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ABSTRACT

Genetic association studies are frequently used to
study the genetic basis of numerous human pheno-
types. However, the rapid interrogation of how well
a certain genomic region associates across traits as
well as the interpretation of genetic associations is
often complex and requires the integration of multi-
ple sources of annotation, which involves advanced
bioinformatic skills. We developed snpXplorer, an
easy-to-use web-server application for exploring Sin-
gle Nucleotide Polymorphisms (SNP) association
statistics and to functionally annotate sets of SNPs.
snpXplorer can superimpose association statistics
from multiple studies, and displays regional infor-
mation including SNP associations, structural vari-
ations, recombination rates, eQTL, linkage disequi-
librium patterns, genes and gene-expressions per
tissue. By overlaying multiple GWAS studies, snpX-
plorer can be used to compare levels of association
across different traits, which may help the interpre-
tation of variant consequences. Given a list of SNPs,
snpXplorer can also be used to perform variant-
to-gene mapping and gene-set enrichment analysis
to identify molecular pathways that are overrepre-
sented in the list of input SNPs. snpXplorer is freely
available at https://snpxplorer.net. Source code, doc-
umentation, example files and tutorial videos are
available within the Help section of snpXplorer and
at https://github.com/TesiNicco/snpXplorer.

GRAPHICAL ABSTRACT

INTRODUCTION

Genome-wide association studies (GWAS) and sequencing-
based association studies are a powerful approach to in-
vestigate the genetic basis of complex human phenotypes
and their heritability. Facilitated by the cost-effectiveness
of both genotyping and sequencing methods and by estab-
lished analysis guidelines, the number of genetic association
studies has risen steeply in the last decade: as of February
2021, the GWAS-Catalog, a database of genetic association
studies, contained 4865 publications and 247 051 variant-
trait associations (1).

To understand how genetic factors affect different
traits, it is valuable to explore various annotations of
genomic regions as well as how associations relate be-
tween different traits. But this requires combining diverse
sources of annotation such as observed structural vari-
ations (SV), expression-quantitative-trait-loci (eQTL), or
chromatin context. Moreover, a framework to quickly visu-
alize and compare association statistics of specific genomic
regions across multiple traits is missing, and may be bene-
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ficial to the community of researchers working on human
genetics. In addition, the functional interpretation of the
effects of genetic variants on a gene-, protein- or pathway-
level is difficult as often genetic variants lie in non-coding
regions of the genome. As a one- to one mapping between
genetic variants and affected genes is not trivial in these
circumstances, it might be wise to associate multiple genes
with a variant. Hence, a profound knowledge of biologi-
cal databases, bioinformatics tools, and programming skills
is often required to interpret GWAS outcomes. Unfortu-
nately, not everyone is equipped with these skills.

To assist human geneticists, we have developed snpX-
plorer, a web-server application written in R that allows
(i) the rapid exploration of any region in the genome with
customizable genomic features, (ii) the superimposition of
summary statistics from multiple genetic association studies
and (iii) the functional annotation and pathway enrichment
analysis of SNP sets in an easy-to-use user interface.

MATERIALS AND METHODS

Web server structure

snpXplorer is a web-server application based on the R pack-
age shiny that offers an exploration section and a functional
annotation section. The exploration section represents the
main interface (Figure 1) and provides an interactive ex-
ploration of a (set of) GWAS data sets. The functional an-
notation section takes as input any list of SNPs, runs a
functional annotation and enrichment analysis in the back-
ground, and send the results by email.

Exploration section

First, input data must be chosen, which can either be
one of the available summary statistics datasets and/or
the user can upload their own association dataset. One of
the main novelties in snpXplorer is the possibility to select
multiple association datasets as inputs (including data up-
loaded by the user). These will be displayed on top of each
other with different colours. The available summary statis-
tics will be kept updated. As of February 2021, snpXplorer
includes genome-wide summary statistics of 23 human
traits classified in five disease categories: neurological traits
(Alzheimer’s disease, family history of Alzheimer’s disease,
autism, depression, and ventricular volume) (2–6), car-
diovascular traits (coronary artery disease, systolic blood
pressure, body-mass index and diabetes) (7–10), immune-
related traits (severe COVID infections, Lupus erythemato-
sus, inflammation biomarkers and asthma) (11–14), cancer-
related traits (breast, lung, prostate cancers, myeloprolif-
erative neoplasms and Lymphocytic leukaemia) (15–18),
and physiological traits (parental longevity, height, educa-
tion, bone-density and vitamin D intake) (9,19–22). These
summary statistics underwent a process of harmonization:
we use the same reference genome (GRCh37, hg19) for
all SNP positions, and in case a study was aligned to the
GRCh38 (hg38), we translate the coordinates using the
liftOver tool (23). In addition, we only store chromosome,
position and p-value information for each SNP-association.
The user may upload own association statistics to display
within snpXplorer: the file must have at least chromosome-,

