability of the
below-threshold intensities. This assumption is based on the appearance of the bump
in the residuals for the higher ranks. For this reason, we propose to compare the residu-
als associated with above- and below-threshold intensities and expect that these exhibit
different behavior in terms of PCA capturing these intensities over the considered ranks.
Section 3-3 continues on this premise.

Threshold-driven approach In the threshold-driven approach we step towards intensity-
aware dimensionality reduction in which we construct principal components emphasizing
threshold-exceeding intensities. We assume the existence of the threshold is not based
on a definite presence in the properties of these datasets, by i.e. incoherence or non-
structure. Instead, we assume that the threshold is an external parameter and explicitly
classify below-threshold intensities as irrelevant. Therefore, we attenuate the influence of
the below-threshold intensities in the dimensionality reduction and expect a reduction of
the rank estimate when only describing the majority of the above-threshold intensities.
Chapter 4 continues on this reasoning.

We have chosen to continue with PCA to obtain an initial starting point for intensity-aware
rank estimation and leave intensity-aware rank estimation in NMF as a topic for future re-
search. PCA provides several simplifications over NMF. The non-convexity and ill-posedness
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of NMF hamper conclusive analysis of the rank estimation results. PCA, on the other hand,
allows for obtaining a globally optimal solution. Moreover, contrary to NMF, PCA has an
incorporated rank estimation method in the form of explained variance.

3-3 Residual-fraction rank estimation

In this section, we investigate a comparison of the residuals associated with respectively the
above- and below-threshold intensities as a method for rank estimation. This comparison is
based on the premise that the ion intensity threshold is present in the form of an incoherent or
non-structured region in these datasets. We expect the below-threshold intensities to appear
in noncovariant patterns because of the low-reliability of these intensities. We demonstrate
that in the case of PCA an optimum can be found in the capturing of above-threshold inten-
sities relative to the below-threshold intensities. We do note this is a heuristic method and
not all (IMS) datasets exhibit similar behavior, but it shows merit for the considered IMS
dataset.
To recap, our reasoning behind residual-fraction rank estimation is based on figure 3-1 and
the premise on the ion intensity threshold associated with residuals in the above- and below-
threshold groups exhibiting different behavior with increasing rank, as discussed in section 3-2.
The above-threshold intensities should contain physical signal plus some additional random
variation. The below-threshold intensities would be less reliable, and we expect them to
exhibit more random behavior. This increased randomness of the below-threshold intensities
causes these low-intensities to be mostly incoherent and non-structured. As such, we expect
the contribution to the covariance between mass-bins of these low-intensities is small. Con-
sequently, as we observe in section 3-2, PCA requires a large number of components to
reduce the residuals for these intensities. For this reason, we suspect the residuals for the
below-threshold intensities to decrease more slowly for increasing rank in the case of PCA as
a result of this randomness, when compared to the above-threshold intensities representing
more biological signal.
We expect that at sufficient rank the majority of the intensities above the threshold, rep-
resenting a biological signal, are captured. As such, consecutive components capture an
increasing part of additional random variation or noise, which is also incoherent and random.
At this rank, we expect a shift in the share of residuals associated with above-threshold and
below-threshold intensities at the rank for which we expect LDR to start capturing noise.
We propose the residual fraction of the below-threshold Residual Sum of Squares (RSSQ)
and above-threshold RSSQ, equation (3-11), as a measure on how PCA captures features
with respect to the threshold τ for different choices of rank K. The residuals in below- and
above-threshold τ groups are given by:

E<τ,K = D− D̂K for dnm < τ

E≥τ,K = D− D̂K for dnm ≥ τ
(3-10)

The residual fraction ρ(K) describes the ratio between the below-threshold RSSQ and above-
threshold RSSQ.

ρ(K) =
erssq
<τ,K

erssq
≥τ,K

=

√√√√∑N
n

∑M
m e2

<τ,K,nm∑N
n

∑M
m e2
≥τ,K,nm

(3-11)
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in which ex,K is an element of the residual matrices E≥τ,K and E<τ,k respectively satisfying
the condition dnm ≥ τ and dnm < τ and τ denotes the threshold.

In a similar manner to section 3-2, dependent on the threshold τ the number of below-
threshold intensities is significantly higher than the number of above-threshold intensities in
the residual fraction. Furthermore, the intensities itself influences the residual, as high and
low intensities result in respectively high and low residuals for insufficient rank. However in
this case, these differences are not a problem, since in this comparison we are solely interested
in the development of the residuals over different ranks. Over different ranks the number and
the intensity of the below- and above-threshold groups remain constant.

Nonetheless, to construct trends in the residuals in the same order of magnitude for visualiza-
tion purposes, we scale the individual values of residual ratios with the constant γ =

√
N≥τ
N<τ

in which N≥τ the number of intensities dij larger than τ and N<τ the number of intensities
dnm smaller than τ . This scaling is independent of the rank K and as such does not influence
the rank estimate and is, as such, only used to scale the residual ρ(K) to the same order of
magnitude.

ρ(K) =
erssq
<τ,K

erssq
≥τ,K

√
N≥τ
N<τ

=

√√√√N≥τ
∑N
n

∑M
m (e<τ,K,nm)2

N<τ
∑N
n

∑M
m (e≥τ,K,nm)2

=
erms
<τ,K

erms
≥τ,K

(3-12)

This residual fraction describes how the distribution of residuals of the respective below-
and above-threshold intensities change with the rank. An increase in the fraction indicates
either lower residuals and components capturing more of the above-threshold intensities or
larger residuals and worse capturing of the below-threshold intensities. Similarly, a decrease
of the fraction marks either components capturing more and associated lower residuals of
the below-threshold intensities or larger residuals and worse capturing of the above-threshold
intensities.

Consequently the optimum, meaning minimal residuals above the threshold and maximal
residuals below, is either caused by an increase or decrease of the residuals of respectively the
below-threshold or above-threshold intensities. An increase in the ratio, due to an increase
of the residuals of the below-threshold intensities, is unwanted. Nonetheless, we expect this
not to be a problem. The increase of RSSQ in one of the intensity windows is compensated
by an extra decrease in the other, as the squared sum of the residuals has to be minimal and
monotonically decreasing with rank by definition of PCA [40]. Consequently, the decrease
of either the residuals of either the above- or below-threshold intensities to be always more
significant than the increase of the counterpart. Nonetheless, the individual sums of squared
residuals for the above- and below-threshold intensity windows are not necessarily minimal
and therefore not strictly monotonically decreasing.

The results of residual-fraction rank estimation for PCA based on the residual fraction applied
on a synthetic and an IMS dataset are discussed in chapter 5.
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Chapter 4

Intensity-aware Dimensionality
Reduction

Intensity-aware dimensionality reduction approaches capturing the majority of the intensity-
threshold-exceeding information in the original Imaging Mass Spectrometry (IMS) dataset by
making the dimensionality reduction algorithm itself intensity-aware. We focus with intensity-
aware dimensionality reduction on improved capturing of the threshold-exceeding intensities
and argue that this approach could lead to a reduction in rank in the process. We propose
Threshold-Aware Principal Component Analysis (TAPCA), an extension of Peak Intensity
Weighted Principal Component Analysis (PIWPCA), as a method to make dimensional-
ity reduction intensity-aware. Furthermore, we propose several transformation schemes for
TAPCA, for which the effects are evaluated in chapter 5. Additionally, we discuss the problems
we encountered with alternative methods to make dimensionality reduction intensity-aware
and possibilities for further research.

4-1 Peak Intensity Weighted Principal Component Analysis (PIWPCA)

PIWPCA is an unsupervised decomposition technique for an IMS-measured organic tissue
section with a focus on unraveling the underlying biochemical trends [2]. PIWPCA transforms
the ion counts in the measurement space with a histogram transformation function T (x) to
manipulate the implicit weights of the covariance matrix, as discussed in section 3-1-1. The
element-wise application of the transformation T (x) results in the following definition of the
covariance matrix:

ST = (DT −DT )T (DT −DT ) with DT = T (D) (4-1)

As a result of this manipulated covariance matrix based on the application of the transfor-
mation function T (x) on the original dataset, the basis CT can be adjusted towards the
objective defined in the transformation function. An example is a gray-scale stretching or
contrast enhancing transformation in which they stretch out a particular range of intensities
[2].
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4-2 Threshold-Aware Principal Component Analysis (TAPCA)

We propose TAPCA as a method to make dimensionality reduction by Principal Component
Analysis (PCA) aware of the intensity threshold and associated reliability of the intensities
in the spectrum. TAPCA is an extension of PIWPCA [2] and explicitly manipulates the
covariance weights in line with the ion intensity threshold. With this manipulation, we
specifically aim to reduce the importance of the sub-threshold measurement intensities relative
to the threshold-exceeding intensities in the decomposition

With the lowered relative importance of the sub-threshold intensities, we hope to reduce the
number of required components to describe the majority of the threshold-exceeding intensities
dependent on the threshold. With this threshold-dependent transformation, we relate the
rank as defined in the abstract latent space, as constructed by PCA, to the threshold defined
in the original measurement space. This relation is further discussed in section 4-2-2.

For TAPCA, we use a specific threshold-dependent ion count transformation d′nm = Tτ (dnm)
to lower the relative importance of the sub-threshold intensities.

To achieve the envisioned adjustment of the covariance weights, we propose a transforma-
tion decreasing the variance contribution associated with the below-threshold part of the
intensities. Variance is defined as the squared distance from the mean. Consequently, this
contribution is reduced by lowering the distance to the mean of the below-threshold intensities
while leaving the above threshold intensities intact. An example of such a transformation is
the downwards shift of all intensities, while setting all sub-zero intensities as a result of the
downwards shift to zero. This transformation is demonstrated figure 4-1. More transforma-
tions are discussed in section 4-2-4.

This reduction of the below-threshold variance contribution is motivated by the multiplica-
tion of standard deviations of the individual mass-bins n and m, σnσm as default weights
for covariance entry snm. For example, lowering the standard deviation, or related variance,
results in de-emphasizing a particular mass-bin. For this reason, with this transformation, we
focus on the reduction of the deviation from the mass-bin mean of the below-threshold inten-
sities. Consequently, we reduce the covariance contribution associated with below-threshold
variance contribution and, as a result, these implicit weights are increasingly based on the
threshold-exceeding intensities. With this particular class of ion count transformations, we
aim to specifically manipulate the deviations from the mean of the sub-threshold intensities.
We leave the relative distances in the rest of the dataset intact to obtain optimal capturing
of the threshold-exceeding intensities for a minimal rank.

