
RO57035 ROBOTICS MSC THESE

Learning dynamic models of soft
manipulators via physics-inspired
neural networks

Author: Jingyue Liu
Supervisors: Pablo Borja

Cosimo Della Santina
Project duration: December, 2021 – September, 2022

Faculty of Mechanical, Maritime and Materials Engineering (3mE)
Delft University of Technology, Netherlands

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 2

Learning dynamic models of soft manipulators via
physics-inspired neural networks

Jingyue Liu

Abstract—Soft robots are made of compliant materials,
which increase their flexibility but also presents modeling
challenges. The difficulty mainly comes from material
nonlinearity, infinite degrees of freedom, uncertain param-
eters, and complex calculations. This project uses physics-
inspired neural networks to solve the last two problems.
Based on the piece-wise constant curvature approximation,
this work modifies Lagrangian and Hamiltonian neural
networks for dynamic modeling of soft robots. In partic-
ular, local linear damping and actuator models are added
to deep Lagrangian and Hamiltonian neural networks,
and a one-step integration algorithm is used in the loss
calculation. This project justifies the modified network
structure and uses these new neural networks to learn
the dynamic model of soft manipulators.

Index Terms—Soft manipulators, physics-inspired neural
networks, dynamic model, Hamiltonian neural networks,
Lagrangian neural networks

I. INTRODUCTION

Rigid robots are used for various tasks in industry and
everyday life. However, their rigid bodies limit their
maneuverability and capacity to adapt to dynamic en-
vironments. In contrast, most creatures in nature, like
octopuses, fishes, and worms, have flexible bodies that
enable them to adapt well to various habitats. Inspired
by that, researchers have explored the design and control
of soft robots made of compliant materials [1], e.g.,
silicon.

As soft robotics develops rapidly, numerous challenges
arise. First, the lack of mature simulation environments
makes learning problematic. Additionally, soft robots
are more difficult to control [2] due to the less pre-
cise model and lack of suitable sensors. To compen-
sate for inaccurate dynamic models, model-based soft
robotic controllers use high-gain Proportional-Derivative
(PD) controllers, leading to non-compliant and poten-
tially dangerous behavior [3]. But slightly improving
the model can have a significant positive impact on
the performance of the controller [4]. Consequently,
determining the dynamic model of the soft manipulator

is crucial for motion simulation, structural analysis, and
control algorithm development.

A. Current modeling methods for soft robots

Model engineering, black-box model learning, and sys-
tem identification are three traditional modeling tech-
niques.

Model engineering assumes the target system is a per-
fectly rigid body with ideal joints interacting with ideal
environments. The equations of motion can be derived
from Newtonian, Lagrangian, or Hamiltonian mechanics.
This method is reliable and relatively precise for rigid
body systems. However, the method becomes difficult
due to soft robots’ compliant materials [5]. To address
this issue, researchers have created simplified dynamic
models of soft robots by considering various assump-
tions, e.g., reducing soft robots to rigid body systems
[6], centering mass position [7], and abstracting robotic
arms as thin rods [8]. Complex dynamics models of
continuum manipulators based on finite element analysis
have also been proposed, but the tedious calculation
makes it impossible to implement the real-time appli-
cation [9]. Furthermore, poorly understood phenomena,
such as friction, wear, and fluids in robots may reduce
the accuracy of the analysis of the dynamics.

Data-driven methods like machine learning and deep
learning seem suitable for modeling soft robots. These
methods avoid complex analysis and predominate in
developing kinematic models [10][11][12] and dynamic
models [13][14][15] of soft manipulators. The current
learning methods for the soft robot modeling are the
Gaussian process [16][17][18], Feedforward Neural Net-
works (FNNs) [14][19], UNet [15] and Recurrent Neural
Networks (RNNs) [20][21][22]. Despite the impressive
capabilities of the learning methods, the problems they
bring cannot be ignored. The black-box model cannot
provide valuable information about the system itself.
And the learning results may be deceptive. Most stud-
ies [23][24][25] show that black-box models can make
accurate predictions in the distribution of training data,
but are hard to extrapolate. Highly expressive neural
networks (NNs) are often overparameterized. Moreover,

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 3

learning methods ignore the system’s physical proper-
ties, and the resulting models often violate scientific
laws.

B. Physics-inspired neural networks

System identification is the most commonly used mod-
eling method. This approach requires knowledge of the
model structure from the laws of physics, followed by
parameter estimations. Physics-inspired neural networks
(PINNs) can be classified as a category of system identi-
fication where the means of parameter estimation is deep
learning.

PINNs solve supervised learning tasks while respecting
physical laws described by general nonlinear partial
differential equations (PDEs). After being proposed in
[25] and [24], they have been used extensively in physics
for solving PDEs and modeling complex systems, e.g.,
earth science, fluid mechanics, fiber optics, and materials
science. The PINNs framework mainly involves three
aspects: a) creating the NNs’ structure according to the
physics knowledge, b) using scientific knowledge as a
loss function, and c) constraining the learned parameters
based on physical properties such as symmetry and
positivity.

Several works have built continuous-time dynamic mod-
els that combine Lagrangian or Hamiltonian mechan-
ics with deep learning, which can be generalized as
Deep Lagrangian Networks (DeLaNs) [26], Lagrangian
Neural Networks (LNNs) [27], and Hamiltonian Neu-
ral Networks (HNN) [28]. These networks ensure the
scientificity of the system and significantly reduce the
dependence on data by introducing physical priors. These
three types of networks are validated in simulations and
some simple systems. However, they are hard to apply
to robotics. The main reasons are: DeLaNs ignore the
energy dissipation and the actuator model; LNNs do not
consider external forces and only aim to prove the energy
conservation of the learned system; for HNNs, direct
momentum measurement is almost impractical.

C. Research objectives

Building the analytical model of soft robots requires
many simplifications and complex calculations, and
purely data-based models are unreliable. In comparison,
PINNs might be the optimal solution. It does not need to
make too many assumptions and can reduce the cost of
manual calculations. Moreover, providing general laws
can reduce the massive data requirements for learning
and improve the transparency and reliability of the
resulting models. In this project, we use the piece-wise

constant curvature (PCC) method [29] to determine the
configuration of the soft robot. Based on this approxima-
tion, the soft manipulator’s equations of motion (EOM)
can be proposed and then solved by PINNs.

The objectives of this project are:

• Enriching the DeLaNs’ structure to capture more
phenomena in modeling, especially the dissipation
and actuator model;

• Combining the improved Lagrangian NNs and
Hamiltonian NNs with the PCC method to complete
the dynamic modeling of the soft manipulator;

• Comparing the models learned by the improved
PINNs and FNNs, and evaluating the properties of
the proposed method.

The rest of the paper is structured as follows: In Sec-
tion II, we present the preliminaries. In particular, we
briefly review Lagrangian and Hamiltonian mechanics
in Subsection II-A, and the PCC method of the soft
manipulator is presented in Subsection II-B. In Section
III, we introduce the modified network structure in detail
and provide the experimental setup. In Section IV, we
share the modeling results in simulating one- and double-
segment manipulators. In Section V, we show the results
of experiments. In Section VI, we discuss our findings
and some remaining questions of this project.

II. PRELIMINARIES

A. Lagrangian and Hamiltonian Dynamics

The dynamic equations of almost all physical systems
can be expressed in Lagrangian or Hamiltonian me-
chanics. For the Lagrangian, the state of the system
is given by the generalized coordinates q ∈ RN and
their velocities q̇ ∈ RN , where N is the number of
coordinates. The Lagrangian equation can be written
as

d

dt

(
∂L(q, q̇)

∂q̇j

)
− ∂L(q, q̇)

∂qj
= Qj , (1)

where L(q, q̇) = K(q, q̇) − V (q). The kinetic energy
can be computed by K(q, q̇) = 1

2 q̇
TM(q)q̇, where

M(q) is the mass matrix. The potential energy V (q)
includes gravitational and elastic potential energy. And
Qj is the generalized force corresponding to the j-th
generalized coordinate.

Hamiltonian mechanics uses the momentum, p ∈ RN ,
to replace the velocity q̇ in Lagrangian mechanics and
its equations are

dq

dt
=

∂H(q,p)

∂p
,

dp

dt
= −∂H(q,p)

∂q
, (2)

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 4

where H(q,p) = K(q,p) + V (q). The kinetic energy
is defined as K(q,p) = 1

2p
TM(q)−1p.

In practical engineering problems, there are speed-
dependent dissipative forces that reduce the total energy
of the system. The Rayleigh dissipation function is
denoted by

R(v) =
1

2

N∑
i=1

(kxv
2
i,x + kyv

2
i,y + kzv

2
i,z), (3)

where vi is the i-th particle’s velocity, k is the drag
coefficient. Considering the dissipation force formula
F⃗d = −∇vR(v), the generalized dissipation force can
be expressed as

Fd = D(q)q̇, (4)

where D(q) is the damping matrix. Besides, the external
force can be simplified as

Fext = A(q)u, (5)

where u is the input of the system. The A(q) maps u
to the configuration coordinator.

According to the chain rule, the Lagrangian is

q̈ =

(
∂2L

∂q̇2

)−1(
A(q)u− ∂2L

∂q∂q̇
+

∂L

∂q
−D(q)q̇

)
.

(6)

The Hamiltonian equation becomes[
q̇
ṗ

]
=

[
0 I
−I −D(q)

][∂H
∂p
∂H
∂q

]
+

[
0

A(q)u

]
. (7)

B. Soft manipulators’ dynamic models analysis

Soft robots have continuous deformation, so the number
of variables in their PDEs should be infinite. Several
works propose hypotheses to obtain the reduced kine-
matic models of soft manipulators. These works include
the Pseudo Rigid method [30], the PCC method [31],
and the Frenet-Serret framework [32].