position- and P-value columns, and the size should not ex-
ceed 600Mb. snpXplorer automatically recognizes the dif-
ferent columns, supports PLINK (v1.9+ and v2.0+) associ-
ation files (24), and we provide several example files in the
Help section of the web-server.

After selecting the input type, the user should set the pre-
ferred genome version. By default, GRCh37 is used, how-
ever, all available annotation sources are available also for
GRCh38, and snpXplorer can translate genomic coordi-
nates from one reference version to another. In order to
browse the genome, the user can either input a specific
genomic position, gene name, variant identifier, or select
the scroll option, which allows to interactively browse the
genome.

The explorative visualisation consists of 3 separate pan-
els showing (i) the SNP summary statistics of the selected
input data (Figure 1A), (ii) the structural variants in the
region of interest (Figure 1B) and (iii) the tissue-specific
RNA-expression (Figure 1C). The first (and main) visual-
ization panel shows the association statistics of the input
data in the region of interest: genomic positions are shown
on the x-axis and association significance (in −log10 scale)
is reported on the y-axis. Both the x-axis and the y-axis can
be interactively adjusted to extend or contract the genomic
window to be displayed. Linkage disequilibrium (LD) pat-
terns are optionally shown for the most significant vari-
ant in the region, the input variant, or a different variant
of choice. The linkages are calculated using the genotypes
of the individuals from the 1000 Genome project, with the
possibility to select the populations to include (25). There
are two ways to visualise the data: by default, each variant-
association is represented as a dot, with dot-sizes optionally
reflecting P-values. Alternatively, associations can be shown
as P-value profiles: to do so, (i) the selected region is divided
in bins, (ii) a local maximum is found in each bin based on
association P-value and (iii) a polynomial regression model
is fitted to the data, using the P-value of all local maximum
points as dependent variable and their genomic position
as predictors. Regression parameters, including the num-
ber of bins and the smoothing value, can be adjusted. Gene
names from RefSeq (v98) are always adapted to the plot-
ted region (26). Finally, recombination rates from HapMap
II, which give information about recombination frequency
during meiosis, are optionally shown in the main plot inter-
face (27).

The second panel shows structural variations (SV) in
the region of interest. These are extracted from three stud-
ies that represent the state-of-the-art regarding the estima-
tion of major structural variations across the genome us-
ing third-generation sequencing technologies (i.e. long read
sequencing) (28–30). Structural variations are represented
as segments: the size of the segment codes for the maxi-
mum difference in allele sizes of the SVs as observed in the
selected studies. Depending on the different studies, struc-
tural variations are annotated as insertions, deletions, inver-
sions, copy number alterations, duplications, mini-, micro-
and macro-satellites, and mobile element insertions (Alu el-
ements, LINE1 elements and SVAs).

The third panel shows tissue-specific RNA-expression
(from the Genotype-Tissue-expression consortium, GTEx)
of the genes displayed in the selected genomic window
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Figure 1. snpXplorer exploration section. (A) First and main visualisation interface reporting summary statistics of multiple genetic studies as shown
with p-value profiles. (B) Structural variants within the region of interest are reported as segments and colored according to their type. (C) Tissue-specific
RNA-expression (from Genotype-Tissue-Expression, GTEx) of the genes displayed in the region of interest.
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(31). The expression of these genes across 54 human tis-
sues is scaled and reported as a heatmap. Hierarchical clus-
tering is applied on both the genes and the tissues, and
the relative dendrograms are reported on the sides of the
heatmap.