4-2-1 Clipping Threshold-Aware Principal Component Analysis (CTAPCA)

This section proposes clip-shifting as a simple example of how these transformations can re-
duce variance contributed by the below-threshold intensities. The idea of this simple example
is to demonstrate the influence of this transformation on the rank estimate obtained via this
technique. We demonstrate and discuss more complicated choices of transformation functions
in section 4-2-4 and show them in figure 4-2. In the case of the clip-shifting transformation,
the intensity values in the spectra are first shifted down by the intensity threshold τ , and
subsequently we set all elements in the spectra below zero to zero.
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This operation can be accomplished by element-wise application of the following transforma-
tion function:

Tclip(x) =
{
x− τ x ≥ τ

0 x < τ
(4-2)

in which τ denotes the supplied threshold. This operation creates the shifted measurement
matrix Dclip = Tclip(D) from the measurement matrix D. Subsequently, the new covariance
matrix Sclip can be calculated using the mean-centered shifted measurement matrix D∗clip =
Dclip −Dclip:

Sclip = (Dclip −Dclip)T (Dclip −Dclip) (4-3)

in which Dclip denotes the column-wise mean of the shifted measurement matrix Dclip. From
this new covariance matrix Sclip, the new axes of maximum variance Cclip, or principal com-
ponents can be obtained. These principal components reflect only the variance originating
from intensities in the spectrum above τ . Finally, the projection of the original matrix D or
the shifted matrix Dclip on the first K axes, Cclip,K constructs a low dimensional represen-
tation. Similarly to traditional PCA, a rank-K reconstruction can be constructed by taking
the first K axes resulting in D̂clip,K = D∗clipCclip,KCT

clip,K + Dclip. The considerations and
choices for the projection step are explained in detail in section 4-2-3.

4-2-2 Threshold-shifted rank estimation with TAPCA

We propose using the explained variance for rank estimation analogous to PCA. However, in
the case of TAPCA, we use the explained variance of transformed intensities as a method for
rank estimation. The per-component explained variance is obtained by using the eigenvalues
of the covariance matrix Sclip. These M eigenvalues in descending order are normalized
so that they represent the cumulative fraction of the per-component contributed variance.
Consequently, cumulative fraction of the per-component variance at the K-th eigenvalue is
reflected by:

λ′K =
∑K
i λi∑M
i λi

(4-4)

in which M denotes the number of mass-bins and K the component number.

By computation of the normalized eigenvalues per TAPCA covariance matrix Sclip for a
range of clip-shifting thresholds τ , we can construct a relation between threshold and rank.
By stacking these sets of normalized eigenvalues ordered by the corresponding threshold,
we can demonstrate how the fractions of explained variance evolve for various thresholds
and choices of rank. Contour lines for common fractional explained variance truncation can
show trends in the relationship between threshold and rank for TAPCA. A visualization of
this representation of the per-threshold covariance eigenvalues for an IMS dataset is given in
figure 5-15.

In contrast to the covariance matrix S in traditional PCA, the covariance matrix Sclip does not
capture any variance originating from intensity values in the range [0, τ). Consequently, we
expect the covariance matrix Sclip to be sparser than the one obtained from traditional PCA.
The main reason is, that as a result of the transformation the contribution to the covariance
from intensities in the range [0, τ), is sharply reduced compared to mass-bins consisting to
intensities in the range [τ,∞).
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As a result of the sparser covariance matrix, a reduced number of principal components is
required to capture the majority of the variance associated with the threshold-exceeding part
of the intensities. As such, TAPCA should require a lower rank to describe the majority of
information above τ .

4-2-3 Projection on a low-rank basis

The projection of our measurement matrix on the first K axes Cclip,K of the basis Cclip
constructs a K-dimensional representation.
We have two choices on which measurement matrix to project. First, we could project the
transformed centered matrix Dclip − Dclip on basis Cclip,K in a similar way as [55]. This
projection results in a reconstruction error matrix:

Eclip = (Dclip −Dclip)− (Dclip −Dclip)Cclip,KCT
clip,K (4-5)

By definition of PCA the reconstruction error ‖Eτ‖2F is minimal for a rank-K approximation
[40]. This implies this solution is the best reconstruction in terms of lower residuals for all
intensity in the spectra above τ . However, the clip-shifting disables capturing anything below
τ , even if it is coherent with patterns above τ . Furthermore, the reconstruction D̂clip,K =
(Dclip − Dclip)Cclip,KCT

clip,K + Dclip reconstructs the shifted dataset and not the original.
Consequently, this complicates computing the residuals, as we can no longer compare them
to the original measurements.
Alternatively, we could project the centered matrix D−D unaffected by the transformation
on basis Cclip,K resulting in a residual matrix:

E = (D−D)− (D−D)Cclip,KCT
clip,K (4-6)

This projection has the advantage that intensities below the threshold for a mass-bin are
still captured, assuming the mass-bin represents a reasonable amount of variance above the
threshold. Furthermore, the rank-K reconstruction D̂K = (D−D)Cclip,KCT

clip,K+D approx-
imates the original measurement matrix D instead of the transformed variant Dclip, leaving
the intensities of the original data intact. The disadvantage is that intensities not represented
in the covariance matrix could lead to a larger reconstruction error. Furthermore, the residual
‖E‖2F is not necessarily minimal anymore by definition of PCA, because the proof for minimal
reconstruction error in [40] is no longer valid.
However, we expected a relatively better reconstruction for intensities above the threshold
than their below-threshold counterparts as we obtain a basis reflecting the variance of these
intensities. Furthermore, we expected the variance contribution of the below-threshold inten-
sities to be limited as a result of their low-intensity. Consequently, our hypothesis was that
projection of the original measurement matrix on the basis obtained from the shifted measure-
ment matrix would result in lower residuals of intensities above the threshold, but a higher
total residual caused by the low intensities when compared to traditional PCA. Section 5-1-3
evaluates the residuals per intensity and shows that this is not the case.
For this thesis, we have chosen to evaluate both methods and as such to project both the
original data and shifted data on the new τ -aware, low-rank basis Cclip,K . This choice is
based on that we are mostly interested to see how we can create a low-rank approximation
taking into account the intensity threshold.
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Figure 4-1: A 2D visualization of TAPCA. The left plot displays the original data with cor-
responding axes of maximum variance. The length of the arrow corresponds to the accounted
variance for this particular axes. The middle plot demonstrates what measurements are considered
unreliable by intensity threshold τ . The right plot displays the shifted dataset and corresponding
axes of maximum variance. These axes are slightly rotated compared to the original axes in the
left plot. Furthermore the lengths of the arrows are smaller, meaning both axes account for less
reliable variance compared to the original variance.

4-2-4 Alternative transformations for TAPCA

The hard cut-off for CTAPCA removes all fluctuations in the intensities in the range [0, τ).
Consequently, TAPCA equalizes the variance contributed by individual intensities under the
threshold. A pixel even slightly above the intensity threshold, on the other hand, still reflect
these small fluctuations and relative differences. As a result, stark differences in contribution
to covariance can occur between just below and just above the threshold. Consequently,
the hard threshold in the clip-shifting potentially creates significant differences in capturing
intensities just below and just above the threshold.

To avoid the effects of the clip-shift transformation, we propose a set of alternative transfor-
mation functions. The transformation focuses on especially de-emphasizing the sub-threshold
intensities in a more continuous manner, yet aim to keep the relative differences in threshold-
exceeding intensities intact similar to the clip-shift transformation. The more continuous
weighting of below-threshold intensities enables us to de-emphasize the difference between
two intensities in the sub-threshold region in a more continuous manner.

Examples of such histogram shift transformations are the piecewise-linear, equation (4-7),
and a quadratic transformation function, equation (4-8), but other functions custom to the
objective are possible and could be a topic for future research.

The linear function, equation (4-7), maps the domain [0, τ + d] in a linear manner to [0, d].
Equation (4-8) maps the domain [0, 2τ ] with a quadratic function to [0, τ ]. The quadratic
transformation reduces the difference between two values, |T (a) − T (b)| < |a − b| in the
dataset in the domain [0, 2τ ] nonlinearly, effectively placing two intensity values within this
range closer together, while leaving the difference in the domain [τ,∞) intact.
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Figure 4-2: A visualization of linear-shift Tlinear(x) and quadratic shift Tquadratic(x) histogram
transformation functions for two choices of c compared to clip-shifting function Tclip(x) and the
identity histogram transformation for τ = 1500, c = 500, d = τ . The original values are displayed
on the horizontal axis and the output after transformation on the vertical axis. In the linear case,
the low-intensity values in the range [c, τ + d] are mapped by a linear function to the domain
[c, τ+d

2 ]. In the quadratic case, the low-intensity values in the range [c, 2τ − c] are mapped by a
quadratic function to the domain [c, τ − c]. In both cases, the values in the domain [0, c] are set
to zero. This mapping reduces the differences |T (a)− T (b)| for values closer to zero more than
for values close to the threshold with equal difference |a− b| similar to the clip-shift Tclip(x).

Tlinear(x) =
{

d
τ+d−c c ≤ x ≤ τ + d

x− τ x > τ + d
(4-7)

Tquadratic(x) =
{

l(x−c)2

2τ lx−cτ ≤ 1
x− c− τ

2l lx−cτ > 1
with l = τ

2(τ − c) (4-8)

in which c defines the domain [0, c] for which the relative distance: |T (a) − T (b)| = 0 with
a, b ∈ [0, c] and the variance contribution is completely discarded. Figure 4-2 shows the
differences between these linear-shifting and clip-shifting function (equation (4-2)).