Different modeling approaches ultimately go back to
a typical result of constant-curvature kinematics [29].
Thus, in this project, we restrict our attention to the PCC
approximation. The PCC method, shown in Fig. 1, de-
fines three parameters for one segment, qi = [ϕi, θi, δLi],
where ϕi is the plane orientation; θi is the curvature in
that plane; and δLi is the change of arc length. In this
case, we can describe the dynamic models in Eq. (6) or
(7).

The detailed information and the calculation process of
the transformation matrix and Jacobian matrix using the
PCC method can be found in Appendix A.

Fig. 1. PCC approach illustration: two-segment soft manipulator is
shown, where Si is the end frame, the blue parts are the orientated
plane, L is the original length of each segment

III. METHODOLOGY

A. Physics-based neural networks

A classic learning approach is to train an approximation
model, e.g., a neural network, fNN : D → T, where
D is the input data and T is the corresponding set of
labels, over numerous training samples. The model can
then be used to estimate the target variable, T̂.

In this project, we want to know more detailed properties
of the target system, like the mass matrix M(q), the
potential forces G(q), the dissipation matrix D(q), and
the input matrix A(q). For this purpose, we divide the
entire network into four sub-parts.

According to physics, the mass and damping matrices are
positive definite and positive semi-definite, respectively.
Hence, based on the Cholesky decomposition [33], they
can always be decomposed into a lower triangular matrix
L with positive diagonal entries and its transpose, U =
LLT . The frameworks for M(q) and D(q) are shown
in Figs. 2 and 3, respectively.

Fig. 2. Diagram for system’s mass matrix or inverse mass matrix
including a feed-forward neural network, a positive shift for diagonal
entries and the Cholesky decomposition

The output of these two networks is a vector of di-
mension (N2 +N)/2, where the first N output values,[
d00 d11 ... dNN

]
, are for the diagonal entries of the

lower triangular matrix. Some activation functions, such
as Softplus and ReLU, make these values non-negative.

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 5

Fig. 3. Diagram for system’s dissipation matrix including a neural
network

Then, a small positive shift, +ϵ, can make the values pos-
itive for the mass matrix. The other (N2−N)/2 number
of values,

[
l10 l20 l21... lN(N−1)

]
, are placed in the

lower left corner of the L matrix. Then, M(q) and D(q)
can be obtained by the decomposition rule.

A simple feed-forward NN with only one output is used
to calculate the value V(q, θ3) representing the potential
energy V(q), shown in Fig. 4.

Fig. 4. Diagram for system’s potential energy

The output of the input matrix network, shown in Fig.
5, is a vector with dimension MN , which then is
transformed into a matrix, A(q, θ4) ∈ RN×M .

Fig. 5. Diagram for actuator model’s input transformation matrix

After having these sub-networks, we can get the esti-
mated M̂(q), V̂(q), D̂(q), and Â(q) by feeding them
the corresponding q. Then by providing

[
q q̇ u

]T
for Lagrangian NNs or

[
q p u

]T for Hamiltonian
NNs, ˆ̈q or

[
ˆ̇q ˆ̇p

]T
can be calculated via Eq. (6) or (7).

Besides, we can use the one-step Runge-Kutta algorithm
to predict the next state

[
q̂ ˆ̇q

]T
or

[
q̂ p̂

]T .

If the mechanical system’s state transitions are given
by some dataset D = [qk, q̇k,uk,qk+1, q̇k+1 | k ∈

{0, ..., N − 1}] or D = [qk,pk,uk,qk+1,pk+1 | k ∈
{0, ..., N − 1}], the loss function is defined as

loss :=
1

N

N−1∑
k=1

∥ qk+1− q̂k+1 ∥2 +λ ∥ q̇k+1− ˆ̇qk+1 ∥2

(8)
for Lagrangian NNs, or

loss :=
1

N

N−1∑
k=1

∥ qk+1− q̂k+1 ∥2 +λ ∥ pk+1− p̂k+1 ∥2

(9)
for Hamiltonian NNs, where λ ∈ R is a factor that
measures the weight of position and velocity in the
loss function. If the acceleration is measurable, the
integration process can be omitted and the loss can be
directly obtained by

loss :=
1

N

N∑
k=1

∥ q̈k − ˆ̈qk ∥2 . (10)

Gradient descent methods such as Stochastic Gradient
Descent (SGD), Adam or RAdam are used to tune the
parameters, θ1, θ2, θ3 and θ4, to minimize the loss.

Based on the proposed analysis, a complete PINN can
be constructed. Figs. 6 and 7 show PINNs for the
Lagrangian and Hamiltonian, respectively.

B. Simulation and experiment design

To validate the feasibility of the proposed PINNs, we
apply the modified Lagrangian and Halmitonian NNs
to learn the dynamic models of some simple simulated
systems. For this purpose, two tasks are created: (Task
1) a mass-spring-damper system; and (Task 2) a double
pendulum system. Then, three more tasks are created to
test the adaptability of the method to the soft manipu-
lator: (Task 3) a one-segment planar soft manipulator
with momentum data; (Task 4) a one-segment spatial
soft manipulator with momentum and velocity data;
and (Task 5) a two-segment spatial soft manipulator
with velocity data. For the practical experiment, our
experimental platform is a one-segment soft manipulator
driven by four Dynamixel XH430-W350 motors and
equipped with four force sensors and one IMU.

Data Generation: Mathematical models in Python and
MATLAB generate training data for simulation tasks. For
Tasks 1 and 2, three different initial states are randomly
selected to collect 10 seconds of data. The learned mod-
els are tested with more different trajectories. For Tasks
3 and 4, ten combinations of initial states and inputs
are used to generate data, each combination providing
10 seconds of data. For Task 5, we use Simulink’s

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 6

Fig. 6. The overview of Lagrangian Neural Networks Fig. 7. The overview of Hamiltonian Neural Networks

variable-step and tiny fixed-step strategies to generate
two different datasets. A variable-step approach is used
to create twelve different 60-second trajectories. And
they are resampled in MATLAB at fixed frequencies of
50Hz, 100Hz, and 1000Hz. Among them, eight trajec-
tories’ data are used for training. The fixed-step strategy
generates five trajectories, three of which are used for
training. More details can be found in Table IV-B. In
practical experiments, the tendon-driven continuum robot
[34] generates data driven by four motors. The motor’s
signal is a sinusoidal signal with different frequencies
and amplitudes. The tip orientation data of the robot is
recorded by the IMU. A total of 128 trajectories are
recorded. The last eight trajectories are used for the
test.

Baseline Models: We set up baseline models for all
tasks to demonstrate the value of incorporating physics
knowledge into NNs. The baseline model is trained by
FNNs using the same dataset but with more data.

Model training: JAX and dm-Haiku packages in Python
build all NNs used in this project. The JAX Autodiff sys-
tem provides the computation of partial derivatives and
Hessian in the loss function. The AdamW [35] in Optax
package is used to optimize the model’s parameters. The
batch size of the optimizer varies between 500 and 1200.
We record the values and variances of training loss and
test loss during all training.

IV. SIMULATION RESULTS

The modified Lagrangian NNs can be verified via Tasks
1, 2, and 3. The corresponding results are shown in Table
IV-B and Appendix B.

A. one-segment 3D soft manipulator

In the task, the configuration-defined method in [36] is
used, where θ and ϕ in the PCC method are replaced by
the difference of arc length ∆xi and ∆yi.

A) Prediction comparison results

B) Prediction error

Fig. 8. Task 4: Comparison of learned models: A) shows the black-
box model (△) vs physics-based learning model (- -) predictions with
the same initial state for 10s; B) shows the absolute error of the black-
box model (△) and physics-based learning model (- -) prediction.

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 7

A) Lagrangian NNs long time prediction results B) Hamltonian NNs long time prediction results

Fig. 9. Task 4: 30s prediction results: A) is the Lagrangian-based learned model B) is the Hamiltonian-based learned model

The black-box model is trained using 19188 samples for
15000 epochs, while the Lagrangian-based model based
on Fig. 6 is trained with randomly chosen 8000 samples
from the same dataset.

The prediction results of these two learned models
are compared in Fig. 8. The black-box model quickly
loses its predictive ability as observed in this figure. In
contrast, the Lagrangian-based model is able to predict
future states for any initial state and input signal.

This system is also learned with the Hamiltonian NNs
in Fig. 7. Fig. 9 shows the long-term predictive ability
of these two physics-based learning models.

Besides, the matrices obtained from these two physics-
based learning models are shown in Tables I and II.
As Table II shows, the Hamiltonian NNs can learn the

physically meaningful matrices, while the Lagrangian
NNs only learns one of the solutions satisfying the
Lagrangian equation. A closer inspection of the matrices
of Table I shows that the mass matrices and dissipation
matrices obtained from the Lagrangian NNs have a
transform relationship with the true value of the form,
M(q) = P (q)M̂(q) and D(q) = P (q)D̂(q).

The results show that physics-based NNs exhibit better
learning ability and efficiency in dynamic modeling
problems than FNNs.

B. two-segment 3D soft manipulator

In this task, models at 50Hz, 100Hz and 1000Hz are
trained by Lagrangian NNs based on Fig. 6 for 5500
epochs with 45000 samples.