The side panel allows the user to interact with the ex-
ploration section. In order to guide the user through all
the available inputs and options, help messages automat-
ically appear upon hovering over items. The side panel
reports (i) the top 10 variants with highest significance
(together with the trait they belong to, in case multi-
ple studies were selected) and (ii) the top eQTLs associ-
ations (by default, eQTLs in blood are shown, and this
can be optionally changed), and (iii) cross-references in-
cluding GeneCards, GWAS-catalog and LD-hub (1,32,33).
Finally, download buttons allow to download a high-
quality image of the different visualisation panels as well
as the tables reporting the top SNP and eQTL associa-
tions, the SVs in the selected genomic window, and the
LD table.

Functional annotation section

The functional annotation pipeline consists of a two-step
procedure: firstly, genetic variants are linked to likely af-
fected genes (variant-gene mapping); and, secondly, the
likely affected genes are tested for pathway enrichment
(gene-pathway mapping). In the variant-gene mapping, ge-
netic variants are linked to the most likely affected gene(s)
by (i) associating a variant to a gene when the variant is
annotated to be coding by the Combined Annotation De-
pendent Depletion (CADD, v1.3), (ii) annotating a variant
to genes based on found expression-quantitative-trait-loci
(eQTL) from GTEx (v8, with possibility to choose the tis-
sue(s) of interest) or (iii) mapping a variant to genes that
are within distance d from the variant position, starting
with d ≤ 50 kb, up to d ≤ 500 kb, increasing by 50 kb un-
til at least one match is found (from RefSeq v98) (26,31,34).
Note that this procedure might map multiple genes to a sin-
gle variant, depending on the effect and position of each
variant.

Then, we first report whether the input SNPs as well as
their likely associated genes were previously associated with
any trait in the GWAS-Catalog (traits are coded by their
Experimental Factor Ontology (EFO) term). For this anal-
ysis, we downloaded all significant SNP-trait associations of
all studies available in the GWAS-Catalog (v1.0.2, available
at https://www.ebi.ac.uk/gwas/docs/file-downloads), which
includes associations with P < 9 × 10−6. Given a set of in-
put SNPs associated with a set of genes, this analysis results
in a set of traits (provided that the SNPs and/or the genes
were previously associated with a trait). Hereto, we plot the
number of SNPs in the list of uploaded SNPs that associate
with the trait (expressed as a fraction). To correct for multi-
ple genes being associated with a single variant, we estimate
these fractions by sampling (500 iterations) one gene from
the pool of genes associated with each variant, and averag-
ing the resulting fractions across the sampling. Summary
tables of the GWAS-Catalog analysis, including also EFO
URI links for cross-referencing are provided as additional
output.

Next, we report on the structural variations that lie in
the vicinity (10 kb upstream and downstream) of the input
SNPs, and present information such as SV start and end po-
sition, SV type, maximum difference in allele size, and genes
likely associated with the relative SNPs.

Finally, we perform a gene-set enrichment analysis to find
molecular pathways enriched within the set of genes asso-
ciated with the input variants. Also, here we use the men-
tioned sampling technique to avoid a potential enrichment
bias due to multiple genes being mapped to the same vari-
ant (this time the sampling is used to calculate p-values for
each term). The gene-set enrichment analysis is performed
using the Gost function from the R package gprofiler2 (35).
The user can specify several gene-set sources, such as Gene
Ontology (release 2020-12-08) (36), KEGG (release 2020-
12-14) (37), Reactome (release 2020-12-15) (38), and Wiki-
pathways (release 2020–12-10) (39). The full table of the
gene-set enrichment analysis comprising all tested terms
and their relative sampling-based p-values is sent to the user.

For each of the selected gene-set sources, the significant
enriched terms are plotted (up to FDR < 10%). In case the
Gene Ontology is chosen as gene-set source, we addition-
ally reduce the visual complexity of the enriched biologi-
cal processes using (i) the REVIGO tool and (ii) a term-
based clustering approach (40). We do so because the inter-
pretation of gene-set enrichment analyses is typically diffi-
cult due to the large number of terms. Clustering enriched
terms then helps to get an overview, and thus eases the in-
terpretation of the results. Briefly, REVIGO masks redun-
dant terms based on a semantic similarity measure, and dis-
plays enrichment results in an embedded space via eigen-
value decomposition of the pairwise distance matrix. In ad-
dition to REVIGO, we developed a term-based clustering
approach to remove redundancy between enriched terms.
To do so, we first calculate a semantic similarity matrix be-
tween all enriched terms, and then apply hierarchical clus-
tering on the obtained distance matrix. We estimate the op-
timal number of clusters using a dynamic cut tree algorithm
and plot the most recurring words of the terms underly-
ing each cluster using wordclouds. We use Lin as semantic
distance measure for both REVIGO and our term-based
clustering approach (41,42). Figures representing REVIGO
results, the semantic similarity heatmap (showing relation-
ships between enriched terms), the hierarchical clustering
dendrogram, and the wordclouds of each clusters, are gen-
erated. Finally, all tables describing REVIGO analysis and
our term-based clustering approach (including all enriched
terms and their clustering scheme) are produced and sent
as additional output to the user for further manipulation.
Note that the initial significant GO terms are not removed
and also included in the reporting.

