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Abstract

In this thesis we build a goal based planning framework that takes into account goal priorities. Goal
based planning is a type of personal wealth planning, with a focus on the feasibility of an investor’s
goals. Currently, to take goal priorities into account a dynamic asset allocation is created. We focus
on incorporating goal priorities by ensuring goal cash flows reflect investors’ preferences, no matter
the asset allocation. No money should be spent on less important goals if it jeopardises achieving
more important goals. With such a goal cash flow strategy, an investor gains valuable insight into the
feasibility of her goals. We build such a framework in two ways. First, we use utility theory. With utility
theory, we can quantify an investor’s satisfaction with the goal cash flows. For that purpose, we cre-
ate a total utility function that takes into account goal priorities. Then, we optimise over the goal cash
flows such that it results in the highest expected total utility. Second, we use conditional expectations.
With conditional expectations, we determine the relationship between earlier wealth and future goal
achievability. Therefore, we create a framework with a spending rule based on the conditional expec-
tation. We implement conditional goal cash flows. With conditional cash flows, we create a goal based
planning framework that takes into account goal priorities for multi-goal investors.
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Introduction

In this thesis, we develop a goal based planning framework that takes into account goal priorities.
Goal based planning is a type of personal wealth planning focused on an investor’s goals. An investor
determines, potentially with a financial advisor, her goals, the timings, and the amounts. In some
goal based planning frameworks the investor also prioritises the individual goals. For instance, an
investor might want to save up 10K for a car in two years and 50K for a more important retirement
goal in twenty years. In goal based planning there are two approaches: holistic and bucketing. In
the holistic approach, an investor’s goals are considered as one entity. A single portfolio is created to
determine the feasibility of an investor’s goals. In the bucketing approach, also referred to as mental
accounting, an investor’s goals are considered separately. Per goal, a specific portfolio is created
to reach that goal. An investor then divides her initial wealth and future deposits over the portfolios
and determines the goals’ feasibility separately. Both approaches have their advantages [10], but we
take a holistic approach to goal planning. Based on the investor’s risk profile, a model portfolio is
made up of different financial products. The model portfolio follows one of three investment strategies:
buy-and-hold, rebalancing, or life-cycle/dynamic. Uncertainty is incorporated into the modelling of the
portfolio to reflect the missing information on the future, often in scenarios or scenario trees to emulate
different futures. These scenarios contain diverse return values, modelling different future economic
behaviours of the portfolio. In each scenario, the deposits and goal cash flows are simulated. Then,
over all scenarios, the feasibility of an investor’s goals are determined. In this thesis, we require three
investor determined parameters: initial wealth, future deposits, and prioritised goals. We require an
investor to prioritise her goals as the aim of this thesis is to create a goal based planning framework
that focuses on goal priorities.

In literature, there are examples of holistic goal based planning frameworks that incorporate goal pri-
orities. Dempster and Medova [6] create per goal a utility function that translates a goal’s cash flows
to utility. The goal priority is incorporated in the slope of the function. Then they optimise over the
expected utility of lifetime spending, which is a function of the individual goal functions. Fowler and de
Vassal [10] forgo utility theory. They use a sequence of optimisations to maximise the probability of
goal success, starting with the highest priority goal. The second optimisation maximises the probability
of success of the second-highest priority goal. To take into account the most important goal, they place
a minimum constraint on its probability of goal success. This process is repeated for all goals, adding
an extra constraint for each iteration. Kim et al. [19] use multi-stage stochastic programming in com-
bination with goal programming. They use stochastic programming to incorporate uncertainty in the
framework. Multiple futures are presented in the form of a scenario tree. Goal programming falls under
multi-objective optimisation. It is an extension on the linear programming framework and is capable
of solving multiple objectives with conflicting constraints. They sequentially maximise the expected
total spending over all scenarios, defining in each iteration the optimal cash flows for a particular goal.
They start with the most important goal. In the next iteration, they again maximise total spending, while
placing strict cash flow constraints on higher priority goals.



2 1. Introduction

All of the previous frameworks incorporate goal priorities in function of portfolio selection. The result
of the optimisation problems, no matter the objective function, is the most optimal (dynamic) asset
allocation. In this thesis, we take a different approach to incorporate goal priorities. We do not optimise
in function of asset allocation or any investor parameter. The goal is to create a framework in which all
goal cash flows align with the investor’s goal priorities, no matter the investment strategy. We want to
prevent that current cash flows put future goal achievability in jeopardy, especially when more important
goals occur later in time. We return to the investor described in the first paragraph, who has a car goal
and a retirement goal. The retirement goal occurs later in time, but is more important than the car goal.
Following the priorities, no money should be spent on a car if that prevents the investor from obtaining
her retirement goal. We want to exclude the focus on short-term goals from the framework.

To place more emphasis on short-term objectives at the expense of long-term objectives is a common
trait in people [21]. People often forgo long-term plans if that means they can obtain something right
now. This occurs in investing as well, where investors focus on short-term goals instead of long-term
goals. Research has shown that on a corporate level, this behaviour is not beneficial to the health
of the company [2]. Following that logic, such behaviour is also not beneficial to individual investors.
Therefore, we build a framework in which goal cash flows align with the investor’s priorities. If the later
goals are more important, the framework and goal cash flows should reflect that. In return, the goal
based planning framework presents the investor with the feasibility of her goals, while incorporating a
healthy investment and cash flow strategy.

The aim of this thesis is twofold:

» Determine the best way to build a framework that takes into account goal priorities in the context
of goal cash flows.

+ Verify whether a framework that takes into account goal priorities is an improvement compared
to a framework which does not.

We explore several directions to develop a suitable framework. We cannot use the same techniques as
Fowler and de Vassal [10] or Kim et al. [19]. The objective functions all incorporate the present value of
the goals. With the present value, we cannot gain information on sequential goal cash flows, which we
are interested in. Dempster and Medova use multi-period cash flows to calculate the expected utility.
Following that logic, we create a utility function over time and evaluate a framework that optimises over
the expected total utility. Additionally, we develop a framework that uses conditional expectations. With
conditional expectations, we determine the relation between present and future. Initially, we focus on
a two-goal portfolio, of which the second goal is more important. Later, we expand the framework to
multiple goals.

1.1. Goal based planning framework

For the purpose of this thesis, we create a simple goal based planning framework in Python. The
primary inputs for the framework are an investor’s initial wealth, future deposits, and prioritised goals.
Priorities are denoted with a number of stars out of five. As stated above, we take a holistic approach
to goal based planning. We consider all goals as one and create a single portfolio to achieve them. To
determine the feasibility of the goals, we use scenario analysis. These scenarios contain returns and
portray different future behaviours of the portfolio and underlying asset classes. We do not optimise on
the optimal allocation strategy. Instead, we work with portfolios consisting of a ratio of stocks to 10-year
bonds. This allocation does not change over the investment horizon. We create these scenarios with
the data provided by “de Nederlandsche Bank” (DNB). For more information on the scenario set, we
refer to Appendix A. Per investor, we simulate 2000 scenarios using the client’s initial wealth, deposits,
and prioritised goals. Per goal, we determine the goal completion in each scenario and from those
values, the goal achievability.

Definition 1.1 (Goal Completion). Suppose we have a goal at time t of value g, and a goal cash flow
of cf;. Then the goal completion for goal t, denoted c;, is equal to

(=L
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Definition 1.2 (Goal Achievability). Suppose we have a goal at time t with a value of g,. For a number
of scenarios N, we determine the goal achievability as

E[I(ct; = g0l

fori € {1, N} with I the indicator function and c, ; the goal completion as defined in Definition 1.1 at time
t in scenatrio i.

The difference between a framework that does not take into account goal priorities and one that does
is how goal cash flows are determined. For a framework that does not take into account goal priorities,
all the money available is spent on each goal, limited to the specified goal amount. Clearly, the future
is not taken into consideration; each goal is evaluated separately. This means that the framework
potentially disregards the investor’s priorities, especially in cases where more important goals occur
later in time. In a framework that does take into account goal priorities, goal cash flows are determined
by considering current and future goals.

1.2. Outline

In this thesis, we attempt to build a goal based planning framework that aligns goal cash flows with
goal priorities. We explore two distinct ways to create such a framework: with utility theory and with
conditional expectation. In Chapters 2 and 3 we use expected utility theory and cumulative prospect
theory to create a priority-based framework. In Chapter 2, we develop a measure that quantifies an
investor’s satisfaction with the goal completions: the total utility function. We create the function using
expected utility and prospect theory. The theories describe how an investor assesses a risky decision.
In Chapter 3, we use several optimisation techniques with the expected total utility as objective function.
In Chapters 4 and 5 we use conditional expectations to create a priority-based framework. In particular,
we use the conditional expectation
E[I(wr = gr)|we],

where [ is the indicator function, w;, w; the wealth at time t and T respectively, and g; the goal amount
attime tfor t < T. In Chapter 4, we create an efficient and robust heuristic to calculate the conditional
expectation for varying investor parameters. In Chapter 5, we use the heuristic to create a priority-
based framework. We start with two-goal portfolio and expand the framework to multi-goal portfolios.
In Chapter 6, we conclude the thesis and give recommendations for future research.






Total utility function

The main purpose of this thesis is to create a goal based planning framework that takes into account
goal priorities as described in Chapter 1. We modify the framework of Section 1.1 such that goal cash
flows adhere to the goal priorities. Suppose an investor has two goals, of which the most important
goal occurs later in time. In the framework, no money should be spent on the first goal if that puts
achieving the second goal at risk. As a first attempt to build such a framework, we use optimisation to
determine the optimal cash flows on the first goal. As an objective function, we need a measure which
quantifies an investor’s satisfaction with the goals’ feasibility. This leads us to expected utility theory
and cumulative prospect theory. Both theories describe how an investor assesses outcomes of a risky
decision. Within the context of this thesis, we use them to create a total utility function. In goal based
planning, the most important factor that defines success is goal completion as defined in Definition 1.1.
As such, we use goal completion as the main input for the utility function. Additionally, we incorporate
the relative preferences of goals to account for goal priorities in the framework, which are denoted with
a number of stars out of five. Firstly, we introduce expected utility and cumulative prospect theory.
Secondly, we discuss these theories within the context of goal based planning. Lastly, we introduce
and elaborate on the total utility function specific to this thesis.

2.1. Expected utility theory

In this section, we introduce the components of expected utility theory (EUT) that are necessary for
this thesis. Suppose an investor has two options to invest €1. One option is to invest the €1 and get
back €2 guaranteed. The second option is to invest the €1 and then have a 50/50 percent chance of
receiving €5 or losing €1. The classic theory for evaluating such investing decisions, where there is
uncertainty concerning the return, is EUT. Simply put, the choice is between a guaranteed €1 or an
expected €1 increase in wealth. This evaluation, however, does not take into account the true value of
the potential €5. Depending on the current wealth of the investor, it might be worth to take the risk and
have this €5 as an option. This characteristic and more is incorporated in EUT. We now describe the
components of the theory, as stated in [3].

Definition 2.1. Let M be a set of choices % = {x4,, .., Xs; 1, ., Ts} With x; € R,m; < 0 fori € {1,5} with
S € N and Ziszl m; = 1. For a choice %, the variables x; represent the outcomes of the choice and r;
the probabilities of the outcomes.

Definition 2.2. A preference relation, denoted R, determines an ordering over a set of choices M.
Given x,y € M, if x Ry, we say that choice x is at least as preferred as choice y.

Assumption 2.1. Every investor can fully define her preferences so that she has a preference relation
R.
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For clarity sake, we present two notations:
* % = X,: the agent prefers %; over %,

* ¥ ~ X,: the agent is indifferent to the choice of %; over %,

Definition 2.3 (Rationality). A preference relation is rational if and only if it satisfies the following prop-
erties:

— Reflexivity: for every ¥ € M, it holds that ¥ > X
— Completeness: for every %{,%, € M, it holds that X, = X, or X, = %;

— Transitivity: for every %1, %,,%; € M such that %, = %, and X, = %3, it holds that %¥; = %3

Definition 2.4 (Continuity). A preference relation is continuous if for every %,,%,,%; € M, such that
%, = %, and X, = X3, there exists a scalar a € [0, 1] such that

a’fl + (1 - a)ig ~ iz.

Definition 2.5 (Independence). A preference relation satisfies independence if for all %,,%,,%3 € M
and « € [0,1], we have that %; = %, if and only if

afl + (1 - 0()563 2 ajzz + (1 - a)jé3.

If the preference relation of an investor exhibits rationality, continuity, and independence, then EUT can
be applied to the investor.

Assumption 2.2. The preference relation R of an investor satisfies rationality, continuity, and inde-
pendence.

Definition 2.6 (Expected Utility Function). Given a preference relation R and Assumption 2.2, there
exists a function U : M’ — R that assigns to a choice ¥ € M the value

S

UG = ) moux),

s=1
where u is the marginal utility function of an investor under certainty.

Theorem 2.1 (Expected Utility Theory). Given a set of choices M as defined in Definition 2.1, a pref-
erence relation R, and Assumption 2.2, there exist S scalars u(x;) € R,s = 1...S such that for every
Xy, Xy €M,

X=X, o UM) = UW),

where U(-) is defined as in definition 2.6. See [3, p. 22] for the proof.

The marginal utility function of an investor evaluates how satisfied an investor is with that outcome.
The function incorporates an investor’s risk profile, which can be either risk-averse, risk-neutral, or
risk-seeking. An investor’s risk profile determines the curvature of the marginal utility function, as can
be seen in Figure 2.1. Not only does the curvature of the marginal utility reflect an investor’s risk profile,
it also incorporates an investor’s propensity for risk relative to her current wealth. Since most investors
are risk averse, the degree of relative risk is focused on risk aversion. We define two quantities, the
coefficient of absolute and relative risk aversion, to clarify the degree of risk-averseness.

Definition 2.7 (Absolute Risk Aversion (ARA)). For an investor with utility function u, the coefficient of
ARA is defined as
. _ u" (X)
L (x) - u/(x) )
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Figure 2.1: Risk Profiles

Definition 2.8 (Relative Risk Aversion (RRA)). For an investor with utility function u, the coefficient of

RRA is defined as
ull (x)

u'(x)

r(x) = —x

Conclusively, EUT as a way of choosing between choices ¥ = {x4,, .., x5; T4, .., Ts} iS based on three
principles [17]:

1. Expected utility of a choice: U(xy,p1; - X5, Ps) = pru(xq) + ... + psu(xs).

2. A choice is acceptable if the utility resulting from it increases the current utility: at wealth w, we
only choose % if U(w + xq,pq1; ;W + x5, p5) > U(w).

3. Aninvestor is risk averse: u is concave (u” > 0)

2.2. Cumulative prospect theory

Another way to evaluate risky investment decisions is with cumulative prospect theory (CPT) [17][18].
Classic EUT considers final states: the increase or decrease in absolute wealth resulting from a de-
cision. CPT considers reference points and classifies outcomes as gains or losses. This new theory
was created to get rid of four flaws in EUT. For concrete examples, see [17]. For this thesis, the most
important of these flaws are the following two. Firstly, investors often overweight the utilities of certain
outcomes. Secondly, when it comes to losses, investors with a propensity for risk aversion actually
become risk loving. They often prefer a loss that is merely probable over a smaller loss that is certain.
This goes against the principle that the utility function of a risk averse investor is concave.

CPT gets rid of these four flaws of EUT by introducing four elements, as summarized by [1]:
1. reference dependence,
2. loss aversion,
3. diminishing sensitivity,
4. probability weighting.

The first three elements specific to CPT are all incorporated in the value function, which evaluates the
outcomes of a choice. The most fitting value function, deduced experimentally, is defined as

x%forx =0

2.1
—A(=x)# forx < 0, (21)

v(x) =

where 1 is the coefficient of loss aversion, a the one of gain satiation, and g that of loss satiation. It is
generally assumed that 0 < a,8 < 1,a = 8, and 2 < 1 < 4. In Figure 2.2, we clearly see the distinction
between gains and losses with respect to a reference point. The function exhibits different character-
istics for negative and positive outcomes. The observation that investors become risk loving for losses
underlies the convexity of the value function in the loss region. The addition of A incorporates people’s
tendency to be more sensitive to losses than gains of equal size. The aspect of diminishing sensitivity
is reflected by the decreasing steepness of the function in both regions. The last element, probability
weighting, deals with the observation that investors overweight low probabilities and underweight high
probabilities.
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Figure 2.2: The value function (2.1), with a = § = 0.88 and A = 2.25

Conclusively, combining these four elements, we get that for a choice ¥ = (x_p., P -3 X0, Po; -3 Xro Pr)s
where x; < x; for i < j is evaluated as
n

z v (x;),

i=—

where v(+), representing the value function, is increasing with v(0) = 0 and the &; are decision weights.

2.3. Utility functions in goal based planning

In Sections 2.1 and 2.2, we explain how an investor evaluates an investment choice and subsequently
makes a decision. In theory, the utility function is specific to an investor. An investor clearly lays out
her preferences and evaluates choices, from which a utility function can be inferred. Then, an investor
chooses the investment decision that results in the highest utility. In turn, this results in the highest
satisfaction for an investor. In practice, the utility function is difficult to define. Instead, a general utility
function is preferred, based on common tendencies in investors. In the context of goal based investing,
the utility is derived from goal completion (see Definition 1.1) instead of accumulated wealth.

In this section, we discuss three utility functions appropriate to the context of goal based planning.
These utility functions are derived from EUT and CPT. The utility function has to behave such that
utility increases as goal completion increases. To achieve this characteristic, all functions have two
elements. First, the input parameter is the goal completion. Within goal based planning, the ultimate
goal of an investor is to acquire enough money to complete the goal. Therefore, goal completion is a
crucial element to evaluate an investor’s satisfaction with an investment decision. Second, if the goal
completion is equal to zero, the utility is zero. Additionally, the utility value increases as it reaches a
goal completion equal to one. The functions differ in how they increase, i.e. the marginal benefit of
increasing goal completion. The functions, however, are only valid as long as the utilities between no
satisfaction and complete satisfaction are within the values of these regions [12]. The following three
utility functions all portray the two necessary characteristics.