TABLE I
TASK 4: MATHEMATICAL MODEL MATRICES VS. PHYSICS-BASED LEARNING MODEL MATRICES (LAGRANGIAN LEARNING MODEL)

q mathematical model physics-based learning model
P

M(q) D(q) G(q) A(q) M̂(q) D̂(q) Ĝ(q) Â(q) 1.2
−0.2
0.15

 1.728e− 03 −3.121e− 05 −1.957e− 03
−3.121e− 05 1.546e− 03 3.261e− 04
−1.957e− 03 3.261e− 04 9.286e− 02

 0.1 0 0
0 0.1 0
0 0 0.1

 1.293
−0.216
−1.149

 −0.037 −0.9934 0.065
0.777 0.037 −0.011
0. 0. 0.771

 4.232e− 3 1.201e− 3 −0.029
1.201e− 3 5.990e− 3 −0.015
−0.029 −0.015 0.586

 0.161 −0.017 0.004
−0.017 0.333 −0.008
0.004 −0.008 0.347

 2.436
−0.612
−5.246

 0.120 −1.715 −0.213
3.049 −0.193 −0.126
−0.343 1.011 3.396

 0.611 −0.020 0.0250
−0.023 0.280 0.005
.330 0.150 0.246

0.80.2
0.3

 3.639e− 03 4.518e− 05 −1.936e− 03
4.518e− 05 3.470e− 03 −4.841e− 04
−1.936e− 03 −4.841e− 04 9.666e− 02

 0.894
0.223
−1.090

 0.026 −0.994 0.064
0.897 −0.026 0.016
0. 0. 0.890

 6.930e− 3 1.839e− 3 −0.025
1.839e− 3 0.012 −0.019
−0.025 −0.019 0.503

 0.166 −0.008 −0.002
−0.008 0.327 −0.009
−0.002 −0.009 0.346

 1.618
0.813

−4.670

 0.187 −1.655 −0.195
2.970 −0.254 −0.126
−0.401 1.005 3.425

 0.623 −0.021 0.027
−0.018 0.310 0.011
0.205 0.095 0.261

−1.0
−0.6
0.1

 1.245e− 03 5.786e− 05 1.406e− 03
5.786e− 05 1.183e− 03 8.435e− 04
1.406e− 03 8.435e− 04 9.342e− 02

 −1.067
−0.640
−1.212

 0.093 −0.944 −0.047
0.844 −0.093 −0.028
0. 0. 0.788

 3.297e− 03 4.995e− 04 −2.668e− 02
4.995e− 04 4.186e− 03 −1.486e− 02
−2.668e− 02 −1.486e− 02 6.665e− 01

 0.1821 −0.011 0.003
−0.0107 0.312 0.014
0.003 0.014 0.341

 −1.460
−1.894
−5.008

 −0.119 −1.694 −0.108
3.043 −0.097 −0.417
−0.997 0.601 2.470

 0.565 0.038 0.012
0.042 0.309 0.012
0.817 0.307 0.297

TABLE II
TASK 4: MATHEMATICAL MODEL MATRICES VS. PHYSICS-BASED LEARNING MODEL MATRICES (HAMILTONIAN LEARNING MODEL)

q mathematical model physics-based learning model
M−1(q) D(q) G(q) A(q) M̂−1(q) D̂(q) Ĝ(q) Â(q) 1.2

−0.2
0.15

 593.089 9.346 12.465
9.346 647.606 −2.078
12.465 −2.078 11.039

 0.1 0 0
0 0.1 0
0 0 0.1

 1.293
−0.216
−1.149

 −0.037 −0.999 0.065
0.777 0.037 −0.011
0. 0. 0.771

 600.323 16.899 15.670
16.899 622.923 −1.336
15.670 −1.336 11.605

 1.017e− 01 3.440e− 03 8.115e− 05
3.440e− 03 1.0470e− 01 −4.393e− 04
8.115e− 05 −4.393e− 04 9.910e− 02

 1.333
−0.179
−1.152

 −0.0576 −0.942 0.049
0.831 0.022 −0.039
−0.002 0.01 0.781

0.80.2
0.3

 277.757 −2.842 5.550
−2.842 288.415 1.388
5.550 1.388 10.464

 0.894
0.223
−1.090

 0.026 −0.994 0.064
0.897 −0.026 0.016
0. 0. 0.890

 285.011 11.078 6.647
11.078 292.460 2.056
6.647 2.056 10.586

 1.01e− 01 3.475e− 03 6.555e− 04
3.475e− 03 1.034e− 01 −7.452e− 05
6.555e− 04 −7.452e− 05 9.872e− 02

 0.928
0.254
−1.096

 2.445e− 02 −9.552e− 01 4.540e− 02
9.243e− 01 −2.873e− 02 −1.999e− 02
−6.097e− 03 2.900e− 03 8.847e− 01

−1.0
−0.6
0.1

 818.576 −31.462 −12.034
−31.462 852.136 −7.220
−12.034 −7.220 10.951

 −1.067
−0.640
−1.212

 0.093 −0.944 −0.047
0.844 −0.093 −0.028
0. 0. 0.788

 826.142 1.609 −11.095
1.609 790.088 −9.921

−11.095 −9.921 11.208

 0.104 −0.007 −0.002
−0.007 0.106 −0.004
−0.002 −0.004 0.105

 −1.01
−0.644
−1.293

 0.053 −0.966 −0.065
0.869 −0.027 −0.019
−0.032 0.0232 0.872

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 8

A) 50Hz B) 100Hz C) 1000Hz

Fig. 10. Task 5: Two-segment soft manipulator prediction performances under different sampling frequencies

Fig.10 summarizes the prediction results of these three
models. The figure shows that the higher the sampling
frequency, the more accurate the learned model.

Fig. 11. Task 5: Black-box model (△) vs physics-based learning
model (- -) predictions with the same initial state as the true trajectory

The prediction results of the black-box model and the

physics-based learning model are compared in Fig. 11.
The figure shows that the black-box model, converges
during training, but has no predictive ability.

Fig. 12. Task 5: physics-based learning model (- -) trained with the
fixed-step sampling frequency data

In addition, the results of the Lagrangian-based model

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 9

TABLE III
DETAILED INFORMATION OF THE FIVE SIMULATION TASKS

Task Spring-Damping
System Double Pendulum one-segment planar

soft manipulator
one-segment spatial

soft manipulator
timestep 0.02s 0.08s 0.02s 0.005s

B
la

ck
-B

ox
m

od
el model 4 * 2 32 * 4 32 * 2 128*5

sample number 41,599 5000 11000 19188
training epoch 4.0 * 1e4 2.5 * 1e4 2.4 * 1e4 15000

Train error 1.712e-04 ± 4.77e-04 3.790e-05 ± 9.65e-05 7.901e-05 ± 2.32e-04 6.891e-05 ± 4.63e-04
Test error 1.774e-04 ± 4.39e-04 6.432e-05 ± 1.43e-04 8.121e-05 ± 5.32e-04 1.606e-04 ± 6.65e-03

prediction error 2.001 ± inf (2.7s) 1.697 ± inf(2.7s) 0.110 ± inf(5s) 7.647 ± 10.413 (5s)

Ph
ys

ic
s-

ba
se

d
le

ar
ni

ng
m

od
el model (4 * 2)*2 + 4 * 2 (32 * 4)*2 + 32* 4 (128* 5)*2 + 128 *5 + 4*3 (30*3)*2 + 5*3 + 15* 2

sample number 10000 5000 5000 8.000
training epoch 6000 8.200 14000 5.000

Train error 5.969e-08 ± 1.69e-07 3.277e-06 ± 9.28e-06 8.827e-07 ± 1.34e-05 8.302e-05 ± 1.48e-03
Test error 5.172e-08 ± 1.23e-07 3.048e-06 ± 7.69e-06 4.162e-06 ± 7.38e-06 6.513e-05 ± 1.18e-03

prediction error 1.303e-04 ± 5.324e-06 (2.7s) 2.231e-04 ± 1.332e-03(2.7s) 5.214e-06 ± 6.345e-07(5s) 0.171 ± 0.272(5s)
Task two-segment spatial soft manipulator

timestep fixed time-step
(0.0002s)

variable time-step
(resample as 50Hz)

variable time-step
(resample as 100 Hz)

variable time-step
(resample as 1000 Hz)

B
la

ck
-B

ox
m

od
el model 152*3 152*3

sample number 160000 59200
training epoch 1.5 * 1e4 1.5 * 1e4

Train error 1.758e-04 ± 2.99e-04 3.536e-04 ± 1.08e-03
Test error 1.865e-04 ± 3.38e-04 4.445e-04 ± 1.60e-02

prediction error 172.765 ± 231.762 (10s) 44.683± 4.51810s)

Ph
ys

ic
s-

ba
se

d
le

ar
ni

ng
m

od
el model (42*3)*2 + 5*2 + 42*2 (42*3)*2 + 5*2 + 42*2 (42*3)*2 + 5*2 + 42*2 (42*3)*2 + 5*2 + 42*2

sample number 42000 45000 45000 45000
training epoch 5500 5500 5500 5500

Train error 4.127e-09 ± 1.12e-08 5.916e-04 ± 8.61e-03 1.652e-04 ± 2.12e-02 1.822e-07 ± 6.67e-06
Test error 2.523e-09 ± 6.03e-09 9.723e-04 ± 1.33e-02 2.748e-04 ± 5.23e-02 2.322e-07 ± 3.21e-06

prediction error 16.715± 9.876(10s) 2.098 ± 1.253(10s) 1.690 ± 0.673(10s) 0.089 ± 0.278(10s)

trained on the fixed-step size dataset are shown in the
Fig.12. From this figure we can see that the data quality
issues due to the singularity of the mathematical model
eventually caused the accuracy problem of the learned
model.

All the results of the simulation are included in Table
IV-B. And more detailed information can be found in
Appendix B.