In section 5-1, we evaluate the influence of the different transformations on respectively the
reconstruction and capturing of patterns and rank estimation for an equal choice of the
shift point, in these formulas denote as τ . In section 5-2 and section 5-3, we evaluate the
influence of the clip-shift transformation and linear-shift transformation on the rank estima-
tion. Through the rest of this thesis, we use CTAPCA to denote the version of TAPCA
utilizing the clip-shift transformation, equation (4-2). We use Linear Threshold-Aware Prin-
cipal Component Analysis (LTAPCA) and Quadratic Threshold-Aware Principal Component
Analysis (QTAPCA) to denote the version of TAPCA transformation utilizing respectively
the linear histogram shift transformation, equation (4-7) and the quadratic histogram shift
transformation equation (4-8).
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4-3 Other Methods

We have also evaluated incorporating the threshold into dimensionality reduction based on
other methods than TAPCA, but these proved either unsuccessful or require more research
beyond the scope of this thesis.

4-3-1 Weighted Covariance Principal Component Analysis (WCPCA)

WCPCA is a specific variant of PCA, which allows emphasizing entries in a dataset over
others by the application of weights [55]. These weights can be applied column- or row-wise
or on individual entries. WCPCA differs from the PIWPCA and the approach taken in this
thesis, as the weights are applied in the covariance matrix instead of a preprocessing step
before constructing the covariance matrix as is the case of PIWPCA [2].

In the case of intensity-aware dimensionality reduction, we aim to respectively de-emphasize
below-threshold and emphasize above-threshold intensities. As such, we can obtain a low-
rank representation with maximal capturing of the above threshold intensities. We have tried
several weighting schemes based on WCPCA with a focus on down-weighting below-threshold
intensities.

WCPCA constructs the covariance matrix by the application of a weight to the individual
intensities by element-wise application of a weighting matrix:

Sτ = (W� (D−DW))T (W� (D−DW)
WTW with dW,m =

∑N
n wnmdnm∑N
n wnm

(4-9)

We conclude that threshold-driven rank estimation based on WCPCA is not straightforward
and further research is needed. As an example, we demonstrate a binary scheme, for which
the results are shown in appendix A. We think this scheme is close to the worst case scenario,
but believe similar problems hold for other weighting schemes as well. In this scheme, we
set all weights of respectively the below-threshold and above-threshold intensities to zero and
one.

wnm =
{

1 dnm ≥ τ
0 dnm < τ

(4-10)

As a result, in WCPCA the covariance matrix reflects none of the below-threshold intensities
and only the above-threshold intensities. The application of this weighting function has a
few side effects on the covariance. The weighting itself significantly changes the mean dW,m

of mass-bin m. The mean of a mass-bin consisting of a small set of high intensities and
the majority below-threshold intensities become close to these high intensities as a result of
the weighting. As a result, we observed several problems in the binary weighting scheme.
First, patterns considered covariant by traditional PCA are not necessarily covariant in the
weighted version as a result of the changed mean due to weighting matrix W. Second,
the covariance contribution of specific high intensity patterns plummeted due to the shifted
mean. As a result, the weighted version fails to capture these patterns. We have considered
other weighting functions, such as linear and sigmoid, but selecting a weighting function and
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associated parameters to capture all high intensities proved to be not straightforward. We
recommend that searching for a weighting scheme that achieves sufficient emphasis yet does
not have these side effects as a suitable topic for future research.

Concerning the TAPCA, we are aware that the shifting transformation in TAPCA also changes
the mass-bin means. However, we observed that the effect of this downwards movement is
significantly smaller than the changes in the mean due to the weighting scheme in WCPCA.

4-3-2 Threshold PIWPCA

As an alternative to the shifting functions proposed in section 4-2-4, we intended to use a
threshold function as proposed for PIWPCA [2] for intensity-aware rank estimation. The
threshold function sets all below-threshold intensities to zero, while keeping the threshold-
exceeding intensities intact according to the following function:

Tthreshold(x) =
{
x x ≥ τ
0 x < τ

(4-11)

However, in the context of intensity-aware dimensionality reduction, this does not achieve the
desired effect. Intensity-aware dimensionality reduction aims to reduce the influence of below-
threshold intensities, which in the case of PCA means a reduction in the variance contribution
of the below-threshold intensities. However, in some cases, the application of threshold PCA
can have an adverse effect. For example, the variance contribution of a mass-bin consisting of
intensities partly above, partly below the threshold is amplified. In this case, the thresholding
operation places the intensities further away from the mean, resulting in a boosted mass-bin
variance and covariance contribution. Due to the variable weighting in PCA, as discussed
in section 3-1-1, the boosted covariance-contribution causes unwanted increased significance
for mass-bins consisting of partly threshold-exceeding intensities and partly below-threshold
intensities.

4-3-3 Weighted Nonnegative Matrix Factorization (WNMF)

WNMF is an extension of Nonnegative Matrix Factorization (NMF) analogous to WCPCA
versus PCA. In the context IMS, it allows putting additional emphasis on specific intensities
in the mass spectra D [56]. The memberships W and latent subspectra H can be constructed
by solving the following optimization problem:

minimize
W,H

F (S� d (V,WH))

subject to W > 0
H > 0

(4-12)

where F (X) denotes a reduction operator i.e, the Frobenius norm, d(V,WH) denotes the
element-wise divergence function, � denotes the Hadamard element-wise product, S ∈ RN×M
is the weight matrix, D ∈ RN×M is the IMS mass spectra in matrix form.

We envisioned a rank estimate by emphasizing threshold-exceeding intensities or de-emphasizing
below-threshold intensities by choosing a weighting function in a similar sense to WCPCA.
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However, we encountered similar issues as for WCPCA in the context of IMS. These issues
were that the binary weighting scheme had undesirable side effects and the selection of an
intermediate scheme was non-trivial. In the case of WNMF, the binary weighting scheme had
even more unwanted effects than for WCPCA. As a result of this weighting, low intensities
could be significantly overestimated as their residuals were not taken into account due to
weighting S in equation (4-12). For similar reasons as WCPCA, selecting a less rigid weight-
ing function resulting in insufficient emphasis on all threshold-exceeding intensities was not
straightforward.

Next to the selection of a weighting scheme, we require a rank estimation methodology for
NMF. In the literature, only a limited number of rank estimation methods is available
[27, 37, 57], as listed in section 1-2 and one is not readily available as is the case with explained
variance rank estimation for WCPCA and TAPCA. Combining one of the available rank
estimation methods with WNMF in a weighting scheme that emphasizes threshold-exceeding
intensities to obtain an intensity-aware rank estimation method proved non-trivial and more
research in this area is needed.
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Chapter 5

Evaluation of Intensity-Aware Rank
Estimation Methods

This chapter starts with an evaluation of Threshold-Aware Principal Component Analy-
sis (TAPCA) method by comparing these to traditional Principal Component Analysis (PCA).
We compare TAPCA and PCA both qualitative, by comparing the Principal Components
(PCs), the identified relevant spatial patterns and the Root Mean Squared (RMS) intensities
of the mass-bins, as well as quantitative, by a comparison of the binned residuals. Further-
more, we demonstrate the attenuation of the influence of particular mass-bins on the PCs,
in function of a a changing intensity threshold and we evaluate the choice of the projection
of deviations with or without transformation, as proposed in chapter 4. Subsequently, we
demonstrate the distribution of these mass-bins of interest to show the effect of these trans-
formations. Afterwards, we evaluate both intensity-aware rank estimation methods with the
help of a synthetic dataset with known rank and threshold, followed by an application to a real
Imaging Mass Spectrometry (IMS) dataset. In the case of the IMS dataset, we make a com-
parison to Cross-Validation and percentage-of-explained-variance rank estimation methods
for respectively residual-fraction rank estimation and threshold-shifted rank estimation.

5-1 Comparison of LDR with PCA and TAPCA

In this section, we demonstrate and analyze the differences between TAPCA and PCA when
applied to the IMS dataset, as introduced section 2-2-1. To simplify this analysis and clarify
the visualization, we select only the first 100 mass-bins in some cases (new M = 100) of this
dataset with ion masses in the range of [1500, 2800]. Figure 5-1 shows the applied clip Tclip
and linear Tlinear shift transformations for threshold τ = 1500, c = τ

5 and d = τ and the effect
on the histogram of this dataset.
Empirically, we find that the effect of the linear or quadratic functions is limited compared to
different choices of the shift parameter τ in equation (4-2) and equation (4-7) for these shifting
transformations. For this reason, we fix τ , which facilitates a clear understanding of the effects
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Figure 5-1: Visualization of (a) the linear and clip-shift histogram transformations for τ = 1500,
c = τ

5 and d = τ compared to the untransformed case. The histograms for the original (b), clip-
shifted (c), and linear-shifted (d) cases show respectively the different effects of the histogram
transformation.

of Linear Threshold-Aware Principal Component Analysis (LTAPCA) and its differences with
Clipping Threshold-Aware Principal Component Analysis (CTAPCA). Furthermore, a slight
increase in the parameter c, defining the clipped region, showed a significant reduction in the
differences hampering this comparison. However, we did want to include a clipped region in
the linear-shift transformation and settled for c = τ

5 . As a consequence and due to the limited
influence of the type of transformation, we chose a linear-shift transformation affecting the
increased intensity region [0, 2τ) for LTAPCA to obtain sufficiently clear differences.

The histogram associated with the clip-shift transformation in figure 5-1c is shifted left com-
pared to the original in figure 5-1b. The histogram in figure 5-1c shows a steep strong peak
in the low-intensity region [0,≤ 1.5e3), which is the result of the linear-shift mapping the
intensities [0, 2τ) into [0, τ).
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5-1-1 Covariance matrix and principal components

In this section, we evaluate the influence of the imposed transformation on the covariance
matrix and the PCs obtained by application of both PCA, CTAPCA, and LTAPCA. We
are interested in the effects of the imposed shift transformation on the spatial distribution in
the scores si and the density of the characteristic subspectra or loadings ci for the various
components. The first four PCs are visualized in figure 5-3 and figure 5-4 and constructed with
the aforementioned shift transformations based upon the covariance matrices in figure 5-2.
We believe four components give a sufficiently clear understanding of the differences between
the non-shifted and shifted case. As introduced in section 4-2, we intend to discard the
unreliable peaks below the threshold while capturing the intensities above and with these
figures show how this affects the scores and loadings. To evaluate if the shift histogram
transformation has the aforementioned effect, we analyze in the following paragraphs the
differences between traditional PCA with CTAPCA, the clip-shift transformation, and the
CTAPCA with LTAPCA, a linear-shifting transformation.

