
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Analyzing Asynchronous Reset
Glitches during Scan-Test
Master Thesis at NXP Semiconductors
Saul Pennings

Analyzing Asynchronous Reset
Glitches during Scan-Test
Master Thesis at NXP Semiconductors

by

Saul Pennings

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Wednesday June 12, 2024 at 13:00 AM.

Student number: 4477502
Thesis committee : Said Hamdioui TU Delft

Chris Verhoeven TU Delft
Moritz Fieback TU Delft
Ghazanfar Ali NXP - Semiconductors

Internship supervisor: Richard Morren NXP - Semiconductors

June 7, 2024

Abstract

As technology nodes continue to shrink, more challenges arise in the field of Design for Testability (DfT).
Sequential Integrated Circuits (IC) with asynchronous (re)set flip-flops are notorious for producing
unwanted reset behaviour during scan-test. Typically the scan flip-flops are restricted to a non-reset
state while the shift operation is performed. This can be achieved by inserting an independent test
signal in parallel with each local reset port. This ensures that the scan flip-flops are loaded with the
correct input data during the shift cycle. However, before the capture cycle is initiated, this test signal
must be released as it prohibits the reset logic from being tested with stuck-at-faults. When there are
multiple cascading resets present in the design this release can cause glitches to occur. Since the reset
ports operate asynchronously, these glitches can also trigger a scan flip-flop to reset, thereby changing
the input data. As a result, some chips may be tested with corrupted input data, leading to differences
in scan patterns. Consequently, these ICs fail during manufacturing tests and are classified as faulty,
leading to yield loss.

By adding DfT to the (re)set port of each flip-flop these glitches can be prevented at the cost of additional
hardware. This thesis establishes the conditions that lead to the occurrence of asynchronous (re)set
glitches during scan-test. A model is proposed to find race conditions that are caused by the de-assertion
of the independent test signal. Based on this model a design rule-based algorithm is presented that
analyzes glitchy structures based on the number of inversions of the combinational logic between
(re)set flip-flops. It accurately identifies which (re)set ports are susceptible to glitches except for circuits
where there is reconvergence from the same source. As an extension, a simulation-based algorithm
is presented that validates which structures are glitchy at the cost of increased execution time. Using
the Electronic Design automation tool (EDA) Tessent exhaustive simulations are performed for each
(re)set port to identify which (re)set flip-flops can cause glitches. These algorithms have been tested on
two case studies where glitches were observed during asynchronous scan-test. After deploying these
algorithms 33% and 65% of the total number of (re)set flip-flops were identified to be glitch-free. This
shows that the overhead can be significantly reduced by only adding DfT hardware to the flip-flops that
are susceptible to glitches. This work addresses a considerable challenge which is minimizing the cost
of DfT while ensuring a robust test sequence.

i

Preface

I would like to express my gratitude to Moritz Fieback for his guidance and feedback on my master’s
thesis. I would also like to thank Said Hamdioui and Chris Verhoeven for being part of the thesis
committee and reviewing my work.

I am very thankful for the opportunity provided by NXP to do my internship at the Design Enablement
team. I want to extend my thanks to Ghazanfar Ali and Richard Morren for their help and guidance
during my internship. Their support helped me learn a lot about the wonders of DfT and how to
conduct my own research.

Lastly, I am grateful to my parents for their unconditional love and support throughout my studies.

Saul Pennings
Delft, July 2024

ii

Contents

Abstract i

Preface ii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Importance of yield . 2
1.1.2 Glitches during asynchronous scan test . 2

1.2 State-of-the-Art . 3
1.3 Contribution of the Thesis . 3
1.4 Outline thesis . 3

2 Background 4
2.1 Defect to Fault . 4

2.1.1 Levels of Abstraction . 4
2.2 Manufacturing tests . 5

2.2.1 Yield and defect level . 5
2.2.2 Structural testing . 6
2.2.3 Fault coverage . 6

2.3 Fault Models . 6
2.3.1 Single vs multiple-fault model . 8
2.3.2 Automatic Test Pattern Generation . 8

2.4 Design for Testability . 9
2.4.1 Scan-test . 9
2.4.2 Asynchronous scan-test . 10

2.5 Reset signal . 11
2.6 Glitches . 12

3 Related work 13
3.1 Problem of asynchronous scan test . 13
3.2 State-of-the-art solutions . 14

3.2.1 Additional DfT to prevent glitches during scan test 14
3.2.2 EDAs performing glitch analysis . 15
3.2.3 Limitation and shortcomings . 16

4 Analysis and Detection Algorithm 17
4.1 Analysis . 17

4.1.1 Hazards on asynchronous (re)set ports . 17
4.2 Conditions for an asynchronous (re)set glitch . 18

4.2.1 Assumptions asynchronous disable signal . 18
4.3 Inversion model . 19

4.3.1 Definitions . 20
4.3.2 Inversion on paths . 20
4.3.3 Glitch-sensitive flip-flops . 21
4.3.4 Single source transition model . 21

4.4 Detection Algorithm . 22
4.4.1 Inversion propagation check . 22
4.4.2 Inversion simulator . 24

5 Implementation detection algorithm 26
5.1 Integration Detection algorithm . 26

iii

Contents iv

5.1.1 Coding languages . 26
5.2 Detection algorithm code . 27

5.2.1 Inversion propagation check . 28
5.2.2 Inversion Simulator . 28

6 Experiments and results 31
6.1 Experimental setup: Basic structures . 31

6.1.1 Directly connected sources . 32
6.1.2 2-input logic gates . 32
6.1.3 Controlling sources . 34

6.2 Results basic structures . 38
6.3 Functional structures with reconvergence . 41
6.4 Case study 1 . 43
6.5 Case study 2 . 44
6.6 Evaluation of the execution time for the proposed algorithms 45

7 Discussion 47
7.1 Experiments . 47

7.1.1 Case studies . 47
7.1.2 Tessent simulator . 48

7.2 Robustness . 48
7.3 Performance . 48
7.4 Integration . 49
7.5 Scalability . 49

8 Conclusion and future work 50
8.1 Conclusion . 50
8.2 Future work . 50

A Appendix 54
A.1 Implementation . 54
A.2 Experiments . 55

1
Introduction

1.1. Motivation
The semiconductor industry has experienced a consistent evolution over the past few decades, with
a continuous increase in the number of transistors that can be accommodated on a single chip. As a
result, testing of Integrated Circuits (ICs) has become significantly more complex, posing a challenge for
the industry to conduct efficient and effective testing. While the manufacturing cost of transistors has
steadily declined over the years, test costs have remained the same, as illustrated in the Figure 1.1. This
trend shows that test cost have caught up with production costs; and lately the test costs of chips has
been further increasing [1].

Figure 1.1: Transistor manufacturing cost vs test cost [2]

A malfunctioning chip in most of today’s high-growth markets is more than an inconvenience. Chip
manufacturers and large-scale computing operators are now aware of the impact of silent data errors
[3, 4] in data centres operating on a massive scale. These errors have the potential to cause data loss and
require extensive time and engineering efforts to resolve, which can take up several months [5]. The
challenges in testing become even greater in safety- and mission-critical applications, such as automotive
[6] where the quality standard is 10 defective parts per billion (Dppb) [7]. Thorough testing increases
the chances of identifying all failures, but it also increases time and cost.

1

1.1. Motivation 2

1.1.1. Importance of yield
A 2015 report [8] identified the effect of common cost-reduction techniques which are summarized
in Figure 1.2. The technique that stands out the most is increasing the yield, which leads to a 9%
reduction in total manufacturing costs for only a 1% increase in the yield. In the semiconductor industry,
yield refers to the number of functional and reliable ICs produced on wafer surfaces divided by the
potential number of ICs that can be made. As defined by [8], yield enhancement aims to ensure that
semiconductor manufacturing is optimized to produce the maximum number of functional units by
identifying, reducing, and avoiding defects and minimizing process variation that could adversely affect
product output.

Figure 1.2: Total manufacturing cost reduction vs different cost reduction techniques [8]

Testing chips earlier is crucial due to the increasing complexity of IC designs, which makes it more
challenging to detect defects through traditional methods. Additionally, testing at advanced nodes
often necessitates specialized equipment and facilities, adding to the financial burden for manufacturers
[9]. To realize this designers increasingly integrate more DfT techniques into the IC design phase. DfT
aims to enhance the ease and efficiency of testing by incorporating features that facilitate error detection
and diagnosis. The most popular DfT technique is scan test [10, 11], which allows the circuit to be put
into a test mode. In this test mode, the internal memory elements between the combinational logic can
be controlled and observed, making testing easier and faster.

1.1.2. Glitches during asynchronous scan test
The most common internal memory elements are flip-flops. IC designs commonly use flip-flops that
can asynchronously reset or set their value to make them independent of any clock pulse. This allows
a circuit to be reset almost instantly compared to a synchronous reset which can take multiple clock
cycles. When millions of test vectors have to run, a couple of clock cycles can add a significant amount
of test time. Asynchronous resets do however pose a challenge during scan tests. An additional signal
is added that keeps the flip-flops in their non-reset state preventing them from accidentally resetting
when they are put into test mode.

This signal needs to be released in order to test the logic driving the reset. As this logic can account
for 2-4% of the total faults of the circuit [12] it must be tested to guarantee high-quality ICs. However,
when this signal is released glitches can occur that reset the value of the flip-flops. This causes them to
lose their input data which results in a mismatch between their test and expected output. Although
these circuits may operate as expected in functional mode, they produce different results during scan
tests, which classifies them as faulty and results in yield loss, which is very costly. Unfortunately, these
glitches cannot be prevented in state-of-the-art design synthesis automation [13].

1.2. State-of-the-Art 3

1.2. State-of-the-Art
Both [12, 13] present a solution that allows the asynchronous reset logic to be tested without the risk of
glitches. This is achieved by adding additional DfT to every reset and set port in the design. However
this solution is only necessary when a flip-flop is susceptible to glitches, otherwise it is just redundant
logic. To identify which flip-flops are at risk additional analysis is required.

Multiple Electronic Design Automation (EDA) tools exist that can analyze circuits and detect glitchy
structures. But the problem with these commercial tools is that vendors do not provide precise
documentation of how their tool performs a check and many of them do not apply to contexts such as
test-paths [14]. [14] tested several EDA tools and found that these tools were unable to identify glitches
in multiple in-house examples. An algorithm is needed that can ensure the robustness of a circuit
during asynchronous scan-test.

1.3. Contribution of the Thesis
The objective of this thesis is to find the root cause of glitches occurring during asynchronous scan-test.
A model is proposed that identifies which reset and set ports are sensitive to glitches.

This thesis will analyze why these glitches can occur during asynchronous scan-test and what can be
done to prevent them. Additionally, an algorithm will be proposed that can analyze a circuit based on
the Netlist of an IC. The algorithm will propose which flip-flops require additional DfT to make the
design robust against the asynchronous glitches during scan-test.

The main contributions of this thesis are:

• A root cause analysis on glitches occurring during asynchronous scan test. Additionally, the
conditions for these glitches are outlined.

• The inversion model that identifies which (re)set ports are sensitive to glitches. This model helps
to find the source of where these glitches occur and where they can take effect.

• A design rule check algorithm that can find which (re)set ports are sensitive to glitches. This
algorithm checks the structure of the circuit to identify paths on which glitches can occur. This
algorithm is suitable for large circuits without reconverging paths.

• A simulation-based algorithm that classifies which (re)set ports are sensitive to glitches. This
algorithm is effective at identifying glitchy structures for paths with reconvergence or dependencies.

• Both algorithms have been implemented using the scripting TCL and Tessent. They have been
validated in two case studies that are both glitch-sensitive. The results show a reduction of 33%
and 71% DfT hardware overhead for asynchronous (re)sets.

1.4. Outline thesis
This thesis is organized in the following chapters.
Chapter 2 covers the background knowledge needed to understand this work. It introduces testing
terminologies, fault models and glitches.
Chapter 3 covers the related work and state-of-the-art solutions for asynchronous reset glitches during
scan test.
Chapter 4 gives a root cause analysis of glitches during scan test and explains a model to identify the
source and destination of those glitches. Two algorithms are proposed to find which (re)set flip-flops
are susceptible to glitches during asynchronous scan test.
Chapter 5 details how these algorithms are implemented into one detection algorithm.
Chapter 6 covers all of the experiments conducted and two case studies on which the algorithm was
tested.
Chapters 7 and 8 cover the discussion, conclusion and future work.

2
Background

This chapter provides an introduction to standard testing terminology and definitions, primarily from
[15, 16]. In addition, some context is given to asynchronous reset design and glitches.

2.1. Defect to Fault
In an IC a defect is the unintended difference between the implemented hardware and its intended design.
Defects can occur during either the manufacturing process or the operation of the device. Bridging
and open defects[17] are examples of some common manufacturing defects caused by undesired extra
materials or the lack of sufficient material. An error is a wrong output signal produced by a defective
system. It is the result which is caused by some defect. A fault is a representation of some physical
defect at an abstracted function level.

2.1.1. Levels of Abstraction
During the design process of ICs hierarchically structured abstraction levels are needed, which allow for
different views of the system. As specified by [16], these levels are illustrated in Figure 2.1. Abstraction
is used to hide information that is too detailed for a specific step in the process. As you ascend through
the hierarchical order the abstraction levels become more detailed and less transparent.

Figure 2.1: Levels of abstraction in IC design

The design process starts with defining the requirements, which leads to a behavioral level description
that outlines the system’s functionality. This stage specifies the IC requirements, such as speed, power
consumption, and costs.

4

2.2. Manufacturing tests 5

The next step is to describe the design at the Register Transfer Level (RTL), which models a synchronous
digital circuit in terms of signal flow between registers and logical operations performed on those
signals. In simulation, the circuit can be observed in terms of clock cycles, but there are no timing
constraints like delay present yet.

At the logic, or gate level, the functionality of the circuit is described in terms of its structure, based on
logic gates and storage elements. A synthesis tool uses a cell library that holds information about the
available gates and their parameters based on the technology used. During synthesis the cell library is
mapped onto the RTL which produces a netlist.

Finally, at the layout level, the IC is represented in terms of geometric shapes with different colours.
These shapes represent the patterns of metal, oxide, and semiconductor layers that form the IC. After
verification, the data is translated into an industry-standard format called GDSII, which can be handed
over to IC foundries for production.

2.2. Manufacturing tests
The process of manufacturing test, also known as production test, is aimed at verifying whether the
design has been accurately manufactured. Unfortunately, the fabrication process is not perfect and
can result in defects in chips. By modelling physical defects as fault models, the complexity of defect
behaviour analysis is greatly reduced. They allow defects to be modelled as logical faults, which can
then be evaluated and tested for.

A fault model is a formal description of how a defect causes faulty behaviour in a circuit. It specifies
the potential faulty behaviour and the locations at which it can occur, also known as fault locations.
Fault models guide test patterns to generate the required test to excite and propagate faults to primary
outputs. Fault simulation simulates the behaviour of a circuit by generating test patterns to excite and
propagate faults to the primary inputs. This allows the faults to be observed in the output patterns
which can be compared with the results of a fault-free circuit to determine fault detection.

2.2.1. Yield and defect level
During the manufacturing process, some ICs are expected to be faulty due to manufacturing defects.
This is represented by the yield, which is defined as:

Yield =
Number of functional ICs

Total number of ICs fabricated (2.1)

When ICs are tested, two undesirable situations may occur. The first situation is when a faulty device
appears to be a good part, passing the test. These are referred to as escapes which can be costly when
they end up in the hands of the customer.

The second situation is when a good device fails the test and appears to be faulty, referred to as yield
loss. The ratio of field-rejected parts to all parts passing quality assurance testing is referred to as the
defect level or reject rate.

Defect level =
Number of faulty ICs passing testing procedure
Total number of ICs passing testing procedure (2.2)

The defect level reflects the overall quality of the ICs testing procedure. This number is generally in the
order of defective Parts Per Million (Dppm), but for industries such as automotive, the target is in the
order of 10 defective parts per billion (Dppb) [7].

2.3. Fault Models 6

2.2.2. Structural testing
Using fault models, the structural integrity of an IC is tested rather than its functionality. That is because
exhaustive functional testing is very costly. Take for example a two-input 32-bit adder where testing
every possible input combination would require 232 ∗ 232 = 1.84 ∗ 1019 test vectors, which is just infeasible.

By using structural testing, the number of test patterns required can be greatly reduced, resulting
in improved test efficiency and time savings. It is important to note that structural testing does not
guarantee the detection of all possible manufacturing defects, as the tests are based on specific fault
models. However, it does provide a quantifiable way to measure how effectively a set of test vectors can
detect certain faults, which is known as fault coverage.

2.2.3. Fault coverage
Fault coverage refers to the percentage of faults within an IC’s design that can detected and identified
by a given test. It is a quantitative measure of how well a given set of test vectors can find faults for a
specific fault model. The equation for the fault coverage is defined as:

Fault coverage (%) = Number of detected faults
Total number of faults ∗ 100 (2.3)

Achieving a fault coverage of 100% is not always feasible due to the presence of undetectable faults. An
undetectable fault means that there is no possible test to differentiate between a fault-free circuit and a
faulty circuit containing that specific fault. Fault coverage can be related to yield and defect level by the
following equation [18].