V. EXPERIMENTAL RESULTS

The experiment platform is shown in Fig. 13, which is
constructed based on [37] . As discussed in Subsection
III-B, the manipulator is driven by four motors, and the
IMU fixed on the top plate of the manipulator records
the angle data of the arm tip. The recorded data are
preprocessed by polynomial fitting or moving average.
The data and its processing visualization results can be
found in Appendix B.

A. Smoothing data model results

We implement the moving average method in MATLAB
using the movmean function with a window size of 20.
After smoothing and resampling, the processed data is
used for training by the Lagrangian NNs based on Fig.
6. Fig. 14 compares the continuous prediction ability

Fig. 13. Experiment platform: One-segment cable-driven soft
manipulator equipped with IMU

of black-box and Lagrangian-based learning models.
The physics-based model can make relatively accurate
predictions within 5 seconds, which means it can predict
the system’s state 25 times in a row.

The long-term predictions can be realized by updating
the prediction results with the real value every 3 seconds,
as shown in Fig.15.

B. polynomial fitting data model results

The polynomial fitting of the data is done in MATLAB
by function polyfit. After processing, 48200 samples

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 10

Fig. 14. The smoothing data black-box model (△) and physics-based
learning model (- -) continuous prediction results for 8 seconds

Fig. 15. Smoothing data learning model long time predictions with
3 seconds state updating

are available for training. The prediction results of the
model are shown in Fig. 16.

Fig. 17 shows the prediction results of the physics-
based learning model updating prediction results every
3 seconds. More detailed training and prediction results
are shown in Table IV and Appendix B.

Fig. 16. Fitting data black-box model (△) and physics-based
learning model (- -) continuous prediction results for 8 seconds

Fig. 17. Fitting data learning model long time predictions with 3
seconds state updating

TABLE IV
DETAILED INFORMATION OF THE PRACTICAL EXPERIMENT

one-segment cable soft manipulator
smoothing polynomial fitting

B
la

ck
-B

ox
m

od
el step size 0.2s 0.2s

model 60*3 60*3
sample number 69426 57950
training epoch 10000 5000

Train error 1.985e-02 ± 1.85e-01 4.431e-03 ± 3.07e-02
Test error 2.311e-02 ± 2.89e-01 4.350e-03 ± 4.07e-02

prediction error 13.229± 60.762 (5s) 8.368±12.575 (5s)

P
hy

si
cs

-b
as

ed
le

ar
ni

ng
m

od
el model (21*2)*2 + 25*2 +10*2 (21*3)*2 + 18*2 +18*2

sample number 69426 48200
training epoch 3000 5000

Train error 2.277e-02 ± 2.39e-01 2.758e-03 ± 2.84e-02
Test error 2.701e-03 ± 2.92e-02 2.633e-03 ± 3.31e-02

prediction error 2.429 ± 1.259 (5s) 6.426±36.237(5s)

VI. DISCUSSION

A. Findings

All the simulation tasks illustrated that learning be-
comes more instructive and directional when guided
by physical knowledge. Models trained with smaller
datasets and specific data domains but with physical
knowledge become more general and robust. Therefore,
continuous long-term and variable step-size predictions
can be easily achieved. In particular, compared to FNNs,
physics-based learning methods significantly reduce data
dependence, optimize predictive ability, and mend the
shortcomings of the black-box nature of NNs.

The simulations also show that the accuracy of the
learned model increases with decreasing sampling fre-
quency. The sampling frequency represents the time
interval between the training data and the labels. One
possible explanation is that the accuracy of the Runge-
Kutta integration algorithm becomes low when the step
size is large. In this case, we need to increase the
sampling frequency or use the acceleration information
directly as training labels to avoid this problem.

We also compare the advantages and disadvantages of
Lagrangian and Hamiltonian NNs in this project. The
Hamiltonian NNs are low computational complexity

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 11

since the computation of the Hessian matrix is avoided.
And it gives the solution that satisfies the parameters of
the physical system. For Lagrangian neural networks, it
is surprising that as the complexity of the system in-
creases, the relationship between the learned matrix and
the actual matrix changes from simple scaling to some
unknown transformation. If the system is a two-segment
manipulator, we can see the similarity between these
two matrices but not their exact relationship. However,
a great advantage of Lagrangian NNs over Hamiltonian
NNs is that velocity measurement is practical in the real
world.

Based on the results of the actual experiments, we can
say that the physics-based NNs can learn the dynamic
model of the soft robot and make accurate predictions
ten times in a row. However, compared to their simu-
lations, the models trained on experimental data are far
from satisfactory. These unpleasant results are probably
related to:

• The sampling frequency of the IMU is very low.
From the simulation results, we know that it is
challenging to learn an accurate model even at
50Hz. Using 5Hz data for model training definitely
has a significant negative impact on the final result.

• Excessive data preprocessing methods cause the
physical properties of the data to be lost. Comparing
the two data processing methods, we find that
polynomial fitting improves the accuracy of the
FNNs models but decreases the accuracy of the
physics-based learning models. We suspect that the
inappropriate polynomial fitting alters the properties
of the data, weakening or changing the objective
physical laws of the system.

• Bad data comes from sensors’ measurement error
and cumulative error. The control signals are peri-
odic. In all data plots, the angular changes in the y-
axis and z-axis are periodic, but the angular changes
in the x-direction are entirely random and irregular.

B. Open challenges

Based on the above findings, we can say that the prelim-
inary results are quite promising, but there is still much
room for improvement.

As for neural networks, future work can start from the
following aspects:

• Solve the slow training problem of Lagrangian NNs
by using the computation or estimation algorithm
for the Hessian in [38].

• Obtain the ideal solution of Lagrangian NNs by
providing additional labels or learning the actuator
model separately.

• Design algorithms to estimate or approximate the
momentum so that Hamiltonian NNs do all the
learning.

In soft robot modeling, the main problem currently is
accurately and efficiently capturing the robot’s pose.
Sensors for soft robotics are also a hot research topic.
Improving soft robots’ sampling efficiency and data
quality is also a follow-up issue worthy of attention. With
the advancement of sensor technology, the modeling of
soft robots will also improve significantly.

VII. CONCLUSION

In this research, we mainly adopt physics-based neural
networks to learn the dynamic models of soft robot
manipulators from simulation to actual experiments. We
improve and extend the current Lagrangian network
model by adding linear damping and actuator models.
We add a Runge-Kutta single-step integration method
for loss calculation to overcome the lack of acceleration
data. We have experimentally demonstrated the possi-
bility and effectiveness of modeling soft robots using
physics-based neural networks and provided suggestions
for subsequent improvement.

VIII. ACKNOWLEDGMENTS

The completion of this project should be attributed to
Pablo’s careful guidance, from literature research to
experimental design. Thanks also to Cosimo for sup-
porting my project and patiently helping me when I got
stuck. Sincere thanks go to Bastian Deutschmann, the
inventor of the experimental platform, and his team. In
addition, thanks to Francesco and Pablo for building the
experimental platform.

REFERENCES

[1] M. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh, G. M.
Whitesides, J. A. Lewis, and R. J. Wood, “An integrated design
and fabrication strategy for entirely soft, autonomous robots,”
Nature, vol. 536, no. 7617, pp. 451–455, 2016.

[2] Wilfried Sire and Guilhem Velvé Casquillas, “Soft robot:
A review,” https://www.elveflow.com/microfluidic-reviews/
general-microfluidics/soft-robot/# ftnref18, Last accessed on
2022-6-25.

[3] N. Ratliff, F. Meier, D. Kappler, and S. Schaal, “Doomed: Direct
online optimization of modeling errors in dynamics,” Big data,
vol. 4, no. 4, pp. 253–268, 2016.

https://www.elveflow.com/microfluidic-reviews/general-microfluidics/soft-robot/#_ftnref18
https://www.elveflow.com/microfluidic-reviews/general-microfluidics/soft-robot/#_ftnref18

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 12

[4] A. Kazemipour, O. Fischer, Y. Toshimitsu, K. W. Wong,
and R. K. Katzschmann, “Adaptive dynamic sliding mode
control of soft continuum manipulators,” arXiv preprint
arXiv:2109.11388, 2021.

[5] T. George Thuruthel, E. Falotico, L. Beccai, and F. Iida,
“Machine learning techniques for soft robots,” Frontiers in
Robotics and AI, vol. 8, p. 205, 2021.

[6] C. Della Santina, R. K. Katzschmann, A. Biechi, and D. Rus,
“Dynamic control of soft robots interacting with the environ-
ment,” in 2018 IEEE International Conference on Soft Robotics
(RoboSoft). IEEE, 2018, pp. 46–53.

[7] A. Kazemipour, O. Fischer, Y. Toshimitsu, K. W. Wong, and
R. K. Katzschmann, “Adaptive dynamic sliding mode control of
soft continuum manipulators,” in 2022 International Conference
on Robotics and Automation (ICRA). IEEE, 2022, pp. 3259–
3265.

[8] C. Della Santina, C. Duriez, and D. Rus, “Model based control
of soft robots: A survey of the state of the art and open
challenges,” arXiv preprint arXiv:2110.01358, 2021.

[9] G. Runge and A. Raatz, “A framework for the automated design
and modelling of soft robotic systems,” CIRP Annals, vol. 66,
no. 1, pp. 9–12, 2017.

[10] M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and
C. Laschi, “Learning the inverse kinetics of an octopus-
like manipulator in three-dimensional space,” Bioinspiration &
biomimetics, vol. 10, no. 3, p. 035006, 2015.

[11] A. Melingui, R. Merzouki, J. B. Mbede, C. Escande, B. Daachi,
and N. Benoudjit, “Qualitative approach for inverse kinematic
modeling of a compact bionic handling assistant trunk,” in 2014
International Joint Conference on Neural Networks (IJCNN).
IEEE, 2014, pp. 754–761.