Clipping Threshold-Aware Principal Component Analysis (CTAPCA)

Principal Component (PC) one in figure 5-3 shows that after transformation the loadings
(bottom) of the first PC are more centered around a couple of dominant peaks, while the
loadings without prior transformation contain more small peaks. In the associated scores
(top), we observe less high-intensity (red) pixels, which we attribute to the downward shift
of all intensities. We also observe a reduction of clutter in the low and negative values
in blue surrounding the high-intensity patterns, and as a result clearer spatial delineation.
Furthermore, we see in figure 5-2 that the modified covariance matrices are significantly
sparser than the original covariance matrix. We suspect the reduced clutter and the sparser
spectra are related to the reduction in the covariance of the below-threshold intensities due
to the imposed transformation.

To explain this, in equation (3-1) we zoom on the covariance contribution for pixel j between
mass-bins p and q:

spqj = (djp − dp)(djq − dq) (5-1)

In this equation, the absolute contribution of mass-bin p to the covariance spq of an ar-
bitrary pixel j originates from the deviation from the mean djp − dp. The imposed shifting
transformation reduces the deviation from the mean djp−dp of pixel j for the below-threshold-
intensities djp ∈ [0, τ) by placing djp closer to the mean dp. The magnitude of this reduction
is dependent on the mean dp of the mass-bin originating from the other pixels in the mass-
bin. Consequently, if the previously covariant pixels j in either mass-bin p or q are below the
threshold, the contribution of these pixels to the covariance spq is reduced. For this reason,
we suspect that as a result of the shift this feature is no longer covariant with some of the
below-threshold intensity peaks. Besides the increased sparsity, another aspect to note is the
difference in variance of the individual mass-bins reflected by the entries on the diagonal of
the covariance matrix in figure 5-2. The original covariance matrix shows a diagonal line, sig-
nifying relatively high variances for mass-bins even when generally non-covariant with other
mass-bins. After transformation, this line disappears which suggest that this variance mostly
originated from below-threshold intensities.
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Figure 5-3 and figure 5-4 show the permutation in order of PCs two and three. The order
in the PCs originates from the reflected covariance by each particular PC. Consequently,
the imposed clip-shift reduced the covariance of the original PC two more than that of the
original PC three. We observe that the covariance reflected by PC two originates from a
significant number of small intensity peaks, whereas the covariance of PC three originates
from a limited set of high-intensity peaks. As such, we suspect the permutation is the result
of the lowered contribution to the covariance matrix of the low-intensity peaks. The lowered
contribution affects PC two more, due to the covariance associated with a significant number
of small intensity peaks.

The scores associated with PCs two, three, and four in figure 5-3 and figure 5-4 demonstrate
that CTAPCA acquires a cleaner delineation of particular high-intensity patterns, whereas
traditional PCA acquires a more blurry score. PCA seems to classify these patterns as
covariant as a result of low intensities. We believe that the blurry scores are the result of
PCA considering the low-intensity peaks covariant together with the high-intensity patterns.
In line with the aforementioned reasoning, the imposed shift results in a lowered contribution
to the covariance of the below-threshold intensities, and as a result, the below-threshold
intensities are no longer considered covariant.

Linear Threshold-Aware Principal Component Analysis (LTAPCA)

For PC one, the LTAPCA decomposition in figure 5-3 and figure 5-4 shows a less clear delin-
eation and a more blurry background compared to CTAPCA. Furthermore, the characteristic
subspectra are denser than the CTAPCA and more similar to the spectra in traditional PCA.
Compared to the CTAPCA, PC three and four in the LTAPCA case show more overlap in
the form of the red dot in the right bottom corner most likely associated with m/z around
2500. We believe both are the result of the linear transformation not completely discarding
the variance contribution of the below-threshold intensities, but only reducing it. Conse-
quently, below-threshold peaks are still considered covariant with high-intensity features. We
see traditional PCA considers the mass bins m/z 1750 and m/z 2500 covariant, while in the
CTAPCA case this relation is significantly reduced. The LTAPCA version ends up somewhere
in the middle between CTAPCA and LTAPCA since part of the below-threshold intensities
are still taken into account.

5-1-2 Captured spatial patterns

This section qualitatively assesses the differences between TAPCA and traditional PCA in the
captured patterns after dimensionality reduction by a comparison to the original patterns and
the patterns captured by traditional PCA. We assess this again using the truncated dataset
with the same 100 mass-bins in the mass range [1500, 2800]. We use the rank-K reconstruction
D̂k from equation (3-5) to evaluate if the various dimensionality reduction methods capture
the patterns. Empirically, we have found that a rank of 11 provides sufficient PCs to capture
most of the high-intensity patterns after application of traditional PCA to the truncated
dataset. We use a similar rank for the reconstruction of TAPCA, so a clear view on the
differences can be obtained.
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Figure 5-3: The scores (top) and loadings (bottom) of the first (a) and second (b) principal
components constructed with PCA, CTAPCA, and LTAPCA for threshold τ = 1500, c = τ

5 and
d = τ on the first 100 mass-bins of the Coronal Rat Brain dataset.
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In this dataset we distinguish three distinct cases, in which the feature in the particular ion
image is mainly described:

• a set of below-threshold intensities.

• a set of partly above-threshold partly below-threshold intensities.

• a set of intensities predominantly but not all above the threshold.

Below-threshold patterns Figure 5-5 demonstrates, as desired, that both CTAPCA and
LTAPCA do not capture any predominantly below-threshold intensities in this ion image.
PCA, on the other hand, captures a rough cross-section. The absence of captured information
for TAPCA versions can be attributed to the minimal contribution to the covariance of the
below-threshold intensities in this mass-bin, as a result of the imposed shift transformation.
Consequently, CTAPCA does not describe the variance in this mass-bin in the first set of PCs.
Similarly, LTAPCA also seems to capture only little of the predominantly below-threshold
intensities present in this particular image. Moreover, as a result of the linear transformation,
the intensities are lowered, but still present. The difference in the two projection procedures
is the result of basing it on the mass-bin mean after transformations or the original mass-bin
mean.

(a) Original (b) CTAPCA, Untrans.Projection (c) LTAPCA, Untrans. Projection

(d) PCA (e) CTAPCA, Trans. Projection (f) LTAPCA, Trans. Projection

Figure 5-5: Comparison of an ion image associated with mass-bin m/z 1608.81 with predomi-
nantly below-threshold intensities and its capturing by traditional PCA, CTAPCA and LTAPCA
with threshold 1500 and rank 11 on the first 100 columns of the IMS dataset. Figures a and b
show the capturing when the mean-deviations of the original intensities prior to transformation
are projected on the rank 11 basis, whereas e and f show the capturing when the mean-deviations
of the post-transformation intensities are projected as discussed before in section 4-2-3.
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(a) Original
(b) CTAPCA, Untrans. Projec-
tion (c) LTAPCA, Untrans. Projection

(d) PCA (e) CTAPCA, Trans. Projection (f) LTAPCA, Trans. Projection

Figure 5-6: Comparison of an ion image associated with mass-bin m/z 1756.97 with partly-
above and partly-below threshold intensities for intensity threshold 1500 and its capturing by
traditional PCA, CTAPCA, and LTAPCA with rank 11 on the first 100 columns of the IMS
dataset. Figures a and b show the capturing when the mean-deviations of the original intensities
prior to transformation are projected on the rank 11 basis, whereas e and f show the capturing
when the mean-deviations of the post-transformation intensities are projected as discussed before
in section 4-2-3.

Partly above-threshold partly below-threshold patterns Figure 5-6 shows that, in contrary
to PCA, both CTAPCA figure 5-6e and LTAPCA figure 5-6f methods neglect parts of the
feature described in this ion image, consisting of partly above and partly below-threshold
intensities. After inspection of the covariance matrix and covariant high-intensity mass-bins
1755.0 and 1756.0, we believe this can be attributed to the mostly low-intensity values and few
high-intensity spikes describing this pattern. As a result of the imposed shift, the covariance
contribution of these low-intensity values is reduced in such a way that other mass-bins
contribute more covariance the covariance matrix. Consequently, we expect this feature to
not be described in the first set of PCs.

This observation reveals the limitation of TAPCA. TAPCA can miss patterns supported by
a small number of intensities above the threshold if their total contribution of covariance
associated with above-threshold intensities is small, for example, sparse patterns with a
limited total intensity above the threshold. The reconstruction after application of LTAPCA
shows an improvement over CTAPCA by demonstration of slightly higher intensities. These
higher intensities can be attributed to the linear transformation of the below-threshold inten-
sities, causing these intensities in this ion image to contribute more to the covariance matrix
than in the case of CTAPCA.

Figure 5-6b shows that the projection of the original deviations also fails to capture the ma-
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52 Evaluation of Intensity-Aware Rank Estimation Methods

jority of the high intensities similar to the projections of the deviations after transformations,
figure 5-6e. The equalized background is also the effect or projection on the mass-bin mean
as before the transformation.

Figure 5-8 shows the distribution of residuals for this particular mass-bin. CTAPCA in
figure 5-8d shows more near-zero residuals but at the same time also a few more substantial
outliers in line with the ion images where CTAPCA misses most of the spatial pattern.
LTAPCA in figure 5-8e shows an increase in the spread in the residuals, which is comparable
with partial capturing of the spatial pattern in the ion image. The projection of the original
deviations in figure 5-8b and figure 5-8c show overall an increased spread in residuals, which
affects CTAPCA more. Two potential causes are that TAPCA misses the majority of the
spatial pattern in this mass-bin and that in the case of this projection we compare with the
original measurements. The higher intensities in the original measurements could cause an
increase in the residual between a partially captured intensity peak and the original intensity.

(a) Original
(b) CTAPCA, Untrans. Projec-
tion (c) LTAPCA, Untrans. Projection

(d) PCA (e) CTAPCA, Trans. Projection (f) LTAPCA, Trans. Projection

Figure 5-7: Comparison of an ion image associated with mass-bin m/z 2029.07 with pre-
dominantly intensities above the intensity threshold 1500 and its capturing by traditional PCA,
CTAPCA and LTAPCA with rank 11 on the first 100 columns of the IMS dataset. Figures a and
b show the capturing when the mean-deviations of the original intensities prior to transformation
are projected on the rank 11 basis, whereas e and f show the capturing when the mean-deviations
of the post-transformation intensities are projected as discussed before in section 4-2-3.