2.3.1. Step utility
A straightforward example of a utility function whose value increases as goal completion increases is
a step utility function [12]. It is defined as,

0ifc<1

- 2.2
D =1100 ife> 1, 2)

where c is goal completion (see Definition 1.1). As seen in Figure 2.3, it is at a constant low when
the goal is not satisfied and at a constant high when it is. Only when enough money is saved at
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the appropriate time do we attain maximum utility. The advantage of the step utility (2.2) is that no
assumptions are made about an investor’s personal preferences. The only input used is an investor’s
goal amount. It is thus universal and easily explainable. The disadvantage of the step ultility is that it
attributes no utility to almost reaching a goal. It interprets especially well those goals which require an
exact amount of money, e.g. an investor’s mortgage payments. Anything less than the value required
truly means the goal was not achieved. Although when it comes to other goals, this abrupt cut-off is
extreme. Suppose an investor wants to remodel her house for €20K. Would she truly be completely
unsatisfied should she only have €19,999 available? Or would she be partially satisfied with €15K? We
define these goals as bounded goals. For these bounded goals, a discontinuous utility function is not
the best option.

Definition 2.9 (Bounded Goals). Suppose an investor has a goal at time t. The investor determines a
range 1, and a goal amount g,. The investor prefers a goal amount of g;, but is satisfied with a goal
cashflow cf; € [(1—1)- s g¢]. We call the goal at time t a bounded goal, defined by a lower and upper
bound.

100 -

80

60

Utility

40 |

T T T T T T T T T
0.00 0.25 0.50 0.75 100 125 150 175 2.00
Goal Completion

Figure 2.3: Step utility function (2.2).

2.3.2. CRRA utility

For bounded goals as defined in Definition 2.9, we prefer to evaluate the goal completion with a con-
tinuous utility function. In expected utility theory, one of the most common families of utility functions is
the power family or the family of constant relative risk aversion (CRRA) functions. Itis defined as

u(c) =c’, (2.3)

where c represents goal completion as defined in Definition 1.1 and (1 —r) > 0 the investor’s risk aver-
sion as defined in Definition 2.8. The CRRA function is commonly used since the concept of constant
RRA accurately reflects investors’ propensity for risk. It implies that no matter investors’ absolute level
of wealth, they will keep the same investment profile. However, as noted in [4], the CRRA function does
not work in the context of goal completion. When keeping with the traditional concept of diminishing
marginal utility (i.e. u” > 0), most of the utility is already achieved when completing only part of the
goal. Suppose we set risk aversion r = 0.5. We see in Figure 2.4 that u(0.5) =~ .7. Almost 70% of the
possible total utility is gained when only half of the goal is completed.

The CRRA function has good and bad aspects. On the one hand, the CRRA function (2.3) portrays
what the step utility (2.2) lacks: u(c) > 0 for 0 < ¢ < 1. On the other hand, achieving the utility occurs
too quick. This leads to poor spending decisions. If an investor is faced with multiple goals that she
cannot achieve simultaneously, the CRRA utility function results in more summed utility for all partially
funded goals [4]. Instead, an investor should pursue only some goals which she can fully achieve.
Next, we consider another continuous utility function that gains utility slower.
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Figure 2.4: The CRRA function (2.3) with r = 0.5

2.3.3. Prospect utility
Another continuous utility function to evaluate bounded goals is the value function (2.1) of CPT. As
described in Section 2.2, it eliminates certain critiques on EUT. Furthermore, it is regarded as the best
possible description of how investors make decisions under risk [1]. The most difficult aspect of CPT
is defining the reference point and the regions for gains and losses. In the context of goal based
planning, however, the reference point is clear: ¢ = 1, with ¢ goal completion of Definition 1.1. As
supported by research, goals truly serve as reference points and goals inherit the properties of CPT’s
value function [14]. Taking goal completion ¢ as an input parameter, as defined in [4], the value function
becomes

=2 -of + D fore <,

VO =) e DE D fore > 1.

(2.4)

Following the original study on CPT, we choose the parameter values as ¢ = f# = 0.88 and 1 = 2.25.
This function is an improvement on the previous CRRA function, especially when it comes to the utility
for 0 < ¢ < 1. Additionally, it aligns with original CPT, which describes how investors evaluate choices
and make decisions in practice.

2.54
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Goal Completion

Figure 2.5: Utility function (2.4) with @ = B = 0.88 and 1 = 2.25

When it comes to utility functions in goal based planning, we consider three options: the step function
(2.2), the CRRA function (2.3), and the value function of CPT (2.4). The step function has the advantage
that it is universal and solely dependent on the goal amount of an investor. It only considers success,
however, when the goal is completely achieved. This works well for exact goals, but fails for bounded
goals. For bounded goals, we consider continuous utility functions. Although the CRRA function can be
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used, it has the negative characteristic that utility is gained quickly for low goal completions. The value
function of CPT on the other hand is similar to the CRRA function, in that it attributes utility to partly
completed goals. The value function, however, assigns utility to partial goal completion slower.

2.4. Expected total utility

As stated in the beginning of this chapter, we use utility theory to create a measure to evaluate an
investor’s satisfaction with the feasibility of her goals. Since we operate within the context of goal based
planning, the most important factors in the evaluation are the goal completions (see Definition 1.1) and
the priority of these goals. To create a total utility function that measures an investor’s satisfaction
with her goals’ feasibility, we define two essential components: the marginal utility function and the
incorporation of goal priorities. We choose these components such that a higher goal completion results
in a higher utility and higher prioritized goals carry more weight. First, based on the functions described
in Section 2.3, we define a marginal utility function. This function evaluates a single goal. Second,
we define the total utility function, which determines the utility derived from multiple goals. Here we
incorporate the goal priorities. Ultimately we use the total utility function to evaluate the expected total
utility.

2.4.1. Marginal utility function

For this thesis, we define a marginal utility function based on the utility functions in goal based planning
discussed in Section 2.3. For exact goals, we choose the step utility function (2.2). For bounded goals,
as defined in Definition 2.9, we want a function that gains utility for partial goal completion. From the
discussion above, the prospect utility function (2.4) serves that purpose. This function, however, limits
an investor’s input. For some goals an investor is satisfied with a goal completion of 90%, yet for
others that percentage could be as low as 50%. Therefore, we define a utility function that on top of
goal completion, takes in an investor-specified range as well. The function is

Oforc<(1—-71)
1.2
u(e,r) =4100- [ZE2] 7 for(1-r)<c <1 (2.5)
100 for ¢ >=1,

where c is the goal completion of Definition 1.1 and r the investor-defined range. We use a power of
1.2 to preserve the near-linearity of the original value function (2.1) in the losses region. In Figure 2.6,
we see an example of the function for a range of 50%. In practice, we let an investor determine r. We
revert to a simple step function if r = 0 and an investor wants the exact goal amount. If » > 0, we use
CPT'’s value function to determine the utility gained for (1 —r) < ¢ < 1. Suppose r = 0.3 and ¢ = 0.9.
Then 1(0.9,0.3) = 100 - 0.6712, since the goal completion falls two-thirds of the way between 70% and
100%, which is the investor-specified success range.

100 4
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Utility

40
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Goal Completion

Figure 2.6: Utility function (2.5) with r = 0.5

The utility function (2.5) is not the same as the original value function of CPT (2.4), yet it incorporates
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the most important factors:
+ gains and losses reflect a reference point,
» convex with CRRA in losses and concave in gains,
* it is steeper for losses than for gains.

When it comes to the gains region, we cap the maximum utility at goal completion equal to one. We
do this for two reasons. One, an investor will not spend more money than the original goal amount.
Thus, she should not receive utility for saving more than she will spend. Second, any excess money
is again invested over the period of time until the next goal. Thus, any excess money saved is already
incorporated in the utility of the subsequent goal. Gaining utility for ¢ > 1 would be counting it twice.
Next we incorporate the marginal utility function in the total utility function.

2.4.2. Total utility function

In this section, we define the total utility function which quantifies an investor’s satisfaction with the
goal completions in a single scenario. In Section 2.4.1, we define the marginal utility function (2.5)
for individual goals. To evaluate a scenario, we sum up the marginal utilities, while keeping in mind
the goals’ priorities. Since an investor wants to achieve her goals simultaneously, we assume linear
additivity for the individual goals. As described in Section 1.1, investors denote priority with stars out
of five. Then, to incorporate the priority per goal, we multiply the marginal utility of each goal with the
number of stars. This way, high-priority goals carry more weight in the total utility function, according
to the explicit preferences of an investor. Thus, we define the total utility function

G
TU(cq, 115 5 €60 16) = Zpiu(ci;ri)' (2.6)

i=1

where G represents the number of goals, p; the number of stars and c¢; the goal completion of goal i,
and u the utility function (2.5). We do not know the probability distribution of the specific outcomes, thus
we run the simulation over multiple scenarios as explained in Section 1.1. The expected total utility of
the framework is then the expectation over these scenarios:

TUportrotio = E[TUj(cq,j, 115 -5 €65, T6)] (2.7)

with TU; the total utility as defined in equation (2.6) for scenario j. With the expected total utility, we
can quantify an investor’s satisfaction with the goals’ feasibility over all scenarios.

2.5. Conclusion

In this chapter, we created a total utility function (2.6). With the total utility function, we determined the
expected total utility (2.7), which quantifies an investor’s satisfaction with the goals’ feasibility. The total
utility evaluates a single scenario and is a priority weighted summation of the marginal utility functions
(2.5). The priority weights are the number of stars out of five, since in the framework of Section 1.1,
priority is denoted as such. The marginal utility function evaluates an investor’s satisfaction with a single
goal. We created a marginal utility function based on common utility functions used in the context of
goal based planning. It accepts as a main input the goal completion as defined in Definition 1.1, which
is essential within goal based planning. Additionally, the marginal function can handle both exact and
bounded goals (see Definition 2.9). For that purpose, an investor provides a range of satisfaction, r.
If r = 0, the investor prefers the exact amount. If r > 0, the investor accepts any goal amount in the
range [(1—71) - g, g]. Forinstance, suppose an investor’s preferred goal amount is €20K. The investor,
however, is also satisfied with anything as of €15K. Then the user specified range is r = .25. The
marginal utility function does not attribute full utility for goal completion 0.75 < ¢ < 1. It increases
between that range, with maximum utility at €20K. In the next chapter, we build a goal based planning
framework that takes into account goal priorities using the expected total utility.



Utility theory framework

The aim of this thesis is to create a goal based planning framework that takes into account goal priorities
as stated in Chapter 1. In this chapter, we incorporate the expected total utility (2.7) in the framework
of Section 1.1. Using the expected total utility, we can maximise utility by altering the portfolio mix, the
periodic deposit amounts and times, the initial wealth, the goal amounts, etc. to ensure optimised goal
based plans. Optimising on these components falls short when the priority lies on the second goal. In
the original framework of Section 1.1, at each goal time, the money available is spent. Depending on
an investor’s preferences, however, it might not be the most optimal strategy. Cash flows in the near
future influence wealth accumulation for the far future. Keeping in mind total utility and its incorporation
of goal priorities, a higher utility could be obtained if we adjust the first goal’s cash flows. In this chapter,
we use optimisation in combination with the expected total utility function to build such a framework. We
consider investors with two goals, of which the second is more important. We ensure that the methods
for optimisation are feasible, accurate, and computationally efficient before adding more complexity.
First we evaluate the characteristics of the expected total utility in the setting of the original framework.
Next, we build a priority-based framework by optimising over the cash flows on the first goal. Lastly,
we build a framework where we prevent some cash flows on the first goal in favour of the second
goal.

Before optimising on the first goal’s cash flows, we consider the expected total utility for two investor’s
cases in the original framework of Section 1.1. In both cases, we have an investor with two goals, of
which the second goal is more important. In the original framework, removing the first goal is the only
way to prevent non-optimal cash flows on the first goal. With the expected total utility, we can determine
whether an investor prefers to drop her first goal. As per the make-up of the function, it should take
into account goal priorities, but not subsequently disregard goal completion defined in Definition 1.1. In
both example investor cases, we calculate the expected total utility for an investor who compares the
outcome of the framework with two goals and with only the long-term goal. Additionally, we calculate the
utility achievability of each goal. With these parameters, we evaluate the expected total utility.

Definition 3.1 (Utility Achievability). Suppose we have a goal at time t and a utility function, denoted
u, which takes as input goal completion as defined in Definition 1.1. For a number of scenarios N € N,
we determine the utility achievability for a goal at time t as

E[I(u(ce,) > 0)],
where [ is the indicator function and c, ; is the goal completion of the goal at time t in scenario i € {1, N}.

For the first investor’s case, we have an investor with goals as in Figure 3.1. The investor invests 30%
in stocks and 70% in bonds. The investor saves for the exact goal amount, not satisfied with anything
less. In Table 3.1, we see that the investor does not have enough money to achieve both goals with
satisfying numbers. As reflected by the expected total utility, the investor is better off not spending
money on the first goal. When the investor spends no money on the first goal, she gains no utility from
it. The lack of marginal utility of the first goal, however, is compensated by the higher marginal utility of

13
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the second, more important goal. In the next case, we analyse the expected total utilities when more
money is available.

Initial
Wealth
1§K Goal: 15K Goal: 25K
YRR TORTLTOT
0 10 30 Time

(years)

Figure 3.1: Investor’s initial wealth and goals on a timeline, depicting amount and priority in stars.

Money spent on goal 1 | No money spent on goal 1
Expected total utility 279 402
Achievability goal 1 87% 0%
Achievability goal 2 4% 80%

Table 3.1: Expected total utility calculated with equation (2.7) and goal achievabilities as defined in Definition 3.1
for the investor as in Figure 3.1.

For the second investor’s case, the investor’s goals are exactly the same as in Figure 3.1. Only now,
the investor deposits €300 a year for thirty years as seen in Figure 3.2. The investor again invests
30% in stocks and 70% in bonds. As we can see in Table 3.2, the expected total utility is higher when
money is spent on both goals. In the previous example, the higher marginal utility of the second goal
compensated for the lack of utility of the first goal. In this case, if money is only spent on the second
goal, the marginal utility does not compensate for not spending on the first goal.

Initial
Wealth
1§K Goal: 15K Goal: 25K
pAghaie e’ FORTEIORT
0 10 30 Time
\ . (years)
Yearly deposits €300

Figure 3.2: Investor’s initial wealth, deposits, and goals on a timeline, depicting amount and priority in stars.

Money spent on goal 1 | No money spent on goal 1
Expected total utility 493 482
Achievability goal 1 99% 0%
Achievability goal 2 39% 96%

Table 3.2: Expected total utility calculated with equation (2.7) and goal achievabilities as defined in Definition 3.1
for the investor with profile as in Figure 3.2.

With the measure of expected total utility, we can quantify when spending on the first goal makes the
more important, second goal sufficiently infeasible. In that case, the investor should not spend money
on the first goal. As seen in the previous examples, the expected total utility balances achievability and
priority. When there is enough wealth, either initially or through periodic deposits, the utility is maximal
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when spent on both goal. If there is not enough wealth, utility correctly interprets a higher utility for just
the long-term goal. Now we verify if we can achieve a higher utility in a framework where cash flows
on the less important goal are guided by the more important goal. Using such a framework, we can
compare different goal cash flow patterns, instead of only comparing utilities and achievabilities of an
investor with two goals versus just one.

3.1. Upper bound on the first goal’s cash flows

In this section, we consider investors with two goals, of which the first goal is bounded (see Definition
2.9) and the second goal is more important. For this type of investor, we can optimise the upper
boundary of the first goal's cash flows. With the optimisation, we determine if an investor is satisfied
with spending less than preferred on the first goal. Since the first goal is bounded, spending less
on the first goal can result in a higher achievability for the more important, second goal, while still
obtaining marginal utility for the first goal. We remain within the framework described in Section 1.1.
The optimisation works by placing an upper bound on the first goal's cash flows. We optimise for the
value x € [(1 —nry) - g1, 91], With ; the investor specified range of the first goal with value g,. As per
the marginal utility function (2.5), an investor only gains utility for the first goal in this range. We get the
minimisation problem:

. Cfl,j )
min IE[TUj< 9 ,Tl,Cz,j,Tz>]
st. 1—n)-g1<x<gq,
0 <cfy,; < xforj € {1,2000},

(3.1)

with cf; ; the cash flow on the first goal in scenario j € {1,2000} and E[TU;] the expected total utility
(2.7). If the optimal value is x = (1 —r;) - g4, an investor should only spend money on the second goal.

In each iteration of the framework, we calculate the goal completion of the first goal as %. This way
1
we take note of an investor’s original preferences.

For the optimisation, we use Brent’s method for minimisation, which combines the golden-section
search method and inverse parabolic interpolation [5]. Within the interval [(1—7,) - g1, g1], the negative
of the expected total utility behaves differently depending on an investor’s goals and portfolio. Most
often, it behaves in one of three ways. Either the function is strictly decreasing (x = g4) or strictly
increasing (x = (1 —n) - g1).- Ifx € (1 —ny) - g1, 91), the function has one extremum, a minimum.
Brent’'s method is capable of handling all these cases.

Initial
Wealth
1QK Goal: 15-30K Goal: 17-20K
PAokaiere TORTLTOT
0 10 30 Time
\ . (years)
Yearly deposits €500

Figure 3.3: Investor’s initial wealth, deposits and goals on a timeline, depicting amount and priority in stars.