Defect level = 1 − yield1−fault coverage (2.4)

Increasing the fault coverage is very beneficial for the defect level as there is an exponential relationship.
Improving the fault coverage is usually less expensive and easier compared to improving the yield as
yield enhancements can be costly [16].

2.3. Fault Models
Given the many different physical defects that can occur, there is no single fault model that can capture
the every manufacturing defect. Therefore, test generation considers several defects and their respective
fault models. Some commonly used fault models are described below.

Stuck-at Fault
The stuck-at-fault model [19] is used at the gate level, which targets physical defects that cause a circuit
node to be permanently fixed to a logic high (stuck-at-1) or logical low (stuck-at-0). These defects include
scenarios where a signal line is shorted to the power or ground [20]. It models faults at either the input
or the output of a logic gate, but not within the circuit of the gate itself.

The stuck-at-test model does not accurately represent actual physical defects but rather abstracts the
problem to a logical level, making it very effective for various testing technologies. Test vectors for
stuck-at faults can detect many internal defects within logic gates, even if these defects do not correspond
directly to simple physical faults like wires shorted to power or ground [21]. When test sets detect the
same single-stuck-at fault multiple times very high test coverage can be achieved. [20].

Figure 2.2: Example of single stuck-at fault

2.3. Fault Models 7

Figure 2.2 illustrates an example where there is a stuck-at-1 fault at the output of the AND gate. This
means that the connection to the input of the OR gate will always be a 1, regardless of the inputs to the
AND gate. As a result, the OR gate will always output a 1. The most used form of this model is the
single stuck-at-fault model which assumes that only one line in the circuit is faulty.

Bridging faults
Bridging faults represent a short circuit between two or multiple signals, usually modelled at the gate or
transistor level. If a signal is shorted to power or ground the stuck-at fault model can be used; however
when there is a short between two signal wires a bridging fault model is required to accurately model
the fault [22, 23]. Bridging faults are very common, an industrial study revealed that in a 130-nanometer
IC fabrication, bridge defects and open defects make up approximately 58% of all defects [24]. Figure
2.3(a) shows a bridging fault between two shorted signals A and B. Here As and Bs denote the sources
of the signals and Ad and Bd denote the destination of those signals.

Figure 2.3: Example bridging fault models

The first bridging fault models described the behaviour of shorted lines as a logic AND or OR logic
value. This model is referred to as the wired-AND/wired-OR bridging fault model [16]. Figure 2.3(b)
shows the two possible faults of the model, where a wired-AND fault represents two shorted signals
that will read logic 0 if either signal is driven with a logic 0. The other fault is a wired-OR which means
that the shorted signal will read a logic 1 if either signal is driven with a 1.

For CMOS devices the dominant-AND/dominant-OR bridging fault model[25] most realistically models
the behaviour of a resistive short [16]. In this model, one signal dominates the logic value of the other
shorted values, but only for a specific logic value as depicted in Figure 2.3(c).

Transition Delay Faults
Delay faults can model physical defects at the gate level that cause additional propagation delay in the
circuit. Two types of delay fault models are commonly used: the path delay fault model [26] and the
gate delay fault model [27, 28]. The path delay fault model is generally considered more effective in
modelling physical delay defects. But in practice, it is more difficult to use as circuit designs can have
enormous amounts of paths [29]. Therefore the gate delay fault model is more suited for larger designs.

Figure 2.4: Example of a transition fault

2.3. Fault Models 8

The Transition delay fault model [28] is the most common gate delay fault model, which represents
delay faults as a slow-to-rise or a slow-to-fall transition through a gate. The model assumes that for
a fault-free circuit, every gate has a nominal delay except for one single gate. This gate’s delay has
increased so that every transition through it will exceed the clock period, even for the shortest path.
Figure 2.4 shows an example where the period from t1 till t2 represents one clock cycle. The AND
gate has the nominal delay which causes signal b to transition as expected. The second OR gate has
a slow-to-rise fault, which causes signal c to rise after t2, which exceeds the clock period. Instead of
reading a logic 1 at signal c, the output would be a logic 0.

2.3.1. Single vs multiple-fault model
Single-fault models, as the name suggests, assume that the IC only contains a single fault. This means
that each circuit can have n possible fault sites which can experience k different types of faults (typically
k = 2). This means that the number of single faults can be given by:

Number of single faults = 𝑘 ∗ 𝑛 (2.5)

In reality, multiple faults may be present in a circuit which is referred to as a multiple-fault model. For
these models each fault site can have k possible faults or be fault-free, so there are (k+1) possibilities.
The number of multiple faults is given below, where the "- 1" term represents a fault-free circuit.

Number of multiple faults = (𝑘 + 1)𝑛 − 1 (2.6)

Compared to the single-fault model, The multiple-fault model can accurately model more physical
faults. But this precision comes at the cost of more complex test generation algorithms and impractically
longer test times. Studies have demonstrated that achieving high fault coverage under the single-fault
assumption correlates with high fault coverage for the multiple-fault model [15]. As a result, test
generation and evaluation commonly employ the single-fault assumption for practical purposes.

Two or more faults can lead to identical faulty behaviour across all possible input patterns. These are
called equivalent faults, which can be represented by any single fault from the equivalent set. This
results in a substantially reduced number of distinct faults to be considered during test generation
compared to the equation 2.5. Eliminating equivalent faults from the set of single faults is known as
fault collapsing. The application of fault collapsing not only speeds up the test generation process but
also contributes to reducing fault simulation times.

2.3.2. Automatic Test Pattern Generation
Automatic Test Pattern Generation (ATPG) is a widely used method that uses fault models to identify
input or test sequences to distinguish between correct circuit behaviour and faulty behaviour caused by
defects. Many current ATPG tools use a common approach that involves starting from a random set of
test patterns. Fault simulation is then used to determine how many potential faults are detected. The
results of the fault simulation are used as a guide to generate additional vectors for hard-to-detect faults
to achieve the desired or reasonable fault coverage. These test vectors are generated through algorithms
like D [30, 31], PODEM [32], and FAN [33].

ATPG works by injecting a fault into a circuit and then using a variety of mechanisms to activate the
fault and cause its effect to propagate through the logic so it can be observed at the output. This is
achievable for small combinational circuits, but for large sequential circuits, this becomes very difficult.
Sequential circuits rely on both their current and previous memory state. Propagating a specific fault
through the whole system would require multiple clock cycles and specific control.

2.4. Design for Testability 9

2.4. Design for Testability
Design for Testability (DfT) is the general term to describe techniques to allow more comprehensive
and cost-effective testing. Typically, DfT involves the incorporation of additional hardware circuits
dedicated to testing purposes, which in turn allows for enhanced access to internal circuit elements. By
enabling easier control and observation of the local internal state, DfT significantly contributes to the
development of test programs and serves as an interface for test applications and diagnostics.

Implementing DfT rules in the development cycle yields numerous benefits, including improved
fault coverage, reduced test generation time, potentially shorter test length, reduced test memory and
decreased test application time. However, these advantages come with additional costs such as pin
overhead, increased area and performance degradation. Nevertheless, the overall cost of the chip is
reduced through DfT, making it a cost-effective methodology widely used in the IC industry [16].

For digital circuits, DfT methods include ad hoc and structured methods. Ad hoc DFT methods rely on
design experience and may require circuit modification or test-point insertion to improve testability
in certain areas. However, for large circuits, ad hoc DfT techniques are discouraged due to being
labour-intensive and offering no guarantee of good results from ATPG. On the other hand, structured
methods like scan, partial scan, BIST [34, 35], and boundary scan [11] are commonly used.

2.4.1. Scan-test
Scan design is a commonly used technique in DfT that aims to make testing easier by enhancing the
observability and control of a circuit. Testing the response of a circuit requires a specific sequence of
input vectors as the state of a sequential circuit depends on both the previous state and the current
inputs. Scan-test allows a circuit to be transformed into a combinational circuit that relies solely on its
current inputs. Regular flip-flops are replaced by scan flip-flops (SFFs), which can be switched into
a test mode to create a long shift register. This shift register, also known as a scan chain, acts as a
pseudo-primary input through which test data is loaded.

Figure 2.5: Scan flip-flop

Figure 2.5 illustrates how a scan D-type flip-flop (SDFF) is created by adding a multiplexer before
the DFF. The 𝑠𝑐𝑎𝑛_𝑒𝑛𝑎𝑏𝑙𝑒 signal determines the mode of the SDFF. When the 𝑠𝑐𝑎𝑛_𝑒𝑛𝑎𝑏𝑙𝑒 is high, it
selects the test mode, using the 𝑠𝑐𝑎𝑛_𝑖𝑛 signal as input. When the 𝑠𝑐𝑎𝑛_𝑒𝑛𝑎𝑏𝑙𝑒 is low, it operates in
the functional mode which takes the signal 𝐷 coming from the combinational logic as input. In this
thesis, each flip-flop is converted into an SDFF with the appropriate test signals. The test signals are not
included for illustration purposes, and the SDFF is replaced by the SFF shown on the right in Figure 2.5.

The input of each SFF is connected to the output of another, creating a so-called scan-chain[36] as
depicted in Figure 2.6. In this figure, the added test signals are shown in red. The first SFF in this chain
is connected to a primary input (𝑠𝑐𝑎𝑛_𝑖𝑛) so input data can be loaded into the chain. The output of the
last SFF in the chain is also connected to a primary output (𝑠𝑐𝑎𝑛_𝑜𝑢𝑡) so the response of the circuit can
be observed.

Scan-test is split into two parts: shift mode and capture mode. During shift mode, the 𝑠𝑐𝑎𝑛_𝑒𝑛𝑎𝑏𝑙𝑒
is held high, forcing the SFFs to select the scan-in as their input. This turns the SFFs into a long shift
register, loading the scan chain with the desired test data and bringing the entire circuit to a desired
state.

During capture mode, the 𝑠𝑐𝑎𝑛_𝑒𝑛𝑎𝑏𝑙𝑒 is released, and the circuit is run for one clock cycle. In this way,

2.4. Design for Testability 10

Figure 2.6: Scan chain in sequential circuits

the test data goes through the combinational logic, and the SFFs will update their data accordingly. By
applying a shift cycle again, new test data is loaded in while the response of the previous test is shifted
to 𝑠𝑐𝑎𝑛_𝑜𝑢𝑡. If the response of the circuit is the same as that of a fault-free circuit, then it passes the test.

2.4.2. Asynchronous scan-test
Circuits containing flip-flops with an asynchronous set and/or reset require additional control during
scan-testing. During the shift operation, the flip-flops constantly change their value, resulting in random
values being fed into the combinational logic. While the flip-flops are in test mode, they will take
the scan-in value, so this is not an issue for the D-input. However, there is also logic feeding into the
asynchronous set or reset port that can be randomly triggered. If this occurs during the shift cycle, the
test data of that flip-flop would be set or reset, which alters the test data.

Figure 2.7: Scan chain for flip-flops with asynchronous reset

To prevent this, an 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal is added to the design, which is gated with every set or reset
port that is not controlled by a primary input. Figure 2.7 gives an example for flip-flops that are active
low, so their reset is triggered when a 0 is received. In this figure the test signals added for scan-test are
depicted in red and the logic required for asynchronous scan-test is shown in blue. This figure shows
how the reset ports of SFF2 and SFF3 are connected to the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal, which is held at logic 1
during the shift operation. Note that the reset of SFF0 is connected to a primary input and thus does not
require to be connected to the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒. This is because primary inputs are also controlled during
ATPG, therefore they can be held at logic 1.

If the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 is kept at 1 during the capture stage, then the logic feeding into the reset ports
cannot be tested. Therefore, it must be released before the capture stage is initiated. It is common practice
to split up the scan-test into two separate tests: a synchronous scan-test, where the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 is
kept at 1 during both shift and capture, and an asynchronous scan-test where the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 is kept
at 1 during shift and released before the capture cycle to allow the reset logic to be tested.

2.5. Reset signal 11

2.5. Reset signal
For digital ICs the main purpose of the reset signal is to force the device into a known and predefined
state before running tests and simulations. Apart from that most applications also require the reset
during power-up, when a watchdog timer expires, or for the user (or another IC) to manually restart the
system. This reset can be either synchronous or asynchronous depending on the design of the IC.

The reset functionality of an IC serves as a critical aspect of its overall design, influencing both reliability
and performance. Essentially, the reset mechanism ensures that the IC begins operating in a known and
stable state, vital for correct system initialization before simulations are run. Commonly there are two
main approaches for resets: asynchronous and synchronous. This section explains the pros and cons of
both resets.

Asynchronous Reset
An asynchronous reset provides an immediate response to the IC without being bound to clock edges.
It is implemented by adding a pin to the design of flip-flops which sets the internal value of the flip-flop
to a known state. This ensures that the data path is clean as the reset does not add any gates or net delay
to the combinational logic [37].

Without the dependency of a clock, the asynchronous reset can be asserted immediately, making it
very fast. However, there is a catch. If the reset is de-asserted at or near the edge of the active clock
it could cause a flip-flop to go metastable[38]. This happens when a flip-flop’s setup and hold time
requirements are violated. In a metastable state the output of a flip-flop is unknown, so neither a 1 nor a
0 for an unpredictable amount of time before settling to one value. A solution for this is using a reset
synchronizer circuit to ensure that the reset is de-asserted at the appropriate time.

Another disadvantage is false resets that can be triggered due to glitches or noise on the reset signal.
Whether this is a serious issue depends on the design and requirements of the system. A possible
solution is to add a reset glitch filtering circuit that removes short pulses from the reset input signal [37].

For DfT, designers need to make sure that the asynchronous reset can be directly accessible. During
scan-test, the reset must be blocked to prevent flip-flops from accidentally resetting which would result
in a loss of test data.

Synchronous Reset
Synchronous reset aligns with specific clock edges, ensuring controlled and predictable timing behaviour
within the IC. This synchronization to clock cycles facilitates a more structured approach to resets,
simplifying design verification and reducing the likelihood of race conditions.

Flip-flops with a synchronous reset can be synthesized more efficiently as the reset is gated with the
logic generating the d-input. This technique does save some area, but only about one or two gates
per flip-flop. Nowadays, the die sizes are already huge, so this area saving is not that significant[37].
Additionally, since the reset is just another data input it may introduce additional delay to the data path,
which is undesirable. As a synchronous reset only happens at the active edge of a clock, it ensures that
the whole circuit is 100% synchronous and filters out small glitches. However, glitches that occur near
the active clock cycle can still cause flip-flops to go metastable.

For low-power designs, the requirement of a clock to reset the system can be a disadvantage. For
instance, when clock gating is implemented to save dynamic power dissipation. Clock gating is a
technique that keeps the clock signal stable, preventing flip-flops from switching state and consuming
power. Without a clock, it is impossible to assert a reset, and thus, only an asynchronous reset can be
used in that case.

Table 2.1 presented below provides a comprehensive comparison of asynchronous and synchronous
resets, focusing on various aspects such as timing characteristics, reliability, and implications for DFT.
This information aids in understanding the trade-offs associated with each reset approach in the realm
of IC design.

From a design perspective, an asynchronous reset is usually preferred as it allows a circuit to be reset
without a clock present. Since it is asynchronous, there is minimal latency, allowing the circuit to be

2.6. Glitches 12

Aspect Asynchronous Reset Synchronous Reset
Implementation Add additional pin to flip-flop. Re-

quires special care for DfT.
Gate reset signal with d-input of flip-
flop.

Timing Characteristics Provides immediate response. Not
tied to clock edges.

May introduce additional gate delay.
Only acts on active clock edge.

Reliability & Hazards Sensitive for glitches & metastability. Less susceptible to glitches.
Area & Power Permits clock-gating for less power

consumption.
Requires less area due to due to
smaller flip-flops.

Table 2.1: Different aspects of using an asynchronous vs synchronous reset

quickly brought to a desired state compared to a synchronous reset which can take multiple clock
cycles. It also enables using clock-gating, making it more suitable for low-power designs. For DfT, an
asynchronous reset brings some challenges as it needs to be controlled during scan-test. Inserting an
independent 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 test signal can prevent the flip-flops from resetting ensuring a correct shift
phase. However, de-asserting this signal can produce glitches in designs with multiple cascading resets,
which is a challenge that must dealt with by the DfT engineers.

2.6. Glitches
Glitches are unintentional and temporary changes in logic values that can occur in digital circuits.
They manifest as brief pulses or spikes on digital signals and can potentially cause incorrect circuit
behaviour. For synchronous paths, glitches will not impact the functionality as long as the timing path
between flip-flops meets the required setup and hold timings. But for asynchronous paths glitches can
accidentally trigger other paths resulting in unwanted behaviour.

