

Building Technology Graduation Studio

P5 presentation January 13, 2025

> Rik Trip 5421195

The hygrothermal performance of embedded wooden beams in solid brick masonry with interior capillary active insulation

Problem statement

- Need to reduce the use of finite materials and mitigate climate change by reducing greenhouse gas emissions and building energy consumption
- The application of interior insulation can cause hygrothermal risks due to changes in hygrothermal performance of the wall
- More insight into the effect of these changes is needed and possible solutions, like capillary active insulation, are further researched

Without insulation

With standard insulation

With cap. act. insulation

Problem statement

• Hygrothermal simulation software to simulate performance in a relative short amount of time

Objective

To provide insight into the key parameters effecting the hygrothermal safety of embedded wooden beams in solid brick masonry when interior capillary active insulation is applied

Master Thesis – P5 - Rik Trip 6

Objective

- What are the key parameters that affect the hygrothermal simulation most?
 - Sobol sensitivity analysis
 - Delphin hygrothermal simulation software
 - Python programming
- How can the hygrothermal performance of a building component be visualised?
 - Delphin hygrothermal simulation software
 - Python programming
 - Delphin postprocessor PostProc

Methodology

Methodology

Methodology - Geometry

- One-and-a-half solid masonry wall with 200mm high embedded wooden beam and 75mm of insulation + gypsum finishing board
- Location: Essen, Germany
 - Orientated: 270° (west) + 90° (vertical)
 - Outdoor dynamic measured weather data, including temperature, short/long wave solar radiation, relative humidity and rain load
 - Indoor dynamic WTA 6.2 + 5% increased moisture load

Methodology – Material properties

	unit	Gypsum [ID: 81]	Wood X/Y [ID: 711/712]	Brick [ID: 1824]	Insulation [ID: 1780]
Density	[kg/m ³]	850	393.7	1698.3	186.9
Specific heat capacity	[J/kgK]	850	1843	929	1100
Thermal conductivity	[W/mK]	0,2	0.11/0.15	0.599	VAR
Vapour diffusion resistance factor	[-]	10	186.1/4.6	VAR	VAR
Open porosity	[kg/m ³]	650.0	737.5	359.1	929.5
Effective saturation	[kg/m ³]	551.0	728.1	324.1	928.8
Hygroscopic sorption value at RH= 80%	[kg/m ³]	7.2	58.9	CAL	CAL
Water uptake coefficient	[kg/m ³ /s ^{0,5}]	0.28	0.012	0.097	0.85
Pore size distribution factor (n-value)	[-]	-	-	VAR	VAR

Methodology – Sensitivity analysis

- Run Sobol sample generator with parameters, bounds, number of variations and output indices
- N-value represents the accuracy and reliability of the sensitivity analysis and determines the number of samples generated and is set to 128
- Parameter data frame saved to be used multiple times

8		# *** SETUP ***					
9		# 1. IMPORT					
10	\sim	import pandas as pd					
11		from SALib.sample import sobol					
12							
13	\sim	# *** MAIN ***					
14		# 1. SETUP SENSITIVITY ANALYSIS PROBLEM DEFINITION					
15		<pre># * Change *: Optionally change parameters and/or bounds og</pre>	f SA				
16							
17	\sim	problem = {					
18		'num_vars': 5,	#AMOUNT OF PARAMETERS				
19	\sim	'names' : ['I_Thermal Conductivity',	#I_LAMBDA				
20		'I_Water Vapor Diffusion Resistance Factor',	#I_MEW				
21	\sim	'I_NValue',	#NEW_STORAGE_FUNCTIONS:				
22			#I_THETA_CAP				
23			#I_THETA_80				
24		'B_Vapor Diffusion Resistance Factor',	#B_MEW				
25	\sim	'B_NValue'],	#NEW_STORAGE_FUNCTIONS:				
26			#B_THETA_CAP				
27			#B_THETA_80				
28	\sim	'bounds' : [[0.01875, 0.075],	#I_LAMBDA				
29		[1, 100],	#I_MEW				
30		[1.5, 2.75],	#I_N-VALUE				
31		[5, 50],	#B_MEW				
32		[1.2, 2]]	#B_N-VALUE				
33		}					
34							
35	\sim	# 2. CREATE SOBOL SAMPLE COLLECTION and CREATE CSV FILE					
36		<pre># * Change *: n value of accuracy of sensitivity analysis</pre>					
37		sobol_samples_values = sobol.sample(problem, № 128, calc_seco	nd_order=True)				
38		<pre>sobol_samples_for_csv = pd.DataFrame(sobol_samples_values)</pre>					
39		<pre>print(sobol_samples_for_csv)</pre>					
40		# * Change *: Path from content root to dataframe csv storage location					
41		<pre>sobol_samples_for_csv.to_csv(path_or_buf: 'SA_Variants/SA_Sobol Samples v3.csv', index=False)</pre>					
42		print(r'Sobol sample dataframe is created and saved to directory')					