We consider three similar investor’s cases to evaluate the optimisation on the first goal amount. We
compare the goals’ achievabilities and expected total utilities for the original framework of Section 1.1
with and without optimisation. In each case, the investor invests 30% of her wealth in stocks and the
remaining 70% in bonds. For the first investor’s case, an investor has two goals, as specified in Figure
3.3. In Table 3.3, we see that it is optimal for the investor to only spend money on the second goal. It
results in a higher expected total utility. In the second investor’s case, we have a similar investor as in
Figure 3.3, only now w, = 20K. We start with more wealth. With expected total utility, we determine if
x = (1 —rn) - g1. From the results in Table 3.4, we see that it is indeed optimal to spend money on the
first goal, but not the preferred amount as x = 22K < 30K. Since the investor’s first goal is bounded,
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she gains marginal utility for goal cash flows lower than the preferred amount. In the third investor’s
case, an investor has goals similar as in Figure 3.3, only wy, = 20K and g, = [14,20]. The investor’s
case is similar to the second, but the preferred amount for the first goal is smaller. As expected, the
optimal value x = 20K. In the second investor’s case, x = 22K. Now that g, is smaller than in the
previous example, expected utility is highest when the first goals’ cash flows are unbounded.

Preferred amount | Optimal amount
Upper bound cash flows goal 1 30K OK
Expected total utility 144 362
Achievability goal 1 91% 0%
Average spent on goal 1 19K 0
Achievability goal 2 25% 78%
Average spent on goal 2 19K 19.8K

Table 3.3: Results of optimising on the upper bound of the first goal’s cash flows (see minimisation problem (3.1))
for an investor as in Figure 3.3. We compare it to the framework where we do not place an upper bound on the
cash flows of the first goal. Goal achievabilities are defined in Definition 3.1. Averages are calculated over the

scenarios in which the marginal utility (2.5) is greater than zero.

Preferred amount | Optimal amount
Upper bound cash flows goal 1 30K 22K
Expected total utility 477 552
Achievability goal 1 100% 100%
Average spent on goal 1 29K 22K
Achievability goal 2 52% 91%
Average spent on goal 2 19K 20K

Table 3.4: Results of optimising on the upper bound of the first goal’s cash flows(see minimisation problem (3.1))
for an investor as in Figure 3.3 with w, = 20K. We compare it to the framework where we do not place an upper
bound on the cash flows of the first goal. Achievabilities are defined in Definition 3.1. Averages are calculated
over the scenarios in which the marginal utility (2.5) is greater than zero.

From the investor’s cases above, we gather that the optimal upper boundary for the first goal’s cash
flows depends on the feasibility, range, and relative importance of the goals. In the first investor’s case,
the optimisation results in x = (1—r;)-g,- In the second, the optimisation resultsin x € ((1-7,)- 91, 91)-
In the third, the optimisation results in x = g,. With this optimisation, we stay in the original framework
of Section 1.1. This means that all available money is spent. We only curb the amount that can be
spent. In the next section, we create a spending rule for the first goal. With the spending rule, we
restrict spending on the first goal in some scenarios.

3.2. Maximum utility barrier

In this chapter, we create a goal based planning framework that takes into account goal priorities using
the expected total utility function (2.7). In Section 3.1, we place an upper boundary on the cash flows
on the first goal to create such a framework. In this section, we incorporate a spending rule into the
framework of Section 1.1. We implement conditional cash flows, such that money is spent if the wealth
fulfills a certain condition. Depending on the type of an investor’s first goal, we implement the exact or
bounded spending rule.

Definition 3.2 (The Exact Spending Rule). Suppose an investor has a goal at time t with value g,. We
have N scenarios, with N € N. We determine a value Y. Then the exact spending rule states that in
each scenario i € {1, N}, the amount g, is spent on the first goal if w.; = g, + Y, with w,; the wealth at
time t in scenatrio i.
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Definition 3.3 (The Bounded Spending Rule). Suppose an investor has a bounded goal at time t with
bounded value [(1 — 1) - g+, g:], With r, a range determined by the investor. We have N scenarios,
with N € N. We determine a value Y. Then the bounded spending rule states that in each scenario
i € {1,N}, the amount cf,; € [(1 — 1) - g¢, g¢] is spent on the first goal if w.; = cf,; +Y, with w,; the
wealth at time t in scenatrio i.

With a correct value Y, we prevent cash flows on the first goal in scenarios with too little money for both
goals. In scenarios where there is enough, money is spent on both goals. In this sense, the expected
total utility of the investor is increased. We optimise on the expected total utility to calculate the optimal
value Y. We define this value as the maximum utility barrier (MU barrier).

Definition 3.4 (The Maximum Utility Barrier). Suppose an investor has a goal at time t. The goal based
planning framework implements the spending rule defined in Definition 3.2 or Definition 3.3, depending
on the type of the first goal. The maximum utility barrier for goal t is the value Y in the spending rule
such that the expected total utility of equation (2.7) is maximized using equation (3.2).

The MU barrier is determined by analysing the behaviour of all scenarios. It is applied in every sce-
nario, regardless of their individual performance. The behaviour of the expected total utility in this
optimisation is similar to its behaviour in the optimisation of Section 3.1. Therefore, we use the same
optimisation technique as above: bounded Brent's method. Suppose we have two goals, at time t and
T, of which the first goal is less important. We optimise expected total utility in the following minimisation
problem:

min -—-TU i
% portfolio
(3.2)
st. 05Y<2-9r,

with TUyor¢ 10110 the expected total utility function (2.7) and g1 the second goal amount. The framework
used in this optimisation implements the exact or bounded spending rule, dependent on the type of the
first goal. The optimal value Y is the MU barrier. We optimise for Y € [0,2 - gr]. The upper bound is
determined under the assumption that for t € (0, T], we expect invested wealth to at least retains half
its value. If w, = 10, then w, > 5 for ¢t > 0.

We consider an investor with goals and financial parameters as seen in Figure 3.2. The investor invests
30% in stocks and 70% in bonds. In Table 3.2, we see that spending on both goals results in more
expected total utility than only spending on the most important goal. Now we run the framework with
spending rule as defined in Definition 3.2 and value Y equal to the MU barrier. We see the results of
introducing the spending rule in Table 3.5. The investor gains more utility if she spends money on both
goals, but spends according to her preferences. When she focuses on the second goal and only spends
money on the first goal if w;, = 15K + 6.33K, she attains more satisfying results. Unfortunately, there
is a slight loss in the achievabilities of both goals. This loss, however, is negligible when considering
the overall improvement.

No barrier | MU barrier
Barrier value 0 6.33K
Expected total utility 493 535
Achievability goal 1 94% 58%
Achievability goal 2 39% 72%
Achievability both goals 39% 32%

Table 3.5: Running the framework for an investor as in Figure 3.2 with spending rule of Definition 3.2 with Y
equal to the MU barrier defined in Definition 3.4. Expected total utility is calculated using equation (2.7), with
achievability as defined in Definition 3.1.

Now we consider the investor’s case for an investor as in Figure 3.3, but with w, = 20K. The investor
invests 30% in stocks and 70% in bonds. We considered this investor’s case in Section 3.1. We
compared the results of the original framework with and without placing an upper boundary on the first
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goal’s cash flows in Table 3.4. We now compare those results with the framework that implements
the bounded spending rule defined in Definition 3.3 with the MU barrier. In Table 3.6, we see that the
framework with spending rule outperforms the two previous frameworks. With the spending rule, the
expected total utility is higher and the utility achievabilities equal or higher.

No barrier | MU barrier
Barrier value 0 6.73 K
Expected total utility 477 608
Achievability goal 1 100% 98%
Average spent on goal 1 29K 24K
Achievability goal 2 52% 93%
Average spent on goal 2 19K 20K
Achievability both goals 52% 92%

Table 3.6: Running the framework for an investor as in Figure 3.3, but w, = 20K, with spending rule of Definition
3.3 with Y equal to the MU barrier defined in Definition 3.4. Expected total utility is calculated using equation
(2.7), with goal achievability as defined in Definition 3.1.

From the previous investor’s cases, we see that implementing a spending rule is beneficial. The frame-
work with a spending rule outperforms the original framework, where money is spent without any regard
for future effects on achievability. Additionally, it outperforms the framework with an upper boundary
on the first goal’s cash flows. It results in higher utilities and higher utility achievabilities. Overall, we
see that the total and utility achievabilities improve when an investor considers how current goal cash
flows affect future achievabilities.

3.3. Conclusion

In this chapter, we built a goal based planning framework that takes into account goal priorities with the
expected total utility function (2.7). We focused on investors with two goals, of which the second is more
important than the first. First, we evaluated the behaviour of the function for different investor cases
with the framework of Section 1.1. With the expected total utility, we determined that in some cases,
the investor should only spend money on the second goal. This occurred when the investor had too
little wealth and her investment profile was too risk-averse. Although with more money, the utility was
higher when the investor spent money on both goals. Therefore, we attempted to build a framework
in which money is spent on both goals, while cash flows are in line with the investor’s priorities. In this
chapter, we experimented with two different optimisations with the expected total utility as objective
function. Firstly, we maximised total utility with an upper bound on the first goal’s cash flows. With this
optimisation, we determined if the investor was satisfied with spending less on the first goal. Secondly,
we optimised over the optimal value Y in the spending rule as defined in Definition 3.2 or 3.3. This
resulted in the MU barrier as defined in Definition 3.4. The goal cash flows were allocated such that the
investor was most satisfied. The framework with a spending rule and the MU barrier worked better than
placing an upper bound on the first goal’s cash flows. It resulted in higher expected total utilities and
utility achievabilities (see Definition 3.1). With the expected total utility, we have shown that priority-
based frameworks perform better than one in which priority is not considered. Additionally, with utility
we could allocate goal cash flows according to the investor’s priorities, but also determine when it was
optimal to do so and when not.

In the next chapters, we develop a different approach to the spending rule. Instead of quantifying
people’s preference into stars and incorporating those into a utility function, we ask for a preferred
achievability for their most important goal. We step away from utility theory for two reasons:

1. Communication: While utility functions are common in financial decision making, they are inher-
ently abstract and individual. Utility functions have obscure parameters which makes communi-
cating the meaning of these functions and their role within the framework difficult towards investors
[9]. Additionally, we assume a universal utility function with limited individual input, which goes
directly against the nature of the function.
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2. Optimisation: The behaviour of the utility function is irregular. In most cases the function only
has one minimum, resulting in easy optimisation. In some cases, however, it is not smooth and
portrays local minima, which results in slow and sometimes non-optimal optimisation results.

In combination with focusing on achievability, we introduce conditional expectations to the framework.
With conditional expectations, we consider the relation between current states and future behaviour
of scenarios. Thus we can make decisions now, keeping in mind the knowledge of the future. In the
next chapter, we focus on calculating the conditional expectation efficiently and ensuring it is robust.
In the chapter thereafter, we create a spending rule similar to those of Definition 3.2 and 3.3 using the
information of the conditional expectation. Additionally, we verify whether it leads to better results than
the previous optimisation techniques.






Conditional expectation

For this thesis, we build a framework in which we take goal priorities into account as described in
Chapter 1. This is especially important for investors with more important goals that occur later in time.
Money should not be spent on less important goals if that is detrimental to the achievability of later
goals. We achieve this by creating a spending rule per goal, similar to those defined in Definition 3.2
and 3.3. With these spending rules, we implement conditional cash flows, such that money is spent
if the wealth fulfills a particular condition. We want to use conditional expectation to create such a
spending rule. In this thesis, we use the conditional expectation

E[I(wr = gr)lwe], (4.1)

where w;, wy are the wealth at time t and T, g the goal amount at time T, and ¢t < T. This determines
the relationship between current wealth and future achievability. Using the expectation, an investor
only spends money on goal X if she has enough money left such that she maintains the achievability
of the next goal. This extra money, or the barrier, required per goal is obtained from the conditional
expectation. The spending rule prevents spending on earlier goals if it puts the achievabilities of later
goals in jeopardy; creating a framework taking into account goal priorities.

First, we need to accurately determine the conditional expectation numerically. Suppose an investor
has two goals, one at time t; with goal amount g, and one at time t,, with goal amount g,,. We could do
the calculation with nested simulation: for each wealth at t; in path i € {1,2000}, we calculate

n-—1
Wy j = Wy 1_[(1 + e,j))
k=1

with wy ; the wealth at ¢; and 7 ; the return at time ¢, in path j for j € {1,2000}. Then, we calculate
E[I(wy,; = g,)] for j € {1,2000}. Practically, this is infeasible as the cost of nested simulation grows
exponentially. Instead, we estimate the conditional expectation function (CEF) with conditional sample
paths and a regression algorithm. For instance, for the same investor as above, we calculate

n-1

Wy = Wy 1_[(1 + 7,1

k=1

for i € {1,2000}. Then we calculate I(w,,; = g,) and regress on the results of the indicator function;
in effect creating the CEF of equation (4.1). This is a well-known technique, first applied to value
American options [20]. The relationship between conditional expectation and regression is defined in
the following theorem.

21
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Theorem 4.1 (The CEF Decomposition Property). Given two random variables Y and X, where Y is
dependent and X is a vector of covariates, the CEF decomposition property states that

Y =E[Y|X] +¢,

where (a) € is mean-independent of Y and (b) € is uncorrelated with any function of X.

Proof. (a) Using properties of conditional expectation, we show that
E[e|X] = E[Y — E[Y|X]|X] = E[Y|X] — E[Y|X] = 0.

Additionally,
E[e] = E[E[¢]|X]] = E[0] = 0.

Thus E[e]|X] = E[e], which proves mean-indifference.
(b) Using the law of iterated expectations and the results from (a), for any function h(X)
E[h(X)e] = E[h(X) E[¢]|X]] = 0.

Using the information from (a), E[h(X)] - E[€] = 0, which proves uncorrelation. O

Using Theorem 4.1, we define the CEF as E[Y|X] = h(X), where Y = I(wp = gr) and X = w; as in
(4.1). In theory, regressing over the results of the indicator function can approximate the conditional
expectation. In practice, we first determine the correct type of regression to approximate h(X). In this
chapter, we start with a simple investor’s portfolio to determine the most accurate regression. We then
apply it on multiple types of returns, ensuring that it is robust. Next, we define a heuristic algorithm with
regression and make it more efficient.

4.1. Regressed conditional expectation

In this section, we discuss several regression techniques for the CEF. We determine which of the
techniques results in the closest approximation of the CEF in equation (4.1). Initially, we create three
datasets containing different types of returns: normal, autoregressive, and those based on the original
DNB data (see Appendix A). We start with the normal returns, as we can calculate the analytical condi-
tional expectation; the best base of comparison for our simulation. Afterwards, we check whether the
regression results in an accurate conditional expectation for the other underlying returns.

4.1.1. Creation of datasets

Before we determine which regression technique is most accurate, we create three different sets of
portfolio returns: normally distributed, autoregressive, and ones based on the DNB data. We use the
normal returns to establish which regression technique is most accurate in Section 4.1.2. From the DNB
data, we create returns for an investor’s portfolio comprised of 70% stocks and 30% bonds. Thus, we
combine 70% of the DNB’s stock returns and 30% of the 10-year bond returns. On this set we base
the normal and autoregressive returns.

For the autoregressive returns, we follow the model with one lag:
Tty = QTy + ¢ + €, (4.2)

with a, c constants and ¢, ~ V' (0, 52) a random variable representing noise. We estimate the parame-
ters a, . and c using the following formulas:

E[rw] = aE[re] + ¢
c

=>IE[roo]=1_a
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and
Var(re) = Var(are, + ¢ + €x)
of

1—a?

We need the expected stationary mean, E[r,], and variance, Var (1), of the DNB data. In Figure 4.1,
we see that the DNB returns become stationary as of year forty. To calculate E[r,] and Var(ry,), we
take the mean and standard deviation over all scenarios between years forty and sixty. This results in
E[r,] = 0.047 and Var(r,) = 0.0071. Then we choose the parameter ¢ = 0.04, such that « = 0.14

and g, = 0.084. We choose the parameter c such that |a| < 1 to preserve stationarity. Thus we get
that the autoregressive returns follow the model:

= Var(re) =

Tiy1 = 0.147: + 0.04 + ¢,
where €; ~ N'(0,0.084).
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Figure 4.1: DNB mean returns for a portfolio 70% invested in stocks and 30% in bonds over a period of 60 years.

For the normal returns, we calculate E[ry, ;] and Var (1), with 74 ; the returns in year forty of the DNB
returns for i € {1,2000}; the normal returns follow a distribution of " (0.044, 0.079). For the normal and
autoregressive returns, we create 10,000 scenarios with returns over sixty years. For the DNB data,
we have 2000 scenarios.

4.1.2. Fit of regression algorithms

In this section, we evaluate several regression techniques described in Appendix B. To determine the
regression that results in the best fit for the CEF, we start with a base case using the set of normally
distributed returns of Section 4.1.1. There are only three time steps in our model setting:

* t, is the starting point,
* t; is the timing of the first goal,
* t, is the timing of the second goal.

Suppose the investor starts with wy, = 1. The value of the second goal g, = 1.1. Following this base
case using the normal returns, we calculate the CEF analytically. We need to calculate the minimum
necessary return, r;, such thatw, =w; - = g,, i.e.

E[I(w, = 1.1)|w; = x] = P(wy = 1.1|lw; = x)
=P(n = 11 1
- (rl =% ) 4.3)

11
=1—CDFN 7—1 )
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where CDF), is the cumulative distribution function of N (0.044,0.079). Using the analytical CEF, we
determine the accuracy of the regressed CEF. We create a fine wealth grid of 10000 points at t; over
interval [0.8,1.4]. With knowledge of the standard deviation of N (0.044,0.079), we know this interval
covers all wealth that either will statistically never, sometimes, and always achieve g,. Thus, it fully
captures the CEF. We determine wealth at t, such that w,; = wy; - (1 + ry;), with r;; the returns of
the first year of the scenario set for i € {1,10000}. We then calculate I(w,; = 1.1). We call the results
of the indicator function the regression dataset. Next, we run several regression techniques on this
dataset.