Glitches can be caused by physical phenomena, such as electromagnetic interference, capacitive coupling,
or high-energy particles from cosmic rays, and are referred to as transient faults [39, 40]. Additionally,
glitches can occur due to race conditions, which arise when a logic gate combines signals that have
travelled through different and unequally timed paths from a single source [41].

A piece of circuitry where race conditions can potentially lead to a glitch is called a hazard. The two
common types of hazards are static and dynamic hazards [41]. In a static hazard, a signal momentarily
switches while it should have remained at a stable logic value. In dynamic hazards, a signal oscillates
while it should have made a clean transition. Figure 2.8 shows the three kinds of hazards that can occur.

• Static 0-hazard: Signal temporarily changes to 1 when it should have stayed at 0.
• Static 1-hazard: Signal temporarily changes to 0 when it should have stayed at 1.
• Dynamic hazard: Signal changes multiple times while it should have transitioned once.

Figure 2.8: Categories of hazards in digital circuits

When a circuit contains a hazard, it means that there is a possibility of a glitch occurring under certain
circumstances. These circumstances can be difficult to predict as they depend on various factors, such
as the inputs to the circuit, gate delay, and noise. Uncertainties in gate delay [42] are caused by several
factors, including manufacturing process variations [43, 44], environmental variations, and device
ageing phenomenon [45].

3
Related work

3.1. Problem of asynchronous scan test
While performing scan test with asynchronous logic a separate signal is needed to prevent the flip-flops
from accidentally resetting, which is the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal. This signal is kept high during shift
mode but must be released during capture mode; otherwise, the asynchronous reset logic cannot be
tested [12]. When this signal is released multiple reset sources are enabled at the same time, which can
cause glitches.

There is a lack of work in the literature on the topic of asynchronous reset scan-test. However, that
does not mean that glitches do not impact the semiconductor industry during these tests. Take for
example the DfT challenges that were faced during the design of the ARM Cortex-A15 Microprocessor
[46]. In this design, the internal resets are asynchronously asserted and synchronously de-asserted.
A test circuit was added to allow at-speed testing of those reset paths. They mention that this signal
must remain at a single value during capture cycles to prevent potential reset glitches from occurring.
Because the reset is synchronously de-asserted the reset cannot propagate asynchronously from one
flip-flop to another, hence for this design glitches will not be observed. But it is with these reset ripple
architectures that glitches have a high chance of occurring.

Classification of ripple reset glitches
In [47] a couple of clock-gating structures are described that can impact the robustness of scan test.
This includes the reset ripple architecture which can suffer from glitches due to reconvergence of an
𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal.

Figure 3.1: Ripple reset structure with a potential glitch

Figure 3.1 shows how glitches can occur when it is released. The signal diverges and takes two paths to
reach the OR gate feeding into the reset port of SFF2. One path goes directly to the OR gate, while the
other goes through SFF1 and changes polarity in the process. When the signal reconverges there is a
static 1-hazard at the output of the OR gate. If a glitch occurs it will trigger the reset of SFF2 changing

13

3.2. State-of-the-art solutions 14

its value from 1 to 0, while it should remain at 1. However, whether this glitch occurs depends on the
propagation delay of the two paths which varies from chip to chip [42].

The variation in propagation delay could result in a difference in scan patterns. Chips that produce a
different result during asynchronous scan test would then be classified as faulty, while in functional
mode they might work as intended. To prevent these glitches from impacting the yield a solution is
needed to make the asynchronous scan test more robust.

3.2. State-of-the-art solutions
This section will cover the state-of-the-art solutions for glitches during asynchronous scan test. The first
two solutions propose additional DfT to prevent glitches, followed by Electronic Design Automation
tools (EDAs) that could be used and an algorithm based on a Design Rule Check (DRC).

3.2.1. Additional DfT to prevent glitches during scan test
The effect of glitches on the (re)set paths can be mitigated by preventing flip-flops from resetting each
other in a cascading fashion. One method to achieve this is through test point insertion, which involves
adding extra circuitry to the design [12]. Instead of having one 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal that enables all
flip-flops at the same time, the signal is split into several unique signals. These signals are released
one by one, allowing the glitches to settle before the next flip-flop is reset. To create these unique
𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signals, a test point is added between each cascading reset flip-flop. The 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒
is gated with each test point, which consists of an OR gate and another flip-flop. These flip-flops are
1-cold decoded, which means that only one flip-flop holds the value 0 while the rest hold a logic 1.

This solution is appropriate for designs that have only a few cascading flip-flops. However, for structures
like the ripple reset architecture, this approach will become impractical. In addition to the extra
hardware required for each flip-flop, the test time for these designs will significantly increase. Since the
flip-flops are 1-cold decoded, they need to be released one after another for every test vector during
ATPG.

In the patent [13] this issue is resolved by adding an OR-AND-OR gate in combination with a flip-flop
per local functional reset. This enables the test of the reset logic to be split into a synchronous and
asynchronous capture phase. During the synchronous capture phase, the logic that generates the
local reset signals is tested as illustrated in Figure 3.2, where the dotted box represents the additional
hardware. During this phase, the tcb_𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal is held high, which prevents the flip-flops
from resetting, just like during the shift cycle. The func_local_rst_an is the local reset path that originates
from other reset flip-flops. Normally, this path is blocked by the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal, but now the
value is captured by the additional flip-flop. Note that this is the d-input of the flip-flop rather than a
(re)set port. As this flip-flop only captures the value during the clock signal, it will not be affected by
any glitches that may occur.

Figure 3.2: OR-AND-OR structure with highlighted signals during synchronous scan mode [13]

During the asynchronous capture phase, the asynchronous behaviour of the reset flip-flops themself is
tested, as illustrated in Figure 3.3. The tcb_local_reset_disable is another added test signal blocking the
local (re)set path as these could produce glitches. Instead, the ipt_global_init_an is used which is a
glitch-free global reset. This divide-and-conquer strategy allows all the logic to be tested with just two
tests without the risk of glitches due to the cascading asynchronous reset signals.

Both [12] and [13] allow the asynchronous reset logic to be tested at the expense of additional hardware.
However this solution is only necessary when a flip-flop is susceptible to glitches, otherwise it is just

3.2. State-of-the-art solutions 15

Figure 3.3: OR-AND-OR structure with highlighted signals during asynchronous scan mode [13]

redundant logic. To identify which flip-flops are at risk additional analysis is required.

3.2.2. EDAs performing glitch analysis
Various Electronic Design Automation tools (EDAs) exist that can assist in different steps of the ICs
design. Ideally, the glitches are found early on in the design as making changes later on in the design
process is more expensive. In [48] the capabilities of several RTL verification tools are explored. The
area most closely related to glitches on reset paths is called Reset Domain Crossing errors (RDC). These
errors occur when a reset signal crosses from one clock domain to another during a reset event, which
can lead to potential errors due to timing mismatches and metastability. Examples of EDAs that identify
these errors are Synopsys Spyglass RDC [49], Real Intent Meridian RDC [50] and Siemens Questa RDC
[51].

In a research study [14], several EDA tools were evaluated for their effectiveness in detecting glitches in
clock-domain-crossing (CDC) circuits, a closely related area to RDC. The study found that these tools
were unable to identify glitches in multiple in-house examples. The researchers attributed this to the
lack of a comprehensive explanation from vendors about how the algorithms and tools work. They also
noted that many CDC checks are specific to certain contexts and do not apply to other scenarios, such as
test-paths.

Another issue with these EDA tools is that they often report false errors which need to be manually
checked. This can lead to engineers overlooking actual errors, which cause actual errors to be missed
[52]. That is why designers cannot rely on these tools alone to find glitches in these areas.

DRC for ripple reset structures
A simple static DRC algorithm is proposed in [47] to find structures where the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal
reconverges at the gate feeding into a reset port, as illustrated in Figure 3.1. This is done by taking each
(re)set port as a starting point and trace back through the combinational gates and (re)set ports. When a
fan-in gate has been visited twice then that gate is a reconvergent fan-out point which will be flagged as
a DRC violation. This is a very pessimistic approach as reconvergence on the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal is
not the only requirement for a glitch.

One major disadvantage of this algorithm is that paths are only traversed if they have simulated values.
These values depend on the test setup and will not always be present. As a consequence, this algorithm
would not check every path and could thus miss some glitchy structures. To ensure the whole circuit is
robust a more general approach is needed that checks every path regardless of simulated values. As
pointed out in their paper, this static DRC does not take logic dependencies into account, which can
lead to false positives.

On top of this algorithm, a dynamic ATPG-based DRC analysis is performed which uses ATPG to check
if a solution exists. As ATPG algorithms are not capable of detecting glitches [47], three conditions are
checked instead. If one of these conditions is met then it is a potential violation, otherwise it is a false
positive.

In total five static DRCs and dynamic ATPG DRCs were performed on 3000 test cases. Each case had a
circuit size ranging from 10K to over 30M gates. 49 circuits were flagged with static DRC violations for
ripple reset glitches, with an average of 8.6K in those 49 cases. Notable is that the dynamic ATPG DRC
did not lead to an improvement as it flagged the same amount of cases. For some cases, the Verilog
simulations were checked and they confirmed that there were some glitches asserted for those ATPG
patterns.

3.2. State-of-the-art solutions 16

For the ATPG DRC the amount of violations found is not reported, only the amount of cases that had
ATPG DRC violations. Whether or not the ATPG DRC resulted in fewer or the same false positives is
not clear from these results.

To prevent glitches found by the DRC violations [47] suggest blocking the reconvergent path. For
example, defining the input to the reset logic, 𝑟𝑒𝑠𝑒𝑡 pin in Figure 3.1, as a clock input and setting it to
the off-state. This solution is not feasible when the reset is produced locally from another flip-flop,
which is always the case in a ripple reset architecture.

3.2.3. Limitation and shortcomings
To prevent glitches from affecting scan test patterns the most suited solution is to add additional DfT.
In most cases, patent [13] would be the best solution as it results in only a doubling in test time of the
asynchronous scan test. The advantage of this solution compared to the one proposed by [47] is that the
functionality of the design does not need to be altered. Instead, some hardware needs to be inserted at
the local (re)set ports.

This hardware is only needed when there is a risk of glitches on the (re)ports, so the additional area can
be minimized by an algorithm that can find all potential glitchy structures. Relying on EDAs alone to
find these glitchy structures will not be sufficient as [14] found multiple examples where they were
unable to do so. Using DRC to find these structures is a valid method, but the algorithm proposed by
[47] relies on having simulated values that might not always be present. Apart from that the algorithm
is also very pessimistic as it only checks for reconvergence of the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal, which is not the
only condition for a glitch.

This thesis will conduct a root cause analysis on how glitches can occur during asynchronous scan-test.
These findings result in three conditions that must be met for a glitch to occur. A model is proposed
that utilizes these conditions to identify the source and destinations of these glitches.

Based on this model two algorithms are proposed that can classify which (re)set flip-flops are susceptible
to glitches. One is a design rule check algorithm that investigates the structure of a circuit. This algorithm
can identify on which paths glitches can occur. The second algorithm performs local simulation to
identify glitchy behaviour between (re)set flip-flops.

4
Analysis and Detection Algorithm

This chapter will analyze the root cause of glitches that appear during asynchronous scan-tests. This
analysis will explain what causes these glitches and what the conditions are to consider a (re)set port
sensitive to glitches. To better understand the problem, the "inversion model" will be proposed, which
encapsulates the conditions of a glitch. Based on this model, a detection algorithm will be proposed that
can analyze a circuit given a Netlist. This algorithm is divided into two parts: the inversion propagation
check and the inversion simulator. The inversion propagation check is a design rule check based on the
inversion model. The inversion simulator performs local simulation and uses these results to identify
glitch-sensitive (re)set ports.

4.1. Analysis
After the 𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 is released any flip-flop can be reset which in turn can then reset other flip-flops
as well, starting a sort of cascading reset chain. When the first flip-flop in this chain (re)sets it will update
the data that it was holding, which is expected behavior during the asynchronous scan-test. Except for
the 𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal, all other inputs to that (re)set port are static so no glitches can occur.

However, after the first flip-flop in this cascading reset chain is (re)set, the other flip-flops now have
at least two sources that change value. That is the reset flip-flops feeding into its (re)set port and the
𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal switching to 0. This can lead to race conditions which can then cause glitches to
appear at the (re)set port. As stated before, whether or not glitches will be observed depends on the
propagation delay of the different paths in the circuit.

4.1.1. Hazards on asynchronous (re)set ports
In this thesis, the asynchronous (re)set ports of flip-flops are all active low. When a 0 is received at the
reset port, the value of the flip-flop immediately goes to 0, irrespective of the clock value. Similarly,
when the set port is triggered, the value of the flip-flop goes to 1. The analysis will also hold for active
high (re)set flip-flops, but in that case the polarity of the glitches and the inversions on paths is inverted.

For asynchronous active low reset ports, only static 1-hazards need to be considered. These cause the
reset signal to momentarily drop to 0, triggering a reset. In the case of static 0-hazard, the (re)set signal
momentarily goes to 1, but these do not affect the value of the flip-flop as it is already in a (re)set state.
Similarly, when the reset signal transitions from 0 to 1 or from 1 to 0, the value of the flip-flop will
remain equal to its (re)set value. Therefore they are unaffected by any number of dynamic hazards.
This coincides with findings from [47] which only considers static 0-hazards as they use flip-flops with
an active high reset.

This work focusses on identifying race hazards caused by the de-assertion of the 𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal.
In this context, a race hazard implies the potential for a glitch without considering other factors like
propagation delay or process variation. While factoring in these elements would provide a more
precise representation of the possibility of a glitch, it would also introduce significant complexity to the
inversion model.

17

4.2. Conditions for an asynchronous (re)set glitch 18

4.2. Conditions for an asynchronous (re)set glitch
To find the conditions for a glitch Figure 4.1 is used where the 𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 along with the OR
gates (blue in the Figure) are inserted at the reset ports of flip-flop 1 and 2. The cloud representing
combinational logic could be any combination of logic gates.

Figure 4.1: Conditions for a static 1-hazard

During shift mode of scan-test the 𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal is kept at 1 which prevents the reset ports of
flip-flop from going to a logic 0, thus no glitches can happen during this phase. In capture mode the
𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal is released and transitions from 1 to 0. For a glitch to occur at the reset port of
flip-flop 2 the signal must first go to 0 (green in Figure) which means that the combinational logic
feeding into the OR gate must be a 0 as well.

For the signal to go to 1 again (red in Figure), some signal in the circuit needs to transition. As the clock
and input ports are kept constant it can only be caused by another flip-flop resetting, which is flip-flop 1
in this case. Note that this reset is triggered by the 𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal going to 0. When flip-flop 1
gets reset its output value goes to 0 while for a glitch to occur a 1 is required at the reset port of flip-flop
2. This means that in the combinational logic, an inversion of the signal must take place.

From this analysis, there are three conditions for a glitch on a (re)set port of a flip-flop:

1. An 𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal transitions from a 1 to a 0 while all other input signals remain static.
Which occurs during the capture event of scan-test.

2. The reset of some flip-flop gets triggered which is connected to the (re)set port of the flip-flop
where the glitch is observed.

3. Through the combinational logic in between the two flip-flops the polarity of the signal is inverted.

Note that these glitches do not occur in functional mode as they are initialized by the release of the
𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal.

4.2.1. Assumptions asynchronous disable signal
It is important to make some assumptions for this analysis. Firstly, it is assumed that the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒
signals and the OR gates are inserted ’correctly’. This means that each local reset feeding into the (re)set
ports is connected with an OR gate where the other input connects to the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal. If the
OR gate is missing at a port then the scan-shift will not operate correctly. On the other hand, if the
𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 feeds into a random part of the combinational logic then there could be reconvergence
on the disable signal itself, which can also lead to glitches.

Secondly, it is assumed that the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal itself is glitch-free and makes a clean transition
from 1 to 0. This can be achieved by using an external pin as a global reset or by something like a test
control block that produces a global reset. Glitches on this signal will not be taken into account in this
analysis.

Third, it is assumed that the propagation delay of the 𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal is smaller than that of the
reset path. Figure 4.2 shows the waveform of two test cases of the signals from Figure 4.1. Let us assume
that the reset delay of the flip-flops is 𝑡𝑟𝑒𝑠𝑒𝑡 and the propagation delay through the combinational logic
is 𝑡𝑐𝑜𝑚𝑏 .

4.3. Inversion model 19

Figure 4.2: Propagation delay on 𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal

In test case 1, there is no delay between the release of the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal at SFF1 and SFF2. This
causes the output of SFF2 to update first after 𝑡𝑟𝑒𝑠𝑒𝑡 , and then again after 𝑡𝑟𝑒𝑠𝑒𝑡 + 𝑡𝑐𝑜𝑚𝑏 , resulting in a glitch.
In test case 2 there is some propagation delay on the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 between SFF1 and SFF2, which is
called 𝑡𝑎𝑠𝑦𝑛𝑐 . As a result, the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 at SFF2 is released after t = 1. If 𝑡𝑎𝑠𝑦𝑛𝑐 > 𝑡𝑟𝑒𝑠𝑒𝑡 + 𝑡𝑐𝑜𝑚𝑏 , the
glitch is already settled before the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal at SFF2 is released.