Methodology – Simulation variants

- Three template files with placeholders are used to generated simulation jobs: {MF-I01.m6}, {MF-B01.m6}, {SF_MF-I01-B01.d6p}
- Data file layout for 1 simulation:
 - Moisture content of simulation 1:
 - [Day 1: [Coordinate 1, Coordinate 2, Cn]
 - Day 2: [Coordinate 1, Coordinate 2, Cn]
 - Day 2: [Coordinate 1, Coordinate 2, Cn]]
 - Temperature content of simulation 1:
 - [Day 1: [Coordinate 1, Coordinate 2, Cn]
 - Day 2: [Coordinate 1, Coordinate 2, Cn]
 - Day 2: [Coordinate 1, Coordinate 2, Cn]]

```
# 3. LOOP THROUGH MATERIAL VARIANTS
 for i in range(1536): #add later instead of 1: len(sobol_samples) (or: 1536)
     mc_list_brick = []
     mc_list_insulation = []
    # 3A. IMPORT FROM SOBOL DATAFRAME
     i lambda = sobol samples.iloc[i, 0]
     i_mew = sobol_samples.iloc[i, 1]
     i_nvalue = sobol_samples.iloc[i, 2]
    b_mew = sobol_samples.iloc[i, 3]
    b_nvalue = sobol_samples.iloc[i, 4]
    # 3B. CALCULATE STORAGE FUNCTIONS
    pa_interval = np.logspace( start: 0, stop: 12, num: 50)
    #print(pa_interval)
    pa_interval_log = np.log10(pa_interval)
     for j in range(len(pa_interval)):
         moisture_insulation = float(van_genuchten_theta(pa_interval[j], i_theta_r, i_theta_s, i_alpha, i_nvalue))
        mc list insulation.append(moisture insulation)
     i_mc_thpc_x = " ".join([str(x) for x in pa_interval_log])
    i_mc_thpc_y = " ".join([str(x) for x in mc_list_insulation])
    i_mc_pcth_x = " ".join([str(x) for x in mc_list_insulation[::-1]])
     i_mc_pcth_y = " ".join([str(x) for x in pa_interval_log[::-1]])
     for k in range(len(pa interval)):
         moisture_brick = float(van_genuchten_theta(pa_interval[k], b_theta_r, b_theta_s, b_alpha, b_nvalue))
        mc_list_brick.append(moisture_brick)
    b_mc_thpc_x = " ".join([str(x) for x in pa_interval_log])
    b_mc_thpc_y = " ".join([str(x) for x in mc_list_brick])
    b_mc_pcth_x = " ".join([str(x) for x in mc_list_brick[::-1]])
    b_mc_pcth_y = " ".join([str(x) for x in pa_interval_log[::-1]])
# 4. CREATE LIST OF SIMULATION FILES
#create empty list with all simulation name and job files
list_simulation_files = []
iobs = []
#create simulation files for all different sobol variants
for j in range(1): #location options
    for l in range (1536): #material options (amount of sobol samples:1536)
        #replace placeholders in template with material and climate data and specify database directory
        #variant_2 = project_template.replace('${REP_LOCATION}', '{}'.format(climate_files[i][0]))
        variant_2 = project_template.replace( __old: '${REP_MATERIAL_INSULATION}', '{}'.format(list_material_files_insulation[l]))
        variant_2 = variant_2.replace( __old: '${REP_MATERIAL_BRICK}', '{}'.format(list_material_files_brick[l]))
        variant_2 = variant_2.replace( _old: '${REP_MATERIAL_DATABASE}', __new: r'C:\Users\r.trip\OneDrive - Oosterhoff Group\Documents
        #variant_2 = variant_2.replace('${REP_CLIMATE_DATABASE}', r'C:\Users\r.trip\OneDrive - Oosterhoff Group\Documents\Graduation_
        #write simulation name and add to list
        simulation_file = "SF_MF-I{}-B{}.dóp".format( *args: l, l)
        write_file(VARIANTS_SUBDIR + "/Simulation/" + simulation_file, variant_2)
        list_simulation_files.append(simulation_file[:-4])
        #write simulation job and add to list
        if not os.path.exists(simulation_file[:-4] + "/var/restart.bin"):
            jobs.append([DELPHIN_EXECUTABLE, '-x', '--verbosity-level=0', '-p=2', 'SA_Variants/Simulation again/'+ simulation_file])
print(list_simulation_files)
print(f"Creation of simulation files done")
df_job_list = pd.DataFrame(jobs)
df_job_list.to_csv( path_or_buf: 'SA_Variants/SA_job files 2.csv', index = False)
df_list_simulation_files = pd.DataFrame(list_simulation_files)
df_list_simulation_files.to_csv( path_or_buf: 'SA_Variants/SA_simulation_files.csv', index = False)
```