[12] T. G. Thuruthel, E. Falotico, M. Cianchetti, and C. Laschi,
“Learning global inverse kinematics solutions for a continuum
robot,” in Symposium on robot design, dynamics and control.
Springer, 2016, pp. 47–54.

[13] A. Tariverdi, V. K. Venkiteswaran, M. Richter, O. J. Elle,
J. Tørresen, K. Mathiassen, S. Misra, and Ø. G. Martinsen,
“A recurrent neural-network-based real-time dynamic model for
soft continuum manipulators,” Frontiers in Robotics and AI,
vol. 8, p. 45, 2021.

[14] M. T. Gillespie, C. M. Best, E. C. Townsend, D. Wingate,
and M. D. Killpack, “Learning nonlinear dynamic models of
soft robots for model predictive control with neural networks,”
in 2018 IEEE International Conference on Soft Robotics (Ro-
boSoft), 2018, pp. 39–45.

[15] P. Hyatt, D. Wingate, and M. D. Killpack, “Model-based control
of soft actuators using learned non-linear discrete-time models,”
Frontiers in Robotics and AI, vol. 6, p. 22, 2019.

[16] A. P. Sabelhaus and C. Majidi, “Gaussian process dynamics
models for soft robots with shape memory actuators,” in 2021
IEEE 4th International Conference on Soft Robotics (RoboSoft).
IEEE, 2021, pp. 191–198.

[17] H. Wang, J. Chen, H. Y. Lau, and H. Ren, “Motion planning
based on learning from demonstration for multiple-segment
flexible soft robots actuated by electroactive polymers,” IEEE
Robotics and Automation Letters, vol. 1, no. 1, pp. 391–398,
2016.

[18] G. Fang, X. Wang, K. Wang, K.-H. Lee, J. D. Ho, H.-C. Fu,
D. K. C. Fu, and K.-W. Kwok, “Vision-based online learning
kinematic control for soft robots using local gaussian process
regression,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 1194–1201, 2019.

[19] R. L. Truby, C. Della Santina, and D. Rus, “Distributed propri-
oception of 3d configuration in soft, sensorized robots via deep
learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 3299–3306, 2020.

[20] A. Fathi and A. Mozaffari, “Modeling a shape memory alloy
actuator using an evolvable recursive black-box and hybrid
heuristic algorithms inspired based on the annual migration of
salmons in nature,” Applied Soft Computing, vol. 14, pp. 229–
251, 2014.

[21] B. B. Kang, D. Kim, H. Choi, U. Jeong, K. B. Kim, S. Jo,
and K.-J. Cho, “Learning-based fingertip force estimation for
soft wearable hand robot with tendon-sheath mechanism,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 946–953,
2020.

[22] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, “Learning
dynamic models for open loop predictive control of soft robotic
manipulators,” Bioinspiration & biomimetics, vol. 12, no. 6, p.
066003, 2017.

[23] B. Kailkhura, B. Gallagher, S. Kim, A. Hiszpanski, and T. Han,
“Reliable and explainable machine-learning methods for accel-
erated material discovery,” npj Computational Materials, vol. 5,
no. 1, pp. 1–9, 2019.

[24] A. Daw, A. Karpatne, W. Watkins, J. Read, and V. Kumar,
“Physics-guided neural networks (pgnn): An application in lake
temperature modeling,” arXiv preprint arXiv:1710.11431, 2017.

[25] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris,
S. Wang, and L. Yang, “Physics-informed machine learning,”
Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021.

[26] M. Lutter, C. Ritter, and J. Peters, “Deep lagrangian networks:
Using physics as model prior for deep learning,” arXiv preprint
arXiv:1907.04490, 2019.

[27] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel,
and S. Ho, “Lagrangian neural networks,” arXiv preprint
arXiv:2003.04630, 2020.

[28] S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural
networks,” Advances in neural information processing systems,
vol. 32, 2019.

[29] R. J. Webster III and B. A. Jones, “Design and kinematic
modeling of constant curvature continuum robots: A review,”
The International Journal of Robotics Research, vol. 29, no. 13,
pp. 1661–1683, 2010.

[30] M. Khoshnam and R. V. Patel, “A pseudo-rigid-body 3r model
for a steerable ablation catheter,” in 2013 IEEE International
Conference on Robotics and Automation. IEEE, 2013, pp.
4427–4432.

[31] M. W. Hannan and I. D. Walker, “Kinematics and the implemen-
tation of an elephant’s trunk manipulator and other continuum
style robots,” Journal of robotic systems, vol. 20, no. 2, pp.
45–63, 2003.

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 13

[32] N. Kuppuswamy and J.-P. Carbajal, “Learning a curvature
dynamic model of an octopus-inspired soft robot arm using
flexure sensors,” Procedia Computer Science, vol. 7, pp. 294–
296, 2011.

[33] G. H. Golub and C. F. Van Loan, Matrix computations. JHU
press, 2013.

[34] B. Deutschmann, J. Reinecke, and A. Dietrich, “Open source
tendon-driven continuum mechanism: A platform for research
in soft robotics,” in 2022 IEEE 5th International Conference on
Soft Robotics (RoboSoft), 2022, pp. 54–61.

[35] I. Loshchilov and F. Hutter, “Decoupled weight decay regular-
ization,” arXiv preprint arXiv:1711.05101, 2017.

[36] C. Della Santina, A. Bicchi, and D. Rus, “On an improved
state parametrization for soft robots with piecewise constant
curvature and its use in model based control,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 1001–1008, 2020.

[37] B. Deutschmann, “Tendondrivencontinuum,” https://github.
com/DLR-RM/TendonDrivenContinuum, 2022.

[38] H. Zhou, C. Ibrahim, W. X. Zheng, and W. Pan, “Sparse
bayesian deep learning for dynamic system identification,”
Automatica, vol. 144, p. 110489, 2022.

https://github.com/DLR-RM/TendonDrivenContinuum
https://github.com/DLR-RM/TendonDrivenContinuum

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 14

APPENDIX

A. Analytical models of soft manipulators

Fig. 18. PCC configuration definition and five steps D-H method

The PCC model defined three parameters for one segment, qi = [ϕi, θi, δLi]. By using the D-H method shown in
Fig.18, the transformation matrix can be calculated by three rotation matrices and two translation matrices:

T i
i−1(qi) = Trz(ϕi)Tpx(λi)Try(θi)Tpx(−λi)Trz(−ϕi)

=

[
Θi

i−1 Ψi
i−1

0 1

]
,

(11)

where λi = (Li0 + δLi)/θi is the radius of the curvature. Θi
i−1 and Ψi

i−1 are rotation matrix and translation vector
respectively. Trz ∈ R4×4 and Try ∈ R4×4 are the rotation homogeneous transformation matrices (HTM) about the
z-axis and x-axis, and Tpx ∈ R4×4 is the translation HTM about y-axis, which are expressed as:

Trz(ϕi) =

cosϕi −sinϕi 0 0
sinϕi cosϕi 0 0
0 0 1 0
0 0 0 1

 ,

Try(θi) =

cosθi 0 sinθi 0
0 1 0 0

−sinθi 0 cosθi 0
0 0 0 1

 ,

Tpx(λi) =

1 0 0 λi

0 1 0 0
0 0 1 0
0 0 0 1

 .

(12)

The whole transformation matrix T i
i−1 is expressed by:

T i
i−1(qi) =

cos2ϕi(cosθi − 1) + 1 sinϕicosϕi(cosθi − 1) sinθicosϕi λicosϕi(1− cosθi)
sinϕicosϕi(cosθi − 1) sin2ϕi(cosθi − 1) + 1 sinθisinϕi λisinϕi(1− cosθi)

−sinθicosϕi −sinθisinϕi cosθi λisinθi
0 0 0 1

. (13)

After obtaining the one segment homogeneous transformation matrix, we can know that the forward HTM of the
N-th segment relative to the base coordinator {S0} is:

N
0 T (qN) =

N∏
k=1

{kk−1T (qk)Trz(
π

adof
)} =

[
ΘN (qN) ΨN (qN)
01×3 1

]
, (14)

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 15

Fig. 19. Schematic diagram of slice coordinates and physical quantities

where adof is the number of actuator in each segment. The actuators’ positions differ from segment to segment by
a fixed angle π/adof . qN is the total vector in the configuration space, which is expressed as qN = [q1,q2, ...,qN],
where qk = [ϕk, θk, δLk].

If we assume that the actions of the latter segment do not affect former ones, we can use the rotation matrix Θ
and translation vector Ψ to calculate the linear and angular velocity of m-segment’s top coordinator relative to the
base coordinator

vm(qm) = J0v
m (qm)q̇m, (15)

ωm(qm) = J0ω
m (qm)q̇m, (16)

where qm is the first m segments’ configuration space, and J0v
m and J0ω

m are linear and angular Jacobian in inertial
coordinator. They are calculated by:

J0v
m =

∂Ψm

∂qm
∈ R3×3m,

J0ω
m = [

∂Θm

∂qm
ΘT

m]∨ ∈ R3×3m.

(17)

We decompose one segment into countless thin plate in Fig.19 and assume that:

1) The arc shape (constant curvature) is maintained in each segment of the continuous manipulator.
2) The cross-section of each segment is symmetric about the neutral axis, with the center of gravity at the center

of each sheet.
3) Segments are kinematically independent.
4) There is only a change in the length of the segment, and the radius and the position between each other

remain unchanged.
5) Each segment has a constant mass, and a variable but uniform density.