In other words, as long as the propagation delay of the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 is larger than the combined delay
of the flip-flop resetting and the combinational logic then no glitch will be observed. The objective of
this thesis is to improve the circuit’s robustness against potential glitches. To achieve this, the worst-case
scenario is considered, which is to assume that there is no propagation delay on the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒
signal.

Depending on the design there can be one or multiple 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signals. For example, there can be
one 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal for the set ports and another for the reset ports of flip-flops. For this analysis,
it does not matter if one or multiple signals are used, its result will be the same.

4.3. Inversion model
This section will introduce the ’inversion model’ which helps identify whether a (re)set port is susceptible
to glitches. In the first part, some definitions will be established which are highlighted in different
colours in Figure 4.3. The model describes the connection between scan flip-flops as paths where the
(re)set ports are the destination and the output ports of (re)set scan flip-flops are the sources.

In the second part, it will be explained how these destinations can be evaluated for the possibility of
glitches.

Figure 4.3: Example of the inversion model

4.3. Inversion model 20

4.3.1. Definitions
Destinations (Red)
Every reset and set port of a scan flip-flop is called a destination, which is the point where a glitch will
take effect. One flip-flop can have both a set and a reset and can therefore have at most two destinations.

• 𝑑𝑆 = Set port of a flip-flop.
• 𝑑𝑅 = Reset port of a flip-flop.
• Ex: 𝑑𝑆2 , 𝑑𝑅3

Sources (Green)
Every output port Q of a scan flip-flop with a set and/or reset is called a source. The source is coupled
to the (re)set port of that flip-flop as triggering a reset or set will give a different value at port Q. This
means that a flip-flop with both a set and a reset will have two different sources that are connected at
the same point.

• 𝑠𝑆 = Output port Q of a flip-flop with a set port.
• 𝑠𝑅 = Output port Q of a flip-flop with a reset port.
• Ex: 𝑠𝑆2 , 𝑠𝑆3 , 𝑠𝑅3

Control signals (Yellow)
The output of every scan flip-flop without a (re)set is called a control signal. These are signals that do
not change their values during the capture event of asynchronous scan-test. Primary inputs that are
ATPG controllable are also control signals as they are static as well.

• 𝑐𝑆𝐹𝐹 = Output of a scan flip-flop without a set or reset port.
• 𝑐𝑃𝐼 = Primary inputs that are ATPG controllable.
• Ex: 𝑐𝑆𝐹𝐹1 , 𝑐𝑃𝐼0

Async disable signals (Blue)
The 𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal and related logic are represented in blue.

Paths
Path 𝑝(𝑥, 𝑦) is the connection from a source (x) to a destination (y) through some combinational logic,
for example, 𝑝(𝑠𝑆2 , 𝑑𝑆6). Each path is either inverting or non-inverting which is calculated based on the
inverting logic gates that that are in that path. A path can have one of three values: 1 if it is inverting, 0
if it is non-inverting and X if the path is potentially inverting.

• Inverting path = A path with an odd number of inversions = value 1.
• Non-inverting path = A path with an even number of inversions = value 0.
• Potentially inverting = A path with an undetermined number of inversions = x

𝐷𝑦 = {𝑥1, 𝑥2, ...} is a collection of all sources that have the destination 𝑦. For example destination 𝑑𝑆6
has the sources 𝑠𝑆2 and 𝑠𝑅4 thus: 𝐷𝑆6 = {𝑠𝑆2 , 𝑠𝑅4}

4.3.2. Inversion on paths
Before determining when a path is inverting let’s first look at how a glitch itself will propagate through
it. Whether or not a glitch propagates through some logic gate will depend on the other input values
of that gate. Figure 4.4 illustrates how glitches propagate through each primitive logic gate. For an
AND/OR gate, a glitch only propagates when its other input is a 1/0 respectively and it keeps the same
polarity.

It can be assumed that the other input values of each logic gate are set in such a way that a glitch will
propagate. If the input values are not set correctly, the glitch will not show up at the destination. This
reasoning also applies to NAND/NOR gates, but in those cases, the polarity of the output is inverted.
On the other hand, an inverter, having only one input, will always propagate a glitch and change its
polarity.

4.3. Inversion model 21

Figure 4.4: Glitches propagating through different primitive logic gates

Apart from logic gates, a source itself can also be inverting which are the flip-flops with a set source, so
𝑠𝑆. Flip-flops are active low (re)set, which means that when the set receives a 0, the output is set to 1,
essentially inverting the signal as well. Note that if the flip-flops in the design are active high, then the
flip-flops with a reset source are inverting.

The sum of every inverting logic gate and inverting source is taken to determine if a path is inverting
(odd number of inversions) or non-inverting (even number of inversions). For example, consider the
path 𝑝(𝑠𝑆2 , 𝑑𝑆6) in Figure 4.3. The set source, inverter, and NAND gate are all inverting, adding up to 3
inversions in total. Hence, 𝑝(𝑠𝑆2 , 𝑑𝑆6) = 1 is an inverting path.

XOR/XNOR gates
Figure 4.4 shows that an XOR will propagate a glitch regardless of its input. On top of that it inverts the
polarity of the glitch if the other input reads a 1. The opposite is true for an XNOR gate which will
invert and propagate a glitch when the other input reads a 0. When there is at least one XOR or XNOR
gate in a path then its value is set to X, this indicates that the path is potentially inverting.

4.3.3. Glitch-sensitive flip-flops
To determine whether a destination is susceptible to glitches, it must meet the three conditions outlined
in Section 4.2. The first condition is that the 𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal should be 0, which is always the case
during asynchronous scan tests.

The second condition is that the (re)set of another flip-flop, called the source, should trigger the (re)set
port of the flip-flop where the glitch is observed, called the destination. This can happen when a
destination is connected to at least one source.

The third condition is that the polarity of the signal between the two flip-flops should be inverted. This
is the case when a path between the source and destination is inverting. Thus, for a destination 𝑦, at
least one path from collection 𝐷𝑦 must be inverting.

Since the 𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal is always 0 during asynchronous scan tests, it can be left out of the
analysis. Whether or not a flip-flop is glitch-sensitive will depend on the other two conditions. So, if a
destination has a source and its path is inverting, then that destination is considered glitch-sensitive.
This means that at that destination, in other words, the (re)set port, there is a static 1-hazard.

4.3.4. Single source transition model
According to this model, every glitch results from a single flip-flop being set or reset. This might sound
counterintuitive as the output of a logic gate depends on both inputs. Even if two flip-flops are involved
in initiating a glitch, it can always be traced back to a single flip-flop with an inverting path. This is
because a glitch will only propagate through a gate if a transition at the input results in a transition at
the output, see Figure 4.4

4.4. Detection Algorithm 22

Figure 4.5a shows a destination with 2 reset sources. After the release of the 𝑎𝑠𝑦𝑛𝑐/𝑑𝑖𝑠𝑎𝑏𝑙𝑒 a glitch can
only occur if the output of the white OR gate is first 0 and then transitions to 1. Its output can only be 0
if both sources hold the value 0 and in that case, triggering either reset will not change anything in the
circuit.

(a) Multisource without inversion (b) Multisource with inversion

Figure 4.5: Single source transition

For the OR gate to transition from 0 to 1 at least one of the paths needs to be inverted. In that case, a
reset can be triggered to generate a glitch, illustrated in Figure 4.5b. It could also be that both paths are
inverted in which case both flip-flops must be 1 initially, otherwise no glitch can be created. Resetting
one flip-flop will then result in a glitch, but afterwards triggering the other reset will not change anything
in the circuit as the OR gate will remain at 1, thus it can no longer propagate a glitch.

4.4. Detection Algorithm
This section will explain how these glitch-sensitive destinations can automatically be detected. This is
split up into two different algorithms. The first is called ’inversion propagation check’ and the second
one ’inversion simulator’. The inversion check performs a DRC that identifies which destination and
sources there are and calculates which paths are inverting. The inversion simulator performs a local
simulation for each destination and based on those results determines which sources are inverting.

4.4.1. Inversion propagation check
The inversion propagation check algorithm will be explained using the inversion model, defined in
Section 4.3. Figure 4.6 shows the example circuit that will used to illustrate how the algorithm operates
in which only the signals of interest are shown. The left-out signals are all of the D inputs, which depend
on the circuit’s functionality, and all of the signals needed to put the flip-flops into scan mode.

Figure 4.6: Example circuit used as input for detection algorithm

4.4. Detection Algorithm 23

Identify destinations and sources
The first step of the algorithm is to identify every destination and source that is in the circuit. This is
done by checking every flip-flop in the scan-chain and classifying each (re)set port as a destination. The
output Q of each (re)set flip-flop is set as a source, where each source is linked to either a set or reset. In
case a flip-flop has both a set and reset then two separate sources are created. Figure 4.7 shows the
circuit after this step of the algorithm.

Figure 4.7: Example circuit after identifying destinations and sources

Trace back for each destination
Every path leading to a destination is traced backwards until it ends either at a primary input or at the
output of a scan flip-flop. If the endpoint is a source, then the path is saved. For each saved path, we
calculate the number of inversions based on the combinational gates on the path and the type of source.

Take SFF6 as an example, the destination 𝑑𝑆6 is connected to two sources: 𝑠𝑆2 and 𝑠𝑅4. Path 𝑝(𝑠𝑆2 , 𝑑𝑆6)
consists of the following gates: OR, NAND, INV. This means there are 2 inverting gates (NAND,INV)
on this path plus one inversion due to source 𝑠𝑆2. This gives a total of 3 inversions, which is odd, thus
𝑝(𝑠𝑆2 , 𝑑𝑆6) = 1 as it is inverting. The same calculation can be done for 𝑝(𝑠𝑅4 , 𝑑𝑆6) which is a reset source,
no inversion, with OR plus NAND gate, so 𝑝(𝑠𝑅4 , 𝑑𝑆6) = 1 as well.

The path 𝑝(𝑠𝑆1 , 𝑑𝑆2) = 0 as it consists of a set source and an inverter, which is an even number of
inversions, thus this is an example of a non-inverting path. Path 𝑝(𝑠𝑆2 , 𝑑𝑅4) contains an XOR gate so this
path gets the value X indicating that it is potentially inverting, which will be further explored by the
inversion simulator algorithm.

On the combinational logic between 𝑑𝑅7 and 𝑠𝑅4 there is an example of reconvergence. It will depend
on the implementation of the algorithm whether the path with or without the inverter will be picked.
Thus this path also needs additional exploration to determine if 𝑝(𝑠𝑅4 , 𝑑𝑅7) is inverting or not. For now
let us assume this path is set to be non-inverting

Identifying glitch-sensitive scan flip-flops
After every path for each destination is compiled the algorithm can identify which scan flip-flops are
glitch-sensitive. These are the destinations that have at least one source with an inverting path or
potentially inverting path. The other destinations are seen as safe in the context of glitches during
asynchronous scan tests. By combining all of the calculated paths the following collection for each
destination can be made:

• 𝐷𝑆2 = {𝑠𝑆1} = {0}
• 𝐷𝑅3 = {𝑠𝑆1} = {0}
• 𝐷𝑅4 = {𝑠𝑆2 , 𝑠𝑆3 , 𝑠𝑅3} = {𝑋, 𝑋, 𝑋}
• 𝐷𝑆6 = {𝑠𝑆2 , 𝑠𝑅4} = {0, 0}
• 𝐷𝑅7 = {𝑠𝑅4 , 𝑠𝑆6} = {0, 1}

The number in brackets denotes the sources that have a path that is: non-inverting (0), inverting (1),
or potentially inverting (X). Since at least one of the sources for 𝑑𝑅7 is inverting, this scan flip-flop is
considered to be sensitive to glitches. For now, 𝑑𝑅4 is also considered to be glitch-sensitive since it has at

4.4. Detection Algorithm 24

Figure 4.8: Glitch-sensitive scan flip-flops (in red) after inversion propagation check is performed

least one potentially inverting path. Figure 4.8 highlights only the destinations of such glitch-sensitive
scan flip-flops in red.

4.4.2. Inversion simulator
The inversion simulator algorithm will further investigate which scan flip-flops are glitch-sensitive by
performing local simulations. As input, it takes the destinations that are classified as glitch-sensitive by
the inversion propagation check. For each destination, all scan flip-flops connected to it are identified.
Using these as inputs the algorithm simulates every possible combination of input values and records
the resulting value at the destination. Table 4.1 shows the simulated values for 𝑑𝑅7 as an example. If one
(re)set port has N inputs the algorithm needs to simulate 2𝑁 values, which means it has an exponential
time complexity [53].

Time complexity for one (re)set port = 𝑂(2𝑁) (4.1)

This means that the executing time of the algorithm grows quadratically with the size of the input. For
circuits that have a large fan-in on the reset logic the number of inputs N might become too large (>8)
which will drastically increase the execution time of the algorithm.

Cycle SFF4 SFF5 SFF6 Sim Result
0 0 0 0 0
1 0 0 1 0
2 0 1 0 1
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 0
7 1 1 1 1

Table 4.1: Simulation results for 𝑑𝑅7

Determine inverting sources from simulation
The algorithm performs an exhaustive search by checking every possible input transition that can be
made. Based on the simulation results, if a source exhibits inverting behaviour for at least one input
transition, then it is classified as inverting.

Now, let’s consider the scenario where an input is also a reset source. If only this input transitions from
a 1 to a 0, while the other inputs remain the same, then it mimics the behavior when that source is reset.
If the simulation result changes from a 0 to a 1 for that input transition, then it indicates that a glitch
could occur for those input values. This is the same behaviour as shown in Figure 4.1.

A reset source is considered non-inverting only when a transition from 1 to 0 does not cause a transition
from 0 to 1 at the destination. On the other hand, set sources transition from 0 to 1 when their set port is
triggered. Therefore, a set source is non-inverting only when a transition from 0 to 1 does not result in a

4.4. Detection Algorithm 25

transition from 0 to 1 at the destination. To verify this, the algorithm examines each input and checks
the simulation results when only that input is changed.

A reset source is considered non-inverting when no transition from 1 to 0 leads to a transition from 0 to
1 at the destination. On the other hand, set sources transition from 0 to 1 when their set port is triggered.
Therefore, for a set source the same applies when the input transitions from 0 to 1 instead of from 1 to 0.

Table 4.9 displays how the algorithm checks each input, where red arrows indicate inverting transitions
and green arrows indicate non-inverting transitions.

Figure 4.9: Simulation results checked by algorithm

Take 𝑠𝑅4 as an example, in Table 4.9 from cycle 6 to 2 and from 7 to 3 only input SFF4, the source, is
changed from value 1 to 0. The simulation result changes from 0 to 1 for these input values, thus 𝑠𝑅4 is
inverting.

Output after inversion simulator
After performing both algorithms the following collection of destinations is made:

• 𝐷𝑆2 = {𝑠𝑆1} = {0}
• 𝐷𝑅3 = {𝑠𝑆1} = {0}
• 𝐷𝑅4 = {𝑠𝑆2 , 𝑠𝑆3 , 𝑠𝑅3} = {1, 1, 1}
• 𝐷𝑆6 = {𝑠𝑆2 , 𝑠𝑅4} = {0, 0}
• 𝐷𝑅7 = {𝑠𝑅4 , 𝑠𝑆6} = {1, 1}

The values for 𝑑𝑅4 were updated by the inversion simulator as each of its sources was inverting. This is
quite trivial as the logic feeding into this destination was only an XOR gate. However, in more complex
circuits, this may not always be the case. It is worth noting that path 𝑝(𝑠𝑆4 , 𝑑𝑆7) was set to non-inverting
by the inversion propagation check, while the inversion simulator deemed it as an inverting path. As
mentioned earlier, the inversion propagation check does not work reliably for circuits with recovering
paths, which is why both algorithms are used to ensure that false negatives are filtered out.

5
Implementation detection algorithm

This chapter covers how the inversion propagation check and inversion simulator are implemented in a
detection algorithm. The exact requirements for the detection algorithm and how it was integrated into
the design flow are confidential and have thus been left out of the thesis. Instead, the general design
flow of a chip is described to explain at what stage the algorithm could be implemented. The remaining
sections explain how the algorithm works using a flow chart and elaborate some important functions.

5.1. Integration Detection algorithm
Asynchronous glitches during scan design are observed through differences in ATPG simulations,
which occurs near the tape out of the chip. This is very late in the design cycle, making changes to the
design very costly. Hence, a detection algorithm is needed to identify these glitches early in the design
phase.

From the chips design requirements functional Register Transfer Level (RTL) code is created, which
describes the functionality of a circuit. During synthesis, library cells are mapped onto the RTL which
produces a gate-level netlist. This netlist describes the components and structure of the circuit. At this
stage, DfT such as scan-chains, can be added to the netlist. After everything is added the layout of the
netlist is finalized after which it is ready for tape-out.