Dense threshold-exceeding patterns Figure 5-7 demonstrates that patterns supported by
a large quantity of threshold-exceeding intensities are captured in a similar manner in both
PCA and TAPCA. TAPCA in figure 5-7e and figure 5-7f show less clutter in the low-intensity
background of this particular mass-bin compared PCA. However, in the case the original
deviations from the mean are projected for TAPCA we observe similar background clutter
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again. Figure 5-9 shows the distribution of residuals for this particular mass-bin, in which we
can see that overall TAPCA results in significantly lower residuals for this mass-bin compared
to PCA.

The per mass-bin RMS values in figure 5-10 show the effect of the transformation and different
projection on the reconstruction from the low-dimensional latent representation. Between the
original and the PCA reconstruction, figure 5-10a and figure 5-10d, most of the differences
are in the slightly lowered RMS values for the originally small RMS intensity peaks in the
original spectrum.

Between the original RMS spectrum and the TAPCA reconstruction, figure 5-10e and figure 5-
10f, we see all RMS intensities are significantly lowered as a result of the clip-shift and
linear-shift transformation. In the CTAPCA case, we see some the RMS intensities of some
mass-bins have almost completely vanished, resulting in a sparse spectrum. In the case of
LTAPCA, we see an intermediate situation, in which already low RMS intensities have been
diminished but not completely vanished yet.

Between the original RMS spectrum and the TAPCA reconstruction with the projection of the
original deviations, figure 5-10b and figure 5-10c, we see that overall the spectra are similar.
Interesting is that some individual RMS intensities are amplified while other attenuated. A
potential cause is that the minimal residual proof for PCA [40] is no longer valid in this pro-
jection. Another potential cause is the method we use to project the deviations on the mean.
As a result of this projection, the RMS value could be amplified if below-mean intensities are
insufficiently described and as such are considered larger than in reality.

Implications on intensity-aware rank estimation

To summarize, we see TAPCA overall producing sparser spectra and more clear delineation
of spatial patterns in the principal components. LTAPCA is producing more dense spectra
than CTAPCA and results in a less crisp delineation of spatial patterns for equal thresholds.
However, TAPCA may fail to sufficiently capture certain patterns partly above, partly below
the ion intensity threshold. Overall, the residuals for high-intensity mass-bins seem to become
smaller. We want to note that these significantly smaller residuals could potentially be a sign
of overfitting high-intensity patterns. More research on other datasets is required to validate
these effects. The mass-bin consisting of partly above, partly below the ion intensity threshold
showed an overall decrease in residuals but an increased number of large outliers.

In the context of intensity-aware rank estimation, we see that TAPCA is able to capture the
threshold-exceeding intensities, but mass-bins consisting of many near-threshold intensities
might be an issue.

Regarding the projection of the original deviations from the mean on the basis obtained
with TAPCA, we see it has similar issues with partly above-threshold partly-below threshold
patterns as the default projection method TAPCA. Nonetheless, it offers the benefit that
we end up with spectra in similar magnitude. However, for the evaluated mass-bins the
increased spread in residual histograms demonstrate worsened reconstruction of the particular
mass-bins. The next section tries to quantitatively evaluate whether this projection method
is desired by a comparison of the residuals with respect to their associated intensity.
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Figure 5-8: Histogram of the absolute residuals associated with partly above-threshold and partly below-threshold intensities between original
intensities in the mass-bin and the intensities in the rank-11 reconstructed mass-bin

∣∣∣d·j − d̂·j
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transformed mass-bin and the reconstructed mass-bin,
∣∣∣T (d·j)− d̂T,·j

∣∣∣ in the case of (d), (e). In this equation j denotes the mass-bin 1756.97
associated with the ion images in the figure 5-6.
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Figure 5-9: Histogram of the absolute residuals associated with predominantly threshold-exceeding intensities between original intensities in
mass-bin and the intensities in the rank-11 reconstructed mass-bin

∣∣∣d·j − d̂·j

∣∣∣ in the case of (a), (b), (c) and between the transformed mass-bin

and the reconstructed mass-bin,
∣∣∣T (d·j)− d̂T,·j

∣∣∣ in the case of (d), (e). In this equation j denotes the mass-bin 2029.07 associated with the
ion images in the figure 5-7.
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5-1-3 Comparison of the intensity-dependent capturing

In this section, we quantitatively assess the differences between TAPCA and traditional PCA
by a comparison of the residuals between the original data and a low-rank reconstruction ob-
tained by PCA and CTAPCA. We assess both the application of TAPCA with the projection
of the deviations from the mean after application of the transformation (transformed) and
the projection of the deviations from the mean as before application of the transformation
(untransformed), as discussed in section 4-2-3. In a similar manner to section 3-2, we bin the
residuals again by their original intensity into intensity windows. Figure 5-11 demonstrates
how the residuals for different intensities evolve with increasing rank for traditional PCA (line
with dots) and CTAPCA (dots). In the case of the untransformed projection (top), we obtain
the residuals by comparison to the original measurements. In the case of the transformed pro-
jection (bottom), we obtain the residuals by comparison to the transformed measurements.
As a result of this difference in comparison, we are interested in the low-intensity windows
([0, τ ]) in the transformed projection case, while in the untransformed we are not. In the case
of the untransformed projection, we make the following observations:

• The untransformed projection in figure 5-11a shows predominantly higher Root Mean
Squared Residual (RMSR) and Median Absolute Residual (MAR) values for TAPCA
than for PCA for relatively low, yet threshold-exceeding intensities. We see predomi-
nantly higher RMSR values for TAPCA for all of the reconstructions with K ≤ 7. These
higher residuals combined with predominately increased MAR for these ranks suggest
that the capturing of both the threshold-exceeding and the below-threshold patterns
worsened for these ranks.

• The untransformed projection in figure 5-11a shows an increase in the bump appearing
for high ranks in residuals for low-intensity windows for TAPCA when compared PCA.

• Figure 5-11 a show generally lower RMSR and MAR values for TAPCA for the high
intensities for the ranks K ≥ 17. Furthermore, we see the intersection point between the
RMSR and MAR of respectively PCA and TAPCA is moving towards lower intensities
for increasing rank.

We hypothesize that the high intensities are adequately described in the bases obtained by
TAPCA, due to their contribution to the covariance being less affected by the shift trans-
formation. As a consequence, we see lower residuals of the high intensities, compared to the
lower intensities.
For the transformed case, we make the following observations:

• The transformed projection in figure 5-11b shows predominantly lower RMSR and MAR
values for TAPCA than for PCA for relatively low, yet thresholding exceeding intensities
for ranks K ≤ 7. For lower ranks, we do not observe conclusively lower residuals.

• The transformed projection in figure 5-11b shows predominantly higher RMSR and
MAR values for the TAPCA than for PCA for low intensities (≤ 1000).

Based on these results we question whether dimensionality reduction based on CTAPCA
with the projection of the original data is preferred over PCA. Quantitatively, this projection
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Figure 5-10: Comparison of the RMS intensity per mass-bin of the original dataset, the rank-11
reconstruction of PCA, the rank-11 reconstruction of CTAPCA and LTAPCA with both pro-
jection mechanisms. The ion peaks are highlighted corresponding to from left to right respec-
tively predominantly below-threshold intensities (m/z 1608.81), partly below-threshold partly
above-threshold intensities, (m/z 1756.97), and predominantly above threshold intensities (m/z
2029.07).
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Figure 5-11: The RMSR and MAR of the residuals binned by their original intensity for the IMS
dataset with 809 mass-bins for traditional PCA (line with dots) and CTAPCA (dotted) with a
threshold τ = 1500 and intensity-bin-width of 200.
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shows higher residuals for the threshold-exceeding intensities for the low ranks, which are
primarily the ranks of interest. Consequently, this projection does not seem to necessarily
improve captured information above the threshold for the ranks of interest. This observation
was in line with the expectations due to the nature of PCA. However, we would like to note
that the unexpected lower residuals for the high intensities suggest that sufficiently threshold-
exceeding features are still better described in this representation.
On the other hand, for CTAPCA with the projection of the transformed deviations, we do see
predominantly lower residuals for the threshold-exceeding intensities for all ranks above rank
10, compared to PCA. These results suggest for capturing the threshold-exceeding intensities
CTAPCA is preferred over PCA.

5-1-4 Mass-bin contribution

Another way of quantifying the effects of TAPCA is the observation of the relevance of
individual mass-bins with respect to the threshold. We expect the shift transformation in
TAPCA to reduce the relevance of particular mass-bins, as their variance contribution mainly
originates from below-threshold intensities. Similarly, we expect an increase in relevance for
mass-bins mainly contributing variance above the threshold.
The introduction of the ion intensity threshold into dimensionality reduction enables deter-
mining the relevance of the particular mass-bins with respect to the threshold. One way of
specifying the relevance of a particular mass-bin with respect to the threshold is the obser-
vation of the coefficient matrix Cτ , obtained by TAPCA. The coefficients in the individual
rows describe the importance of a particular mass-bins and its coherence with other mass-
bins in the total low-rank approximation. A higher squared sum of the coefficients in the
rows associated with a particular mass-bin means more of the original mass-bin is captured.
The row-wise sum of the squared coefficients is maximized at one, as the coefficient matrix
Cτ is orthonormal. Equation (5-2) shows the formula used to determine the relevance of a
particular mass-bin i, for rank-K, in which cτ,i,j denotes an element at row i and column j
of the coefficient matrix Cτ obtained after application of TAPCA with threshold τ .

rτ,i =

√√√√ K∑
j

(cτ,i,j)2 (5-2)

For visualization purposes, we reduce the dataset again to the first 100 columns of the original
dataset with 809 mass-bins. Figure 5-12 shows the individual contribution as a relevance
measure for the reduced dataset for various thresholds at rank 15. We require sufficient rank to
asses the effect of the threshold on the contribution of the individual mass-bins in a transparent
manner. Insufficient rank introduces sudden changes in the individual contribution. The
covariant components obtained by TAPCA are possibly ordered differently for some thresholds
due to the change in the variance contribution due to the transformation. As such, insufficient
rank discards components depending on the threshold and related variance contribution.
Rank 15 showed sufficiently stable behavior to make an equal assessment on the influence of
the threshold.
In relation to the qualitative assessment done in section 5-1-2, we would like to identify three
different cases which are closely related to the captured features.
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Figure 5-12: The contributions of individual mass-bins at different thresholds for rank 15 after
application of TAPCA on the first 100 mass-bins of the IMS dataset peak-picked with threshold
100 and containing 809 mass-bins in total.
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Mass-bin contribution attenuated for higher thresholds. These mass-bins consist mostly
of intensities in the range [0− 3000]. As such, for a sufficiently high threshold, the vari-
ance contribution of these mass-bins attenuates due to the transformation. Examples
are the mass-bins labeled with B in figure 5-12.