The linear velocity vi and angular velocity ωi of the plate can be compute by Equation (15) and (16), but the
i-segment’s configuration θi should be replaced by ζiθi, where ζi ∈ [0, 1] The angular kinetic energy and translation
kinetic energy of this thin plate are:

δEω
ki =

1

2
ωT
i (miδζiIxxdiag(1, 1, 2))ωi, (18)

δEv
ki =

1

2
vTi (miδζiI3)vi. (19)

Then the total kinetic energy of this i-segment is

Ki = Eω
ki(q

i) + Ev
ki(q

i)

=

∫
ζi

(q̇TJω
i
T (miδζiIxxdiag(1, 1, 2))Jω

i q̇) +
∫
ζi

(q̇TJv
i
T (miδζiI3)Jv

i q̇).
(20)

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 16

The potential energy of this thin plate is defined as

δP g
i (ζi,q

i) = (miδζ)Ψ
T
i (ζθi)g, (21)

where g = [0, 0, g]T is the gravity vector of {S0}, and ΨT
i (ζθi) is the translation vector which θi is replaced by

ζθi. The total gravitational energy of this i-segment is then determined as

P g
i (q

i) =

∫
ζi

δP g
i = mi(

∫
ζi

ΨT
i)g. (22)

The elastic energy of any continuum section is due to the axial elastic deformation of variable length actuators
(e.g.PMAs) during operation. The elastic energy of the i-th continuum segment is given by

P e
i (q

i) =
1

2
qiTKe

i qi, (23)

where Ke
i = Diag{Ki1,Ki2,Ki3} and Kij is the elastic stiffness coefficients of actuators. Then, the total potentia

energy is calculated as
Vi = P g

i (q
i) + P e

i (q
i). (24)

Afterwards, we can use Lagrangian mechanics to deduce it equations of motion.

B. Simulations

1. Task 1: mass-spring-damper system In this task, we use the Lagrangian NNs and FNNs to learned an unactuated
spring damping system, shown in Fig. 20.

Fig. 20. Unactuated mass-spring-damper system example

The dynamics are given by:[
m1 0
0 m2

] [
q̈1
q̈2

]
+

[
k1 −k1
−k1 k1 + k2

] [
q1
q2

]
+

[
b −b
−b b

] [
q̇1
q̇2

]
= 0, (25)

where m1 and m2 are 1.0 and 1.8, k1 and k2 are 2.1 and 4.6, b is 0.3. In this example, we compare the prediction
ability of a naive black-box and our physics-based learning model. The training and testing loss of the black-box
model and the physics-based learning model is shown in Figs.21 and 22.

Fig. 21. Naive black box model training curve Fig. 22. Physics-based learning model training curve

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 17

A random initial states is provided to the two models, and the prediction results and ground truth are shown in
Fig.23.

Fig. 23. Task 1: Black-box learning model and physics-based learning model prediction results comparison

Furthermore, physics-based learning models provide us with more information about the system. In this task,
although the system is linear, we train it as a non-linear system. The ground truth and learned matrices are provided
in Table V.

TABLE V
TASK 1: MATHEMATICAL MODEL MATRICES VS. PHYSICS-BASED LEARNING MODEL MATRICES

Ground Truth q1 =
[
0.5 0.5

]
q2 =

[
0.0 0.0

]
q3 =

[
0.0 −0.8

]
Estimated α

M
[
1.0 0
0 1.8

] [
0.301 −0.002
−0.002 0.543

] [
0.299 −0.002
−0.002 0.539

] [
0.299 −0.0029

−0.0029 0.535

]
0.302

G
[
2.1q1 − 2.1q2
−2.1q1 + 6.7q2

] [
−0.004
0.692

] [
−0.005
0.005

] [
0.506
−1.596

]
D

[
0.3 −0.3
−0.3 0.3

] [
0.0905 −0.093
−0.093 0.095

] [
0.089 −0.091
−0.091 0.0919

] [
0.093 −0.091
−0.091 0.089

]

In Table V, if the ground truth is timed by the estimated α, we will get a matrix that is really close to the learned
one. In addition, since the physical parameters themselves are learned, the step size of the simulation is not limited
to be consistent with the learned data. Fig.24 shows the prediction with a time step of 0.02s, and Fig.25 shows the
prediction with a time step of 0.1s.

Fig. 24. Task 1: Physics-based learning model prediction results
with time-step size (0.02s) as the training data

Fig. 25. Task 1: Physics-based learning model prediction results
with time-step size (0.1s)

2. Task 2: double pendulum In this task, we use the physics-based learning network to learn a simple nonlinear
systems. A mathematical model of the simplified double pendulum is established as shown in the Fig.26.

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 18

Fig. 26. Simplified double pendulum system example

underlying dynamics of this simplified double pendulum is given by[
(m1 +m2)l

2
1 m2l1l2cos(q1 − q2)

m2l1l2cos(q1 − q2) m2l
2
2

] [
q̈1
q̈2

]
+

[
−2m2l1l2sin(q1 − q2)q̇2 m2l1l2sin(q1 − q2)q̇2
−m2l1l2sin(q1 − q2)q̇1 2m2l2sin(q1 − q2)q̇1

] [
q̇1
q̇2

]
+

[
−(m1 +m2)gl1sinq1

−m2gl2sinq2

]
= 0,

(26)

where, in our case, m1 and m2 is 1.0; l1 and l2 is 1.0; and g is 9.8. Both models are trained on the same dataset
with 5000 samples. The black-box model is trained for 30000 epochs, while the physics-based learning model is
trained for only 8200 epochs. The loss curves training black box model and physics-based learning model of task
two is shown in Figs.27 and 28.

Fig. 27. Black-box model training curve Fig. 28. Physics-based learning model training curve

The predictive ability of physics-based learning model and the traditional FNNs model for this system are compared
in Fig.29.

Fig. 29. Task 2 : Black-box learning model and physics-based learning model prediction results comparison

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 19

Here we give several random configuration states, and compute the mass matrices and potential forces for
mathematical models and physics-based learning models of these states.

TABLE VI
TASK 2: MATHEMATICAL MODEL MATRICES VS. PHYSICS-BASED LEARNING MODEL MATRICES

state (q) Mathematical model Physics-based learning model
αM(q) G(q) M(q) G(q) D(q)[

π/5
π/9

] [
2. 0.961

0.961 1.

] [
11.521
3.352

] [
0.644 0.309
0.309 0.322

] [
3.711
1.085

] [
0.001 0.001
0.001 0.002

]
0.323[

2.123
0.01

] [
2. −0.516

−0.516 1.

] [
16.687
0.098

] [
0.672 −0.188
−0.188 0.344

] [
5.845
−0.021

] [
0.001 0.001
0.001 0.002

]
0.321[

−0.6
−2.3

] [
2. −0.129

−0.129 1.

] [
−11.067
−7.308

] [
0.635 −0.040
−0.040 0.326

] [
−3.395
−2.21

] [
0.001 0.001
0.001 0.002

]
0.312[

1.9
−0.35

] [
2. −0.628

−0.628 1.

] [
18.548
3.360

] [
0.679 −0.239
−0.239 0.357

] [
6.205
−0.999

] [
0.001 0.001
0.001 0.002

]
0.345[

π/3.3
0.28

] [
2. 0.783

0.783 1.

] [
15.966
2.708

] [
0.645 0.252
0.252 0.321

] [
5.130
0.881

] [
0.001 0.001
0.001 0.002

]
0.323

Fig.30 is the prediction results with a time step as 0.08s, and Fig.31 shows the prediction results with a time step
as 0.15s.

Fig. 30. Task 2: Physics-based learning model prediction results
with time-step size (0.08s) as the training data

Fig. 31. Task 2: Physics-based learning model prediction results
with time-step size (0.15s)

3. Task 3: one-segment planar soft manipulator The task is to validate a physics-based learning model based
on Hamiltonian mechanics shown in Fig.7, and its implementation in a slightly more difficult system. On the basis
of the PCC model, the cylinder manipulator is further simplified into a thin rod.

Fig. 32. Simplified one-segment planar soft manipulator system

Its configuration space is defined as q =
[
δL θ

]T . The translation vector is

Ψ =

[
(L+ δL)(1− cos(ζθ))/θ

(L+ δL)sin(ζθ)/θ

]
. (27)

H =

∫ 1

0

1

2
q̇T (

∂Ψ

∂q
)Tmdζ

∂Ψ

∂q
q̇+ (

∫ 1

0
−gmdζ(L+ δL)sin(ζθ)/θ +

∫ 1

0
(
1

2
k2δL

2 +
1

2
k1θ

2)) (28)

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 20

In this example, we set the original length of the manipulator L to 1.0, the mass m to 1.0, the damping coefficient
d to 0.4, and the spring coefficient k1 and k2 to 10.0. After obtaining a dataset of 11000 samples, we use 5000 of
them to train our physics-based learning model for 18000 epochs, and use all 11000 to train a black-box learning
model for 24000 epochs. The loss plots for training black box model and physics-based learning model are shown
in Fig.34.

Fig. 33. Naive black box model training curve Fig. 34. Physics-based learning model training curve

The 2.7 second simulation results of black-box model and physics-based learning model can be seen in Fig.35.

Fig. 35. Task 3 : Black-box learning model and physics-based learning model prediction results comparison

The comparison results of the mass matrix, potential force, damping matrix and input matrix of the mathematical
model and learning model are shown in Table VII. Since this task uses a Hamiltonian NNs, the learned matrices
can be directly compared with the theoretical value.