The algorithms require the structure of the circuit to calculate inverting paths. For this reason, RTL
cannot be used, as only after synthesis the structure is determined. Additionally, scan-chains should
already be inserted as this makes it easier to identify each flip-flop. The layout does not need to be
finalized yet for the algorithm to work so that it can be used on either the pre- or post-layout netlist
depending on the application. Running it on the pre-layout would be advised as the algorithm highlights
which scan flip-flops require additional DfT, which should be inserted before finalizing the layout.

5.1.1. Coding languages
To analyse the circuit the EDA Tessent tool from Siemens is used. It is specifically designed to address
the challenges of testing complex digital integrated circuits (ICs) at different stages of the IC lifecycle
including design and verification. Some key aspects of the tool are high-quality ATPG, fault simulation
and analysis, and support for various DfT techniques such as scan test. Many functions are included to
analyze paths in a circuit, gather information on the scan-chain, and perform simulations.

In combination Tcl, short for "Tool Command Language", is used which is a flexible scripting language.
Tcl is an interpreted language, which means its executed line by line without needing compilation. It is
a basic but flexible language which makes it very suited for automating tasks.

26

5.2. Detection algorithm code 27

5.2. Detection algorithm code
This section explains from a high-level view what the detection algorithm does. It will be described
using the flowchart in Figure 5.1. The inversion propagation check and inversion simulator will be
discussed in their separate subsection which is also referenced in the flowchart. The functionality of
some important Tessent functions will be explained, these are italicized.

Figure 5.1: Flowchart of detection algorithm

After Tessent loads in the netlist the function 𝑠𝑒𝑡_𝑠𝑦𝑠𝑡𝑒𝑚_𝑚𝑜𝑑𝑒 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 is run to allow design analysis,
test pattern generation and simulation. Then Tessent report every flip-flop that is part of a scan-chain
(there could be multiple scan-chains in a design) and finds every flip-flop that has a set or reset port.

Before every (re)set port there should be an OR gate inserted which is gated with the asynchronous
reset disable signal. The other input to this OR gate is set as a destination (𝑑𝑆𝑥 , 𝑑𝑅𝑥), which prevents
Tessent from traversing to the logic generating the asynchronous reset disable. The output Q of every
(re)set flip-flop is set as a source (𝑠𝑆𝑦 , 𝑠𝑅𝑦).

Using the destinations and sources as an input the inversion propagation check is performed which
generates a list with every path, both inverting and non-inverting. The inversion simulator then uses
these paths as input to simulate and classify each source. Some statistics are reported such as the total
amount of flip-flops, the number of sources and destinations, and how many paths were reclassified by
the inversion simulator. As an output two text files are generated. One that includes: every destination,
which source is connected to it and whether it is inverting or not, this is illustrated in the Appendix
Figure A.1. The other text file only contains the destinations that have at least one inverting source, as
these destinations require additional DfT.

5.2. Detection algorithm code 28

5.2.1. Inversion propagation check
The function of the inversion propagation check is described on the left in Figure 5.1. For each destination,
the Tessent function 𝑡𝑟𝑎𝑐𝑒_ 𝑓 𝑙𝑎𝑡_𝑚𝑜𝑑𝑒𝑙 is used, this traces back through the combinational logic until it
encounters a source or an input.

The parameter ’direction’ is set to backward as Tessent traverses the logic from the destination back to
the source. The parameter ’controllability’ is set to connected which ensures that Tessent will traverse
any path that is connected to the destination. The optional parameter ’store_path_to_tagged_objects’
saves the traversed path which includes each primitive combinational gate that is in between the source
and destination.

Another function calculates if the traversed path is inverting or not. If the traversed path has an odd
number of inverting gates then the source is inverting (1) and if it is even then it is non-inverting (0). If
an XOR or XNOR gate is in the path then it is set to potentially inverting (X). For each destination, a list
is stored which contains which source it is connected to, its inverting value, and the path length. The
path length is the amount of gates that is between the destination and the source.

5.2.2. Inversion Simulator
The function of the inversion simulator is described on the right in Figure 5.1. To explain this part
of the code the example from Figure 4.8 will be used where destination 𝑑𝑅7 is being checked. For
each destination, Tessent again performs a trace back but this time stores every scan flip-flop that it
encounters and sets them as inputs, resulting in Table 5.1. The left-hand column gives the simulation
step of the simulation which is created using a for loop from 0 to 2𝑖𝑛𝑝𝑢𝑡𝑠

Step SFF4 SFF5 SFF6 Sim0 Sim1
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

Table 5.1: Simulation inputs for 𝑑𝑅7

A snippet of this part of the code is shown in Listing 5.1. Each input is given an index from 0 to the
number of inputs, which means the following: SFF6 (0), SFF5 (1), SFF4 (3). When the step is represented
in binary we get the corresponding input values. At each step another for loop goes through each index
and performs an AND operation on the step and 2𝑖𝑛𝑑𝑒𝑥 . In other words, if the simulation step is 3 this
represents 011 in binary and 2𝑖𝑛𝑑𝑒𝑥 is: SFF6 (001), SFF5 (010), SFF4 (100). So for step 3 SFF6 and SFF5 are
put to 1 while SFF4 is put to 0.

Listing 5.1: TCL code: Simulating input value
1 for {set step 0} {$step < [expr 2 ** $length]} {incr step} {
2 for {set index 0} {$index < $length} {incr index} {
3 if {[expr $step & 2 ** $index] != 0} {
4 set bit c1} else {set bit c0
5 }
6 add_cell_constraints [get_gate_pins [lindex $sources_connected $index]] $bit
7 }
8 report_test_stimulus -set $dest_input 1 > $file2
9 set sim_1_output($step) [ReadSim_1 $file2]

10

11 report_test_stimulus -set $dest_input 0 > $file2
12 set sim_0_output($step) [ReadSim_0 $file2]
13

14 delete_cell_constraints -All
15 }
16 }

5.2. Detection algorithm code 29

At the start of each step, the value of each scan flip-flop is set using the Tessent function 𝑎𝑑𝑑_𝑐𝑒𝑙𝑙_𝑐𝑜𝑛𝑠𝑟𝑎𝑖𝑛𝑡𝑠.
After each input is loaded its response is tested using the Tessent function 𝑟𝑒𝑝𝑜𝑟𝑡_𝑡𝑒𝑠𝑡_𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠. This
function allows a specific node in the circuit, the destination, to be set to either a 1 or 0. Tessent then
attempts to simulate that value, and if successful, it reports which scan flip-flops were used to do so.
This function is run for both a 1 and a 0 with the same input constraints. These constraints are then
deleted before performing the same code on the next destination.

The column Sim0 in Table 5.2 displays the results when a 0 is simulated at 𝑑𝑅7. A result of 0 indicates a
successful simulation, while a result of 1 indicates that the simulator could not simulate a 0. The same
applies to Sim1, where a result of 1 means the simulation was successful, and 0 means it could not
simulate a 1.

Classifying sources
Once all simulations are run, the algorithm checks both simulation values using the same two for loops
shown in Listing 5.1. If only a set source changes its input value from 0 to 1, and this results in the
simulation value also changing from 0 to 1, then that source is identified as inverting. Similarly, when
a reset source changes from 1 to 0, and this results in the simulation value changing from 0 to 1, it is
identified as inverting. Figure 5.2 illustrates how this checking is done, where the green arrows indicate
a safe transition, and the red arrows indicate an inverting one.

Figure 5.2: Simulation results from inversion simulator

Utilizing Tessent simulator
The reason for computing both Sim0 and Sim1 is related to how the Tessent simulator operates. The
function name 𝑎𝑑𝑑_𝑐𝑒𝑙𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 suggests that scan-cells are restricted to a specific value. However,
during simulation, these values can be overwritten by triggering the (re)set port of a scan-cell. This
gives the simulator significant control as it can modify the input data. By simulating both a 0 and a 1
the reset behaviour and the true response of the circuit will be captured.

Take Figure 5.3 as an example, which is an AND gate with two reset sources. Performing both simulators
for 𝑑𝑅3 results in the table illustrated in Table 5.2.

Figure 5.3: AND gate with two reset sources

5.2. Detection algorithm code 30

For Sim0 the simulator always gives a 0, while a 1 is expected when the input values are SFF1 (1) SFF2
(1). But remember that the simulator will try to simulate a 0 at 𝑑𝑅3, which is possible by triggering either
one of the reset ports. However, when simulating a 1 this is not possible and the true response is found.

Step SFF1 SFF2 Sim0 Sim1
0 0 0 0 0
1 0 1 0 0
2 1 0 0 0
3 1 1 0 1

Table 5.2: Simulation results for AND gate

Because the simulator can also control the (re)set ports of the inputs the simulation values will sometimes
differ and thus both need to be checked. If this could be prevented in Tessent then only one simulation
would be necessary, but this is not possible in the current state.

6
Experiments and results

This chapter covers the results of all the experiments conducted. The first part shows very basic
structures to showcase the capabilities and limitations of both algorithms. An overview of the results is
given at the end of this section.

In the second part some functional structures are shown where there is reconvergence from the same
source. These experiments highlight where the capabilities of the inversion simulator.

The third part covers two case studies on which the algorithms were tested. In these case studies
asynchronous reset glitches have been observed. In the last section benchmarks are performed on both
algorithms.

6.1. Experimental setup: Basic structures
The RTL of the basic structures has been written in Verilog. The RTL has been compiled using Genus
Synthesis Solution using the library cells specified by NXP-Semiconductors. These are the intellectual
property of NXP Semiconductors and will not be discussed.

The structures have been build without taking their functionality into account. During the optimization
phase of the synthesizer, these structures could be altered or even completely removed. To prevent
this the combinational logic has been written as a netlist using the gates defined in the library of NXP.
In the synthesis script 𝑠𝑒𝑡_𝑑𝑜𝑛𝑡_𝑡𝑜𝑢𝑐ℎ was specified for each gate preventing the synthesis tool from
optimizing the logic.

The first set of experiments is a set and reset source directly connected to a destination, which represents
the simplest configuration possible. This experiment is then repeated with an inverter placed between
the source and destination. These experiments demonstrate how the simulator functions for sources
with both an inverting and non-inverting path.

The second set of experiments shows how both algorithms deal with different logic gates. These
are the primitive 2-input logic gates: OR, NOR, AND, NAND, XOR and XNOR. There are already
buffers present in between the combinational logic which have been placed by the synthesizer. So these
primitives gates are indirectly tested as well although they do not affect either algorithm.

In the third set the output of a source is connected to the (re)set port of another and both outputs
converge through a 2-input logic gate. In these experiments, there are dependencies within the circuit
which results in different behaviour. The fourth set looks at reconvergence coming from the same
source.

The fourth set shows some structures where there is reconvergence from the same source. These
experiments These structures require at least two logic gates, meaning that at least 8 ∗ 8 = 64 basic
structures are possible to create. Testing them all would be very time-consuming, so instead some
structures are hand-picked to show the capabilities of the algorithm.

31

6.1. Experimental setup: Basic structures 32

These structures have been simulated using a simulator in Tessent. As explained before, this simulator
essentially has too much control as it can alter the input data set by the inversion simulator algorithm.
By triggering the (re)set ports of these flip-flops the test data is overwritten which can mess up the
simulation data. For the inversion simulator to work properly this should be avoided. Additional
experiments are run where the (re)set ports of the sources are kept at logic value 1. This prevents Tessent
from altering the input data to show how the algorithm would perform if the simulator was working as
intended.

The top of table shows which inputs are used. Sources which have their (re)set port fixed to logic 1 are
indicated by a *. The sources classified as inverting by the inversion simulator are highlighted in bold in
each table. Any sources that are incorrectly identified will be explored.

6.1.1. Directly connected sources
Figure 6.1a shows the simplest structure that can be built, which is a source directly connected to a
destination. Figure 6.1b shows a source connected to a destination through an inverter. Both structures
have been tested for both a set and reset source as shown in Table 6.1 and 6.2.

(a) Test: Directly connected source without inverter (b) Test: Directly connected source with inverter

Input Set Reset
SFF1 Sim0 Sim1 Sim0 Sim1

0 0 1 0 0
1 1 1 0 1

Table 6.1: Simulator values without inverter

Input Set Reset
SFF3 Sim0 Sim1 Sim0 Sim1

0 0 1 1 1
1 0 0 0 1

Table 6.2: Simulator values with inverter

Both algorithms classify 𝑠𝑆1 and 𝑠𝑅4 as inverting, which is the expected result. Looking at table 6.1 for
the set source, there are only 1s simulated for Sim1. Similar behaviour is observed when the input is a
reset source but with inverted polarity. That is because the simulator can control the input by putting a
0 on SFF0 which would trigger the set of SFF1 and overwrite the input value. When multiple sources
are used the simulator has a lot of control and alters the input data.

6.1.2. 2-input logic gates
This subsection outlines the test cases conducted for each 2-input logic gate: the OR, NOR, AND,
NAND, XOR, and XNOR gate. Figure 6.2 depicts the structure tested for an OR gate with a set and reset
source as input. The same tests were conducted for two reset sources and two set sources which all
show different simulation results. The sources indicated by a * have their (re)set port tied to 1. This
prevents the simulator from resetting the input values, which leads to the actual response of the circuit.

6.1. Experimental setup: Basic structures 33

Figure 6.2: Test: 2-input OR gate

2-input OR gate
Both algorithms classify each set source as inverting. When the input is set (0) and reset (1) the simulation
result is 0 which deviates from the rest. In this case, the reset is triggered which gives a 0 as response
instead of 1. However, this has no impact on the classification of the sources.

Inputs: Set* Reset* Set Reset Reset Reset Set Set
SFF1 SFF2 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 1 1 1
1 0 0 0 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1 1

Table 6.3: Simulator results 2-input OR gate

2-input NOR gate
The propagation check algorithm classifies each reset source as inverting. So does the inversion simulator,
except when the inputs are both a set and reset. When the input is set (1) and reset (0) the simulation
result is 0 instead of a 1. As a result, the reset is not identified as an inverting source.

Inputs Set* Reset* Set Reset Reset Reset Set Set
SFF1 SFF2 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 1 1 0 1 1 1 0 1
0 1 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 1 0 0

Table 6.4: Simulator results 2-input NOR gate

2-input AND gate
Both algorithms classify each set source as inverting. When the input is set (1) and reset (0) the simulation
result is 0 instead of a 1. However, this has no impact on the classification of the sources.

Inputs Set* Reset* Set Reset Reset Reset Set Set
SFF1 SFF2 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 1 1 1 0 1 0 1 1 1

Table 6.5: Simulator results 2-input AND gate

6.1. Experimental setup: Basic structures 34

2-input NAND gate
Both algorithms classify each reset source as inverting. When the input is set (0) and reset (1) the
simulation result is 0 instead of a 1. However, this has no impact on the classification of the sources.

Inputs Set* Reset* Set Reset Reset Reset Set Set
SFF1 SFF2 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 1 1 1 1 1 1 0 1
0 1 1 1 0 1 1 1 0 1
1 0 1 1 1 1 1 1 0 1
1 1 0 0 0 1 0 1 0 0

Table 6.6: Simulator results 2-input NAND gate

2-input XOR gate
The inversion propagation check classifies each source as potentially inverting. For every source
combination 1 simulation results deviates: Set (0) reset (1) should be 1, reset (1) reset (1) should be 0 and
set (0) set (0) should be 0. The inversion simulator correctly identifies each source as inverting, except
when the input is 2 reset sources. In that case, both sources are incorrectly identified as non-inverting.

Inputs Set* Reset* Set Reset Reset Reset Set Set
SFF1 SFF2 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 0 0 0 1 0 0 0 1
0 1 1 1 0 1 0 1 0 1
1 0 1 1 1 1 0 1 0 1
1 1 0 0 0 1 0 1 0 0

Table 6.7: Simulator results 2-input XOR gate

2-input XNOR gate
The inversion propagation check classifies each source as potentially inverting. For every source
combination 1 simulation results deviates: Set (0) reset (1) should be 0, reset (1) reset (1) should be 1
and set (0) set (0) should be 1. The inversion simulator correctly identifies each source as inverting,
except when the input is a set and reset source. In that case, both sources are incorrectly identified as
non-inverting.

Inputs Set* Reset* Set Reset Reset Reset Set Set
SFF1 SFF2 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 1 1 0 1 1 1 0 1
0 1 0 0 0 1 0 1 0 1
1 0 0 0 0 0 0 1 0 1
1 1 1 1 0 1 0 1 1 1

Table 6.8: Simulator results 2-input XNOR gate

6.1.3. Controlling sources
This section examines structures involving the reconvergence of a signal through a 2-input logic gate.
The signal originates from a source that controls another source’s (re)set port. For each logic gate two
different setups are tested. One where the reset port of a flip-flop is controlled and a second where the
set port of a flip-flop is controlled. Both setups will be discussed separately. These experiments will
show how the simulator deals with cascading (re)set flip-flops as it can lead to a different response.

Figure 6.3a illustrates the reset source 𝑠𝑅2 which is controlled by another reset source 𝑠𝑅1. Their output
signal converges through the OR gate and feeds into the destination of interest: 𝑑𝑅3. Figure 6.3b
illustrates a similar structure but in this case 𝑠𝑅2 is controlled by 𝑠𝑆1.