RESULTS

Case study

To illustrate the performances of snpXplorer, we explored
the most recent set of common SNPs associated with late-
onset Alzheimer’s disease (AD, N = 83 SNPs, Supplemen-
tary Table S1) (43). Using this dataset as case study, we show
the benefits of using snpXplorer in a typical scenario. Briefly,
AD is the most prevalent type of dementia at old age, and
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is associated with a progressive loss of cognitive functions,
ultimately leading to death. In its most common form (late-
onset AD, with age at onset typically >65 years), the disease
is estimated to be 60–80% heritable. With an attributable
risk of ∼30%, genetic variants in APOE gene represent the
largest common genetic risk factor for AD. In addition to
APOE, the genetic landscape of AD now counts 83 com-
mon variants that are associated with a slight modification
of the risk of AD. Understanding the genes most likely in-
volved in AD pathogenesis as well as the crucial biological
pathways is warranted for the development of novel thera-
peutic strategies for AD patients.

We retrieved the list of AD-associated genetic variants in
Table 1 of the preprint from Bellenguez et al. (43). This study
represent the largest GWAS on AD performed to date, and
resulted in 42 novel SNPs reaching genome-wide evidence
of association with AD. The exploration section of snpX-
plorer can be firstly used to inspect the association statis-
tics of the novel SNP-associations in previous studies of
the same trait (i.e. International Genomics of Alzheimer
Project (IGAP) and family history of AD (proxy AD)).
Specifically, a suggestive degree of association in these re-
gions is expected to be found in earlier studies. As expected,
suggestive association signals were already observed for the
novel SNPs, increasing the likelihood that these novel SNPs
are true associations (Supplementary Figure S1).

After the first explorative analysis, we pasted the vari-
ant identifiers (rsIDs) in the annotation section of snpX-
plorer, specifying rsid as input type, Gene Ontology and Re-
actome as gene-sets for the enrichment analysis, and Blood
as GTEx tissue for eQTL (i.e. the default value). The N =
83 variants were linked to a total of 162 genes, with N =
54 variants mapping to one gene, N = 12 variants mapping
to two genes, N = 7 variants mapping to three genes, N =
2 variants mapping to four genes, N = 1 variant mapping
to five genes, N = 4 variants mapping to four genes, and
N = 1 variant mapping to 7, 8 and 11 genes (Supplemen-
tary Figure S2). N = 10 variants were found to be coding
variants, N = 31 variants were found to be eQTL and N
= 42 variants were annotated based on their genomic posi-
tion. These results are returned to the user in the form of a
(human and machine-readable) table, but also in the form
of a summary plot (Figure 2A and Supplementary Figure
S2). These graphs not only inform the user about the effect
of the SNPs of interest (for example, a direct consequence
on the protein sequence in case of coding SNPs, or a reg-
ulatory effect in case of eQTLs or intergenic SNPs), but
also suggest the presence of more complex regions: for ex-
ample, Supplementary Figure S2B indicates the number of
genes associated with each SNP, which normally increases
for complex, gene-dense regions such as HLA-region or
IGH-region.