TABLE VII
TASK 3: MATHEMATICAL MODEL MATRICES VS. PHYSICS-BASED LEARNING MODEL MATRICES

q mathmatical model physics-based learning model
M-1(q) D(q) G(q) A(q) M-1(q) D(q) G(q) A(q)

[1.5, 1]
[
5.677 0.856
0.856 3.487

] [
0.400 0.0
0.0 0.400

] [
17.106
5.948

] [
1.000
0.0

] [
5.738 0.868
0.868 3.489

] [
4.011e− 01 −1.830e− 04
−1.830e− 04 4.000e− 01

] [
17.138
5.955

] [
1.000e+ 00
3.410e− 04

]
[1.2, 0.2]

[
15.065 1.088
1.088 3.303

] [
13.069
−2.344

] [
15.102 1.100
1.100 3.303

] [
0.401 −0.001
−0.001 0.400

] [
13.090
−2.356

] [
1.002
−0.001

]
[0.3, 0.3]

[
11.895 0.232
0.232 3.018

] [
3.317
−1.868

] [
11.906 0.243
0.243 3.021

] [
0.400 0.001
0.001 0.400

] [
3.319
−1.862

] [
1.001

−4.537e− 04

]
[0.8, 0.9]

[
5.744 0.437
0.437 3.131

] [
9.191
4.351

] [
5.721 0.438
0.438 3.127

] [
0.401 0.001
0.001 0.401

] [
9.186
4.358

] [
1.000

−1.302e− 03

]
[0.6, 0.2]

[
14.174 0.511
0.511 3.073

] [
6.575
−2.760

] [
14.177 0.511
0.511 3.076

] [
0.400 0.001
0.001 0.400

] [
6.577
−2.763

] [
1.001

−1.078e− 03

]
[0.5, 0.5]

[
9.015 0.338
0.338 3.050

] [
5.603
0.196

] [
9.020 0.348
0.348 3.055

] [
0.400 0.001
0.001 0.400

] [
5.606
0.207

] [
1.001

2.314e− 04

]
[0.1, 0.1]

[
16.538 0.091
0.091 3.002

] [
1.090
−3.901

] [
16.574 0.085
0.085 3.004

] [
0.401 0.000
0.000 0.401

] [
1.096
−3.903

] [
1.001

2.186e− 03

]

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 21

And the different time-step size prediction results are shown in Fig.37.

Fig. 36. Task 3: Physics-based learning model prediction results
with time-step size (0.02s) as the training data

Fig. 37. Task 3: Physics-based learning model prediction results
with time-step size (0.1s)

4. Task 4: one-segment spatial soft manipulator The loss plots for training black-box model and Lagrangian-based
and Hamiltonian-based learning model are shown below:

Fig. 38. Black-box model training curve Fig. 39. Lagrangian NNs training curve Fig. 40. Hamiltonian NNs training curve

More Lagrangian-based learning model prediction results are showing in Fig.41.

Fig. 41. Task 4: The prediction results of Lagrangian-based learning model

More learned matrices information are provided in Table VIII

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 22

TABLE VIII
TASK 4 APPENDIX: PHYSICS-BASED LEARNING MODEL MATRICES (LAGRANGIAN LEARNING MODEL)

q M(q) D(q) G(q) A(q)

m
a
th

e
m

a
ti

c
a
l

m
o
d
e
l

[
1.0 0.2 0.15

] 1.758e− 03 2.691e− 05 −1.665e− 03
2.691e− 05 1.629e− 03 −3.331e− 04
−1.665e− 03 −3.331e− 04 9.493e− 02

 0.1 0 0
0 0.1 0
0 0 0.1

 1.080

0.216
−1.148

 −0.032 −0.994 0.055
0.842 −0.032 −0.011
0. 0. 0.835

[
0.1 0.1 0.0

] 5.991e− 04 4.756e− 07 −9.992e− 05
4.756e− 07 5.991e− 04 −9.992e− 05
−9.992e− 05 −9.992e− 05 9.991e− 02

 0.105
0.105
−1.469

 0.002 −0.998 0.003
0.998 −0.002 0.003
0. 0. 0.997

[
−0.5 −0.1 0.1

] 1.335e− 03 5.252e− 06 7.409e− 04
5.252e− 06 1.310e− 03 1.482e− 04
7.409e− 04 1.482e− 04 9.871e− 02

 −0.536
−0.107
−1.340

 0.008 −0.998 −0.025
0.959 −0.008 −0.005
0. 0. 0.957

[
−1.5 1.0 0.25

] 2.483e− 3 −2.812e− 4 2.887e− 3
−2.812e− 4 2.248e− 3 −1.925e− 3
2.887e− 3 −1.925e− 3 8.496e− 2

 −1.633
1.088

−0.864

 −0.212 −0.858 −0.0956
0.6814 0.212 0.064
0. 0. 0.540

p
h
y
si

c
s-

b
a
se

d
le

a
rn

in
g

m
o
d
e
l [

1.0 0.2 0.15
] 4.082e− 3 1.300e− 3 −0.027

1.300e− 3 5.915e− 3 −0.018
−0.027 −0.018 0.580

 0.163 −0.014 0.004
−0.014 0.330 −0.006
0.004 −0.006 0.346

 2.008
0.782
−5.233

 0.187 −1.695 −0.206
3.004 −0.268 −0.112
−0.420 1.027 3.459

[
0.1 0.1 0.0

] 2.164e− 3 7.384e− 4 −2.700e− 2
7.384e− 4 2.479e− 3 −1.658e− 2
−2.700e− 2 −1.658e− 2 7.623e− 1

 0.179 0.011 0.011
0.011 0.307 0.010
0.011 0.010 0.338

 0.408
0.474
−5.18

 0.185 −1.835 −0.162
3.094 −0.067 −0.057

−0.675 0.842 3.123

[
−0.5 −0.1 0.1

] 3.365e− 03 7.760e− 04 −2.565e− 02
7.760e− 04 4.455e− 03 −1.683e− 02

−− 2.565e− 02 −1.683e− 02 6.403e− 01

 0.184 0.007 −0.002
0.007 0.304 0.008
−0.002 0.008 0.339

 −0.646
−0.203
−5.167

 0.083 −1.782 −− 0.145
3.047 −0.062 −0.159
−0.816 0.704 2.824

[
−1.5 1.0 0.25

] −0.212 −0.858 −0.096
0.681 0.212 0.064
0. 0. 0.540

 0.180 0.011 0.003
0.011 0.261 0.001
0.003 0.001 0.306

 −2.022
3.091

−4.283

 0.048 −1.551 −0.19
2.856 −0.181 0.130
−1.349 0.182 2.535

More Hamiltonian-based learning model prediction results are in Fig.42.

Fig. 42. Task 4: The prediction results of Hamiltonian-based learning model

More learned matrices information of Hamiltonian NNs are also provided in Table IX

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 23

TABLE IX
TASK 4 APPENDIX: PHYSICS-BASED LEARNING MODEL MATRICES (HAMILTONIAN LEARNING MODEL)

q M − 1(q) D(q) G(q) A(q)

m
a
th

e
m

a
ti

c
a
l

m
o
d
e
l

[
1.0 0.2 0.15

] 578.506 −7.488 10.123
−7.488 614.447 2.025
10.123 2.025 10.719

 0.1 0 0
0 0.1 0
0 0 0.1

 1.080

0.216
−1.198

 0.032 −0.994 0.055
0.842 −0.032 0.011
0. 0. 0.835

[
0.1 0.1 0.0

] 1.669e3 −1.0469 1.669
−1.0469 1.669e3 1.669
1.669 1.669 1.001e1

 0.105
0.105
−1.469

 0.002 −0.998 0.003
0.998 −0.002 0.003
0. 0. 0.997

[
−0.5 −0.1 0.1

] 752.028 −2.377 −5.641
−2.377 763.436 −1.128
−5.641 −1.128 10.174

 −0.5361578
−0.107
−1.340

 0.008 −0.998 −0.025
0.959 −0.008 −0.005
0. 0. 0.957

[
−1.5 1.0 0.25

] 423.139 41.416 −13.442
41.416 457.653 8.961
−13.442 8.961 12.431

 −1.633
1.088

−0.864

 −0.212 −0.858 −0.0956
0.6814 0.212 0.064
0. 0. 0.540

p
h
y
si

c
s-

b
a
se

d
le

a
rn

in
g

m
o
d

e
l [

1.0 0.2 0.15
] 587.968 18.122 13.207

18.122 606.240 3.171
13.208 3.171 11.156

 1.012e− 01 4.457e− 03 8.152e− 04
4.457e− 03 1.0390e− 01 −9.149e− 05
8.152e− 04 −9.149e− 05 9.875e− 02

 1.128
0.258
−1.206

 0.003 −0.938 0.041
0.887 −0.037 −0.025
−0.006 0.007 0.836

[
0.1 0.1 0.0

] 1.570e3 −2.301e1 3.543
−2.301e1 1.554e3 1.531
3.543 1.531 1.023e1

 0.102 0.003 8.515e− 04
0.003 0.104 −0.001

8.515e− 04 −0.001 0.100

 0.105
0.116
−1.453

 2.653e− 03 −0.987 −0.001
0.997 0.003 0.009
−0.010 0.011 0.986

[
−0.5 −0.1 0.1

] 773.202 6.858 −5.651
6.858 750.952 −2.085
−5.651 −2.085 10.256

 1.015e− 01 2.024e− 05 1.091e− 03
2.024e− 05 1.016e− 01 −5.076e− 04
1.091e− 03 −5.076e− 04 1.011e− 01

 −0.538
−0.111
−1.337

 −0.002 −0.9989 −0.035
0.964 0.009 0.007
−0.017 0.014 0.977

[
−1.5 1.0 0.25

] 420.579 18.688 −13.034
18.688 405.393 8.132
−13.034 8.132 12.472

 0.102 −0.004 0.001
−0.004 0.103 −0.004
0.001 −0.004 0.103

 −1.548
1.113

−0.883

 −0.260 −0.758 −0.112
0.747 0.150 0.071

−0.008 −0.005 0.577

5. Task 5: two-segment spatial soft manipulator The loss plots for fixed time-step data, 50Hz resampled data,
100Hz resampled data and 1000Hz resampled data training loss are shown in the followings:

Fig. 43. Fixed time-step data training curve Fig. 44. 50Hz resampled data training curve

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 24

Fig. 45. 100Hz resampled data training curve Fig. 46. 1000Hz resampled data training curve

The prediction ability of the fixed step-size learned model is proved Fig.47.