Ordinary least squares regression

The first type of regression we evaluate is non-linear ordinary least squares (OLS) regression. For
details on OLS, see Section B.1. With normal underlying returns, the best functional fitis 1 — CDF,, as
per equation (4.3). This does not apply for the other return datasets created in Section 4.1.1, making
it not robust. Instead, since the sample points are the result of an indicator function, we use a logistic
function with two parameters

f(x,a,b) = (4.4)

1+ e-a(x-b)"
The two additional parameters a and b are essential. Parameter a adjusts the steepness of the logistic
function, while parameter b ensures horizontal translation. Since we know that the function’s range is
equal to [0, 1], we do not add a parameter for vertical stretching or translation. In Figure 4.2, we see the
fit of the OLS using a logistic function on the regression dataset. The fit is accurate near the inflection
point and the concave section of the function. It is unable, however, to correctly capture the convex
section of the function. The inability is not caused by the dataset, since for other data points this issue
persists. In effect, it is caused by the functions’ different rates to zero.

yZ

» x - 0= (1—CDFy(y)) - 0 at the rate of ~—, fory = = — 1

o
y
* x > 0 = logistic — 0 at the rate of eéx

The logistic function goes to zero slower, hence OLS regression with a logistic function form does not
fit correctly.
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Figure 4.2: Non-linear OLS regression using the logistic function (4.4). The top graph shows the fit of the

regression (light blue) compared to the analytic conditional expectation (black). The bottom graph shows the
absolute difference between the regression and the analytic function.
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Instead of regression with a specified functional form that fulfils the specifications of the data, we eval-
uate two regression techniques that do not require a predetermined functional form: support vector
regression using radial basis functions and spline regression.

Support vector regression

Since regular non-linear OLS regression does not fit correctly, we assess regression techniques that do
not require a predefined function. One technique is support vector regression (SVR). For the non-linear
data, we use SVR in combination with radial basis functions (RBF) (see Section B.3). The values of y
and C are integral to the workings of this algorithm. The parameter y determines the width of the RBF,
subsequently deciding which support vectors are considered for each x. The parameter C controls the
trade-off between flatness and the tolerance for deviations. The SVR fits a sum of peaks, the RBFs,
which results in a smooth function. To prevent the function from rising above one or declining below
zero, we fix two aspects:

« if f(x) < 0then we fix f(x) =0,
* if f(x) > 1 then we fix f(x) = 1.

In Figure 4.3, we see the best SVR fit on the regression dataset. The effect of fixing the minimum and
maximum value results in two distinct flat sections of the regressed conditional expectation. Although
it aligns near the inflection point of the curve, it does not produce the right curvatures nearing zero or
hundred. The binary data points complicate the fit. If the RBF is too narrow, the regression only takes
into consideration the closest points, which are most likely of the same value. This results in a too steep
conditional expectation. If the RBF is too wide, the regressed conditional expectation becomes more
averaged and underfits. Adjusting the value of C cannot overcome these tendencies. In effect, it suffers
from the same characteristic. It either pulls the regression too steep or causes underfitting.
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Figure 4.3: Support vector regression using RBF for C = 50, y = 7,e = 0.1. The top graph shows the fit of the
regression (light blue) compared to the analytic conditional expectation (black). The bottom graph shows the
absolute difference between the regression and the analytic function.

SVR in combination with RBFs does not work for the binary dataset. Now, we evaluate a second type
of non-functional regression: spline regression. It builds a piecewise linear function. The idea is to
focus on different intervals of the dataset at a time, correctly interpreting each piece.
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Spline Regression

Spline regression is a non-functional type which results in a piecewise linear function. The result is
piecewise linear, since the spline regression algorithm separates the data and fits each interval sep-
arately using breakpoints. The accuracy of the regression is highly dependent on the placement of
the breakpoints. Spline regression can be used in combination with different types of basis functions.
For more information on spline regression and the basis functions we use in this thesis, we refer to
Section B.4. As we state in the beginning of this section, we use 10,000 wealth points over [0.8, 1.4] at
t,. Initially, we determine ten equidistant breakpoints over the interval [0.8,1.4]. We know, however,
that due to the basis function, the regression is equal to zero at the left-most breakpoint. Therefore, we
determine eleven breakpoints over {0}U[0.8,1.4], since [(0-1; = g,) =0 = E[I(0-13 = g,)] =0.
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g & T
N 804 ~ god A
¢ ¢ 4
= =]
i 60 - Experimental Data E 60 /4 - Experimental Data
_: / —— Analytic conditional expectation _: / —— Analytic conditional expectation
Z a0 1 Regressed conditional expectation : 20 4 // Regressed conditional expectation
S ] 4
=1 =
g S
2 201 5 2] //
fs”
- b
0 e e 0 P .
O.‘E 0.‘9 l.‘U 1.‘1 l.‘Z 1.‘3 l.‘4 0:3 0.‘9 1:0 l.ll 1:2 l.l3 ]..‘4
Wealth at time 1 Wealth at time 1
(a) 10 breakpoints between 0.8 and 1.4. (b) 100 breakpoints between 0.8 and 1.4.

Figure 4.4: Spline regression using OLS coefficients. The graph shows the fit of the regression (light blue)
compared to the analytic conditional expectation (black).

Using regular OLS coefficients, we get the result in Figure 4.4a. As expected, we get a piecewise linear
function with a discontinuity at the rightmost breakpoint. The absolute differences are small, thus the
breakpoints were chosen correctly. Still, using only ten breakpoints is not robust, as the accuracy of
the regression is highly dependent on the placement. Instead, we prefer more breakpoints to reduce
the importance of the placement. As we see in Figure 4.4b, however, the spline regression using OLS
coefficients overfits for a hundred breakpoints. This is a common problem when using OLS. Therefore,
we test two types of penalized OLS regressions that overcome this problem: ridge and lasso regression.
Both algorithms incorporate penalties on the size of the coefficients. The purpose of using penalized
OLS coefficients is to flatten out the peaks we see in Figure 4.4b. For the theory on ridge and lasso
regression, we refer to Sections B.2.1 and B.2.2 respectively.
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Figure 4.5: Spline regression using two types of penalized ordinary least squares regression. The top graph
shows the fit of the regression (light blue) compared to the analytic conditional expectation (black). The bottom
graph shows the absolute difference between the regression and the analytic function.
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In Figure 4.5, we see the results of spline regression with 100 breakpoints using penalized OLS coeffi-
cients. Looking at the absolute differences between the analytic and regressed conditional expectation,
both of the regression techniques produce an accurate fit. For the ridge regression, we get a smoother
conditional expectation, while the lasso is piecewise linear. Still, we prefer the lasso regression, since
it has the ability to set coefficients to zero. Therefore, random and poor data samples affect it less.
To verify the robustness of the spline regression using lasso coefficients, we check the technique for
different underlying returns and longer time horizons. For convenience sake, we refer to this technique
as the lasso spline regression or LSR for short.

4.1.3. Robustness of lasso spline regression

As indicated in Section 4.1.2, the LSR produces an accurate fit for the conditional expectation (4.1) for a
simple case of three time steps and normal returns. We want a regression technique that performs well
for different returns, time horizons, goal amounts, etc. The regression technique needs to be robust.
To check whether the LSR performs well for different parameters, we test it on a more complex case
as seen in Figure 4.6. We test this case using the three scenario sets with different returns created in
Section 4.1.1.

Initial
Wealth
1§K Goal: 20K | | Goal: 20K
TEYCLORK | | Aok

0 10 20 Time
(years)

Figure 4.6: Investor’s initial wealth and goals on a timeline, depicting amount and priority in stars.

Due to the longer time horizon, we can no longer calculate the conditional expectation function f(x) =
E[I(wy = 20)|w; = x] analytically. Instead, we simulate an approximation of the conditional expecta-
tion using nested simulation with 100 equidistant wealth points at time ten over the interval [0, 40]. We
use 2000 scenarios. Thus we create the CEF

f() = E[I(wo,; = 20)|wyo = x], (4.5)

for i € {1,2000}. We compare the simulated and regressed conditional expectations for the more
involved case on the three different returns.

In Figure 4.7, we see the results of the LSR for different underlying returns. We use determine 10,000
wealth points in [0, 30]. From the simulated CEF (4.5), we know this is where the gradient varies most.
The normal and autoregressive returns have 10,000 scenarios. In the DNB returns, we only have
2000. Therefore, we randomly sample from the existing scenarios (allowing repeats) such that we
create 10,000 scenarios. For all returns we use 150 breakpoints and an alpha value of 0.01. Overall,
the regression is less accurate than for the simpler case. This occurs since we use the same amount
of data points, but over a larger interval. Additionally, the LSR suffers from convergence issues due
to the larger domain. Still, it is sufficiently accurate for the priority-based framework as the absolute
difference stays below 5% in most cases. By running fifty LSR regressions for an investor as in Figure
4.6 with different sets of normal returns, we determine that the absolute difference stays below 5% in
85% of the regressions. For an investor, the difference between 80% and 83% is unimportant. Before
we implement a spending rule based on the conditional expectation, we create a robust algorithm
using the LSR. In the previous cases, we specified the wealth interval for the regressions based on
the knowledge of the simulated CEF. The algorithm should determine the domain. Additionally, the
algorithm should be efficient, without sacrificing too much precision.
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Figure 4.7: Spline regression with lasso coefficients for different underlying returns: Normal, AR, and DNB
returns. The top graph shows the fit of the regression (light blue) compared to the simulated conditional
expectation (black). The bottom graph shows the absolute difference between the regression and the simulated
function.

4.2. Algorithm for lasso spline regression

We want to use the conditional expectation to create a spending rule for a priority-based framework.
First, we build an algorithm around the LSR. The algorithm should result in an accurate conditional
expectation, no matter the input parameters. Additionally, it should be efficient. Ideally, we determine
the wealth over the time horizon 0 = t, < t; < --- < 't, = T such that

Wepri = Wy - (1413,

with wy; = wy the initial wealth, r,; the return at time t, and i € {1,10000}. Then we determine any
conditional expectation (4.1) with these wealth points. This is the most consistent and efficient. The
accuracy of the LSR, however, is highly dependent on its domain of wealth. It results in more accurate
conditional expectations when the data points are where the gradient varies most. Contrarily, if most
of the data points are where the function has gradient zero, the regression will be less accurate. We
thus cannot rely solely on wealth over the time horizon. Instead, we use the same scenario set as the
simulation, but specify the wealth intervals per regression. We determine a heuristic to choose these
points. The domain needs to be sufficiently large to capture the complete CEF, but not too large to be
detrimental to the accuracy. Additionally, a smaller domain results in a more efficient regression. To
build a framework that implements a spending rule based on the conditional expectation, we use the
normally distributed returns. We thus create an algorithm for the LSR with those returns in mind.

First, we calculate the leftmost breakpoint, b,, such that E[I(w; = gr)|w; = b,] = 0. Since the
underlying returns are distributed as N (4.4%, 7.9%), we use a best case return of r = 1 + (.044 + 3 -
0.079) = 1.281. Then, taking into account the goal amount, the investment time, and the deposits, the
present value equals

Tdep

1
G = w, (1.281)Timv + deposit z <—l) (1.281)Tinv~Tiep
£, \ 1281
(1.281)Taer — 1

= Tiny [
= wy (1.281)"iw + dep051t< 81

) (1.281)Tinv=Taep (4.6)

(1.281)Tder 1
281

(1.281)Tinv ’

G — deposit( ) (1.281)Tinv—Taep

Sw, =

where G is the goal amount, w;, the present wealth, T;,,,, the time invested, and T, the time deposited.
The factor (1.281)%iwv=Tder is necessary for deposits that end before goal time. We set b, = max(w,, 0)
since we do not include debt in this framework. For the rightmost breakpoint, we use a similar ap-
proach.
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To calculate the rightmost breakpoint, bg, we need a wealth such that E[I(w; = gr)|w; = bg] = 1.
Similarly to the leftmost breakpoint, we calculate the present value for the worst case scenario that still
achieves the goal. The return value is r = 1 + (0.044 — 3 - 0.079) = .807. The behaviour for increasing
t is different for the best and worst case scenarios:

1 . .
* Toer 0 at an exponential rate as t — inf,

1 . i .
0807t inf at an exponential rate as t — inf.

For the worst case return, this leads to large wealth intervals, convergence issues, and inefficient LSR.
To counteract this, we choose r based on the investment time. The longer that time, the closer the
return value is to one. Thus, based on similar logic as in equation (4.6), the present value of the wealth
at the rightmost boundary point is given by

T,

dep _
G—dePOSit<p ep 1)pTinv_Tdep

- (4.7)
Wi = B .
R pTinv

where p is determined by the length of the time invested. Again, we set by = max(wg, 0). The number
of breakpoints is 2 |br — b |, such that a larger domain has more breakpoints.

Now that we have a heuristic for the LSR’s domain and the breakpoints, we speed up the regression us-
ing two techniques: scaling and double regression. Scaling the data has two benefits. It speeds up the
process and it eliminates convergence issues. For the scaling, we determine a new goal amount,

gr
975 = ~ioa ca71 € [0,1].

- 1010g10(gT)+1
We then divide all other parameters by that same factor. The scaling has no effect on the end result,
as long as we remain consistent with the factor.

The second technique to speed up the regression is double regression. First, we calculate

200

s1(x) = Z ¢jBj(x),

=

with c¢; € R and B; the basis functions as described in Section B.4. The coefficients c; are determined
by running OLS regression on the wealth wy; and indicator function I(w,; = gr) for i € {1,10000}.
Then we calculate
2|bp—by|
W= ) B,
k=1

with ¢, € R and B, the same basis functions. The coefficients ¢, are determined by running lasso
least squares regression on the wealth s; (wr;) and indicator function I(w;; > gr) for i € {1,10000}.
We show the advantage of the double regression with results from concrete cases with varying goal
amounts and investment times for LSR with and without double regression. No case involves the use
of deposits. We calculate the difference in mean-squared errors and calculation times. For the mean-
squared error (MSE), we use

N
1 o
MSE = ) (= )2, (4.8)
i=1

where N is the number of wealth points, Y is the simulated conditional expectation, and Y is the re-
gressed conditional expectation. The calculation time is measured in seconds, from the beginning of
the regression. We see the results of these cases in Table 4.1. The differences are A, = Xgoubie —XLsR-
A negative value is thus an improvement of the double regression on the LSR. From Table 4.1a, we
gather that the LSR is slightly more accurate. Although in combination with the results in Table 4.1b, we
prefer the double regression. In some cases, the LSR is more accurate and quicker. This difference,
however, is slight for both deltas. Contrarily, although the double regression is slightly less accurate,
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Invested time Invested time
[5y,10y] | [10y,20y] | [10y,30y] [5y,10y] | [10y,20y] | [10y,30y]
= 1] 0017 | -0.009 -0.115 = 1] 057 0.65 0.78
3| 3] 0009 | -0.029 0.017 3/3] 049 0.28 -3.35
E15] 0014 | 0022 0.018 €15 -083 1.39 6.3
< | 7| 0018 0.028 0.007 |7 -3.92 -1.86 -15.16
Ol9ol 0.007 0.012 0.041 Olol| 675 -11.84 -16.68

(a) A Mean-squared error (b) A Time (s)

Table 4.1: This table shows the absolute difference in MSE and time between lasso spline regression and lasso
spline regression after OLS spline regression (double regression). The differences are A, = x4,up1e — X1sr- NOte,
both methods use a scaling factor.

it can drastically improve calculation time. Especially for conditional expectations with large wealth
domains, i.e. for large goal amounts or long investment times, the double regression performs well.

We have created an algorithm for the LSR that can handle different goal values, investment times,
deposits, etc. and does so efficiently without the accuracy suffering. The earlier convergence issues
have also been resolved by the scaling factor. In effect, we should call the actual regression method
that we use the double spline regression with lasso and OLS coefficients. Still, the most important
aspect of this regression is the use of the lasso coefficients in combination with the spline regression.
The use of an additional spline regression with OLS coefficients is merely for efficiency’s sake.

4.3. Conclusion

In this chapter, we showed that spline regression using lasso coefficients accurately and efficiently
calculates the conditional expectation (4.1). For the regression technique, we refer to Section 4.1.2. We
used regression to avoid nested simulation, which is practically infeasible. Instead, we used conditional
sample paths from goal to goal to determine the conditional expectation. For a simple case using
normal returns, we compared the results of the regression with the analytical conditional expectation.
For 10,000 scenarios, the regression produced an accurate fit. To show that it was independent of
the underlying returns and capable of dealing with complexer cases, we ran the regression technique
for normal, autoregressive, and DNB returns for the investor’s case shown in Figure 4.6. We could
no longer determine the accuracy by comparing to the analytical conditional expectation. Instead, we
compared it to a simulated conditional expectation. For practical usage, we did not want the absolute
difference to be larger than 5%. Although the regression was less accurate than for the simple case,
the regression was still sufficiently correct. With the LSR, we created a heuristic algorithm. Not only
can the algorithm deal with varying parameters such as goal amount and investment times, it does
so quickly. We sped up the heuristic with the help of a scaling factor and an additional run of spline
regression using OLS coefficients. We managed to speed up the calculation without sacrificing too
much accuracy.

In the next chapter, we use the conditional expectation to create a framework that takes into account
goal priorities. We create a spending rule such that we do not spend money on earlier goals if it
negatively affects the achievability of later, more important goals. As before, we first focus on two-goal
investors, of whom the second goal is more important than the first. We then compare the results of a
framework with the spending rule based on the conditional expectation to with the spending rule with
the MU barrier defined in Definition 3.4. Later, we consider multi-goal investors.
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In this chapter, we build a goal based planning framework that takes into account goal priorities as
described in Chapter 1 using conditional expectations. The goal is to present an investor the feasibility
of her goals, while the goal cash flows are in line with the investor’s preferences. An investor will
not spend money on a less important goal if it affects her later, more important goals. We build the
framework by incorporating a spending rule for goals into the original framework of Section 1.1. The
spending rule is similar to those of Definition 3.2 and 3.3. We base the spending rule on the conditional
expectation

E[I(wr = gr)|we], (5.1)

where [ is the indicator function, w;, wy the wealth at time t and T respectively, and g, the goal amount
at time t for t < T. We call a spending rule that uses information from the conditional expectation
(5.1) a conditional expectation spending rule (CE spending rule). With the conditional expectation,
we determine the relationship between earlier wealth (and cash flows) and future goal achievability as
defined in Definition 1.2. We require an investor to provide preferred achievabilities for goals. Then, in
a framework with a CE spending rule, money is spent on goal X if there is enough money left to obtain
the preferred achievabilities for upcoming goals. We use the conditional expectation to determine the
extra money needed extra at time t before money is spent on the goal. We call this value the conditional
expectation barrier (CE barrier) for goal t.