208

Methodology – Dose calculation

- With the logistic dose-response model the dose is calculated using a moisture and temperature component
- Gives an indication of wood decay. Where the dose is a number in days

$$\begin{split} D_u(u)^* &= e * u^5 - f * u^4 + g * u^3 - h * u^2 + i * u - j \\ D_T(T)^* &= k * T^4 + l * T^3 - m * T^2 + n * T \end{split}$$

if Du > 0 and Dt > 0

$$D = (a * D_T[T] + D_u[u]) * (a + 1)^{-1}$$

Methodology – Dose calculation

- Wood decay rating gives the progression of the decay
 - Decay rating 0 (no attack)
 - Decay rating 1 (slight attack) 230 days
 - Decay rating 2 (moderate attack) 360 days
 - Decay rating 3 (severe attack) 520 days
 - Decay rating 4 (failure)
 1400 days
- Inherent material resistance includes the effect of different wood species and corresponding wood properties
- Spruce as reference wood species

Methodology – Output variables

- Multiple analysis conducted on output variables
 - SA 1: Maximum moisture content in the beam
 - SA 2: Average moisture content in the beam
 - SA 3: Maximum dose value of the beam
 - SA 4: Average dose values of the beam

Geometry selection for sensitivity analysis

Results – Sensitivity analysis

- SA 1: Maximum moisture content in the beam
 - No influence of I_TC, I_WVDRF and B_WVDRF
 - 16.9% of I_NV and 91.8% of B_NV
- SA 2: Average moisture content in the beam
 - No influence of I_TC, I_WVDRF and B_WVDRF
 - 2 % of I_NV and 97% of B_NV
- Indicates I_NV is more influential in moisture extremes and B_NV in long term effects
- Uncertainty in results

0.0

I_TC

I WVDRF

LNV

Variables

B WVDRF

B_NV

Results – Sensitivity analysis

- SA 3: Maximum dose content in the beam
 - No influence of I_TC, I_WVDRF and B_WVDRF
 - 52.4% of I_NV and 54.5% of B_NV
- SA 4: Average dose content in the beam
 - No influence of I_TC, I_WVDRF and B_WVDRF
 - 15.2% of I_NV and 86% of B_NV
- Indicates I_NV is more influential in moisture extremes and B_NV in long term effects
- Difference between maximum values as a result from dose boundary conditions

Results – Tool for wood decay assessment

- To visualise potential of wood decay
 - Development over time
 - Changes in boundary conditions
 - Changes in geometry
 - Changes in material type
- Improve hygrothermal risk assessment

Results – Development over time

Wind driven rain

Pre / post insulation

Material type

Capillary active

1.000

500

Conclusion

What influences the hygrothermal safety of embedded wooden beam in solid brick masonry with interior capillary active insulation most and how to mitigate the risk of wood decay?

Conclusion

- Exterior boundary conditions, such as rain load, solar radiation and orientation are more dominant on hygrothermal performance of the geometry
- Material properties are of secondary importance. Revealing positive contribution to the prevention of wood decay but incapable of reducing moisture content to levels that prevent wood decay completely

Recommendation

- Further research to gain more knowledge on the influence of the boundary conditions on wood decay
- Further research the effect of material properties and geometry changes on the hygrothermal performance of the embedded wooden beam
- Improve wood decay assessments by automatic template files and wood coordinates selection scripts and add species database

Building Technology Graduation Studio

P5 presentation January 13, 2025

> Rik Trip 5421195

Methodology – Bounds (additional pages)

- Bounds:
 - Thermal conductivity (*TC*)

Insulation 0.01875 – 0.075

• Water vapour diffusion resistance factor (WVDRF)

Insulation	1 - 100
Brick	5 – 50

• Pore size distribution factor (*NV*)

Insulation	1.5 – 2.75

Brick 1.2 – 2

Methodology – Bounds (additional pages)

• Brick fitted curve and sensitivity analysis range

Methodology – Bounds (additional pages)

• Insulation fitted curve and sensitivity analysis range