Figures 6.4a and 6.4b illustrate a similar setup, but in this case the controlled source is a set source, 𝑠𝑆6,
and the destination of interest is 𝑑𝑅7.

6.1. Experimental setup: Basic structures 35

(a) By reset flip-flop (b) By set flip-flop

Figure 6.3: Tests: Reset controlled

To prevent the simulator from altering the input data only the reset of the controlling source (SFF1/SFF5)
needs to be tied to logic 1. The controlled source (SFF2/SFF6) is not changed as its reset behaviour
should be part of the structure.

(a) By reset flip-flop
(b) By set flip-flop

Figure 6.4: Tests: Set controlled

Controlled reset source with OR gate
The inversion simulator correctly classifies the controlling set* and set as inverting sources.

Inputs Reset* Reset Reset Reset Set* Reset Set Reset
SFF1 SFF2 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1
1 0 1 1 0 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1

Table 6.9: Simulator results for controlled reset source with OR gate

Controlled set source with OR gate
The inversion simulator classifies the controlled set source as inverting, but only when the controlling
source is has a reset. At first glance it looks like there is a simulation error for this setup when the
inputs are reset (1) set (0) = 0. But as these are asynchronous signals simulating a 0 is possible. When
the reset is triggered the input values become reset (0) and set (0) for a short duration before the set
source updates to set (1) again. This intermediate value will be captured if the propagation delay from
SFF5 to SFF7 is shorter than the propagation delay from SFF6 to SFF7, which is likely as resetting a
flip-flop takes longer compared to updating just 1 gate.

Note that the same behaviour would be observed if any of the other controlling sources switches from 0
to 1. This does not show up in the simulation results as that transition cannot take place in this context.
In a real circuit, this structure should be avoided as it will also be very glitchy in functional mode.

6.1. Experimental setup: Basic structures 36

Inputs Reset* Set Reset Set Set* Set Set Set
SFF5 SFF6 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

Table 6.10: Simulator results for controlled set source with OR gate

Controlled reset source with NOR gate
The inversion simulator classifies no source as inverting when it has the set* and reset source. However,
this is a mistake as a glitch can occur when the input is SFF1 (0) SFF2 (1) as this would result in a 0 at
𝑑𝑅3 before the 𝑎𝑠𝑦𝑛𝑐_𝑟𝑒𝑠𝑒𝑡_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 is released. After it is released the reset of SFF2 is triggered which
results in a 1 at 𝑑𝑅3, thus a potential glitch. For the structure with Reset* and reset, also misidentifies
the reset source as non-inverting. However, 𝑑𝑅3 would still be considered glitch-sensitive as the Reset*
source is classified as inverting.

Inputs Reset* Reset Reset Reset Set* Reset Set Reset
SFF1 SFF2 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 1 1 1 1 1 1 0 1
0 1 1 1 1 1 1 1 1 0
1 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0

Table 6.11: Simulator results for controlled reset source with NOR gate

Controlled set source with NOR gate
The inversion simulator classifies the reset controlling source as inverting. The input reset (1) set (0) is
similar to the set controlled OR gate. For this case the simulator finds the intermediate value when the
reset source transitions from 1 to 0. This results in a glitch at SFF7 which will transition from 0 to 1 to 0.
Note that this is a static 0-hazards which does not impact the test data, so the reset source is incorrectly
identified.

Inputs Normal Set Reset Set Set* Set Set Set
SFF5 SFF6 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0

Table 6.12: Simulator results for controlled set source with NOR gate

Controlled reset source with AND gate
The inversion simulator correctly identifies the set source as inverting.

Inputs Reset* Reset Reset Reset Set* Reset Set Reset
SFF1 SFF2 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 1 1

Table 6.13: Simulator results for controlled reset source with AND gate

6.1. Experimental setup: Basic structures 37

Controlled set source with AND gate
The inversion simulator correctly identifies every set source as inverting. The simulator for both a set as
controlling and controlled source gives some deviating outputs. However, these have no impact on the
result as the sources are both correctly identified.

Inputs Reset* Set Reset Set Set* Set Set Set
SFF5 SFF6 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 1 1

Table 6.14: Simulator results for controlled set source with AND gate

Controlled reset source with NAND gate
The inversion simulator correctly identifies every reset source as inverting.

Inputs Reset* Reset Reset Reset Set* Reset Set Reset
SFF1 SFF2 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1
1 1 0 0 0 1 0 0 0 0

Table 6.15: Simulator results for controlled reset source with NAND gate

Controlled set source with NAND gate
The inversion simulator correctly identifies the reset source as inverting. However, when both sources
are a set source the algorithm incorrectly identifies them as inverting as well. This is because the
simulator can trigger the set port of SFF5 which overwrites the test data. The different simulation values
result in an incorrect classification.

Inputs Reset* Set Reset Set Set* Set Set Set
SFF5 SFF6 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0 1
1 0 1 1 1 1 1 1 1 1
1 1 0 0 0 1 0 0 0 0

Table 6.16: Simulator results for controlled set source with NAND gate

Controlled reset source with XOR gate
The inversion simulator correctly identifies every source as inverting, except for one. When both sources
are a reset, the controlled source is missed. As the other source is identified it would still result in SFF7
being classified as glitch-sensitive. So for the end result, this has no effect.

Inputs Reset* Reset Reset Reset Set* Reset Set Reset
SFF1 SFF2 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 1
1 0 1 1 0 1 1 1 1 1
1 1 0 0 0 1 0 0 0 0

Table 6.17: Simulator results for controlled reset source with XOR gate

6.2. Results basic structures 38

Controlled set source with XOR gate
For any set controlled source this structure is already glitchy in functional mode. Take the following
transition: SFF5 (1) SFF6 (0) = 1 to SFF5 (0) SFF6 (0) = 0. As this input triggers the set port it again
transitions to SFF5 (0) SFF6 (1) = 1.

When the structure is a Set* and set source, the inversion algorithm incorrectly identifies neither source.
This would result in 𝑑𝑅7 being classified as glitch-free, which is a mistake. For the structures with a
reset and set port only the reset is identified. But as long as one source is identified 𝑑𝑅7 will be classified
as glitch-sensitive.

Inputs Reset* Set Reset Set Set* Set Set Set
SFF5 SFF6 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0 1
1 0 1 1 0 1 1 1 1 1
1 1 0 0 0 1 0 0 0 0

Table 6.18: Simulator results for controlled set source with XOR gate

Controlled reset source with XNOR gate
For any set controlled source this structure is already glitchy in functional mode. Take the following
transition: SFF5 (1) SFF6 (1) = 1 to SFF5 (0) SFF6 (1) = 0. As this input triggers the reset port it again
transitions to SFF5 (0) SFF6 (0) = 1

When the structure is a Set* and set source, the inversion algorithm incorrectly identifies neither source.
This would result in 𝑑𝑅7 being classified as glitch-free, which is a mistake. For the structures with a
reset and set port only the reset is identified. But as long as one source is identified 𝑑𝑅7 will be classified
as glitch-sensitive.

Inputs Reset* Reset Reset Reset Set* Reset Set Reset
SFF1 SFF2 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 1 1 1 1 1 1 0 1
0 1 1 1 1 1 1 1 0 0
1 0 0 0 0 1 0 0 0 0
1 1 1 1 0 1 1 1 1 1

Table 6.19: Simulator results for controlled reset source with XNOR gate

Controlled set source with XNOR gate
The inversion simulator correctly identifies every set source as inverting.

Inputs Reset* Set Reset Set Set* Set Set Set
SFF5 SFF6 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1 Sim0 Sim1

0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0
1 1 1 1 0 1 1 1 1 1

Table 6.20: Simulator results for controlled set source with XNOR gate

6.2. Results basic structures
The following section provides an overview of the results. Each table displays the true value, indicating
whether the source should be classified as inverting (1) or non-inverting (0). The inversion propagation
check can also output an X, indicating potential inverting. A cell is color-coded to indicate when it is
misidentified by the algorithm. Yellow indicates that one source is missed, but the connected destination
would still be classified correctly. Red indicates that all sources are missed, leading to an incorrect
identification of the source.

6.2. Results basic structures 39

The experiments where the (re)set ports of sources were tied to logic 1 are shown separately. These are
to show how the inversion simulator algorithm would work if the Tessent simulator worked as intended.

Directly connected sources
Table 6.21 shows the results for the directly connected sources. These are all correctly identified by both
algorithms.

Experiment True value Propagation check Simulator
Normal: Reset / Set 1 / 0 1 / 0 1 / 0
Inverter: Reset/ Set 1 / 0 1 / 0 1 / 0

Table 6.21: Overview experiments: Directly connected sources

2-input logic gates
In Table 6.22, the results for the 2-input logic gates are presented. The inversion propagation check
correctly identifies each source, except for structures with an XOR/XNOR, where the algorithm classifies
the sources as potentially inverting.

The inversion simulator accurately identifies most sources, except for the NOR, XOR, and XNOR, where
some structures were misidentified. This is due to the simulator having too much control, which triggers
the set or reset of the sources, altering the input data.

Experiment True value Propagation check Simulator
OR: Set / Reset 1 / 0 1 / 0 1 / 0
OR: Reset / Reset 0 / 0 0 / 0 0 / 0
OR: Set / Set 1 / 1 1 / 1 1 / 1
NOR: Set / Reset 0 / 1 0 / 1 0 / 0
NOR: Reset / Reset 1 / 1 1 / 1 1 / 1
NOR: Set / Set 0 / 0 0 / 0 0 / 0
AND: Set / Reset 1 / 0 1 / 0 1 / 0
AND: Reset / Reset 0 / 0 0 / 0 0 / 0
AND: Set / Set 1 / 1 1 / 1 1 / 1
NAND: Set / Reset 0 / 1 0 / 1 0 / 0
NAND: Reset / Reset 1 / 1 1 / 1 1 / 1
NAND: Set / Set 0 / 0 0 / 0 0 / 0
XOR: Set / Reset 1 / 1 X / X 1 / 0
XOR: Reset / Reset 1 / 1 X / X 0 / 1
XOR: Set / Set 1 / 1 X / X 1 / 1
XNOR: Set / Reset 1 / 1 X / X 0 / 0
XNOR: Reset / Reset 1 / 1 X / X 1 / 1
XNOR: Set / Set 1 / 1 X / X 1 / 1

Table 6.22: Overview experiments: 2-input gates

Table 6.23 shows the results when the (re)set sources are tied to 1. In this case, all of the simulation
values were as expected and the inversion simulator correctly identifies every source.

Tied flip-flops True value Propagation check Simulator
OR: "Set / Reset* 1 / 0 1 / 0 1 / 0
NOR: "Set / Reset* 0 / 1 0 / 1 0 / 1
AND: "Set / Reset* 1 / 0 1 / 0 1 / 0
NAND: "Set / Reset* 0 / 1 0 / 1 0 / 0
XOR: "Set / Reset* 1 / 1 X / X 1 / 1
XNOR: "Set / Reset* 1 / 1 X / X 1 / 1

Table 6.23: Overview experiments: 2-input gates with tied (re)set ports

6.2. Results basic structures 40

Controlling sources
Table 6.24 shows the results for the controlling gates when normal (re)set flip-flops are used. Apart
from the XOR/XNORS, the inversion propagation check classified only 1 false positive. That is for the
NOR with reset/set source as these sources would not produce a glitch. As a result a destination would
be incorrectly classified as glitch-sensitive. Apart from that, only 1 source is misidentified, which is
the OR with set/set source. This would not have an impact on the overall result as the destination is
correctly classified.

The inversion simulator produced 1 false negative and 2 false positives for the (re)set flip-flops. So
it performed worse compared to the inversion propagation check. For the XOR/XNOR structures 3
sources were misidentified, but the destinations are still classified correctly.

Experiment True value Propagation check Simulator
OR: Reset / Reset 0 / 0 0 / 0 0 / 0
OR: Set / Reset 1 / 0 1 / 0 1 / 0
OR: Reset / Set 0 / 1 0 / 1 0 / 1
OR: Set / Set 0 / 1 1 / 1 0 / 0
NOR: Reset / Reset 1 / 1 1 / 1 1 / 1
NOR: Set / Reset 0 / 1 0 / 1 0 / 1
NOR: Reset / Set 0 / 0 1 / 0 1 / 0
NOR: Set / Set 0 / 0 0 / 0 0 / 0
AND: Reset / Reset 0 / 0 0 / 0 0 / 0
AND: Set / Reset 1 / 0 1 / 0 1 / 0
AND: Reset / Set 0 / 1 0 / 1 0 / 1
AND: Set / Set 1 / 1 1 / 1 1 / 1
NAND: Reset / Reset 1 / 1 1 / 1 1 / 1
NAND: Set / Reset 0 / 1 0 / 1 0 / 1
NAND: Reset / Set 1 / 0 1 / 0 1 / 0
NAND: Set / Set 0 / 0 0 / 0 1 / 1
XOR: Reset / Reset 1 / 1 X / X 1 / 0
XOR: Set / Reset 1 / 1 X / X 1 / 1
XOR: Reset / Set 1 / 1 X / X 1 / 0
XOR: Set / Set 1 / 1 X / X 1 / 1
XNOR: Reset / Reset 1 / 1 X / X 1 / 0
XNOR: Set / Reset 1 / 1 X / X 1 / 1
XNOR: Reset / Set 0 / 1 X / X 0 / 1
XNOR: Set / Set 1 / 1 X / X 1 / 1

Table 6.24: Overview experiments: Controlling sources

Table 6.25 shows the results when the (re)set port of the controlling source is tied to 1. The inversion
simulator performs slightly better for the structures without an XOR/XNOR as it only produced 1
false negative. This however is still worse than the inversion propagation check. For the XOR/XNOR
structures there are two false negatives, which is significantly worse compared to the sources that were
not tied.

When the (re)set ports are tied the simulator can only generate the response for a static input. However,
when the simulator has full control over the (re)set ports, it can also generate intermediate values by
resetting the controlling source. For a brief moment, the input at the logic gate will already be updated,
but the controlled source is not. These are functional glitches which are being simulated. But when
the (re)set ports are tied these functional glitches do not show up, hence exactly the structures with
functional glitches are incorrectly identified.

6.3. Functional structures with reconvergence 41

Normal flip-flops True value Propagation check Simulator
OR: Reset* / Reset 0 / 0 0 / 0 0 / 0
OR: Set* / Reset 1 / 0 1 / 0 1 / 0
OR: Reset* /Set 0 / 1 0 / 1 0 / 1
OR: Set* /Set 0 / 1 1 / 1 0 / 0
NOR: Reset* / Reset 1 / 1 1 / 1 1 / 0
NOR: Set* / Reset 0 / 1 0 / 1 0 / 0
NOR: Reset* /Set 0 / 0 1 / 0 0 / 0
NOR: Set* /Set 0 / 0 0 / 0 0 / 0
AND: Reset* / Reset 0 / 0 0 / 0 0 / 0
AND: Set* / Reset 1 / 0 1 / 0 1 / 0
AND: Reset* /Set 1 / 1 1 / 1 1 / 1
AND: Set* / Set 1 / 1 1 / 1 1 / 1
NAND: Reset* / Reset 1 / 1 1 / 1 1 / 1
NAND: Set* / Reset 0 / 1 0 / 1 0 / 1
NAND: Reset* /Set 1 / 0 1 / 0 1 / 0
NAND: Set* / Set 0 / 0 0 / 0 0 / 0
XOR: Reset* / Reset 1 / 1 X / X 1 / 1
XOR: Set* / Reset 1 / 1 X / X 1 / 1
XOR: Reset* /Set 1 / 1 X / X 1 / 0
XOR: Set* / Set 1 / 1 X / X 0 / 0
XNOR: Reset* / Reset 1 / 1 X / X 1 / 0
XNOR: Set* / Reset 1 / 1 X / X 0 / 0
XNOR: Reset* /Set 0 / 1 X / X 0 / 1
XNOR: Set* / Set 1 / 1 X / X 1 / 1

Table 6.25: Overview experiments: Controlling sources with tied (re)set ports

6.3. Functional structures with reconvergence
This section will cover some structures with reconvergence through combinational logic from the same
source. Unlike the previous experiments, these structures have a specific functionality which can be
easily verified.

Multiplexer build from primitive logic gates
Figure 6.5 illustrates a multiplexer (MUX) build from NOR and OR gates. There is reconvergence for
SFF3 as it can take two different paths to SFF4. The inversion propagation check picks one of the two
paths at random and calculates the inversion. In this example, it chose the bottom path, from which it
classifies 𝑠𝑅3 as non-inverting.

The output from the inversion simulator is shown in Table 6.26 where sim1 corresponds with the truth
table of a MUX. For sim0 when the input is: SFF3(1) SFF2(0) SFF1(1) the simulator resets SFF3 which
gives a 0 as a response. This does not affect affect the classification.