Mass-bin contribution amplified for higher thresholds. The contribution of the mass-
bins representing a sufficient amount of variance associated with a set of intensities above
the threshold is amplified. We attribute this amplification on lower variance contribu-
tion of the below-threshold intensity bins. As such, the variance contribution of the
above-threshold relative to the below-threshold intensity bins is raised. Examples are
the mass-bins labeled with A in figure 5-12.

Mass-bin contribution remains approximately constant. For the constant contribu-
tion cases we can identify two situations. First, the mass-bins containing many high
intensities already make a relatively large contribution. As such, the increase in contri-
bution of these bins is not visible on the color scale. Examples are the mass-bins labeled
with C in figure 5-12. The other situation is mass-bins consisting of a few relatively high
intensities. The removal of a set of low intensities reduces the variance contribution of
these mass-bins. At the same time, we expect the lower total variance contribution due
to the shift transformation counters the effect of the lowered variance contribution of this
particular bin. As such, this particular mass-bin contribution remains approximately
constant. Examples are the mass-bins labeled with D in figure 5-12.

5-2 Rank estimation in the synthetic dataset

We use the synthetic dataset, outlined in section 2-2-2, for the validation of the intensity-aware
rank estimation method. We consider here the residual-fraction rank estimation method
based on the residual fraction and the threshold-shifted method based on intensity-aware
dimensionality reduction as derived in the previous chapters. The synthetic dataset simulates
a clear cut in information-carrying threshold-exceeding intensities and randomly permuted
below-threshold intensities.

5-2-1 Residual-fraction rank estimation

Figure 5-13 displays the residual fraction, equation (3-12), for two synthetic datasets, with
and without additional noise and with rank 5. Both plots display a sharp peak in the residual
ratio at rank 5. At this rank, the reconstruction of threshold-exceeding intensities is optimal
compared to the below-threshold intensities as their respective total residuals are minimal.
This optimal reconstruction implies that the majority of the threshold-exceeding information
is captured, while the below-threshold is mostly discarded. This peak in the residual ratio
confirms the hypothesis that in the dataset, for which only the threshold-exceeding intensities
reflect reliable signal, the rank, for which the majority of the threshold-exceeding information
is captured, is close to the rank of the underlying reliable signal.

Furthermore, the residual ratio demonstrates sensitivity to the threshold choice, as the choices
of the threshold below and above the actual threshold of the synthetic dataset exhibit different
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behavior. The residual ratio for a too-low threshold choice demonstrates no optimum for the
above threshold reconstruction. The residual ratio for a too-high threshold choice increases the
height of the peak. We have observed, that the synthetic datasets are more likely to slightly
overestimate actual rank based on the residual ratio dependent on the choice of threshold.

5-2-2 Threshold-shifted rank estimation

Figure 5-14 displays the cumulative explained variance based on TAPCA, section 4-2, per
choice of threshold for the same synthetic datasets with and without additional noise. We use
the no-noise case to discuss the behavior we observe taking into account the threshold in rank
estimation. Then, we demonstrate that the behavior in the added noise case is similar. The
contour lines in these plots show the rank required for a percentage of explained variance in
the original dataset with respect to the threshold. At threshold 0 no threshold is taken into
account, and this situation corresponds to a percentage of variance based rank estimation in
traditional PCA.

Figure 5-14a shows that in the no-noise case we would require rank 16 to capture 99% of the
variance, not taking into account the threshold. The underlying rank of the synthetic dataset
is 5, but the random permutations of the below threshold intensities construct a full rank
(25) matrix. We attribute the increased rank to capture the majority of the variance to the
randomness of the below-threshold intensities. For a too-low threshold, TAPCA considers the
variance of the sub-threshold intensities relevant. As such, a significant amount of components
is required to capture the majority of the variance.

We see a decrease in required rank for equivalent percentages of variance captured, for an
increase of the threshold used for TAPCA, as the below-threshold variance contribution is
lowered. For a threshold close to the synthetic dataset threshold, we see with TAPCA for
approximately 98% we would need rank 5. For this threshold, TAPCA discards the majority
of variance contributions by below-threshold intensities, yet we do not obtain 100% captured
variance. The shifting transformation does not preserve the original factors W and H in
Equation 2-2 constructing the dataset. Consequently, this method is unable to discover the
exact original factors and always result in some information loss.

In the noise case, with 10% added Gaussian noise we require capture of approximately 90%
of the variance in the synthetic dataset. Figure 5-14b displays the synthetic dataset rank 5
for threshold 5 and 90% explained variance. In the presence of noise, it seems that the effect
of the noise is dominant over the shifting not preserving the factors W and H.

Furthermore, the noise case shows a more smooth reduction in explained variance compared
to the no-noise case. We attribute to the noise also distortion of the threshold-exceeding
intensities. Independent of the threshold, the variance in the signal becomes less coherent
due to this distortion, requiring more components to capture the majority of the variance. For
an increasing threshold, the variance-contribution of the random below-threshold intensities
becomes less, causing an increase in the explained variance for the same rank.
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Figure 5-13: The residual fraction for the synthetic datasets in the case of no noise and 10%
noise with dimensions 50 × 25, rank 5. The below-threshold intensities are randomized for a
threshold of 5.
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(a) SNR =∞

(b) SNR = 10

Figure 5-14: The cumulative explained variance obtained with TAPCA per threshold and rank
for two synthetic datasets with dimensions 50 × 25, rank 5. The below-threshold intensities are
randomized for a threshold of 5
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5-3 Rank estimation for the IMS Dataset

This section compares intensity-aware rank estimation using residual-fraction rank estimation
and threshold-shifted rank estimation with the percentage of cumulative explained variance
based on TAPCA to a baseline of rank estimation methods available in the literature. The
rank estimation methods selected from the literature for reference are Cross-Validation (CV)
[28], and the Cumulative Percentage of Explained Variance [40].

5-3-1 Threshold-shifted rank estimation

In this section, we compare threshold-aware rank estimation based explained variance for
TAPCA with threshold-unaware rank estimation based on explained variance for normal
PCA when applied to the Coronal Rat Brain dataset. Figure 5-15 shows the percentage of
cumulative explained variance in function of the threshold and a specific choice of rank, for
two dataset sizes obtained via TAPCA. The percentage of cumulative explained variance at
intensity threshold zero is identical to rank estimation via cumulative explained variance of
traditional PCA. In the context of IMS and TAPCA we can do the following observations:

Higher thresholds require decreasing rank for same cumulative explained variance.
All plots in figure 5-15 show for an increasing threshold a decrease in the required rank
to obtain a similar percentage of cumulative explained variance. The reduction in rank
is in line with the expectations outlined in section 4-2. The below-threshold variance
contribution is discarded. At the same time, this variance is expected to be mostly
incoherent, due to low physical reliability of the intensities. Consequently, this supports
our hypothesis that intensity-aware rank estimation via explained variance of TAPCA
results in a lower rank estimate.

The rate of change of rank versus threshold increases for larger datasets. The com-
parison of Figure 5-15b to figure 5-15a shows that larger dataset sizes allow more
reduction in the required rank to obtain a similar percentage of cumulative explained
variance. We attribute this to the difference in peak picking thresholds for these
datasets. A lower peak picking threshold results in more mass-bins with a signifi-
cant amount of intensities below the threshold as shown in the histograms in figure 2-3.
Consequently, the shift transformation, as applied in TAPCA, results in a consider-
able reduction in considered variance, due to the increased number of below-threshold
intensities for the larger datasets.

Higher rank estimates for LTAPCA versus the CTAPCA. The linear-shift transfor-
mation, as introduced in section 4-2-4, suppresses the variance contribution below the
threshold, whereas the clip-shifting removes the below threshold variance contribution
altogether. Consequently, we observe in figure 5-16 that the rank for an equal percentage
of explained variance of the linear-shifting variant is higher. Furthermore, a larger part
of this variance is contributed by intensities that we consider unreliable in light of the
threshold. As such, we expect a lower rank estimate for the clip-shifted version when
compared to the soft shifted variant.
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Significantly higher rank estimates when compared to CV Rank estimation via ex-
plained variance for both TAPCA and PCA give significantly higher estimates for vari-
ance thresholds common in literature (90%+) at low thresholds (τ ≤ 1000) than CV.
We ascribe this discrepancy to, one, a fundamental difference between cross validation
and explained variance rank estimation and, two, a substantial variance contribution of
unreliable below-threshold intensities for low thresholds. CV intends to describe

5-3-2 Rank estimation based on Cross-Validation (CV)

This section introduces the CV method we have selected to compare with the intensity-
aware methods when applied to a real IMS dataset. In CV for dimensionality reduction a
part of the dataset is held out, and a low-rank approximation is obtained from the left-over
data. Subsequently, the low rank approximation constructed without held-out data is ranked
on how well it describes the held-out data for a particular rank by the calculation of the
Predicted Residual Sum of Squares (PRESS). By iterative evaluation of this prediction error
for different hold-outs an estimate of the optimal rank can be obtained.
We chose PLS EigenvectorTM as the preferred CV method, based on the review of Bro et
al. [28], for to its simplicity, its resilience to overfitting, and computational advantages over
Bi-Cross-Validation [27] and computation of PCA with missing values [28, 40]. Furthermore,
we chose a L-fold leave-p-out CV [28, 26] approach over leave-one-out, due to two reasons.
One, other methods, such as leave-one-out, would require a large number of iterations, due
to the high dimensionality of IMS datasets and associated computational load. Two, we
expect leave-p-out approach to perform better in IMS datasets, since a significant amount of
mass-bins contain spatially similar patterns. Similar patterns would still be present in the
training dataset after application of leave-one-out CV, enabling near-perfect reconstruction
of the holdout. As a result, we expect leave-one-out to be more prone to overfitting than
leave-p-out strategy.
The matrix version of the PRESS for rank K and associated hold out i for the selected CV
method is:

PRESSK, i =
∥∥∥(I−C(−i)C(−i)

T + diag{C(−i)C(−i)
T }
)

D(i)

∥∥∥2
, (5-3)

in which I ∈ RN×M denotes the identity matrix, C(−i) ∈ RM×K the rank-K coefficient matrix
as obtained from the training set D(−i), Y without the rows i, test set D(i) denotes the rows
i in the matrix D and diag• denotes a matrix in which all off-diagonal elements are set to
zero. The average PRESS for rank K can then be calculated via:

PRESSK =
∑L
i=1 PRESSK, i

L
(5-4)

Figure 5-17 shows the average PRESS per rank for CV with L = 100 different random hold-
outs for three different dataset sizes. The rows of Y are held out randomly, and we chose
the number of held-out rows empirically on 180, which is approximately one percent of the
dataset. We see in figure 5-17 for the three different dataset sizes yield three different ranks,
respectively 15, 16, and 24, for which the average PRESS is minimal. Generally, in rank
estimation based on CV, the rank is chosen where the average PRESS is minimal. However,
we note that the relative differences in the domain [14, 24] are small.
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(a) CTAPCA, Peak Picking Threshold 100, 809 mass-bins

(b) CTAPCA, Peak Picking Threshold 10, 4084 mass-bins

Figure 5-15: The percentage of cumulative explained variance per rank plotted against the used
intensity threshold τ for CTAPCA for two different dataset sizes. The contour lines show the
variance-percentage truncations often chosen in the literature.
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(a) LTAPCA, Peak Picking Threshold 100, 809 mass-bins

(b) LTAPCA, Peak Picking Threshold 10, 4084 mass-bins

Figure 5-16: The percentage of cumulative explained variance per rank plotted against the used
intensity threshold τ for LTAPCA for two different dataset sizes. The contour lines show the
variance-percentage truncations often chosen in the literature. In the linear-shift transformation
the parameter c and d are chosen in relation with the threshold as c = τ

5 , d = τ
2 .
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Figure 5-17: Total average residuals for CV using the PLS Eigenvector [28] method for the
three different dataset sizes with respectively 809, 2611 and 4084 mass-bins averaged over 100
hold-outs.

5-3-3 Residual-fraction rank estimation

In this section, we compare residual-fraction rank with the threshold-unaware methods like
cross-validation and explained-variance for the Coronal Rat Brain dataset.

Figure 5-18 plots the above-threshold and below-threshold residual ratio against the rank for
a real IMS dataset. The plots can be divided into three ranges:

Low-rank (0-20) The residual ratio increases steadily, meaning the above-threshold peaks
are captured better than the below-threshold counterpart. In this region, PCA captures
a large part of the threshold-exceeding information. This observation is supported by
the decrease in the residuals for the high-intensity windows for these ranks shown in
figure 3-1.

Medium Rank (20-45) The residual ratio starts to stabilize. We interpret this stabilization
as the additional components capture similar amounts from the above-threshold and the
below-threshold intensities. In figure 3-1 we see a slower reduction of the residuals for
the high-intensity bins. For thresholds τ < 1600, the ratio at the high-end of this region
reduces, meaning more below-threshold intensities are captured.

High Rank (45+) The ratio develops approximately in a linear way for the thresholds. For
the thresholds τ > 1000, the ratio increases steadily at a rate dependent on the height
of the threshold, meaning the above-threshold intensities are captured in a better way
than the below-threshold components. For the thresholds τ < 1000 the ratio remains
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Figure 5-18: Ratio between below-threshold RSSQ and above threshold RSSQ as defined in
equation (3-12) for IMS. An increase in the ratio indicates components, which capture more of
the above-threshold intensities. Similarly, a reduction of the ratio signals components capturing
more of the below-threshold intensities.
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approximately constant, meaning additional components capture roughly equal amounts
of below- and above-threshold intensities.

Figure 5-18 shows a maximum in the ratio around approximately rank 22 or 23 dependent
of the dataset size. As we discussed in section 3-3, this maximum implies minimal above-
threshold residuals relative to below-threshold residuals, or in other words, maximal capturing
for the threshold-exceeding patterns when compared to the below-threshold ones.

Figure 5-17 shows that CV finds a similar rank as maximization of the residual ratio for the
4084 mass-bin dataset. We see that CV of 809 and 2611 mass-bin datasets result in signif-
icantly lower ranks of respectively 15 and 17, when compared to the residual ratio method.
However, we can question the reliability of these rank estimates. We see that for CV the
differences in PRESS are relatively small in the domain [15, 25]. Furthermore, these differ-
ences in PRESS are also influenced by the dataset size and hyperparameters such as the
holdout size and the number of iterations. Consequently, the small differences in PRESS
show that rank estimation based on CV does not always provide a conclusive answer. At
threshold 0 in figure 5-15 we see the results of rank estimation based on explained vari-
ance. These rank estimates for variance percentages commonly chosen in the literature,
respectively [90, 95, 97.5] are significantly higher than the ones obtained by the residual ra-
tio or CV. As discussed in chapter 1, the differing rank estimates are an effect of different
motivations and associated goals of these rank estimation methods. CV considers intensities
that have predictive relevance for other intensities relevant and the rest noise. The percentage
of explained variance, on the other hand, focuses on capturing the majority of the variance in
a dataset and as a result, also captures intensity patterns without this predictive relevance.

5-3-4 Residual-fraction and threshold-shifted rank estimation

Section 5-3 shows a large discrepancy in rank estimates between the residual-fraction and
threshold-shifted version. Furthermore, we also observe a large difference in the intensity-
unaware explained variance and CV methods. These differences in rank estimates do not mean
one of the two methods is wrong. Residual-fraction and threshold-shifted rank estimation
represent different motivations behind rank estimation and dimensionality reduction. The
context and associated goal of the dimensionality reduction generally determine which motivation
is better suited. We believe that the maximization of the residual-fraction is closer related to
minimization of the capturing of noise. We expect a certain amount of randomness or noise
in the intensities below the threshold if these measurements are unreliable for any biological
conclusions. At the same time, all peaks regardless of their intensity with respect to the
threshold contain some noise. Consequently, this suggests we capture an increasing amount
of noise at the ranks for which we capture an increasing amount of the below threshold inten-
sities. In other words, we argue that the residual-fraction is a measure influenced by the noise,
under the premise that the dataset contains a certain amount of incoherence or non-structure
in the below-threshold intensities. For this reason, we consider that the motivation behind
residual-fraction rank estimation shows similarities to CV, which could explain the similar
rank estimates.

The threshold-shifted rank estimation based on the percentage of explained variance origi-
nating from threshold-exceeding intensities in TAPCA has a different motivation altogether.

Master of Science Thesis M.H. van Winden



72 Evaluation of Intensity-Aware Rank Estimation Methods

In the case of threshold-shifted rank estimation, we truncate at a rank to capture the ma-
jority of the above-threshold variance contribution. For this reason, we obtain compressed
measurements maximally explaining the threshold-exceeding variance in the original mea-
surements. Consequently, the motivation is to describe the majority of the variance in the
threshold-exceeding intensities instead of minimizing the amount of captured noise. Due to
the differences in objective, threshold-shifted rank estimation requires a significantly larger
number of components than residual-fraction and cross-validation-based rank estimation.

We propose that the preferred method for rank estimation depends on the application in mind
and the motivation behind the dimensionality reduction. First of all, residual-fraction rank
estimation is a heuristic and might not generalize to all IMS datasets. Second, if the context
is to apply clustering, classification, or doing manual analysis, post-reduction only, using
a minimal amount of components maximally describing threshold-exceeding intensities, the
residual-fraction approach might be preferred. Furthermore, residual-fraction rank estimation
is advantageous as it provides principal components based on the original unmodified spectra,
whereas threshold-shifted rank estimation does modify the spectra. For other objectives, such
as reducing storage or computational load, the threshold-shifted rank estimation might be
preferred.
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Chapter 6

Conclusions and Recommendations

6-1 Conclusions

In this section, we summarize the conclusions found during the thesis. We start with the
main conclusions and then zoom in on conclusions per sub-topic.
We described two methods to estimate the rank linear dimensionality reduction with PCA
taking the reliability of measurement intensities in the considered IMS dataset into account.
In line with the issues and challenges of dimensionality reduction for IMS, we can conclude
the following.

• A rank for which all threshold-exceeding intensities are perfectly captured, for which
PCA does not also capture a large part of the irrelevant and more unreliable below-threshold
intensity region, does not seem to discernible. As a consequence, intensity-aware rank
estimation requires a measure for sufficient capture of the information above the thresh-
old, given that we cannot achieve perfect above-threshold capture with for a rank leading
to substantial reduction.

• We have suggested a heuristic residual-fraction rank estimation for PCA as a poten-
tial measure of optimality for above-threshold intensity capture. Residual-fraction rank
estimation is based on the maximization of the above-threshold capturing relative to
the below-threshold capturing based on the residuals. Residual-fraction rank estima-
tion assumes that a dataset exhibiting little structure or coherence in below-threshold
intensities will be expressed in the residuals.

• We have proposed a threshold-shifted rank estimation method based on the explained
variance in TAPCA, as an approach to estimate rank while explicitly de-emphasizing
any below-threshold intensities.

• We have shown that threshold-shifted rank estimation enables imposing an explicit
relationship between the intensity threshold in the measurement space and rank in the
abstract subspace obtained by dimensionality reduction, based on the explained variance
above the threshold.
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The following sections summarize the conclusions related to the proposed rank estimation
methods and TAPCA.

6-1-1 Residual-fraction rank estimation

• We have shown that application of residual-fraction rank estimation is capable of finding
the correct rank for the synthetic dataset in both the noise and no noise case. We do note
that the synthetic dataset exhibits a clean cut between the reliable threshold-exceeding
and unreliable below-threshold peaks, which is not realistic for a real-world case study.
Nonetheless, the application of PCA to the Imaging Mass Spectrometry (IMS) dataset
showed similar behavior as with the synthetic experiment.