Definition 5.1 (Conditional Expectation Barrier). Suppose an investor has two goals: one at time t with
amount g, and one at time T with amount gr. Then the conditional expectation barrier (CE barrier),
denoted cb;, satisfies

E[I(wr = gr)|we = ¢b] = X7, (5.2)

with 1 the indicator function, w,, wy the wealth at time t and T respectively, and X the preferred achiev-
ability of goal T.

In this chapter, we first evaluate the framework with the spending rule for different investor cases. We
want the framework to exhibit two characteristics: prioritise obtaining the preferred achievability for the
second goal and only spend excess money on the first goal. We limit our focus to two-goal investors, to
whom the second goal is more important. For this framework, we use the set of 10,000 scenarios with
normal returns that we created in Section 4.1.1. We compare the results of the framework with spending
rule to the original framework of Section 1.1. We check whether a spending rule provides a better
insight into the feasibility of the investor’s goals. Secondly, we determine whether the framework with
CE spending rule outperforms the framework with the spending rule using the maximum utility barrier.
Thirdly, we introduce early-exercise options, which share some characteristics with an investor’s goals.
We investigate whether the optimal exercise strategy for early-exercise options can be used within a
goal based planning framework. Lastly, we expand the framework and accompanying spending rule to
multi-goal investors.

31
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5.1. Conditional expectation barrier

In this section, we evaluate the framework that implements a CE spending rule. In each investor’s
case, an investor has two goals of which the second goal is more important. Therefore, we prioritise
obtaining the preferred achievability of the second goal. For the simulation of the portfolio, we use the
data set of 10,000 scenarios of normal returns as specified in Section 4.1.1. With these returns, we
efficiently calculate the conditional expectation using the heuristic created in Section 4.2. Firstly, we
implement the first CE spending rule.

Definition 5.2 (The First CE Spending Rule). Suppose we have two goals: one at time t with value g,
and one a time T with value g;. The goal at time T is more important and has a preferred goal achiev-
ability of X (see Definition 1.2). The framework implements the spending rule defined in Definition 3.2.
We set the value Y in the spending rule equal to the CE barrier cb; as defined in Definition 5.1. Then
the first CE spending rule states that in each scenarios i € {1, N}, the amount g, is spent on the first
goal if

Wei = cbe + g¢ = E[I(wr = gr)|we = we; — g¢] = X

The first investor’s case we evaluate is for an investor with goals as in Figure 5.1. The stars merely
denote which goal is more important. We focus on the preferred achievabilities. Following the spending
rule defined in Definition 5.2, for each scenario i € {1,10000}, money is spent on the first goal if

]E[I(WZO = 20)|W10 = W10,i - 20] = 70%

For this specific case, we calculate a CE barrier cb;, = 15.12K for a preferred achievability of 70%.
Thus the first goal amount of 20K is spent on the first goal in a scenario i if wy,; = 35.12K. For a
framework implementing the first CE spending rule, we get the goal achievabilities as presented in
Table 5.1. The spending rule works, as the framework prevents cash flows on the first goal to achieve
a higher achievability on the more important goal. We want, however, the second goal to have an
achievability of 70%, not of 94%. This occurs due to our specific spending rule and how we incorporate
the information from the conditional expectation.

Initial
Wealth
Goal: 20K
15K Goal: 20K
. PAe Kok ohaike
PAekaie e 70%
0 10 20 Time

(years)

Figure 5.1: Investor’s initial wealth and goals on a timeline, depicting amount and preferred achievability.

No spending rule | The first spending rule
Achievability goal 1 65% 3%
Achievability goal 2 0% 94%

Table 5.1: Achievabilities for the investor with profile as in Figure 5.1. Achievability is calculated as in Definition
1.2. No spending rule refers to the original framework of Section 1.1. The spending rule refers to the first CE
spending rule as defined in Definition 5.2.

To understand the results in Table 5.1, we first explain how to interpret the conditional expectation (5.1).
As we state in the beginning of this chapter, the conditional expectation determines the relation between
current wealth and future achievability. It is calculated over 10,000 scenarios. A single scenario has no
probability of achieving a goal. It either does or does not. Only multiple scenarios have a probability of
achieving a goal. As an example, we take the investor and goals of Figure 5.1. We calculate the CE
barrier at time ten satisfying

chio = 15.12K such that E[I(w,o = 20)|wio = 15.12] = 70%.
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Thus we know that for 70% of scenarios with w;q = 15.12K applies w,, = 20K. Now we come back
to the results in Table 5.1. As per the first CE spending rule defined in Definition 5.2, in scenario i the
first goal amount 20K is only spent on the first goal if w;; = 35.12K. This means that for the 3% of
scenarios in which money is spent, at least 70% of those will achieve the second goal. For the other
scenarios, we cannot know for sure. In those scenarios, however, no money was spent on the first goal;
all money is retained for the second goal. This causes the high achievability for the second goal.

The goal based planning framework with the first CE spending rule does not provide better insight in
the investor’s goals. The investor sees a higher achievability than preferred for the second goal in
combination with an extremely low achievability for the first goal. From the framework, however, we
gather that for 95% of the scenarios applies w;, = 15.12K. This leads us to the second CE spending
rule, which uses flexible goals.

Definition 5.3 (Flexible Goal). Suppose an investor has a goal at time t. The goal is flexible if the
investor prefers a goal amount of g, but allows a goal cash flow cf; of cf; < g; or cf; > g;.

Definition 5.4 (The Second CE Spending Rule). Suppose we have two goals: one flexible goal (see
Definition 5.3) at time t with preferred value g, and one a time T with value gr. The goal at time T is
more important and has a preferred goal achievability of X; (see Definition 1.2). We calculate the CE
barrier cb; as defined in Definition 5.1. Then the second CE spending rule states that in each scenario
i € {1, N}, the amount |cb, — wy ;| is spent on the goal at time t only if w;; = cb,.

Now we build a framework that implements the second CE spending rule as defined in Definition 5.4.
With flexible goals, only providing the goals’ achievabilities is not enough. It does not wholly reflect
what occurs at the first goal. In addition to achievabilities, we denote the worst, average, and best cash
flows. We calculate the values by taking the means of the worst 25%, mid 50%, and top 25% of cash
flows respectively.

We again consider an investor with goals as in Figure 5.1. Now we run a framework that implements
the second CE spending rule. In Table 5.2, we see the achievabilities and cash flows. As we expected,
the achievability of the first goal is the same as for the first CE spending rule (see Table 5.1). The
achievability for the second goal is now 70% instead of 94%. This is due to two conditions: a flexible
first goal and in 95% of the scenarios wy,; = 15.12K. Without these conditions, we cannot guarantee
an achievability of 70% of the second goal. Contrary to the framework with the first CE spending rule,
this framework does provide a clear overview of the feasibility of the investor’s goals. Although the
achievability of the first goal is still small, the investor is informed on what “not achieving” means. With
this information, the investor can adjust her portfolio and goals accordingly. Additionally, we obtain the
preferred percentage for the second goal. On top of that, the framework spend the extra money on the
first goal if more wealth comes available.

The second spending rule
Achievability goal 1 3%
| Worstcash flowgoal1 | 19K |
Average cash flow goal 1 7.7K
Best cash flow goal 1 15.7K
Achievability goal 2 70%

Table 5.2: Achievabilities for the investor with profile as in Figure 5.1. Achievability is calculated as in Definition
1.2. The spending rule is the second CE spending rule as defined in Definition 5.4. The worst cash flow is the
average of the bottom 25% of cash flows, the average that of the mid 50%, and the best that of the top 25%.

With a framework that incorporates goal priorities, we want to prioritise the investor’s preferred achiev-
ability for the second goal and only spend excess money on the first goal. The framework that im-
plements the second CE spending rule has both characteristics. The first we showed in the previous
investor’s case. The second, we show for an investor with the same goals as in Figure 5.1. Additionally,
the investor deposits 200 each year over fifteen years. From the results in Table 5.2, we know that we
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can achieve 70% achievability for the second goal. The investor in this case has more wealth. As we
see in Table 5.3, the framework indeed reaches the achievability of 70% for the second goal and only
excess money is spent on the first goal. The achievability of the first goal is higher than in Table 5.2.
The framework that implements the second CE spending rule thus has both characteristics.

Flexible spending rule
Achievability goal 1 9%
| Worst cash flow goal 1~ | ¢ 47K
Average cash flow goal 1 11.2K
Best cash flow goal 1 19.7K
Achievability goal 2 71%

Table 5.3: Achievabilities for the investor with profile as in Figure 5.1, with yearly deposits of 200 over the first
fifteen years. Achievability is calculated as in Definition 1.2. The spending rule is the second CE spending rule as
defined in Definition 5.4. The worst cash flow is the mean of the bottom 25% of cash flows, the average that of
the mid 50%, and the best that of the top 25%.

The framework incorporating the second CE spending rule works as we want it to. If possible, the
investor’s preferred achievability for the most important goal is obtained. Additionally, money is spent
on the less important goal only after the achievability of the more important goal is reached. With this
framework, the investor gains a clear overview of the feasibility of her goals, taking into account goal
priority. On top of achievabilities, we present a more complete cash flow profile for the flexible goal. On
the basis of this profile, the investor can adjust her goals and portfolio. The downside of the framework
with this spending rule is that the accuracy depends on the wealth at w,. The preferred achievability
for a goal at time T is reached if in all scenarios i € {1,10000} the wealth at time t, w;; = cb,, where cb;
is the CE barrier (see Definition 5.1). We have shown that the framework that incorporates the second
CE spending rule exhibits the two characteristics. Now we verify whether this framework outperforms
the framework with spending rule and MU barrier as defined in Definition 3.4.

5.2. Barrier comparison

In this section, we compare frameworks with spending rules and barriers: the CE barrier defined in
Definition 5.1 and the MU barrier defined in Definition 3.4. The latter barrier is calculated by optimising
over the expected total utility (2.7). In this chapter, we take a step back from utility theory and focus on
preferred achievabilities. Therefore, we define a new barrier called the root barrier, calculated similarly
to the MU barrier.

Definition 5.5 (The Root Barrier). Suppose an investor has two goals: one at time t with a value of g;
and one at time T with a value of gr. The goal at time T is more important and has a preferred goal
achievability of Xy (see Definition 1.2). The goal based planning framework implements the spending
rule defined in Definition 3.2. The root barrier for goal t, denoted rby, is the value Y in the spending rule
such that the achievability of goal T, if possible, is equal to X;.

The root barrier is similar to the MU barrier in that we also calculate it by simulating the framework
multiple times. We calculate the root barrier by implementing Brent’s root finding algorithm [5, Chapter
3-4]. For each iteration of the algorithm, we simulate the framework with spending rule for a different
value Y. We continue until | E[I(wy = gr)]—X7| < e~ 1°, with X; the preferred achievability of the goal at
time T. We implement the bounds rb, € [0, 2 - gr] under the assumption that invested wealth retains at
least half its value over time. With the root barrier, we define the root spending rule. The root spending
rule is similar to the first CE spending rule defined in Definition 5.2. Therefore, we first compare the
results of the frameworks implementing those spending rules.

Definition 5.6 (The Root Spending Rule). Suppose an investor has two goals: one at time t with a
value of g, and one at time T with a value of gr. The goal at time T is more important and has a
preferred goal achievability of Xr (see Definition 1.2) . The goal based planning framework implements
the spending rule defined in Definition 3.2. We set the value Y in the spending rule equal to the root
barrier defined in Definition 5.5.



5.2. Barrier comparison 35

We compare the frameworks with spending rules and their barriers for the same investor as in Figure
5.1. In Table 5.4, we combine the results for a framework with the root spending rule and the first
CE spending rule. The preferred achievability is reached with the root spending rule, while a decent
achievability for the first goal is obtained. That is because rb; is a third of cby,. In the former frame-
work, far less scenarios are restricted from spending money on the first goal. This results in a higher
achievability. Even when we implement the second CE spending rule, the achievability of the first goal
does not increase (see Table 5.2). It seems that the framework with the root spending rule outperforms
the framework with the first CE spending rule. However, before validating that statement, we check the
conditional achievabilities.

Root spending rule | CE spending rule
Barrier value 57K 151K
Achievability goal 1 30% 3%
Achievability goal 2 70% 94%

Table 5.4: Achievabilities and barrier values for the investor with profile as in Figure 5.1. Achievability is
calculated as in Definition 1.2. We run the original framework of Section 1.1 with the spending rules. The root
spending rule is as defined in Definition 5.6. The CE spending rule is as defined in 5.2.

At first glance the framework with the root spending rule outperforms the frameworks with either CE
spending rules, since the preferred achievability of the second goal is reached while a high achievability
for the first is obtained. We want, however, a framework that exhibits two characteristics: prioritise
obtaining the preferred achievability of the second goal and only spend excess money on the first goal.
The framework with root spending rule exhibits the first characteristic. To verify the second, we look
at the conditional achievabilities. We remain in the investor’s case where the investor has goals as
in Figure 5.1. In Table 5.5, we take a closer look at these values for three spending rules: the root
spending rule, the first CE spending rule, and the second CE spending rule. The most relevant values
are in the top row. This row denotes the percentage of scenarios in which the second goal was not
achieved, given that the first goal was. For the framework with the second CE spending rule, we only
include those scenarios in which more than 20K is spent on the first goal. In this aspect, the frameworks
with CE spending rules outperform the framework with root spending rule. In the framework with the
latter spending rule, 81% of the scenarios in which the first goal is achieved, the second goal is not.
This is exactly what we aim to prevent with a framework that takes into account goal priorities. This
brings us back to our favoured framework with the second CE spending rule. It performs better on this
aspect. The percentage of scenarios is higher than for the first CE spending rule, but remains below
30%. Considering we set the barrier such that E[I(w,q = ty0)|wig = 15.12] = 70%, the maximum
percentage is E[!G2|G1] = 30%. We consider a second example to verify this behaviour.

Root rule | First CE rule | Second CE rule
E[!G2|G1] 80% 13% 27%
E[G2|G1] 20% 87% 73%
E[!G2]!G1] 8% 6% 30%
E[G2]!G1] 92% 94% 70%

Table 5.5: Conditional achievabilities for the investor with profile as in Figure 5.1. Achievability is calculated as in
Definition 1.2. The root rule is the spending rule as defined in Definition 5.6, the first CE rule as defined in
Definition 5.2, and the second CE rule as defined in 5.4. We look at the effect of cash flows on the first goal (G1)
on the achievability of the second goal (G2). The symbol "I’ in front of G- means a goal was not achieved.

For the second example, we evaluate an investor with goals as in Figure 5.2. We compare the frame-
work with the root spending rule and with the second CE spending rule. We run the two frameworks
and calculate all necessary values to reach an informed decision on the preferred spending rule. In
Table 5.6, we see that a framework with the root spending rule performs better than in the previous ex-
ample. An achievability of 70% is reached for the second goal, which does not occur with the second
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CE spending rule. Additionally, in far less scenarios the second goal is not obtained given that the first
goal was obtained. The conditional achievability, E[!G|G1], confirms this observation. It decreased by
40% compared to the last example. Still, it is higher than preferred and still higher than for a framework
with the second CE spending rule.

Initial
Wealth
14K [Goal: 10K g‘;?;gfg
TR RR 70%
0
O 8 2‘5 Time

(years)

Figure 5.2: Investor’s initial wealth and goals on a timeline, depicting amount and preferred achievability.

Root rule | CE rule
Barrier value 13.8K 17.6 K
Achievability goal 1 17% 5%
Achievability goal 2 70% 64%
E['G2|G1] 39% 30%
E[G2|G1] 61% 70%
E[!G2]'G1] 28% 36%
E[G2|!G1] 72% 64%

Table 5.6: Conditional achievabilities for the investor and portfolio as in Figure 5.2. Achievability is calculated as
in Definition 1.2. The root rule is the spending rule as defined in Definition 5.6. The CE rule is the spending rule
as defined in Definition 5.4. We look at the effect of cash flows on the first goal (G1) on the achievability of the
second goal (G2). The symbol ‘I’ in front of G- means a goal was not achieved.

The goal of this section is to determine with which spending rule and barrier the framework performs
best. Not only do we look at goal achievabilities, we also consider conditional achievabilities. With
these values we can determine whether the framework performs well in the eyes of the investor, while
adhering to goal priorities. The advantage of the framework with the root spending rule is its con-
sistency in achieving exactly the preferred achievability, if possible for the portfolio. This is what an
investor prefers to see. The disadvantage is that it permits cash flows on the less important goal that
are detrimental to the achievability of the second goal. The framework with the second CE spending
rule performs exactly opposite. It does not always reach the preferred percentage, but does limit jeop-
ardising cash flows on the first goal. In the end, we go for the second CE spending rule. We accept
that the framework sometimes fails to reach the preferred achievability in light of its consistent low con-
ditional achievability. After all, that is the main objective in building a framework that takes into account
goal priorities. On top of that, the calculation of the root barrier is computationally intensive, since it
requires multiple iterations of the framework. Using the heuristic of Section 4.2, we calculate the CE
barrier far more efficiently.

In conclusion, we prefer a framework that takes into account goal priorities by implementing the second
CE spending rule as defined in Definition 5.4. The framework exhibits both characteristics: prioritise
obtaining the preferred achievability and only spend excess money on the first goal. The most important
change is that this framework regards goals as flexible (see Definition 5.3). This is not a disadvantage.
We reason that with the spending rule and the cash flow profile per goal, an investor has a clear
overview of the feasibility of her goals. With the profile of the cash flows, she can adjust the goal
values or portfolio parameters accordingly. The framework that implements the spending rule runs
forward in time. Goal cash flows are determined according to the goals’ timing. The aim of the next
section is to analyse if a framework with a goal cash flows strategy that runs backwards in time results in
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better goal cash flows. For that purpose, we introduce early-exercise options and the optimal exercise
strategies.