Fig. 47. Task 5: Prediction results trained on the fixed time-step size (0.0002s) data

The prediction ability of the 50Hz learned model is proved by Fig.48

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 25

Fig. 48. Task 5: Prediction results trained on the 50Hz resampled data

The prediction ability of the 100Hz learned model is proved by Fig.49:

Fig. 49. Task 5: Prediction results trained on the 100Hz resampled data

The prediction ability of the 1000Hz learned model is proved by Fig.50:

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 26

Fig. 50. Task 5: Prediction results trained on the 1000Hz resampled data

Experiment

Here we provide a few examples of unprocessed data in Fig.51.

Fig. 51. Examples of raw data collected by the force sensors and IMU

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 27

1) smoothing data experiment results: The preprocessing performance is shown in Fig.52.

Fig. 52. Process data method: A) shows the 50 windows length smooth data method results; B) shows the polynomial fitting method results

Compared with the data processed by polynomial fitting and the simulation results, the smoothing data model has
a slow convergence speed under this algorithm, and the convergence range is also small. The training curves of the
smoothing data models are in Figs.53 and 54.

Fig. 53. Naive black box model training curve Fig. 54. Physics-based learning model training curve

More no updating prediction results of the physics-based learning model are shown in Fig.55.

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 28

Fig. 55. 6 seconds prediction results of the physics-based learning model without resetting

Fig. 56. Prediction results of the physics-based learning model with 4 seconds resetting

Besides, we provided some comparison results with the simple FNNs in Fig.57.

Fig. 57. Black-box model (△) vs physics-based learning model(- -) predictions with the same initial state as the smoothing data

2) polynomial fitting data experiment results: The training curves of the fitting data model are shown in Figs.58
and 59

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 29

Fig. 58. Naive black box model training curve Fig. 59. Physics-based learning model training curve

More testing results are provided in Figs.60, 61 and 62.

Fig. 60. 5 seconds prediction results of the physics-based learning model without resetting

Fig. 61. 20 seconds prediction results of the physics-based learning model with A) 10-steps update state and B) 20-steps update state

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 30

Fig. 62. 80 seconds prediction results of the physics-based learning model with A) 10-steps update state and B) 20-steps update state

Fig. 63. Black-box model (△) vs physics-based learning model(−) predictions with the same initial state as the fitting data

C. JAX introduction

In machine learning (ML), TensorFlow and PyTorch are the two most packages, but some new forces should
not be underestimated in addition to these two frameworks. JAX is one of them, which promises to make ML
programming more intuitive, structured, and concise. We will briefly compare the features of Tensorflow, PyTorch
and JAX, and then introduce some common JAX methods and the methods used in this project in detail.

TABLE X
COMPARISON OF TENSORFLOW, PYTORCH, AND JAX FRAMEWORKS

TensorFlow PyTorch JAX
Developed by Google Facebook Google
Flexible No Yes Yes

Target Audience Researchers,
Developers

Researchers,
Developers Researchers

Development Stage Mature Mature Developing
Low/High-level API High level Both Both

TensorFlow: The availability of high-level API-Keras makes model layer definition, loss function, and model
creation very easy, but this high-level interface of Keras has certain disadvantages. It gives researchers less freedom
in working with models; Tensorflow provides TensorBoard, which is effectively a Tensorflow visualization toolkit.

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 31

PyTorch: PyTorch includes low-level APIs that allow for more and more control over machine learning models.
We can inspect and modify the output of the model’s forward and backward passes during training. PyTorch also
allows users to extend the code to easily add new loss functions and user-defined layers. PyTorch’s Autograd
module implements back-propagation derivatives in deep learning algorithms. Autograd can automatically provide
differentiation for all operations on the Tensor class, which simplifies the complex process of manually calculating
derivatives.

JAX: JAX can perform composable transformations of Python+NumPy programs: vmap or pmap, JIT to GPU/TPU,
etc. The most important aspect of JAX compared to PyTorch is how gradients are calculated. In Torch the graph
is created during the forward pass and the gradients are computed during the backward pass, on the other hand,
in JAX the computation is represented as a function.

Below, we introduce the shining points of JAX in detail.
1) Numpy on CPU, GPU and TPU: JAX provides an API similar to NumPy and is mainly used for array
manipulation programs written to perform transformations. Some people even think that JAX can be regarded
as Numpy v2, which not only speeds up Numpy but also provides an automatic derivation (grad()) function for
Numpy so that we can implement a machine learning framework only with JAX. This means that everywhere
you use numpy, you can use jax.numpy instead, and the usage is the same. Some simple examples are provided
below.

import jax.numpy as jnp

def predict (params, inputs):
for W, b in params:

outputs = jnp.dot(inputs, W) + b
inputs = jnp.tanh(outputs)

return outputs

def loss fn(params, inputs, targets):
preds = predict (params, inputs)
return np.sum((preds − targets)**2)

2) Autograd from mathematical view: Using jax can easily calculate gradient, Jacobian and Hessian from a formula
perspective.

TABLE XI
JAX AUTODIFF API

Computation Method
Gradient jax.grad()
Evaluate a function and its gradient jax.value and grad()
Jacobian jax.jacfwd() / jax.jacrev()
Hessian jax.hessian()

import jax

loss grad fn = jax.grad(loss fn)
loss hessian fn = jax.hessian(loss fn)

Hessian calculation with JAX is compilated via XLA to efficient GPU, CPU, or TPU code. The official
documentation proves that the speedup is about 500 times compared to normal NumPy code. Here is a simple
example to test the efficiency of the autodiff tool using JAX.

import jax.numpy as jnp

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 32

from jax import grad, jit , vmap, jacfwd, jacrev
import jax
import numpy as np
import timeit

@jit
def gauss2d(x0, y0, amp, sigma, rho, diff , a):

”””
Sample model: Gaussian on a 2d plane
”””
dx=a [...,0]− x0
dy= a [...,1]− y0
r=jnp.hypot(dx, dy)
return amp*jnp.exp(−1.0/ (2*sigma**2) * (r**2 +

rho*(dx*dy)+
diff *(dx**2−dy**2)))

def mkobs(p, n, s):
"A simulated observation"
aa=np.moveaxis(np.mgrid[−2:2:n*1j, −2:2:n*1j], 0, −1)
aa=np.array(aa, dtype="float64")
m=gauss2d(*p, aa)
return aa, m + np.random.normal(size=m.shape, scale=s)

@jit
def cauchy(x, g, x0):

return 1.0/(jnp. pi * g) * g **2/((x−x0)**2+g**2)

@jit
def cauchyll(o, m, g):

return −1 * jnp. log(cauchy(m, g, o)).sum()

def makell(o, a, g):
def ll (p):

m=gauss2d(*p, a)
return cauchyll(o, m, g)

return jit (ll)

def hessian(f):
return jit (jacfwd(jacrev(f)))

P=jnp.array ([0.,0., 1.0, 0.5, 0., 0.], dtype="float64")

a, o = mkobs(P, 3000, 0.5)
ff =makell(o, a, 0.5)
hf=hessian(ff)
ndhf=jax.hessian(ff)

JIT warmup call. Smallish effect if number is large in timeit

TU-DELFT, RO57035 RO MSC THESIS, SEPTEMBER 28, 2022 33

hf(P).block until ready()

print("Time with JAX:", timeit.timeit("hf(P).block_until_ready()", number=10,
globals=globals()))

print("Time with finite diff:", timeit.timeit("ndhf(P)", number=10, globals=globals()))

Running this Intel CPU (no GPU) I get following timings for 10 runs using timeit:
- Time with JAX and automatic differentiation: 16s
- Time with JAX function valuation and finite-difference differentiation (with Numdifftools) : 891s
- Time with plain numpy and numerical differentiation (with Numdifftools): 9900s
Runing this with GPU:
- Tine with JAX and and automatic differentiation: 0.128s
3) Just-in-time compilation (JIT): JAX’s jax.jit() transformation will perform just-in-time (JIT) compilation of a
JAX Python function for efficient execution in XLA.

loss grad fn = jax. jit (jax .grad(loss fn))

4) Vectorization: The vmap function in JAX creates a function which maps fun over argument axes.

perex grads = jax. jit (jax .vmap(loss grad fn, in axes=(None, 0, 0)))

	Introduction
	Current modeling methods for soft robots
	Physics-inspired neural networks
	Research objectives

	Preliminaries
	Lagrangian and Hamiltonian Dynamics
	Soft manipulators' dynamic models analysis

	Methodology
	Physics-based neural networks
	Simulation and experiment design

	Simulation Results
	one-segment 3D soft manipulator
	two-segment 3D soft manipulator

	Experimental Results
	Smoothing data model results
	polynomial fitting data model results

	Discussion
	Findings
	Open challenges

	Conclusion
	Acknowledgments
	References
	Appendix
	Analytical models of soft manipulators
	Simulations
	smoothing data experiment results
	polynomial fitting data experiment results

	JAX introduction
	Numpy on CPU, GPU and TPU
	Autograd from mathematical view
	Just-in-time compilation (JIT)
	Vectorization