In this example the inversion propagation check incorrectly identified 𝑠𝑅3 and as this is the only source
of 𝑑𝑅4 it would be classified glitch-free. The inversion simulator correctly identifies the source and
corrects this mistake.

Figure 6.6 also illustrates a MUX structure but built using NAND gates. In this experiment, SFF1 and
SFF2 are replaced by set sources, which allows the simulator to set the input values to one.

The output of the inversion simulator is shown in Table 6.27 which does not correspond with a
normal MUX. Based on these values the inversion simulator identifies 𝑠𝑆1,𝑠𝑆2 as inverting and 𝑠𝑅3 as
non-inverting. In the previous example it was shown that 𝑠𝑅3 is inverting as well, so this is missed due
to the incorrect simulation values. The destination would still be classified correctly as at least one
source is identified as inverting.

6.3. Functional structures with reconvergence 42

Figure 6.5: Experiment: MUX with one reset source

SFF3 SFF2 SFF1 sim0 sim1
0 0 0 0 0
0 0 1 0 0
0 1 0 1 1
0 1 1 1 1
1 0 0 0 0
1 0 1 0 1
1 1 0 0 0
1 1 1 1 1

Table 6.26: Simulation results MUX with one reset source

Figure 6.6: Experiment: MUX with multiple sources

The same experiment was repeated but with the (re)set ports tied to 1. The results of the simulator are
shown in Table which does correspond with the truth table of a MUX. The inversion algorithm correctly
identifies 𝑠𝑆1,𝑠𝑆2 and 𝑠𝑅3 as inverting. These experiments show that the (re)set ports must indeed be
tied to 1 to prevent the Tessent simulator from altering the input data.

SFF3 SFF2 SFF1 sim0 sim1
0 0 0 0 0
0 0 1 0 0
0 1 0 1 0
0 1 1 1 1
1 0 0 0 0
1 0 1 0 0
1 1 0 0 0
1 1 1 0 1

Table 6.27: Simulation results MUX with multiple sources

SFF3 SFF2 SFF1 sim0 sim1
0 0 0 0 0
0 0 1 0 0
0 1 0 1 1
0 1 1 1 1
1 0 0 0 0
1 0 1 1 1
1 1 0 0 0
1 1 1 1 1

Table 6.28: Simulation results MUX with tied (re)set
sources

6.4. Case study 1 43

XOR and XNOR build from primitive logic gates
Figure 6.7a and 6.7b show a structure that functions as an XOR and XNOR respectively. These results
are easily verified as they should be the same as for the 2-input XOR and XNOR gate. The (re)set sources
are all tied to 1 to ensure correct simulation values.

(a) Experiment: Reconvergence XOR structure (b) Experiment: Reconvergence XNOR structure

The inversion propagation check identified the sources 𝑠𝑅1 and 𝑠𝑆5 as inverting for the XOR structure.
From previous experiments we know that each source is inverting, so 𝑠𝑆2 and 𝑠𝑅4 were missed in this
case.

The Tables below show the results from the simulator. Based on these the inversion simulator correctly
identifies every source as inverting.

SFF1 SFF2 sim0 sim1
0 0 0 0
0 1 0 1
1 0 0 1
1 1 0 0

Table 6.29: Simulation results XOR structure

SFF5 SFF6 sim0 sim1
0 0 1 1
0 1 0 1
1 0 0 1
1 1 1 1

Table 6.30: Simulation results XNOR structure

6.4. Case study 1
This section discusses a circuit that experienced glitches during the design phase. The circuit contains
many repetitive structures comprised of 189 flip-flops, including 100 flip-flops with a reset and 14
flip-flops with a set. Multiple (re)set flip-flops share a local reset, which are 17 in total.

A large part of the structure consists of cascading reset sources as illustrated in Figure 6.8. As there is
no inversion between the sources, the algorithm classifies them as glitch-free.

Figure 6.9a displays one of the other structures present in the circuit. This consists of 2 AND gates
and three sources. Due to the set source 𝑠𝑆6 a glitch could occur at destination 𝑑𝑆7. Figure 6.9b is
almost identical but with an additional OR gate inserted after SFF8. This OR gate is connected with the
𝑎𝑠𝑦𝑛𝑐_𝑟𝑒𝑠𝑒𝑡_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal, which was incorrectly inserted into the combinational logic. The inversion
propagation correctly identifies the sources 𝑠𝑆6 and 𝑠𝑆9 as inverting.

Out of the 114 destinations, the inversion propagation check classified 33 as glitch-sensitive and 81 as
glitch-free. As a result only 6 out of the 17 local resets are classified as glitch-sensitive, which means

Figure 6.8: Real glitchy circuit: Non-inverting cascading resets

6.5. Case study 2 44

(a) Case study 1: Glitch-sensitive structure (b) Case study 1: Incorrectly inserted 𝑎𝑠𝑦𝑛𝑐_𝑟𝑒𝑠𝑒𝑡_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal

that 65% less DfT hardware for asynchronous resets is required. Every destination was also evaluated
by the inversion simulator. For Figure 6.9a the simulator results are displayed in Table 6.31. For these
structures, the inversion simulator identifies the same sources as inverting, so it did not lead to any
improvements.

The inversion simulator reports errors for ten destinations. These are all from the structure illustrated
in Figure 6.9b. The error is caused by the incorrectly inserted 𝑎𝑠𝑦𝑛𝑐_𝑟𝑒𝑠𝑒𝑡_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 which causes
the simulator to crash. Nevertheless, as the inversion propagation check accurately classified these
destinations, this has no impact on the overall results.

SFF4 SFF5 SFF6 sim0 sim1
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 0
1 0 0 0 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Table 6.31: Simulation results for Figure 6.9a

6.5. Case study 2
This section discusses another case study which is the circuit shown in Figure 6.10. This schematic
shows a glitch at 𝑑𝑅9 when the 𝑎𝑠𝑦𝑛𝑐_𝑟𝑒𝑠𝑒𝑡_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 is released and the reset of 𝑠𝑅1 is triggered. In
functional mode, resetting SFF1 will cause every scan flip-flop in this schematic to be (re)set.

Figure 6.10: Part of a circuit where glitch was observed at SFF9

The inversion propagation check identified 4 inverting sources and classified 6 destinations as glitch-

6.6. Evaluation of the execution time for the proposed algorithms 45

sensitive. Figure 6.11 illustrates which sources are inverting (Q in green) and which destinations are
glitch-sensitive (R in red). The sources 𝑠𝑅6,𝑠𝑅7 and 𝑠𝑅8 all have paths with reconvergence, but only 𝑠𝑅8
has both an inverting and non-inverting path. The inversion propagation check picked the inverting
path and identified 𝑠𝑅8 as inverting.

Running the inversion simulator for 𝑑𝑅9 results in a table with 128 input values. Only the part with
non-zero values of this simulation is shown in the Appendix: Table A.1. For most input values the
simulation results in 0. This is due to the last AND gate feeding into 𝑑𝑅9 as this will only produce a 1
when the input value is: SFF2 (1) and SFF5 (0). The same input to this AND gate also triggers the reset
ports of 𝑠𝑅6,𝑠𝑅7 and 𝑠𝑅8. So even if resetting 𝑠𝑅8 would produce a glitch, it could not propagate through
the AND gate as the other input is 0.

The inversion simulator correctly identifies this source as non-inverting, which is the only difference
compared to the inversion propagation check. This does not change anything regarding the classification
of the destinations. Out of the 9 (re)set sources both algorithms classify 6 as inverting and thus leads to
a reduction of 33% for the DfT hardware overhead for asynchronous (re)sets.

Figure 6.11: Sources and destinations identified by inversion propagation check

6.6. Evaluation of the execution time for the proposed algorithms
Benchmarks have been conducted on two case studies to compare the execution time of both algorithms.
The reset synchronizer circuit contains 189 flip-flops, out of which 114 have a set/reset. This circuit is
part of a much larger system that contains 1457 flip-flops, with 95 having a set/reset. The function of
this larger integrated circuit (IC) is more complex, and due to confidentiality reasons, we cannot discuss
its function.

The inversion propagation check is performed for every set/reset flip-flop in the circuit. Running the
inversion simulator is optional and will only compute for destinations with at least one source (both
inverting and non-inverting). Moreover, the inversion simulator can be set to run for specific destinations
if needed.

For case study 1 the inversion simulator was executed in 0.250s and the inversion simulator was run on
98 which took 3.235s. These results are also listed in Table 6.32. In contrast, the second case study which
has approximately 13 times more flip-flops, took the inversion simulator 3.850s, demonstrating that the
execution time scales linearly with the number of flip-flops. The inversion simulator was only run for
the schematic with an observed glitch, which has 9 destinations, and it took 14.217s.

Inversion propagation check Inversion simulator
Case study 1 0.250 s 2.935 s
Case study 2 3.253 s 10.217 s

Table 6.32

6.6. Evaluation of the execution time for the proposed algorithms 46

The reason why the inversion simulator relatively takes so much longer for case study 1 is because there
is one destination (𝑑_𝑅9) which has 7 inputs. That means 27 = 128 input values need to be simulated.
While the reset synchronizer circuit has destinations with at most 23 = 8 input values. This shows that
the inversion simulator has indeed a time complexity of 𝑂(2𝑁), where N is the maximum number of
inputs to a destination.

To illustrate how the inversion simulator scales an additional experiment was run. In this case, simple
schematics were made with increasing inputs to the destinations. Figure 6.12 shows how the executing
time of the inversion simulator increases exponentially with the number of inputs.

Figure 6.12: Execution time with inversion simulator

7
Discussion

7.1. Experiments
The initial structures were constructed to demonstrate the capabilities and limitations of each algorithm
without considering functionality. The structure of some of the controlled sources should never be put
into an actual design. Such as the controlled set source with a NOR gate which will always output a 0.
As these structures should be avoided it is not as important that the algorithm incorrectly identifies
them. Additional experiments should be conducted of which the functionality is taken into account.

In all of the experiments, there was only one structure for which the algorithm incorrectly classified a
destination. This was the controlled set source with NOR gate which produced a false positive. Granted
that this structure has no real functionality, it perhaps should be overlooked. In addition, a false positive
would only result in slightly more DfT than necessary, while a false negative could result in a glitchy
circuit. So a false positive does not have a huge impact.

The algorithm does fall short when there are paths with reconvergence. In that case, Tessent picks one
path for which the inversion is calculated, which could result in sources being classified incorrectly. The
algorithm cannot tell if it encountered reconvergence which is a big downside.

When there are XOR/XNOR gates or there is reconvergence present the inversion simulator correctly
identifies most sources. However, there are instances where this algorithm produces false negatives.
This is only the case when there are functional glitches present, so these should already be detected
during functional verification.

These functional glitches could be detected as well if the simulator is allowed to (re)set the input
flip-flops. In the current implementation this alters the input data which corrupts the simulator results.
An improvement could be made where the input data is adjusted accordingly through feedback between
the algorithm and simulator. This would be very difficult to realize in Tessent as the simulator does not
clearly provide if a reset has been triggered.

7.1.1. Case studies
The algorithm was only tested on two case studies that suffered from glitches. The first case study
only contained relatively simple structures with at most 3 sources per destination and no reconverging
paths. It did contain a design mistake as the 𝑎𝑠𝑦𝑛𝑐_𝑟𝑒𝑠𝑒𝑡_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal was incorrectly inserted into
the combinational logic (Figure 6.9b. While the algorithm was not intended to find such mistakes, the
errors reported by the inversion simulator for these specific structures indirectly led to their discovery.

The second case study has more complex structure which includes reconvergence. The inversion
propagation check inaccurately identified a source as inverting, which was subsequently corrected by
the inversion simulator. This demonstrates how the algorithms are meant to work together.

47

7.2. Robustness 48

7.1.2. Tessent simulator
The results from the experiments show that the simulator from Tessent does not always produce accurate
results. When the (re)set ports of the inputs are tied to logic 1 the simulator behaves as expected for
the 2-input logic gate. However, for the controlling sources, the structures with functional glitches
are missed. An argument could be made that these glitches should already be taken care of in the
verification step of the design.

For the case studies none of the sources needed to be tied to 0. This is not necessary for the reset
synchronizer circuit as it contains either directly connected sources or structures with AND gates. As is
shown in the results for the basic structures, these types of structures work fine without tying the (re)set
ports.

The schematic (Figure 6.10) on the other hand does contain structures for which the simulator produced
errors, such as the NOR gate with set/reset port. However, the functionality of this schematic creates
dependencies between flip-flops. The dependencies limit the control that Tessent has and as a result the
simulator computes as intended.

7.2. Robustness
The algorithm detects logic hazards caused by de-asserting the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal. To ensure that
the asynchronous scan-test is robust the worst-case scenario is considered where it is assumed that a
hazard can result in a glitch. In reality, this depends on the propagation delay of the different paths
traversed by the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒 signal. The accuracy of the algorithm could be improved by modeling
the propagation delay of those paths. This would make the algorithm a lot more complex as the
propagation delay is dependent on the structure of the gates, manufacturing process variations and
environmental variations.

Even if the algorithm classifies a (re)set flip-flop as glitch-free, it is still possible for a glitch to appear
due to transient faults. These faults can be caused by physical phenomena, such as electromagnetic
interference, capacitive coupling, or high-energy particles from cosmic rays. Preventing these kinds of
glitches requires separate models and dedicated solutions.

7.3. Performance
The first case study comprises of 114 (re)set flip-flops where multiple flip-flops share a local reset. Both
algorithms classified 6 out of 17 local resets to be glitch-sensitive, which means 65% less DfT hardware
for asynchronous (re)sets is required.

The circuit contains 6232 gates, including the OR gates for the 𝑎𝑠𝑦𝑛𝑐_𝑑𝑖𝑠𝑎𝑏𝑙𝑒, and 189 scan flip-flops.
As a scan flip-flop can be built with 14 logic gates [15] the total number of gates is 6232 + 189 ∗ 14 = 8878.
The DfT for each local reset adds another 3 gates and one scan flip-flop, so 17 gates. Inserting the DfT at
every local (re)set gives 8878 + 17 ∗ 17 = 9167 gates. After running the algorithm only 6 local (re)sets
require DfT so the total number of gates becomes 8878 + 6 ∗ 17 = 8980. So after the algorithm, the total
number of gates can be reduced by 1 − 8980

9167 = 2.0%

The same calculations can be done for the second case study. This circuit contains 16 gates, 9 scan
flip-flops and 3 local resets. The total number of gates including the DfT is 16 + 9 ∗ 14 + 3 ∗ 17 = 193.
After running the algorithm 2 of the local resets are classified as glitch-sensitive, so the total number of
gates is 16 + 9 ∗ 14 + 2 ∗ 17 = 176 which results in a reduction of 1 − 176

193 = 8.8%.

A reduction in the total number of gates provides an indication of potential area savings. Determining
the exact amount of area requires the post-layout netlist of the circuits before and after the algorithm.
This information was not obtainable with the tools provided and is thus recommended for future work.

To accurately determine the performance of the algorithm it must be tested on more circuit designs.
Asynchronous (re)set glitches only show up during scan test when the circuit contains a lot of ripple
reset structures. During this work it was not possible to obtain additional circuits with these specific
structures.

7.4. Integration 49

7.4. Integration
The entire algorithm could easily be integrated into any workflow as it only needs a scan-inserted
netlist. The current implementation outputs a text file that contains every destination with at least one
inverting source, which are the flip-flops that require additional DfT. Another algorithm can be built to
automatically insert the DfT at these flip-flops.

These algorithms can also be used to verify the Intellectual Property of outside vendors. As the algorithm
only requires a scan-inserted netlist it can indicate if there are (re)set flip-flops that are not robust against
asynchronous reset glitches during scan-test.

7.5. Scalability
The main problem with the inversion simulator algorithm is its time complexity of 𝑂(2𝑁)[53], where N
is the maximum number of inputs to a destination. This means that t, the execution time per destination,
can scale quite rapidly for complex circuits. This is not a big drawback for less complex circuits where
N is small such as in case study 1: N = 7, t = 10s and in case study 2: N = 3, t = 3s. However, circuits
with a large fan-in on the reset logic can have a larger N in which case a maximum N of about 8 (t = 21s)
is recommended.

One major improvement would be to compute at each local reset instead of each (re)set port. Both
algorithms calculate for every (re)set port (destination) whether it is inverting or not, however as each
local reset has the same source this calculation would only need to be done once. For example, the reset
synchronizer requires only 17 simulations instead of 98.

The algorithm only needs to be run once or twice during the design cycle of a chip. Synthesis and
simulation of large designs can already take multiple hours or even days. So even if the simulations
take a while, it might not add that much overhead.

Alternatively, only the inversion propagation check can be computed which adds minimal overhead.
This would give the same results for circuits where there is no reconvergence and no XOR/XNOR gates
present. In the experiments conducted every structure with an XOR/XNOR was inverting. That is
because these gates will always flip their output when one of their inputs changes value, which makes a
glitch likely. Perhaps instead of classifying paths with an XOR/XNOR as potentially inverting, they
could just always be set to inverting. It is also possible to run to inversion simulator just for paths with
an XOR/XNOR to check if further optimization is possible at the cost of a longer execution time.