• We have shown that residual-fraction rank estimation obtains similar rank estimates
to cross-validation, but significantly lower ranks than explained variance based rank
estimation. We have suggested a potential cause might be the possibly different moti-
vation behind these methods.

6-1-2 Threshold-shifted rank estimation

• We have shown that threshold-shifted rank estimation based on explained variance in
TAPCA could result in a significant decrease in rank when compared to the threshold-unaware
rank estimation based on explained variance.

• We have shown that higher thresholds for TAPCA result in lower rank estimates for
both the synthetic dataset and IMS dataset. However, the no-noise synthetic dataset
shows no reduction after the TAPCA threshold has superseded the synthetic dataset
threshold. These effects are not so clearly visible in the real or the synthetic noise case.

• We have shown, in line with the expectations, that larger datasets containing more
mass-bins and peak picked with higher thresholds show a higher reduction in rank.
A dataset with a lower peak picking threshold contains more relatively low-intensity
mass-bins and as such the threshold-aware rank estimation has bigger impact.

6-1-3 Pattern capturing of TAPCA

• We have shown that application of TAPCA to an IMS dataset can lead to sparser
principal component spectral loadings and cleaner delineation of spatial scores, depending
on the choice of the threshold and shifting transformation. Furthermore, the RMS spec-
trum contained the per-mass-bin RMS intensity has become sparser, which we believe
is related to the overall sparser spectral loadings.

• We have shown that TAPCA is able to especially capture threshold-exceeding patterns
and that it discards below-threshold patterns. We have also demonstrated that TAPCA
potentially fails to fully capture patterns partially above- and partially below-threshold
regardless of the projection method. Furthermore, the application of the linear-shift
transformation in LTAPCA does not fully mend this shortcoming.
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• TAPCA seems to attenuate the influence of particular mass-bins in line with the magnitude
of the threshold-exceeding intensities present in these bins, depending on the threshold-choice.

• We have shown that projection of the original deviations from the mean in TAPCA
allows a low dimensional representation on the scale of the original data based on the
basis obtained with TAPCA. However, application to the IMS dataset shows that this
projection also leads to predominantly increased residuals for the lower ranks of interest,
and a reduction in residuals for high-intensities at the higher ranks independent of the
imposed threshold. Consequently, in the context of the ion intensity threshold, the
projection of deviations from the mean after transformation seems preferred.

• We have shown that projection of the transformed deviations from the mean in the IMS
dataset on the basis obtained by both CTAPCA and LTAPCA leads to respectively
no and reduced capturing of the below-threshold intensities in the lower-dimensional
representation. We expected that the difference with LTAPCA on the capturing of the
below-threshold intensities would have been more significant.

6-1-4 Relevance to dimensionality reduction in IMS

In the context of IMS, the residual-fraction and threshold-shifted rank estimation have made
an initial connection between rank as defined in the lower dimensional abstract subspace
constructed by PCA and the ion intensity threshold as defined in the spectra in the original
measurement space.

This connection allows the mass spectrometrist, the mass spectrometer operator, to take
into account the LOQ for PCA-based dimensionality reduction resulting in a low-dimensional
representation in line with the instrument properties. Furthermore, intensity-aware rank
estimation achieves a higher compression or lower rank estimates than intensity-unaware
rank estimation. For the mass spectrometrist, the higher compression opens the door to more
advanced experiments producing more data with similar computational resources, such as 3D
IMS [11] and hyphenation with ion mobility detection [12].

For the data-scientist, this connection allows heeding of the LOQ during dimensionality reduc-
tion. The data-scientist can construct a lower dimensional representation maximally reflecting
reliable threshold-exceeding intensities and discarding the low reliability below-threshold in-
tensities, and then use this representation for subsequent analysis.

6-2 Recommendations for future work

6-2-1 Alternatives for intensity-aware rank estimation for PCA

We have briefly investigated the use of WCPCA for intensity-aware rank estimation and
recommend this approach as a possibility for further research. WCPCA is potentially a more
hybrid solution in between TAPCA and PCA, in which the intensities in the measurement-
space seem unaffected, yet allows to emphasize threshold-exceeding intensities in the abstract
subspace. We foresee a challenge in the selection of an appropriate weighting scheme that
enables consistent emphasis of threshold-exceeding intensities.
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We recommend investigation of an alternative to residual-fraction based rank estimation as
a heuristic for sufficient capturing threshold-exceeding intensities. The residual-fraction de-
pends on the underlying structure of the dataset and consequently we expect it will not be
applicable to every dataset. For this reason, this approach towards intensity-aware rank esti-
mation would benefit from another measure for sufficient capturing of the threshold-exceeding
intensities in the low-dimensional abstract subspace.

6-2-2 Extension for intensity-aware rank estimation to NMF

We recommend more research into the extension of threshold-shifted rank estimation to
NMF. De-emphasizing below-threshold intensities can be achieved in a similar manner as
with TAPCA by transformation of the measurements in the measurement-space. We foresee
a challenge in the subsequent rank estimation for NMF, as limited standardized rank estima-
tion methods nor a relevance parameter such as the explained variance are available in the
literature.

In the context of residual-fraction based rank estimation, we do not recommend more research
into extension to NMF. Preliminary results showed patterns in the residuals dependent on the
intensity, similar to PCA, did not occur for NMF. We attributed this to the less-overfitting
property of NMF, and consequently, expect this method to not work as well for NMF.

Finally, we see in WNMF for NMF a similar solution as in WCPCA for PCA. WNMF allows
the intensities in the measurement-space to be unaffected, yet allows to emphasize threshold-
exceeding intensities in the abstract subspace. We foresee the consecutive rank estimation
WNMF will be challenging, due to the limited availability of rank estimation in the literature.

6-2-3 Improvements for TAPCA

We recommend more research into mitigation of the issues arising for partially below- partially
above-threshold patterns. A potential solution could be putting more emphasis on specific
cases of interest. One approach could be more complex shifting transformations, but we
expect that this problem will not to be solved by a one-size-fits-all solution. An alternative
would be non-uniform shifting transformations. Tailor-made shifting transformations, focused
on a particular spatial or spectral pattern, could allow specific emphasis on these patterns.
The combination of the shifting transformations with a weighting scheme, such as WCPCA,
to emphasize these patterns could also be a possibility.

M.H. van Winden Master of Science Thesis



Appendix A

Rank Estimation Covariance Weighted
PCA

We have tested rank estimation with Weighted Covariance Principal Component Analysis
(WCPCA) [55] by using a element-wise binary weighting scheme wnm ∈ {0, 1} as described
in section 4-3-1. We focus on the effect of this weighting on the rank estimate and neglect
the impact on the extracted principal components as a result of this possibly overly harsh
weighting function. Figure A-1 shows the effect on the rank estimation by displaying the
explained variance in relation to the threshold used for this binary weighting scheme. In this
figure, we see a sharp reduction initially for the first nonzero threshold, which corresponds
to the case for which we neglect all zero entries. However, after this point, the effect of
the increasing threshold is limited for the intensity range of interest [0, 3000]. We attributed
this to the normalization of the mass-bins weight done in WCPCA, such that every bin
has equal weight. As a result, the few threshold-exceeding intensities in generally below-
threshold mass-bins weigh relatively heavy compared to intensities in mass-bins containing
many threshold-exceeding intensities.

However, disabling this normalization caused new effects as shown in figure A-2. In this
case, we see increasing percentages of explained variance for increasing thresholds, which is
the adverse effect of what we expected and hoped to achieve. At the point of writing it is
unclear what causes this effect and more research would be required. We have run some
preliminary experiments with simple affine wnm(x) = min(ax + b, 1) and sigmoid weighting
wnm(x) = 1

1+exp−ax+τ schemes, but these do not seem to make consequent differences in the
results.
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78 Rank Estimation Covariance Weighted PCA

Figure A-1: The percentage explained variance in relation to the used threshold for the binary
weighting scheme of WCPCA for the IMS dataset with 809 mass-bins. In this figure, the zero
threshold corresponds to traditional PCA
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Figure A-2: The percentage explained variance in relation to the used threshold for the binary
weighting scheme of WCPCA without normalization of the weights for the IMS dataset with 809
mass-bins. In this figure, the zero threshold corresponds to traditional PCA
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Glossary

List of Acronyms

IMS Imaging Mass Spectrometry

MALDI Matrix Assisted Laser Desorption Ionization

DESI Desorption Electrospray Ionization

SIMS Secondary Ion Mass Spectrometry Imaging

HSI Hyperspectral Imaging

LDR Linear Dimensionality Reduction

PCA Principal Component Analysis

PC Principal Component

SVD Singular Value Decomposition

NMF Nonnegative Matrix Factorization

TAPCA Threshold-Aware Principal Component Analysis

CTAPCA Clipping Threshold-Aware Principal Component Analysis

LTAPCA Linear Threshold-Aware Principal Component Analysis

QTAPCA Quadratic Threshold-Aware Principal Component Analysis

PIWPCA Peak Intensity Weighted Principal Component Analysis

WCPCA Weighted Covariance Principal Component Analysis

WNMF Weighted Nonnegative Matrix Factorization

RMS Root Mean Squared

RSSQ Residual Sum of Squares
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RMSR Root Mean Squared Residual

MAR Median Absolute Residual

SNR Signal-to-Noise Ratio

CV Cross-Validation

PLSA Probabilistic Latent Semantic Analysis

LDA Linear Discriminant Analysis

NN-PARAFAC Nonnegative Parallel Factor Analysis

t-SNE t-Distributed Stochastic Neighbors Embedding

AIC Akaike Information Criterion

MLE Maximum Likelihood Estimation

MDL Minimum Description Length

SURE Stein’s Unbiased Estimator

ARD Automatic Relevance Determination

PRESS Predicted Residual Sum of Squares

LOB Level of Blank

LOD Level of Detection

LOQ Level of Quantitation

NNLS Nonnegative Least Squares

ALS Alternating Least Squares

HALS Hierarchical Alternating Least Squares

BCD Block Coordinate Descent

TIC Total Ion Current
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