5.3. Early-exercise options

In this section, we discuss the strategy used in the method of Longstaff and Schwartz [20] to price early-
exercise options and consider the transferability of the strategy to the goal based planning framework.
For early-exercise options, such as Bermudan and swing options, the holder may exercise the option
earlier than the agreed maturity time. In the method, the decision to exercise early is dependent on the
value of a conditional expectation. This is similar to the framework that takes into account goal priorities
by implementing the second CE spending rule (see Definition 5.4). In Section 5.2, we determined that
the framework works well if the goal cash flows are determined by conditional expectation (5.1). Given
this key commonality, of basing the optimal decision on the value of a conditional expectation, we
introduce the topics of Bermudan and swing options. For each type of option, we discuss the use of
the Longstaff-Schwartz method in the valuation of the options. In particular, we focus on the optimal
strategy implemented for the valuation. We then explore the similarities between swing options and the
simulation of an investor’s goals within the framework. We determine whether we can use a strategy,
similar to the optimal exercise of swing options, for optimal goal cash flows.

5.3.1. Bermudan options

Before we consider swing options, we introduce Bermudan options and their valuation. Bermudan
options are similar to their European counterparts, only the holder can exercise the option any time
before the predetermined exercise date. The value of European options can be calculated analytically
by means of the Black Scholes model [22, p. 62]. The value of Bermudan options cannot be calcu-
lated analytically, due to the addition of early-exercise rights. There are many numerical approaches,
however, to price Bermudan options. We focus on approaches using Monte Carlo simulations and
regression techniques, in particular the Longstaff and Schwartz’s Least Squares Monte Carlo (LSM)
approach [20]. There are similar approaches, but the LSM is well known within Bermudan option pricing
and interesting for this thesis.

Problem formulation
To value a Bermudan option, we need to:

1. find the optimal exercise rule,
2. compute the expected discounted payoff under this rule.

Before we explain the LSM approach, we present the problem formulation. Let the risk-free asset,
denoted M, be modelled by

dM(t) = r(t)M(t)dt,

with r(t) the risk-free interest rate. Let V' (t, S) be a sufficiently differentiable function of time t and stock
price S = S(t). Under the risk neutral measure Q, the stock price is modelled by

ds(t) = i(t,S)dt + (t, S)dW(p),

with fi(t, S) the general drift term and 4 (t, S) the volatility term. Suppose that V (¢, S) satisfies the partial
differential equation
GV_I__ ‘g 6V_|_1_2 ‘g a%v
ot TALS)Gg + 30 (L) 5:
with final condition given by V(T,S) = H(T,S). Then the solution V(¢t,S) at any t < T for the filtration F;
is given by
d

T
=E© [exp (—f r(s)ds) H(T,S)

-r()V =0,

o M®)
V(t,S) = E [—M(T)H(T,S)

(5.3)

!
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For options, the value H(T,S) is the payoff at maturity time T, denoted

max(S — K, 0) for a call option,

H(T,S) = .
(T.5) {max(l( — §,0) for a put option,

with K the strike price of the option.

For Bermudan options, the price V(t,S) is given by

V(t,S) = sup E® [exp (— jrr(s)ds) H(z,S)
t

TE[L,T]

Tt] (5.4)

where the supremum is obtained for the optimal stopping time

£ = inf{V(5,S) < H( S} (5.5)

The optimal stopping time 7 is the first time at which the price of the option is smaller than the payoff at
this time [11].

Least squares Monte Carlo approach

Following Longstaff and Schwartz [20], we present the LSM approach. Bermudan options can be
exercised at a restricted amount of times over the time horizon [0,T]. We define M times at which the
holder has the right to exercise, givenby 0 < t; < t, <.+ <ty = T. We then create N € N Monte Carlo
paths of stock prices over discrete time steps t; with i € [1, M]. Path j € {1, N} is created by

Si(tiy1) = Sj(t) + AS;(¢y), (5.6)

with §;(0) = 5(0) and with AS;(t;) dependent on the dynamics of S(t). For the LSM approach, we
define the following notations:

. Sij: the value of the stock at time ¢t; in path j € {1, N},
. Hl-j = H(ti,Sij) the value of the payoff of asset Sl]
* Dy = exp(— fttik r(s)ds) the discount value between time ¢t; and ¢,

 CJ(t; ty, ty) the cash flow generated by the option in path j at time t;, given that the option is not
exercised at or prior to time t;, and the holder follows the optimal stopping strategy for all exercise
dates between {t;, t)},

. DCij = 21,:1:”1 D; x C7 (ty, t;, t) the value of the cash flows in path j at time ¢;.

The value C/ (t;, ty, ty) Will be non-zero for only one t; € {t, t);} in path j € {1, N}, since the Bermudan
option can be exercised once. With the notation clear, we explain the LSM approach.

The LSM approach goes backwards in time. At each point in time, the same exercise rule is followed -
only exercise early if the payoff from immediate exercise is larger than the continuation value.

Definition 5.7 (Continuation Value). For a Bermudan option exercisable over time 0 < t; <t, < - <
ty = T and N Monte Carlo simulated paths over the discrete time steps, the continuation value at time
t; in path j € {1, N} is given by

F/ =E%|pc/|7,),

with Q the risk neutral measure, DCij the value of the cash flows in path j at time t;, and F, the filtration
at time t;.

At time ¢y, the value of the option is simply equal to the payoff H,{;. At time ty_4, the decision is made
by comparing the continuation value Fy;_, and the immediate payoff Hj,_,. The value of the immediate
payoff is known, but the continuation value is not. At this stage, regression is utilised.

As the name suggests, least squares regression is an integral part to the LSM approach. Regression
is used to approximate the continuation value Fl-’ at each time step t; < t),. For the in-the-money paths
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j €I; c {1,N} at t;, the approximation of the continuation value, denoted Fl’ is calculated using a linear
combination of functions over the asset price S/ given by

L

F o~ F = Z aiB,(S), (5.7)
=1

with B, a set of basis functions and a} € R the regression coefficients at time t;. The approximation F"l-j
would be equal to F/ if an infinite amount of basis function were used; for practical purposes, L < .
Only in-the-money paths are used since these paths are relevant to the early-exercise decision. To
estimate the coefficients aj, least squares regression is run on the in-the-money stock prices at t; and

the discounted cash flows, i.e. (S/,DC/) with j € I,.

Now, at time t,_,, the early-exercise decision is made by comparing the approximated continuation
value Fyj_,; and the immediate payoff Hy,_,. If Hy,_; > Fj_,, the option is exercised early in path j and
the cash flow decision at t,, is set to zero, since the Bermudan option can be exercised once. This
exercise strategy is applied for all time steps ty,_, = --- = t; > 0. After completing the exercise strategy
at t,, the value of the Bermudan option at t, = 0 is evaluated as the average over the discounted cash
flows from each path, given by

N M
1
V(ty,S) = N Z Z Do C™ (tm, o, tm), (5.8)
n=1m=1

with Dy ,,, the discount factor between t, and t,,, and C"(t,,, to, ty) the cash flow generated in path n
for t,, € {to, tm}:

5.3.2. Swing options

With knowledge of Bermudan options, we introduce swing options and their valuation using an approach
similar to the LSM approach in Section 5.3.1. Swing options are multiple early-exercise contracts that
are often used in the energy market [16]. Instead of only having one exercise right over a time horizon
[0, T], like with a Bermudan option, the holder of a swing option has multiple exercise rights over [0, T].
At each exercise date, the holder has the right to purchase a different amount of energy. This provides
the holder flexibility. First, we discuss the setting and parameters of the swing options. Second, we
discuss the expansion of the LSM approach to swing options and multiple early-exercise options.

Problem formulation

Before we discuss the valuation of swing options, we define the components. According to Jaillet,
Ronn, and Tompaidis [16], there a many different types of swing options, but each type has the following
characteristics. If the contract is written at t, = 0, then the option comes into effect during a period
[Ty, T»] such that t, < T; < T,. During this period, the holder can exercise a right up to N times, at
T, <ty <t, < <ty <T, The holder can exercise only once at each t;,i € {1, N}. Determined
with the swing option is the amount of energy, a, that can be purchased at each date t;. On each
exercise date t;, the holder can purchase a different amount with increment A;,i € {1, N}. The holder
can purchase more, a + A;, or less, a — A;, than the predefined amount. This is the “swing” aspect of
the option. The increment at each date t; is restricted, such that the value A; lies between the following
intervals:

) U @18,

with I} <12 <0<} <1}

Additionally, in a typical swing option, there is a restriction on the total volume delivered over the period
[Ty, T,]. Any deviation outside of this restriction is penalized at T,. The penalty can be determined at ¢t
or can be dependent on the state at T. In this thesis, we discuss only swing contracts that have a local
effect. This implies that if a right is exercised of an amount a + A; on date ¢; , it has no impact on the
original energy amount a that can be purchased on a later date. The deviation Aj,j € {i + 1, N} is still
determined with respect to the value a.
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There are two difficulties with the valuation of swing options:
» modelling the underlying price process,
» determining the optimal multiple early-exercise strategy.

In this thesis, we do not consider the modelling of the underlying price process. We focus on the optimal
strategy in combination with Monte Carlo simulation paths. We consider in specific the extension of the
LSM approach of Section 5.3.1 to multiple early-exercise options in [7].

Expansion of the least squares Monte Carlo approach

We can use an approach similar to the LSM approach of Section 5.3.1 to calculate the value of a
swing option. Dorr [7] demonstrates that the LSM approach can handle the multiple early-exercise
characteristics of swing options, if we incorporate an extra dimension to the problem: the number of
exercise rights left. We call this approach the extended LSM (ELSM) approach. To illustrate the basic
structure of the ELSM approach, we consider a swing contract over a period [Ty, T,], with L exercise
dates T; < t; <t, < -+ <t <T, The holder of the option has M exercise rights (with M < K). We
only allow positive increments A;,i € {1, M} and we do not enforce a penalty. On an exercise date
t;,i € {1, L}, the holder can purchase a certain amount of the underlying for a specified strike price K.
Similar to the LSM approach, we create N € N number of Monte Carlo paths defined by equation (5.6).
We use similar notation as for the LSM approach.

For the ELSM, we have three dimensions we need to consider:
+ the number of Monte Carlo paths, N,
+ the number of time steps, L,
+ the number of exercise rights left,which is at most M.

The stock value S} and payoff value H] at time ¢; in path j € {1, N} do not depend on the amount of
exercise rights left. Neither does the discount factor D; ; between time t; and t;. We do need to adjust
the notation of the cash flows, the value of the discounted cashflows, and the continuation value of
Definition 5.7 to take into the third dimension, i.e. the exercise rights left:

. C,{(ti,tk, t;) the cash flow generated by the option in path j at time t;, conditional on the option
being exercised M — x times at or prior to ¢, and the holder following the optimal exercise strategy
for all opportunities between t, and ¢;,

- DCY = ZZI:HI Di,kC;{ (tx, t;, t;) the value of the cash flows in path j at time t; given that there are
x exercise rights left.

« Y = E© [DC,‘HTQ] the continuation value at time t; with x exercise rights left.

The value C,{(ti,tk,tL) will be non-zero for at most x dates t; € {t;,t.} in path j € {1,N}. With the
notation clear, we explain the ELSM approach.

Just as the LSM approach, the ELSM approach runs backwards in time. Initially, the cash flows
C,{(ti, t;_x, t;) are determined for x € {1, M},j € {1, N}, and t; € {t;_,, t; }. These cash flows are consid-
ered simultaneously, since if there are x exercise rights left and x exercise dates between t;_, and ¢t;,
then the option is exercised early if the payoff Hij > 0. Now the cash flows for t; _; are determined. First,
the continuation value Ff_l'j is calculated for one exercise right left. This is the similar to a Bermudan
option, thus the LSM approach is applied. The cash flows for x € {2, M} are already known, so no
early-exercise decisions need to be made.

At t;_,, the cash flows for x = 2 and x = 1 are calculated. First, the cash flows are considered for the
largest number of exercise rights left, i.e. x = 2. The early-exercise condition reads

. Y 2
Hi_, + F2 > B2, (5.9)

with H{_z the payoff and I?Ll_'jz,FLz;j2 the continuation values for one and two exercise rights left respec-
tively, at time ¢t,_, in path j € {1, N}. Before the condition can be evaluated, the continuation values
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F", and FLZ;’Z are calculated. They are calculated similarly as in the LSM approach, with linear re-
gression of the value of the cash flows at t;_, on the basis functions. If condition (5.9) holds for paths
j€I?, c{1,N}, then CJ(t,_,, t,_»,t,) = Hi_,. In the LSM approach, the cash flows for t, > t,_, are
set to zero in the paths where the early-exercise right is exercised at t;_,. Due to the extra dimen-
sion, however, the ELSM approach deviates from the LSM approach in the adjustment of previously
determined cash flows. In the ELSM approach, the cash flows are set equal to the cash flows of the
previous iteration for one exercise right less, i.e.

Cy(ty—1,t—2,t) = Cf (t—1,ty—1,t1) @nd C3 (b, ty—p, ;) = CF (t, ty—1,t,)

for j € I?_,. For x = 1, the ELSM follows the LSM approach. The cash flows for x € {3, M} remain
unchanged.

The algorithm continues for t;_; > t;,_, > -+ > t;. When t; > t;_,, no cash flows remain unchanged
and we apply the following steps for all x € {2, M}. At ¢;, the early-exercise right is exercised if the
condition ) , )

Hl} +E:x,] > Ex+1,]

holds. This is the general version of equation (5.9). We set cash flows Ci (ty, ti, t,) = C1_1 (tx, tiz1,t)
for t;, € {t;+1,t.}. Since we set cash flows equal to the value of the cash flow of the previous iteration
with one less exercise right, it is important to start each step of the ELSM with the largest number of x.
For x = 1, the ELSM follows the steps of the LSM.

The value of the swing option is equal to the average of the discounted cash flows for M exercise rights
left over all paths given by

N

_1 0,j

Vs(to) = N DCy’.
=1

For the ELSM approach for general swing options, with positive and negative volume increments and
a penalty function, we refer to [7].

5.3.3. Relation early-exercise options and goal based planning

We explore the transferability of the optimal strategy implemented to value swing options in the ELSM
approach onto a framework that takes into account goal achievabilities. When regarding swing calls
and an investor’s goals, there are several similarities. There are set dates at which a cash flow decision
needs to be made and those decisions affect future decisions. For swing calls, the decision to exercise
early need to be made, knowing that there is a limited amount of exercise dates. For an investor’s
goals, the goal cash flows need to be determined, knowing that it effects the wealth for future goals.
Additionally, due to the nature of call options and the use of increments, A;’s,the value purchased differs.
Again, this is similar to an investor’s goals with different goal amounts. With these similarities in mind,
we analyse whether we can modify the strategy as in the ELSM approach such that it results in the
optimal goal cash flows.

In both cases, a strategy is implemented to ensure a satisfying result under constraints. The exercise
strategy for swing options is constrained by the number of exercise rights and the amounts purchased.
The cash flow strategy for an investor’s goals is constrained by a limited amount of wealth available
over the investment horizon. In Section 5.2, we determined that the goal cash flows align well with
an investor’s preferences if the decision to spend is based on the conditional expectation (5.1). In the
optimal exercise strategy of the ELSM approach, the early-exercise decision is based on the continu-
ation value (see Definition 5.7); also a conditional expectation. There is, however, a clear difference
in the behaviour of the underlying over the time horizon for swing options, the stock price S(t), and for
goal cash flows, the wealth w(t). This is why, despite the similarities between swing options and an
investor’s goals, the optimal strategy of swing options does not work for an investor’s goals in a goal
based planning framework. We elaborate on this statement below.

Even though the strategies for call options and investors’ goals determine the best cash flows (whether
on energy or on goals), the implementation of the exercise strategy for swing options cannot be modified
to a goal based planning framework. A backwards approach is not possible, since the decision for goal



42 5. Conditional expectation framework

cash flows affects the underlying w(t). Therefore, Monte Carlo paths of the wealth cannot be simulated
over the time horizon following equation (5.6). Suppose we do follow a backwards approach. An
investor has two goals, one at t, with amount g, and one at ty with value g, . First, wealth is simulated
over the time horizon 0 < t; < --- < ty, < T for paths j € {1, N}, such that

w;j(tivr) = w;(t) - (1 +15(¢)), (5.10)

with w;(0) = w, the initial wealth and 7;(t;) the return of the portfolio at time ¢;. At ty, money is spent
if wealth w;(tx) = g;,. No money is spent until time t,. Following the ELSM approach, the goal cash
flows are determined based on the conditional expectation (5.1). If we can still satisfyingly achieve the
last goal, money is spent. The action, however, affects w;(t;) for t, < t, < T. The cash flow C;(tx)
is no longer relevant, since the decision was based on parameters that are no longer valid. This issue
is not present in swing options, since the underlying, the stock price S(t), is not affected by a decision
to exercise or not. The stock price can be simulated over time, without knowledge of the exercise
dates.

We cannot use a similar approach to the optimal exercise strategy of swing options on an investor’s
goal. A backwards approach fails, since wealth cannot be simulated over time. Instead, we focus on
a forward approach. Suppose an investors has M goals, at times t; < t, < -+ < t) and with goal
amounts {g4, ..., g }. She invests in a model portfolio. Then wealth is simulated in N € N paths such
as in equation (5.10) until t;. At t;, money is spent if w;(t;) = y; + g;. We follow this pattern until ¢,,, at
which time money is spent if w;(ty) = gu. In Section 5.2, we showed that the framework works well if
we base value y; on conditional expectation (5.1) and regard goals as flexible (see Definition 5.3). The
framework implements the second CE spending rule defined in Definition 5.4. Therefore, we determine
a goal cash flows strategy for multi-goal investors based on this framework in the next section.