In order to prioritize candidate genes, the authors of
the original publication integrated (i) eQTLs and colocal-
ization (eQTL coloc) analyses combined with expression
transcriptome-wide association studies (eTWAS) in AD-
relevant brain regions; (ii) splicing quantitative trait loci
(sQTLs) and colocalization (sQTL coloc) analyses com-
bined with splicing transcriptome-wide association studies
(sTWAS) in AD-relevant brain regions; (iii) genetic-driven
methylation as a biological mediator of genetic signals in

blood (MetaMeth) (43). In order to compare the SNP-gene
annotation of the original study with that of snpXplorer, we
counted the total number of unique genes associated with
the SNPs (i) in the original study (N = 97), (ii) using our an-
notation procedure (N = 136) and (iii) the intersection be-
tween these gene sets (N = 79). When doing so, we excluded
regions mapping to the HLA-gene cluster and IGH-gene
clusters (three SNPs in total) as the original study did not
report gene names but rather HLA-cluster and IGH-cluster.
Nevertheless, our annotation procedure correctly assigned
HLA-related genes and IGH-related genes with these SNPs.
The number of intersecting genes was significantly higher
than what could be expected by chance (P = 0.03, based
on one-tail P-value of binomial test, Supplementary Ta-
ble S2). For six SNPs, the gene annotated by our proce-
dure did not match the gene assigned in the original study.
Specifically, for 4/6 of these SNPs, we found significant
eQTLs in blood (rs60755019 with ADCY10P1, rs7384878
with PILRB, STAG3L5P, PMS2P1, GIGYF1 and EPHB4
genes, rs56407236 with FAM157C gene, and rs2526377 with
TRIM37 gene), while the original study reported the closest
genes as most likely gene (rs60755019 with TREML2 gene,
rs7384878 with SPDYE3 gene, rs56407236 with PRDM7
gene and rs2526377 with TSOAP1 gene). In addition, we
annotated SNPs rs76928645 and rs139643391 to SEC61G
and WDR12 genes (closest genes), while the original study,
using eQTL and TWAS in AD-relevant brain regions, anno-
tated these SNPs to EGFR and ICA1L/CARF genes. While
the latter two SNPs were likely mis-annotated in our pro-
cedure (due to specific datasets used for the annotation),
our annotation of the former four SNPs seemed robust, and
further studies will have to clarify the annotation of these
SNPs.

With the resulting list of input SNPs and (likely) associ-
ated genes, we probed the GWAS-Catalog and the datasets
of structural variations for previously reported associations.
We found a marked enrichment in the GWAS-Catalog for
Alzheimer’s disease, family history of Alzheimer’s disease,
and lipoprotein measurement (Supplementary Figure S3,
Supplementary Table S3 and S4). The results of this analy-
sis are relevant to the user as they indicate other traits that
were previously associated with the input SNPs. As such,
they may suggest relationships between different traits, for
example in our case study they suggest the involvement of
cholesterol and lipid metabolism in AD, a known relation-
ship (44). Next, we searched for all structural variations
in a region of 10kb surrounding the input SNPs, and we
found that for 39/83 SNPs, a larger structural variations
was present in the vicinity (Supplementary Table S5), in-
cluding the known VNTR (variable number of tandem re-
peats) in ABCA7 gene (45), and the known CNV (copy
number variation) in CR1, HLA-DRA and PICALM genes
(Supplementary Table S5) (46–48). This information may
be particularly interesting for experimental researchers in-
vestigating the functional effect of SVs, and could be used to
prioritize certain genomic regions. Because of the complex
nature of large SVs, these regions have been largely unex-
plored, however technological improvements now make it
possible to accurately measure SV alleles.

We then performed our (sampling-based) gene-set en-
richment analysis using Gene Ontology Biological Pro-
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Figure 2. Results of the functional annotation of N = 83 variants associated with Alzheimer’s disease (AD). (A) The circular summary figure shows the
type of annotation of each genetic variant used as input (coding, eQTL or annotated by their positions) as well as each variant’s minor allele frequency and
chromosomal distribution. (B) REVIGO plot, showing the remaining GO terms after removing redundancy based on a semantic similarity measure. The
colour of each dot codes for the significance (the darker, the more significant), while the size of the dot codes for the number of similar terms removed from
REVIGO. (C) Results of our term-based clustering approach. We used Lin as semantic similarity measure to calculate similarity between all GO terms.
We then used ward-d2 as clustering algorithm, and a dynamic cut tree algorithm to highlight clusters. Finally, for each cluster we generated wordclouds of
the most frequent words describing each cluster.