8
Conclusion and future work

8.1. Conclusion
This thesis conducted a comprehensive analysis of glitches that occur during asynchronous scan tests.
The study investigated the conditions under which these glitches occur and proposed an inversion
model to identify which (re)set flip-flops are sensitive to these glitches.

Two separate algorithms are proposed that can classify which (re)set flip-flops are glitch-sensitive. The
inversion propagation check, a design rule-based algorithm, identifies glitch-sensitive (re)set flip-flops
based on inverting paths. The inversion simulator, which is a simulation-based algorithm, is an extension
that finds the source of a glitch even when there is reconvergence and dependencies on paths.

The experiments show that the inversion propagation check is the most accurate in identifying glitchy
structures. It only resulted in one false positive in all of the conducted experiments which is quite
promising. The inversion simulator can find the true inverting sources while there is reconvergence in
the circuit but at the cost of simulation overhead.

Both algorithms have been combined in a detection algorithm which has been tested on two circuits
where glitches were observed. Applying the algorithm resulted in 33% and 65% of the flip-flops being
classified as safe against glitches. As a result, the total number of gates can be reduced by 8.8% and 2.0%
respectively.

8.2. Future work
The following items are suggested for future work:

• Additional tests on functional circuits should be conducted. From these the performance of both
algorithms can be measured.

• The inversion propagation check does not work for recovering paths. To improve the algorithm
another design rule check could be implemented to identify recovering paths. In that case a
designer would know that for those paths the inversion propagation check might lead to incorrect
values.

• The inversion simulator can take any scan flip-flop as an input for the local simulation. However,
the values of primary inputs can not be constrained in the same way. This is a limitation from
Tessent, but perhaps a workaround can be made or another simulator can be used.

• Instead of performing both algorithms on each (re)set port it could be done on each local reset
instead. This gives the same results while reducing the computation time.

• Improve the inversion simulator to also detect functional glitches. This would require another
simulation tool which provides feedback about which flip-flops have been reset.

• A feature that could be added to the detection algorithm is a verification for the async reset disable.
This could notify designers when it is incorrectly inserted into the circuit.

50

Bibliography

[1] E. Sperling, “Customizing ic test to improve yield and reliability,” 2023. [Online]. Available:
https://semiengineering.com/customizing-ic-test-improve-yield-and-reliability/

[2] S. Sindia and V. Agrawal, “Defect level constrained optimization of analog and radio frequency
specification tests,” Journal of Electronic Testing, vol. 31, 12 2015.

[3] H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy, B. Muthiah, and S. Sankar,
“Silent data corruptions at scale,” 2021. [Online]. Available: https://arxiv.org/abs/2102.11245v1

[4] H. D. Dixit, L. Boyle, G. Vunnam, S. Pendharkar, M. Beadon, and S. Sankar, “Detecting silent data
corruptions in the wild,” 2022. [Online]. Available: https://arxiv.org/abs/2203.08989v1

[5] A. Singh, S. Chakravarty, G. Papadimitriou, and D. Gizopoulos, “Silent data errors: Sources,
detection, and modeling,” Proceedings of the IEEE VLSI Test Symposium, vol. 2023-April, 2023.

[6] A. Ahmad, “Automotive semiconductor industry - trends, safety and security challenges,” ICRITO
2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends
and Future Directions), pp. 1373–1377, 2020.

[7] A. Meixner, “The race to zero defects in auto ics,” 2020. [Online]. Available:
https://semiengineering.com/the-race-to-zero-defects-in-auto-ics/

[8] “International technology roadmap for semiconductors - test and test equipment,” 2015. [Online].
Available: https://www.semiconductors.org/wp-content/uploads/2018/06/0_2015-ITRS-2.
0-Executive-Report-1.pdf

[9] E. Sperling, “Test costs spiking,” 2020. [Online]. Available: https://semiengineering.com/
test-costs-spiking/

[10] J. Savir and S. Patil, “Scan-based transition test,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 12, pp. 1232–1241, 1993.

[11] “Ieee standard for test access port and boundary-scan architecture,” IEEE Std 1149.1-2013 (Revision
of IEEE Std 1149.1-2001), pp. 1–444, 2013.

[12] “Robust asynchronous-reset architecture for scan coverage,” EDN -
Voice of the Engineer, 2015. [Online]. Available: https://www.edn.com/
robust-asynchronous-reset-architecture-for-scan-coverage/

[13] T. Waayers, J. C. Meirlevede, P.-H. Pugliesi-Conti, and V. Chalendard, “Testing of asynchronous
reset logic,” 2019. [Online]. Available: https://patents.google.com/patent/US11301607B2/en?oq=
11%2c301%2c607

[14] Y. Peng, I. W. Jones, and M. R. Greenstreet, “Finding glitches using formal methods,” Proceedings -
International Symposium on Asynchronous Circuits and Systems, vol. 2016-October, pp. 45–46, 2016.

[15] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal
VLSI Circuits. Springer Publishing Company, Incorporated, 2013.

[16] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design for Testability.
Morgan Kaufmann Publishers Inc., 2006.

[17] R. R. Montañés, P. Volf, and J. P. D. Gyvez, “Resistance characterization for weak open defects,”
IEEE Design and Test of Computers, vol. 19, pp. 18–25, 2002.

51

https://semiengineering.com/customizing-ic-test-improve-yield-and-reliability/
https://arxiv.org/abs/2102.11245v1
https://arxiv.org/abs/2203.08989v1
https://semiengineering.com/the-race-to-zero-defects-in-auto-ics/
https://www.semiconductors.org/wp-content/uploads/2018/06/0_2015-ITRS-2.0-Executive-Report-1.pdf
https://www.semiconductors.org/wp-content/uploads/2018/06/0_2015-ITRS-2.0-Executive-Report-1.pdf
https://semiengineering.com/test-costs-spiking/
https://semiengineering.com/test-costs-spiking/
https://www.edn.com/robust-asynchronous-reset-architecture-for-scan-coverage/
https://www.edn.com/robust-asynchronous-reset-architecture-for-scan-coverage/
https://patents.google.com/patent/US11301607B2/en?oq=11%2c301%2c607
https://patents.google.com/patent/US11301607B2/en?oq=11%2c301%2c607

Bibliography 52

[18] T. W. Williams and N. C. Brown, “Defect level as a function of fault coverage,” IEEE Transactions on
Computers, vol. C-30, pp. 987–988, 1981.

[19] R. Dekker, F. Beenker, and L. Thĳssen, “A realistic fault model and test algorithms for static random
access memories,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 9, pp. 567–572, 1990.

[20] E. J. McCluskey and C. W. Tseng, “Stuck-fault tests vs. actual defects,” IEEE International Test
Conference (TC), pp. 336–343, 2000.

[21] J. H. Patel, “Stuck-at fault: A fault model for the next millennium,” IEEE International Test Conference
(TC), p. 1166, 1998.

[22] S. D. Millman, E. J. McCluskey, and J. M. Acken, “Diagnosing cmos bridging faults with stuck-at
fault dictionaries,” Digest of Papers - International Test Conference, pp. 860–870, 1990.

[23] J. A. Acken and S. D. Millman, “Accurate modeling and simulation of bridging faults,” Proceedings
of the Custom Integrated Circuits Conference, 1991.

[24] B. Kruseman, A. Majhi, C. Hora, S. Eichenberger, and J. Meirlevede, “Systematic defects in deep
sub-micron technologies,” Proceedings - International Test Conference, pp. 290–299, 2004.

[25] J. M. Emmert, C. E. Stroud, and J. R. Bailey, “New bridging fault model for more accurate fault
behavior,” AUTOTESTCON (Proceedings), pp. 481–485, 2000.

[26] G. L. Smith, “Model for delay faults based upon paths.” vol. 85, 1985, pp. 342–349.

[27] C. J. Lin and S. M. Reddy, “On delay fault testing in logic circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 6, pp. 694–703, 1987.

[28] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S. Iyengar, “Transition fault simulation,” IEEE
Design and Test of Computers, vol. 4, pp. 32–38, 1987.

[29] Y. Shao, I. Pomeranz, and S. M. Reddy, “On generating high quality tests for transition faults,”
Proceedings of the Asian Test Symposium, vol. 2002-January, pp. 1–8, 2002.

[30] J. P. Roth, “Diagnosis of automata failures: A calculus and a method,” IBM Journal of Research and
Development, vol. 10, pp. 278–291, 2010.

[31] T. P. Roth, W. G. Bouricius, and P. R. Schneider, “Programmed algorithms to compute tests to detect
and distinguish between failures in logic circuits,” IEEE Transactions on Electronic Computers, vol.
EC-16, pp. 567–580, 1967.

[32] P. Goel, “An implicit enumeration algorithm to generate tests for combinational logic circuits,”
IEEE Transactions on Computers, vol. C-30, pp. 215–222, 1981.

[33] H. Fujiwara and T. Shimono, “On the acceleration of test generation algorithms,” IEEE Transactions
on Computers, vol. C-32, pp. 1137–1144, 1983.

[34] A. Steininger, “Testing and built-in self-test – a survey,” Journal of Systems Architecture, vol. 46, pp.
721–747, 2000.

[35] E. J. McCluskey, “Built-in self-test techniques,” IEEE Design and Test of Computers, vol. 2, pp. 21–28,
1985.

[36] J. Aerts and E. J. Marinissen, “Scan chain design for test time reduction in core-based ics,” IEEE
International Test Conference (TC), pp. 448–457, 1998.

[37] C. E. Cummings, D. Mills, and S. Golson, “Asynchronous & synchronous reset design techniques-
part deux,” SNUG Boston, vol. 9, 2003.

[38] P. Srivastava, Introduction to Asynchronous Circuit Design. Springer International Publishing, 2022,
pp. 1–13.

Bibliography 53

[39] G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and R. K. Iyer, “An experimental study of soft
errors in microprocessors,” IEEE Micro, vol. 25, pp. 30–39, 2005.

[40] N. Miskov-Zivanov and D. Marculescu, “Multiple transient faults in combinational and sequential
circuits: A systematic approach,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 29, pp. 1614–1627, 2010.

[41] M. Kasim, V. Gupta, and M. Jebin, “Methodology for detecting glitch on clock, reset and cdc path.”
IEEE, 2020, pp. 300–304. [Online]. Available: https://ieeexplore.ieee.org/document/9138064/

[42] C. P. Garcia and T. H. Both, “An analytical gate delay variability model for low-power applications
under the process variations effects,” Journal of Integrated Circuits and Systems, vol. 18, pp. 1–9, 2023.
[Online]. Available: https://jics.org.br/ojs/index.php/JICS/article/view/654

[43] H. Mahmoodi, S. Mukhopadhyay, and K. Roy, “Estimation of delay variations due to random-
dopant fluctuations in nanoscale cmos circuits,” IEEE Journal of Solid-State Circuits, vol. 40, pp.
1787–1795, 2005.

[44] P. Verma, A. K. Sharma, V. S. Pandey, A. Noor, and A. Tanwar, “Estimation of leakage power and
delay in cmos circuits using parametric variation,” Perspectives in Science, vol. 8, pp. 760–763, 2016.

[45] K. G. Verma, B. K. Kaushik, and R. Singh, “Propagation delay variation due to process induced
threshold voltage variation,” Communications in Computer and Information Science, vol. 101, pp. 520–
524, 2010. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-642-15766-0_87

[46] T. McLaurin, F. Frederick, and R. Slobodnik, “The dft challenges and solutions for the arm®
cortex™-a15 microprocessor,” Proceedings - International Test Conference, 2012.

[47] K. H. Tsai and S. Sheng, “Design rule check on the clock gating logic for testability and beyond,”
Proceedings - International Test Conference, 2013.

[48] A. Yadav, P. Jindal, and D. Basappa, “Study and analysis of rtl verification tool,” 2020 IEEE Students’
Conference on Engineering and Systems, SCES 2020, 2020.

[49] “Synopsys spyglass rdc - datasheet.” [Online]. Available: https://www.synopsys.com/
verification/static-and-formal-verification/spyglass/spyglass-rdc.html

[50] “Real intent - meridian rdc.” [Online]. Available: https://www.realintent.com/
reset-domain-crossing-meridian-rdc/

[51] “Siemens questa rdc verification -datasheet.” [Online]. Avail-
able: https://eda.sw.siemens.com/en-US/ic/questa/design-solutions/reset-domain-crossing/
?pk_vid=263901564ccee18d359da1216c2e1ee217143177697f471d

[52] “Real intent gets 3rd best of 2018,” 2019. [Online]. Available: https://www.deepchip.com/items/
dac18-03.html

[53] G. J. Woeginger, “Space and time complexity of exact algorithms: Some open problems,”
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 3162, pp. 281–290, 2004. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-540-28639-4_25

https://ieeexplore.ieee.org/document/9138064/
https://jics.org.br/ojs/index.php/JICS/article/view/654
https://link.springer.com/chapter/10.1007/978-3-642-15766-0_87
https://www.synopsys.com/verification/static-and-formal-verification/spyglass/spyglass-rdc.html
https://www.synopsys.com/verification/static-and-formal-verification/spyglass/spyglass-rdc.html
https://www.realintent.com/reset-domain-crossing-meridian-rdc/
https://www.realintent.com/reset-domain-crossing-meridian-rdc/
https://eda.sw.siemens.com/en-US/ic/questa/design-solutions/reset-domain-crossing/?pk_vid=263901564ccee18d359da1216c2e1ee217143177697f471d
https://eda.sw.siemens.com/en-US/ic/questa/design-solutions/reset-domain-crossing/?pk_vid=263901564ccee18d359da1216c2e1ee217143177697f471d
https://www.deepchip.com/items/dac18-03.html
https://www.deepchip.com/items/dac18-03.html
https://link.springer.com/chapter/10.1007/978-3-540-28639-4_25

A
Appendix

A.1. Implementation

Figure A.1: A part of the text file output

54

A.2. Experiments 55

A.2. Experiments
SFF2 SFF5 SFF8 SFF6 SFF7 SFF4 SFF3 sim0 sim1

1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 1
1 0 0 0 0 1 1 0 0
1 0 0 0 1 0 0 0 0
1 0 0 0 1 0 1 0 0
1 0 0 0 1 1 0 0 1
1 0 0 0 1 1 1 0 0
1 0 0 1 0 0 0 0 0
1 0 0 1 0 0 1 0 0
1 0 0 1 0 1 0 0 1
1 0 0 1 0 1 1 0 0
1 0 0 1 1 0 0 0 1
1 0 0 1 1 0 1 0 1
1 0 0 1 1 1 0 0 1
1 0 0 1 1 1 1 0 1
1 0 1 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0
1 0 1 0 0 1 0 0 1
1 0 1 0 0 1 1 0 0
1 0 1 0 1 0 0 0 1
1 0 1 0 1 0 1 0 1
1 0 1 0 1 1 0 0 1
1 0 1 0 1 1 1 0 1
1 0 1 1 0 0 0 0 1
1 0 1 1 0 0 1 0 1
1 0 1 1 0 1 0 0 1
1 0 1 1 0 1 1 0 1
1 0 1 1 1 0 0 0 1
1 0 1 1 1 0 1 0 1
1 0 1 1 1 1 0 0 1
1 0 1 1 1 1 1 0 1

Table A.1: A part of the simulation for SFF9

	Abstract
	Preface
	Introduction
	Motivation
	Importance of yield
	Glitches during asynchronous scan test

	State-of-the-Art
	Contribution of the Thesis
	Outline thesis

	Background
	Defect to Fault
	Levels of Abstraction

	Manufacturing tests
	Yield and defect level
	Structural testing
	Fault coverage

	Fault Models
	Single vs multiple-fault model
	Automatic Test Pattern Generation

	Design for Testability
	Scan-test
	Asynchronous scan-test

	Reset signal
	Glitches

	Related work
	Problem of asynchronous scan test
	State-of-the-art solutions
	Additional DfT to prevent glitches during scan test
	EDAs performing glitch analysis
	Limitation and shortcomings

	Analysis and Detection Algorithm
	Analysis
	Hazards on asynchronous (re)set ports

	Conditions for an asynchronous (re)set glitch
	Assumptions asynchronous disable signal

	Inversion model
	Definitions
	Inversion on paths
	Glitch-sensitive flip-flops
	Single source transition model

	Detection Algorithm
	Inversion propagation check
	Inversion simulator

	Implementation detection algorithm
	Integration Detection algorithm
	Coding languages

	Detection algorithm code
	Inversion propagation check
	Inversion Simulator

	Experiments and results
	Experimental setup: Basic structures
	Directly connected sources
	2-input logic gates
	Controlling sources

	Results basic structures
	Functional structures with reconvergence
	Case study 1
	Case study 2
	Evaluation of the execution time for the proposed algorithms

	Discussion
	Experiments
	Case studies
	Tessent simulator

	Robustness
	Performance
	Integration
	Scalability

	Conclusion and future work
	Conclusion
	Future work

	Appendix
	Implementation
	Experiments