5.4. Multi-goal investors

In this section, we create a goal based planning framework that takes into account the priorities of
multi-goal investors. We determined in Section 5.3 that we cannot determine the goal cash flows by
going backwards in time. Therefore, we expand the forward facing framework that implements the
second CE spending rule, as defined in Definition 5.4, to multi-goal investors. Suppose an investor has
M goals, ordered by occurrence in time. Each goal m € {1, M} has a goal amount of g,, and preferred
achievability of X,,, as defined in Definition 1.2. For multi-goal investors, we create a spending rule such
that for each goal m we obtain the preferred achievability X,,,. Similar to before, the framework should
exhibit two characteristics: prioritise obtaining the preferred achievability in order of importance and
only spend excess money on less important goals. In Section 5.2, we determined that the framework
implementing the second CE spending rule exhibits the characteristics for two-goal investors. Based
on that rule, we define the multi-goal spending rule for multi-goal investors.

Definition 5.8 (The Multi-Goal Spending Rule). Suppose an investor has M goals, ordered by occur-
rence in time. Each goal m € {1, M} has a goal amount of g,,. We have N scenarios, with N € N.
We determine values Y = {y,,..,yu_1}. Then the multi-goal spending rule states that for each goal
m € {1,M — 1}, in each scenario i € {1, N}, the amount |y, — wy, ;| is spent on goal m only if wy, ; = yi,,
with w, ; the wealth at the time of goal m in scenario i. The goals {1, M — 1} are flexible, as defined in
Definition 5.3.

The goal of this section is to determine the correct values Y, such that the framework exhibits the two
required characteristics. We start with a framework for three-goal investors. This framework, however,
is easily expanded to investors with more goals. In previous chapters we limit our focus on two-goal
investors, of whom the most important goal occurs last. In this section, we maintain that aspect. We
also keep in mind efficiency. We build the framework while considering the computational costs. In
the first investor’s case, we have an investor as seen in Figure 5.3. We thus need to determine values
v1, ¥, for the multi-goal spending rule.

The first values of y,, y, are based on the concept that an investor stays on track. Suppose an investor
has one goal in twenty years. He has a preferred achievability of 75% for that goal. Then for t € [1,19]
and i € {1,10000}, E[I(wyq = g20)|lW: = we;] = 75%. For the investor and portfolio as in Figure 5.3,
we calculate three values:
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Figure 5.3: Investor’s initial wealth and goals on a timeline, depicting amount and preferred achievabilities.

1. U]_ SUCh that ]E[I(Wlo Z 15)|W5 = 171] = 70%,
2. v, such that E[I(w,q = 20)|ws = v,] = 80%,
3. U3 SUCh that ]E[I(WZO = 20)|W10 = Ug] = 80%

We calculate the values v; = 13.3K and v; = 16.3K following the same logic as the CE barrier of
Definition 5.1. We calculate the value v, = 13.9K as a CE barrier neglecting the second goal that
ensures we stay on track for the third goal. We determine the values y; = 27.2K and y, = 16.3K.
Money is spent in scenarios i € {1,10000} at time 5 if ws; = 27.2K and at time 10 if wyy; 216.3K. In
Table 5.7, we see the results of running the framework that implements the multi-goal spending rule
in combination with these values. From the achievabilities in Table 5.7, there is a potential problem
with the values since E[I(w;q = 15)] < 70%. A possible contributing factor to the lower achievability
of the second goal is that there are scenarios such that ws; < 27.2K. From the framework, however,
we gather that for 99% of scenarios ws; > 27.2K. Therefore, we deduce that the value y, is too small.

Goal 1 | Goal 2 | Goal 3
Achievability 81% 64% 80%
| Worstcashflow | 76K | 106K | 18.1K |
Average cash flow 159K | 17.2K 20K
Best cash flow 26.1K | 25.2K 20K

Table 5.7: Achievabilities and cash flow profiles for an investor with portfolio as in Figure 5.3. Achievability is
calculated as in Definition 1.2. We apply the spending rule defined in Definition 5.8, with values Y = {27.2,16.3}.
The worst cash flow is the mean of the bottom 25% of cash flows, the average that of the mid 50%, and the best

that of the top 25%.

The value y; is not enough to ensure a 70% achievability for the second goal and an 80% achievability
for the third goal. This is due to our interpretation of staying on track. Suppose we set ws; = 13.9K for
all'i € {1,10000} and calculate E[I(w,o = 20)|w;o = wyg;]. This value is 80%, denoting that we indeed
stay on track for goal three. Still, that does not mean that for all i € {1,10000} with ws; = 13.9K applies
Wyo; = 16.3K = v3. Thus to secure an 80% achievability for the more important third goal, money
necessary to achieve the second goal is set aside for the third goal. This results in a lower achievability
for the second goal. Thus we need to calculate y, for the multi-goal spending rule differently.

We need to calculate values y;, y, such that we stay on track for the next goal in addition to having
enough money for the upcoming y value. In the previous example, we concluded that the achievability
of the second goal was lower than preferred since not 70% of scenarios had w;,; = 31.3K before
spending. A simple and efficient solution is to calculate for each goal m the value y,, such that

E[l(Wms1 = (Gme1 + Yme1)) Wi = bpn] = X,

based on the logic of the CE barrier of Definition 5.1. Then, going back in time, we calculate for
each goal only one conditional expectation. With this value, we ensure that in at least the preferred
percentage of scenarios there is enough money for the next goal amount and y value. The problem



44 5. Conditional expectation framework

is that we do not know the behaviour of the other scenarios. Suppose an investor has a portfolio with
three goals. The second goal is small with a preferred achievability of 40%. The last goal is a large
with a high preferred achievability. Then at the time of the first goal, enough money is set aside for
the small goal and y,. Although only with an expected achievability of 40%. Thus at the time of the
second goal, we only know for certain that 40% of the scenarios have wealth w, > y,. This jeopardises
the achievability of the large, third goal. Depending on the portfolio, the y value underestimates the
necessary money for upcoming goals.

To ensure that we stay on track for upcoming goals and above the upcoming Y values, we calculate
v1, ¥, similarly to the first attempt. For each goal, we calculate two CE barriers: the barrier needed to
stay on track for the next goal and the barrier needed to stay on track for the goals thereafter. This
time, instead of interpreting “on track” as an expected achievability over time of X, we interpret it as the
wealth in all scenarios above the CE barrier needed to achieve X. We calculate these values by starting
at the last goal. For the investor with a portfolio as in Figure 5.3, we calculate three values:

1. 1%t SUCh that ]E[I(WZO = 20)|W10 = 171] = 80%,
2. v, such that E[I(wig = v1)|ws = v5] = 90%,
3. v5 such that | E[I(wyo > 15)|ws = v5] = 70%.

We calculate values v; = 16.3K and v; = 13.3K as CE barriers for sequential goals. We calculate
value v, = 16.8K such that, with relative certainty, in all scenarios wq; = y, = 16.3K after spending
on the second goal. We implement a framework with the multi-goal spending rule of Definition 5.8 with
Y = {30.1,16.3}. In Table 5.8, we see the results of running this framework. As we expected, the with
these Y values, what is necessary to achieve the preferred achievabilities is overestimated. We obtain
a larger achievability for the second goal than preferred. This is due to the separate calculation of y;,.
In five years, 16.8K is set aside to ensure that in 90% of the scenarios w,,; = 16.3K. On top of that,
13.3K is set aside such that in 70% of scenarios w;,; = 15K. In combination with the money set aside
for y,, however, in some of those other 30% of scenarios now w,,; = 15K. Still, we rather have a higher
than preferred achievability than a lower one.

Goal 1 | Goal 2 | Goal 3
Achievability 67% 83% 80%
| Worstcashflow | 49K | 134K | 18.1K |
Average cash flow 13.0K | 20.8K 20K
Best cash flow 23.2K | 29.5K 20K

Table 5.8: Achievabilities and cash flow profiles for an investor with portfolio as in Figure 5.3. Achievability is
calculated as in Definition 1.2. The framework implements the multi-spending rule of Definition 5.8 with
Y = {30.1,16.3} The worst cash flow is the mean of the bottom 25% of cash flows, the average that of the mid
50%, and the best that of the top 25%.

From the results in the previous example, we deduce that with the Y values for the multi-spending rule
what needs to be reserved for future goals is overestimated. For many portfolios, it results in higher
than preferred achievabilities. For some portfolios, however, where the last goal is large compared to
the first goals and money is insufficient, this value results in the necessary amount. As an example, we
take an investor with a portfolio as in Figure 5.4. Testing the framework for the multi-spending rule and
the first two methods to calculate Y values, the achievability for the second goal is lower than preferred.
For both these different Y values, the necessary money for the future is underestimated. As we see
in Table 5.9, however, it is possible to obtain the preferred achievabilities. Although calculating the Y
values in this way overestimates what is necessary in some cases, they are correct for cases in which
the preferred achievabilities can just be obtained.

In this section, we create a multi-goal spending rule for multi-goal investors. We base the multi-goal
spending rule on the second CE spending rule (see Definition 5.4) for two-goal investors. We test
the spending rule for three-goal investors, but it can easily be expanded to multi-goal investors. We
initially calculate Y values for the multi-goal spending rule of Definition 5.8 to stay on track. Although
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just because we stay on track for future goals, does not mean the wealth in the scenarios are above
the y value for the next goal. Thus we calculate Y values based on two requirements: stay on track for
the upcoming goal and ensure all scenarios are above the y value for goals thereafter. For each goal
j, we calculate two values:

1. vy such that E[I(wj1 = gji)Iwj = v1] = X311 %,

Incorporating the multi-goal spending rule with these Y values into the framework results in higher
than preferred achievabilities, but prevents underachieving which is most important. It thus exhibits
the required characteristics: prioritise obtaining the preferred achievabilities in order of importance and
only spend excess money.

Initial
Wealth
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Figure 5.4: Investor’s initial wealth and goals on a timeline, depicting amount and preferred achievabilities.

Goal 1 | Goal 2 | Goal 3
Achievability 0% 48% 79%
| Worst cash flow | 0K | 07K | 353K |
Average cash flow 0K 9.7K 40K
Best cash flow 2.0K 23.1K 40K

Table 5.9: Achievabilities and cash flow profiles for an investor with portfolio as in Figure 5.4. The framework
implements the multi-spending rule defined in Definition 5.8 with Y = {31.9,28.2}. The worst cash flow is the
mean of the bottom 25% of cash flows, the average that of the mid 50%, and the best that of the top 25%.

5.5. Conclusion

In this chapter, we created a goal based planning framework that uses a spending rule based on
conditional expectation (5.1). We took a step back from utility theory and focused on preferred goal
achievabilities instead. At first, we considered two-goal investors, of whom the second goal was more
important than the first. We determined that a framework with a spending rule based on the CE barrier
(see Definition 5.1) with flexible goals (see Definition 5.3) works best. It portrayed the two features
we required from the framework. It prioritised the investor’s preferred achievability for the second goal
and it spent excess money on the first goal. Additionally, it provided the investor with insight into the
feasibility of her goals. The framework with this spending rule also outperformed the framework with
the root spending rule defined in Definition 5.6. We based this distinction on the goal achievabilities,
the conditional achievabilities, and the computation time. The conditional expectation barrier especially
performed better in the last two categories.

We introduced the topic of early-exercise options, such as Bermudan and swing options. In particular,
we analysed whether the optimal exercise strategy in the ELSM approach to value swing options could
be applied to an investor’s goals in a goal based planning framework. Swing options and an investor’s
goals share the characteristic that earlier decisions constrain future decisions. For both, the decision
to act is based on a conditional expectation: the continuation value of Definition 5.7 and the condi-
tional expectation (5.1). The backwards optimal exercise strategy for swing options, however, cannot
be implemented to determine the optimal goal cash flows. In the ELSM approach, the value of the
underlying, the stock price, is known over the entire time horizon. For goal based planning the value of
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the underlying, the wealth, cannot be simulated over the entire time horizon. The wealth is dependent
on the goal cash flow decisions taken in the future. In goal based planning, we cannot guarantee that
decision taken in the past are still optimal in the future. Therefore, we returned to the forward framework
that implemented the second CE spending rule.

Based on the performance of the spending rule using the CE barrier for two-goal investors, we ex-
panded it to multi-goal investors. We evaluated the framework with the multi-goal spending rule of
Definition 5.8 for different Y values. We preferred the spending rule with Y = {y;, .., yi_1} based on two
values:

1. 1%t such that [E[I(W]+1 = g1+1)|W] = Ul] = Xj+1%,
2. v, such that E[I(wj.1 = yj+1)lw; = v,] = 90%,

with I the indicator function, w;, w;,, the wealth at the time of the j" and (j+1)" goal, and gj+1 the
goal amount of the (j+1)1" goal. With yj = v1 + 1,, the framework stays on track for the next goal and
has relative certainty to achieve the y values for the next goals. When using the multi-goal spending
rule with these values, the framework often overestimates. For many portfolios the framework obtains
higher than preferred achievabilities. Barring numerical inaccuracies, however, it never underestimates
achievabilities if wealth in the portfolio allows it. On top of that, the framework upholds the requirement
that earlier cash flows do not put later goal achievability in jeopardy.



Conclusion and recommendations

In this chapter, we conclude the thesis and provide recommendations for future research and for Ortec
Finance specifically.

6.1. Conclusions

In this thesis, we created a goal based planning framework that takes into account goal priorities.
Specifically, we focused on investors with more important goals occurring later in time. The goal cash
flows should reflect that; no money should be spent on less important goals if it is detrimental to achiev-
ing the more important goals. We built such a framework in two ways. Initially, we focused on investors
with two goals, of which the second is more important than the first.

First, we built such a framework using utility theory. With utility theory, an investor can quantify which
risky decision will bring her the most satisfaction; the one resulting in the highest utility. In Chapter
2, we created a total utility function (2.6). With the total utility function, we can quantify an investor’s
satisfaction with the goal completions in a single scenario. The total utility function takes into account
individual goal completion and goal priorities. With the total utility function, we can calculate the ex-
pected total utility over all scenarios. An investor can then choose the simulation and goal cash flows
that result in the highest expected total utility.

In Chapter 3, we used the total utility function to optimise the goal based planning framework such
that it takes into account goal priorities. We used the expected utility in two ways. First, we optimised
on an upper boundary of the first goal’s cash flows. In the simulation, we restricted cash flows on the
first goal to determine whether an investor was satisfied with spending less money on the first goal.
The expected utility was higher when spending less on the first goal, if that resulted in a higher goal
achievability for the second goal. Secondly, we optimised over the expected total utility to determine
the maximum utility (MU) barrier defined in Definition 3.4. We implemented a spending rule in the goal
based planning framework such that at a goal at time t with amount g,, money was spent if wealth
wy = Y + g.. The MU barrier is the value Y such that the framework reaches maximum expected utility.
With the spending rule and MU barrier, we achieved higher expected total utilities than with an upper
bound on the first goal’s cash flows. We then took a step back from utility theory, however, because
of issues with communication and optimisation. We continued with spending rules in combination with
conditional expectations.

Second, we built such a framework using conditional expectation (4.1). Instead of attributing goals with
priorities, an investor attributed preferred achievabilities. In Chapter 4, we determined that with con-
ditional sample paths and spline regression in combination with lasso coefficients, we can accurately
calculate the conditional expectation. Then, we created an efficient heuristic to calculate the condi-
tional expectation for different investor parameters. In Chapter 5, we built a framework that takes into
account goal priorities using a spending rule based on the conditional expectation. We determined that
the framework with flexible goals (see Definition 5.3) and a spending rule (see Definition 5.4) worked
best. It achieved the investor’s preferred achievability for the second, more important goal and spent
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excess money on the first goal. Next, we expanded the framework to multi-goal investors.

To expand the framework to multi-goal investors, we first looked at early-exercise options. Options such
as Bermudan and swing options share commonalities with an investor’s goals in the goal based plan-
ning framework. We analysed whether the optimal exercise strategy used to value the early-exercise
options in the least squares Monte Carlo approach of Longstaff and Schwartz [20] or Dérr [7] could
be applied to an investor’s goals. It cannot be applied for goals, since the optimal exercise approach
is determined by going backwards in time. Instead, we created a forwards approach, based on the
framework with the spending rule for two-goal investors. The multi-goal spending rule determines
when money can be spent on each goal. The conditional cash flows are based on the conditional ex-
pectation (4.1). Money can be spent on each goal, only if an investor stays on track for the upcoming
goal and sets aside enough money for the goals thereafter.

Ultimately, we created a goal based planning framework that takes into account goal priorities for multi-
goal investors. We created a multi-goal spending rule such that no money is spent on less important
goals if that jeopardises achieving more important goals. It ensures that investors stay on track for each
goal and set aside enough money for upcoming goals. With the multi-goal spending rule and the values
we determined, the amount necessary is overestimated. The framework with this spending rule often
results in higher than preferred goal achievabilities. It does not result, however, in lower than preferred
goal achievabilities if possible. The goal cash flows are therefore in line with the investor’s priorities,
which was the aim of this thesis. With a framework that implements the multi-goal spending rule, an
investor gains insight into the feasibility of her goals, while adhering to a healthy investment strategy.
For each goal, a goal cash flow profile is portrayed such that an investor can accurately ascertain what
“not achieving” a goal means. It is therefore an improvement compared to a framework which does
not take into account goal priorities. There are, however, some points for future research before the
framework is ready for application.

6.2. Recommendations for future research

In this thesis, we determined that a good way to incorporate goal priorities into the goal based planning
framework is through conditional expectations. Furthermore, we showed that in such a framework
goal cash flows are actually aligned with investors’ preferences. This thus provides investors with the
feasibility of their goals. There are two clear points of future research.