cesses (GO:BP, default setting) and Reactome as gene-set
sources, and Blood as tissue for the eQTL analysis. Af-
ter averaging P-values across the number of iterations, we
found N = 132 significant pathways from Gene Ontology
(FDR<1%) and N = 4 significant pathways from Reactome
(FDR <10%) (Supplementary Figure S4 and Supplemen-
tary Table S6). To facilitate the interpretation of the gene-set
enrichment results, we clustered the significantly enriched
terms from Gene Ontology based on a semantic similarity
measure using REVIGO (Figure 2B) and our term-based
clustering approach (Figure 2C). Both methods are useful
as they provide an overview of the most relevant biologi-
cal processes associated with the input SNPs. Our cluster-
ing approach found five main clusters of GO terms (Fig-
ure 2C and Supplementary Figure S5). We generated word-

clouds to guide the interpretation of the set of GO terms of
each cluster (Figure 2C). The five clusters were character-
ized by (i) trafficking and migration at the level of immune
cells (ii), activation of immune response (iii), organization
and metabolic processes (iv), beta-amyloid metabolism and
(v) amyloid and neurofibrillary tangles formation and clear-
ance (Figure 2C). All these processes are known to occur
in the pathogenesis of Alzheimer’s disease from other pre-
vious studies (43,44,49,50). We observed that clusters gen-
erated by REVIGO are more conservative (i.e. only terms
with a high similarity degree were merged) as compared
to our term-based clustering which generates a higher-level
overview. In the original study (Supplementary Table S15
from (43)), the most significant gene sets related to amy-
loid and tau metabolism, lipid metabolism and immunity.
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In order to calculate the extent of term overlap between re-
sults from the original study and our approach, we calcu-
lated semantic similarity between all pairs of significantly
enriched terms in both studies. In addition to showing pair-
wise similarities between all terms, this analysis also shows
how the enriched terms in the original study relate to the
clusters found using our term-based approach. We observed
patterns of high similarity between the significant terms
in both studies (Supplementary Figure S6). For example,
terms in the ‘Activation of immune system’ and the ‘Beta-
amyloid metabolism’ clusters (defined with our term-based
approach), reported high similarities with specific subsets
of terms from the original study. This was expected as these
clusters represent the most established biological pathways
associated with AD. The cluster ‘Trafficking of immune
cells’ had high similarity with a specific subset of terms from
the original study, yet we also observed similarities with the
‘Activation of immune system’ cluster, in agreement with the
fact that these clusters were relatively close also in tree struc-
ture (Figure 2C). Similarly, high similarities were observed
between the ’Beta-amyloid metabolism’ and the ‘Amyloid
formation and clearance’ clusters. Finally, the ‘Metabolic
processes’ had high degree of similarity with a specific sub-
set of terms, but also with terms related to ‘Activation of
immune system’ cluster. Altogether, we showed that (i) en-
riched terms from the original study and our study had a
high degree of similarity, and (ii) that the enriched terms of
the original study resembled the structure of our clustering
approach. The complete analysis of 83 genetic variants took
about 30 minutes to complete.

DISCUSSION

Despite the fact that many summary statistics of genetic
studies have been publicly released, the integration of such
a large amount of data is often difficult and requires spe-
cific tools and knowledge. Even simple tasks, such as the
rapid interrogation of how well a certain genomic region
associates with a specific trait or multiple traits can be frus-
trating and time consuming. Our main objective to develop
snpXplorer was the need for an easy-to-use and user-friendly
framework to explore, analyse and integrate outcomes of
GWAS and other genetic studies. snpXplorer showed to be
a robust tool that can support a complete GWAS analy-
sis, from the exploration of specific regions of interest to
the variant-to-gene annotation, gene-set enrichment anal-
ysis and interpretation of associated biological pathways.

To our knowledge, the only existing web-server that offers
a similar explorative framework as snpXplorer is the GWAS-
Atlas (51). GWAS-Atlas was primarily developed as a
database of publicly available GWAS summary statistics.
It offers possibilities to visualise Manhattan and quantile-
quantile (QQ) plots, to perform downstream analyses us-
ing MAGMA statistical framework, and to study genetic
correlation between traits by means of LD score regres-
sion (52,53). However, snpXplorer was developed mainly
for visualisation purposes, and thus incorporate multiple
unique features such as the possibility to visualise multi-
ple GWAS datasets simultaneously or to upload an exter-
nal association dataset for additional comparisons with ex-
isting datasets. Moreover, snpXplorer annotates these visu-

alisations with several genomic features such as structural
variations, recombination rates, LD patterns and eQTLs.
All the relevant information showed in snpXplorer, such as
top SNP information, eQTL tables, LD tables and struc-
tural variants can be easily downloaded for further inves-
tigations. Further, we would like to stress the relevance of
overlaying the GWAS results with structural variants found
by third-generation sequencing. Such structural variations
have already been shown to play a significant role for sev-
eral traits, in particular for neurodegenerative diseases, and
snpXplorer is thus far the only web-server where such infor-
mation can be visualized in the context of GWAS summary
statistics (45,46,54,55).

We do acknowledge that for an in-depth functional an-
notation analysis of GWAS, the possibility of integrating
additional ad-hoc information (such as eQTLs, sQTLs, eT-
WAS and sTWAS from specific disease-related regions) may
improve the analysis, but such data is not always available,
is time consuming and requires deep knowledge. Several
online and offline tools have been developed with a simi-
lar goal, e.g. SNPnexus, ANNOVAR, FUMA and Ensembl
VEP (56–59). Some of these tools are characterized by a
larger list of annotation sources, for example implementing
multiple tools for variant effect prediction (e.g. SNPnexus,
Ensembl VEP or ANNOVAR), or more extensive pathway
enrichment analyses at the tissue- and cell-type level (e.g.
FUMA). We have shown that snpXplorer provides similar
results in terms of annotation capabilities and gene-set en-
richment analysis as compared to existing tools. Yet, snpX-
plorer has several unique features for the functional anno-
tation section, such as the extensive interpretation analysis
implemented in REVIGO, our term-based clustering ap-
proach and the wordcloud visualisation, or the possibil-
ity to associate multiple genes with each SNP during gene-
set enrichment analysis. Moreover, snpXplorer development
will continue by implementation of additional annotation
sources and analyses. Altogether, we showed that snpX-
plorer is a promising functional annotation tool to support
a typical GWAS analysis. As such, it has been previously
applied for the annotation and downstream analysis of ge-
netic variants associated with Alzheimer’s disease and hu-
man longevity (42,60).

Future updates

For future updates, we plan to keep updated and increase
the list of summary statistics available to be displayed in the
exploration section. In its current version, the exploration
section of snpXplorer requires the user to define a region of
interest to look, while genome-wide comparisons are not
considered. However, it is our intention to implement a
genome-wide comparison across GWAS studies that, given
a set of input GWASs and a significance threshold alpha,
reports all SNPs with a P < alpha across the studies, al-
lowing for a more rapid visualisation of overlapping SNP-
associations. Moreover, we plan to increase the number of
annotation sources and available options in the annotation
section (e.g. including methylation-QTL, protein-QTL and
splicing-QTL). Finally, we are also working towards adding
a framework to calculate weighted polygenic risk scores

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/W

1/W
603/6287842 by D

elft U
niversity of Technology user on 18 August 2021



W610 Nucleic Acids Research, 2021, Vol. 49, Web Server issue

given a set of individuals’ genotypes and a reference study
to take variant effect-sizes from.

DATA AVAILABILITY

snpXplorer is an open-source web-server available at https:
//snpxplorer.net. Tutorial videos, full documentation and
link to code are available in the Help page of the web-
server. snpXplorer is running as from March-2020, was
tested both within and outside our group, and runs steadily
on both Unix and Windows most common browsers (Sa-
fari, Google Chrome, Microsoft Edge, Internet Explorer,
and Firefox). For certain steps, snpXplorer does rely on ex-
ternal tools and sources (e.g. REVIGO), and consequently
depends on their availability. Although discouraged, the
tool can also be installed locally on your machine: addi-
tional information on how to do it are available in our
github at https://github.com/TesiNicco/snpXplorer, how-
ever, we note that for the stand-alone version additional
files should be downloaded separately, for example, all sum-
mary statistics. snpXplorer requires R (v3.5+) and python
(v3+) correctly installed and accessible in your system.
snpXplorer uses the following R packages: shiny, data.table,
stringr, ggplot2, liftOver, colourpicker, rvest, plotrix, par-
allel, SNPlocs.Hsapiens.dfSNP144.GRCh37, lme4, ggsci,
RColorBrewer, gprofiler2, GOSemSim, GO.db, org.Hs.eg.db,
pheatmap, circlize, devtools, treemap, basicPlotteR, gwas-
cat, GenomicRanges, rtracklayer, Homo.sapiens, BiocGener-
ics and the following python libraries: re, werkzeug, robo-
browser, pygosemsim, numpy, csv, networkx and sys.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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