First, in Chapter 4, we established that spline regression in combination with lasso coefficients pro-
duces an accurate fit for normally distributed, autoregressive, and the original DNB (see Appendix A)
returns. The heuristic we created in Section 4.2, however, only works for normally distributed returns.
A heuristic for the other returns requires a different choice of left and right breakpoints. Additionally,
further research could determine whether it is feasible to calculate the conditional expectations required
using a single simulation of wealth over the time horizon. It is more efficient to use the same paths to
determine the conditional expectations per goal, instead of simulating specific paths and data points
each time.

Second, in Chapter 5, we determined a spending rule and accompanying values for multi-goal in-
vestors. These values, however, often overestimate what is necessary for future goals. This results in
higher than preferred achievabilities for goals. Future research could determine whether a more accu-
rate multi-spending rule is feasible. One that results in the exact preferred goal achievabilities. One
possible avenue is to use a different conditional expectation to calculate the values for the multi-goal
spending rule.

6.3. Recommendations for Ortec Finance

In this thesis, we determined that it is valuable to incorporate goal priorities into the goal based planning
framework. Then, an investor gains insight into the feasibility of her goals, while the goal cash flows
are in line with the investor’s preferences. The recommendations for Ortec Finance are given, with an
eye on the practical side.

In this thesis, we mostly explore incorporating goal priorities into the goal based planning framework
through spending rules and conditional cash flows. In Chapter 5, we concluded that the spending rule
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works best if the goal cash flows are conditional on the value of the conditional expectation barrier
defined in Definition 5.1. The conditional expectation barrier, however, was calculated using a heuristic
specific to normally distributed scenarios. The Ortec Finance Scenario Set is far more complicated.
Therefore, we propose that Ortec Finance continues with generalising the root barrier of Definition
5.5.

For two-goal investors, the root barrier can be determined with OPAL’s optimiser. The additional re-
search is required for multi-goal investors. The values for the spending rule need to be determined
iteratively, starting at the second to last goal and going backwards in time. The value for the root bar-
rier for the second to last goal can be determined as for two-goal investors. For the goals earlier in
time, the barrier must be calculated with the additional constraint of future goal achievabilities and root
barriers.






KNW Scenarios

In this thesis, we use scenario analysis to determine the feasibility of an investor’s goals. The scenarios
portray different future behaviours of the portfolio and underlying asset classes. We limit portfolios to
ratios of stocks to bonds. We use data provided by “de Nederlandsche Bank” (DNB). In particular,
we use the DNB’s stock returns and the parameters to create interest rate term structures for 2019 Q1
(https://www.toezicht.dnb.nl/2/50-233246.jsp). We take the stock returns provided by the DNB for 2000
scenarios over sixty years. For bond returns, we use the return on investment of the 10-year bond,
rebalancing the portfolio every year. Per scenario, we calculate

1+ R{%
1+ R}

fori € {1,2000} and t € {1.,60}, where
{RY* = expla™ + b X, (t) + b3 X, ()] — 1

with a, by, b, interest parameters and X,, X, state variables provided by the DNB.

The scenarios are based on the KNW-capital market model, estimated to reflect the Dutch market [8].
The model describes stock and bonds, both dependent on the inflation process. To ensure a realistic
model, the inflation process is modelled alongside the stock and bond market. The real interest rate
and the instantaneous expected inflation are modelled by two state variables, which in turn reflect the
uncertainty and dynamics in these values. They are collected in the vector X. This thus determines the
formulas of the interest rate and the instantaneous expected inflation, respectively

1 = Sor + 61, X¢
and
T[t = 807-[ + 5171Xt.

The state variables, collected in the vector X;, follow a mean-reverting process around zero with the
following dynamics

where Kis a 2x2 matrix and X% = [I,,20,,2]. The vector Z is a four dimensional vector of independent
Brownian motions which drive the four sources of uncertainty in the market.

+ uncertainty about the real interest rate
+ uncertainty about the instantaneous expected inflation
+ uncertainty about the unexpected inflation

 uncertainty about the stock return
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Any correlation between the interest rate and inflation is modelled using §7,- and §1,. The price index
is determined by expected inflation, resulting in the following dynamics

I, ,
- = T[tdt + O-ndZt
I

with oy € R* and [, = 1. The stock index S develops according to

ds, ,
S_t = (Rt + ns)dt + O-SdZt

with g € R*, So = 1, R the nominal instantaneous interest rate and ng the equity risk premium. Lastly,
there is the nominal stochastic discount factor, modelled as

a9
ot

with the time-varying price of risk A affine in the state variables X,

At = AO + A]_Xt

and A, Ay € R* and A, 4x2. The stochastic discount factor gives the marginal utility ratio between
consumption today and in the future. The assumption is that this rate is equal for everyone in complete
markets. Furthermore, there is no risk premium for unexpected inflation, i.e. the third row of A; contains
only zeros, because the risk cannot be identified on the basis of data.

Returns over different time periods are available to estimate the discrete model. For this purpose they
use a multivariate Ornstein-Uhlenbeck process of the form

dYt = (@0 + Glyt)dt + ZYdZt
with
W=hlmlﬂlwmlwﬂ (A1)

Here, X is the vector with the two state variables, II the price index, S the stock index, PF° the cash
wealth index, PF* the bond wealth index with duration 7, and Z the vector with the four independent
Brownian motions extended with two zeros for cash and bond equations.



Regression Algorithms

In this appendix, we elaborate on the regression algorithms used for the conditional expectation in
Chapter 4: ordinary least squares, ridge, lasso, support vector, and spline regression. We explain all
algorithms using x as the independent variable and y as the dependent variable.

B.1. Ordinary Least Squares Regression
In linear ordinary least squares regression (OLS), we try to best approximate the linear relationship
between (x',y;) fori =1,2,..,N and x* = (x; 4, ...,xi,p)T. To do so, we estimate the parameters a and

B in _

yi=a+ fxt+¢€,
where ¢; is an error term. In vector notation, we can absorb the constant term « into the f vector so
that it becomes 8 = (B, B1, -, Bp), for By = a. Then the vector notation for y is

y=XB +E¢,

where X is an (N x p + 1) matrix with rows (1,x"). In OLS, we approximate £ by minimizing over the
squared of the error terms

N
mﬁin;(ei)z (B.1)
N
= mﬁin;m — X.B)%, (B.2)

with X; representing row i of matrix X. Wg can find an explicit solution for this minimisation problem.
The optimal approximation of 8, denoted g, is

Cov(x,y)

Var(x) = (7K"Y,

ﬁ:

Lemma B.1. When E[¢;] = 0, the estimated parameter j3 is unbiased.
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Proof. To show that 3 is an unbiased estimator, we plug the vector notation of y into the formula for
and take the expectation. Using properties of the expectation, we get:

E[B] = E[((X"X)'X"(XB + €]
E[B + (XTX) 1XT¢]
B+ E[E[(X"X) X e|x]]
B
B-

+E[(XTX) 71X E[e|X]]

O

For non-linear OLS, we also minimize over the squared error terms, for the non-linear expression of
y: _

yi=a+fx,p)+e€, (B.3)
with €; an error term. Non-linear OLS estimates the parameters «,  such that the model function f has
the best fit for the given data points.

OLS (linear and non-linear) is a good and frequently used technique to regress over data points. It
has, however, the tendency to overfit, resulting in high variance of the coefficients. This causes the
regression to be well-aligned with the original dataset, but affects how well it fits future observations. A
way to counteract this behaviour is to add a penalty term to the objective function of the minimisation.
Thus adding some bias to improve the prediction power of the regression. In this thesis we discuss two
types: ridge and lasso regression.

B.2. Penalized Ordinary Least Squares Regression

Again we have data (x!,y,) fori = 1,2,..,N and x! = (x;1, ...,xi,p)T. Following the logic of OLS, we
estimate 8 using minimization on the squared residuals. Differently to OLS, we introduce a penalty
term, such that the original minimisation problem (B.1) becomes of the form

N
m,;n;(yi — X2+ F(B). (B.4)

The penalty is placed on the size of the coefficients, which causes a bias to the estimator. The correct
balance between bias and variability, however, improves the regression’s predictability.

B.2.1. Ridge Regression

One version of least squares regression that incorporates a penalty on the size of the coefficients is
ridge regression [15]. It imposes a squared 2-norm on the coefficients combined with a regularization
factor «. The minimisation problem (B.4) becomes

N
mﬁinZ(}’i — XiB)% + a||BI13.
i=1

Taking the derivative and performing some algebra, we get the optimal approximation of g
B=X"X+al,) Xy,

where I, is the identity matrix. The regularization parameter thus introduces bias, but reduces the
variance of the coefficients.
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B.2.2. Lasso Regression

Another regression that places a penalty on the size of the coefficients is the lasso regression. Instead
of introducing a squared 2-norm on the coefficients, it imposes a 1-norm. Again, a regularization factor
a is involved. The minimisation problem (B.4) becomes

N
min > (0 ~ Xi)? +allBlls.
i=1

Unlike the o[iginal OLS and the ridge regression, the minimisation problem does not have an explicit
solution for g . Although, by rewriting the lasso minimisation problem as

N
B =argmin > (v = X,5)’
i=1
st. Bl <t

we end up with a quadratic programming problem with linear inequality constraints. For this problem
efficient and stable algorithms exist [24]. Similarly to the ridge regression, the lasso regression shrinks
the size of the coefficients, thus resulting in better predictability of the regression. Additionally, it pro-
vides better interpretation as it sets some coefficients to zero [24]. It performs feature selection. It
determines which coefficients strongly define the characteristics of the regression and sets the non-
important features to zero, resulting in sparsity of the solution. Although the advantage of the lasso
regression is two-fold, it does give up computational efficiency since it has no explicit solution.

B.2.3. Regularization Parameter

The difficulty that comes with these penalized OLS regressions is choosing the value of the regulariza-
tion parameter a. Although introducing bias to the coefficients can decrease the variance and improve
predictability, it can also oversimplify the regression. The extreme cases are clear:

*a-inf= ﬁrl’dge,lasso =0

ca—-0= ﬁridge,lasso = ﬁOLS'

We thus need to fine tune the value of a such that we achieve the right balance between bias and
variance. The standard is to use cross-validation. We first divide the data set into a training and a
validation set. We then run the regression on the training set for different values of «, testing the
accuracy with the validation set. We then calculate the mean squared error for each value a. Thus we
choose «a by finding

N
a= argminZ(yi —XiB )%
i=1

When there is only a small data set, we use k-fold cross-validation. Instead of determining one selection
of the data set as validation set, we rotate the data. We first divide the data set in k partitions. For each
value of a, we select a partition to serve as validation set. The rest of the data serves as training
set. We then calculate the mean squared error for the validation set. We repeat the process until all k
partitions have been the validation set. The a which results in the lowest average mean squared error
is chosen as regularization parameter.

Although these regression algorithms are well-used and successful, they require knowledge of the
functional form underlying the data. When the functional form is not linear, polynomial or other known
shape, these algorithms are not useful. Therefore we introduce two regression algorithms that do not
require a functional form supplied by the user: support vector and spline regression.

B.3. Support Vector Regression

In this section we discuss support vector regression as denoted by [23]. We first discuss support vector
regression (SVR) for linear regression. Afterwards, we shortly introduce the case of non-linear SVR.
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Suppose we have observations {(x1, 1), (x2,¥2), ..., (Xn, Yn)} € R%xR. The main idea behind SVR is
to find a function f(x) such that for a chosen ¢, |y; — f(x;)| < € for every i. Additionally, we want f(x)
to be as flat as possible. The € stands for the error we “tolerate”; only deviations greater than this are
considered unacceptable. We define the linear function f as

f(x) ={w,x) + b, (B.5)

withw € R% b € Rand < -,- > the dot product in R?. To ensure flatness of the function we seek a
small w. We can thus solve this problem by minimizing over the norm of w. To ensure this minimisation
is feasible, we introduce slack variables ¢;, &; to deal with infeasible constraints. Thus arriving at the
convex minimisation problem for linear SVR.

Definition B.1 (Linear SVR). For linear SVR, we estimate the parameters w solving the following
convex minimisation problem:

N
1 .
min  —||w||* +C § Gi+$)
w 2 =
i=

YVi—(w,x)—b<e+;
s.t. wx)+b—y <e+¢
fiif;.f 2 0

The constant ¢ > 0 determines the trade-off between the flatness of the function f and the tolerance
for deviations larger than €. In Figure B.1, we see a graphical interpretation of the linear SVR.

Y

Figure B.1: The graphical interpretation of linear SVR. The left figure represents a regression problem with points
outside of the tolerated e barrier. The right figure shows the interpretation of the error.

For the convex minimisation problem described in Definition B.1, we have a dual problem. From this
dual, using the saddle point condition and substitutions, we derive the formula for w, called the support
vector expansion.

Definition B.2 (Support Vector Expansion). The support vector expansion of w for linear SVR denotes
that w can be entirely written in terms of the observations x;:

N
w= Z(ai —a})x;.
i=1

The constants a;, a; are Lagrange multipliers with the following constraints:

(a; —af) =0and a;,a; € [0,C].

N
=1

l
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The importance of the support vector expansion is that f(x) can be written in terms of only the obser-
vations x;:

N
fx) = Z(ai —a}){x;,x)+b.
i=1

To evaluate f(x) we thus do not have the compute w explicitly. This information is necessary for the
non-linear SVR. As for b, we use the Karush-Kuhn-Tucker (KKT) conditions to derive the following
bounds:

max{—e +y; — (W, x;)|a; < Cora; >0} < b <min{—e+y; —(w,x;)|a; >00ra; <C}.

The KKT conditions also imply that the Lagrange multipliers are only non-zero for the function values
that deviate more than e from the original target observation. This means that for all samples inside
the e boundary, i.e. for |[f(x;) — ¥;| < €, a; and a are zero. The observations for which the Lagrange
multipliers are non-zero are called support vectors.

Definition B.3 (Support Vectors). Suppose we have observations {(x1,y1), (x2,¥2), -, (Xn, Yn)} € R? xR.
The support vectors of the SVR are the observations x; such that |f (x;) — y;| = €. For these observa-
tions, the Lagrange multipliers of the dual optimisation problem are non-zero.

We can also apply support vector regression on non-linear problems. For non-linear relations between
x and y, we try to find the best function f(x) = (w, ¢(x)) + b where ¢(-) : R? - R”. For the map ¢ ("),
R’ is called the feature space.

Example
For x € R®, we can apply the map ¢(x) = (x?,vV2x;x,,x3). Training a linear SV machine on the
mapped observations ¢ (x;) would result in a quadratic function.

This approach quickly becomes computationally infeasible. As noted above, the model function can be
computed using only the dot product of the observations. As such, we do not need to know the map
¢ () explicitly. Instead, we can use the kernel, k(x,x") := (¢ (x), p(x)’). For instance, for the example
above we get the following kernel k(x, x") = ((x?,V2x,x,, x2), (x32,V2x; x5, x52)) = (x, x')2. Computing
the kernel is more efficient than mapping the original observations and subsequently calculating the
dot product. Using the kernel and the vector expansion of w, the formula for f(x) becomes:

N

f(x) = Z(ai — a])k(x;,x) + b.

i=1
The only difference is that w can no longer be calculated explicitly.

There are many commonly used kernels, but in this thesis we use the radial basis function (RBF) kernel.
We use the Gaussian RBF kernel, denoted k(x,x') = exp(—y||x — x'||?), where || ||? is the squared
Euclidean distance. As seen in Figure B.2, parameter y determines the width of the kernel and is an
important feature. The y determines how far the influence of an observation reaches and thus is a
major factor in the over or underfitting of the regression. It is interpreted as the inverse of the radius of
influence of the support vectors.

The main advantage of SVR is that, when using the RBF kernel, it can be used without knowing the
underlying relationship between the observations. This is a major improvement on non-linear OLS,
where a model function needs to be given. The effectiveness of the SVR, however, is highly dependent
on the values of y and C. These factors contribute to the level the regression overfits.



58 B. Regression Algorithms

The radial basis function for different values of gamma
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Figure B.2: The Gaussian radial basis function for different values of y. The parameter determines the width of
the peak.

B.4. Spline Regression

The idea behind spline regression is to divide the range of x into contiguous intervals and fit a specific
function on each interval [13]. This way, you circumvent fitting one particular functional form on the
data. The spline is made up of M basis functions B, ..., By, so that

M

500 = ) i),

i=1

A common type of spline basis functions are piecewise polynomials. The simplest basis function is
the indicator function B;(x) = I(b; < x < b;;1). This basis function is a constant representing the
mean of y € [b;, b;41). To create a piecewise linear fit, we multiple the indicator function by x, such
that B;(x) = I(b; < x < b;+1)x. These basis functions are unsuited for continuous functions, since the
spline s(x) is not continuous at the knots. The knots are the points s(b;), where the b;’s are the edge
points of the intervals. We thus have to determine an extra condition so that the polynomials on either
side of a knot are continuous at the knot. Many other family of basis functions are possible, chosen
depending on the shape and characteristics of the original data. Most importantly, the family of basis
functions should be general enough that they can represent various shapes.

In this thesis we will be using a set of triangular basis functions. If we have breakpoints by, ..., by, then

the spline is s(x) = Z?]:O ¢if;(x) for basis functions f,(x), ..., fy (x).
As shown in Figure B.3, the basis functions are

° fo(x) :x—bo forx S bN,

(x—biifb; < x <by
fi) = {0 else,
1ifx = by
fu(x) = {0 else.

The intuition is that f;(x) = 0 at b, and sets the slope for x < b;. Then f;(x) compensates and sets
the slope for b; < x < b,. Right of by, the spline equals a constant. The resulting spline is a piecewise,
linear, continuous function for x < by. At b,, there is a potential discontinuity for which x > by is a
constant. At b, the spline equals zero and for x < b, we have a linear extrapolation.

The difficulty with spline regression is using the correct intervals. The breakpoints and knots should
be chosen in areas of high variability, such that the spline captures the complexity of the data. If the
intervals are not placed correctly, the spline regression could misrepresent the relation between x and
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y. Just as for the regularization parameter, cross-validation is used to determine the placement and

number of breakpoints for spline regression.

Spline Basis Functions

fi

Figure B.3: The basis functions for the spline regression
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