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Distinct Escherichia coli transcriptional
profiles in the guts of recurrent UTI sufferers
revealed by pangenome hybrid selection

Mark G. Young 1,6, Timothy J. Straub 1,6, Colin J. Worby 1,
HaydenC.Metsky 1, AndreasGnirke 1, RyanA. Bronson1, LucasR. vanDijk 1,2,
Christopher A. Desjardins1, Christian Matranga1, James Qu1,
Jesús Bazan Villicana 3, Philippe Azimzadeh3, Andrew Kau 3,4,5,
Karen W. Dodson3,4, Henry L. Schreiber IV 3,4, Abigail L. Manson 1,
Scott J. Hultgren 3,4 & Ashlee M. Earl 1

Low-abundance members of microbial communities are difficult to study in
their native habitats, including Escherichia coli, a minor but common inhabi-
tant of the gastrointestinal tract, and key opportunistic pathogen of the
urinary tract. While multi-omic analyses have detailed interactions between
uropathogenic Escherichia coli (UPEC) and the bladdermediating urinary tract
infection (UTI), little is known about UPEC in its pre-infection reservoir, the
gastrointestinal tract, partly due to its low relative abundance (<1%). To sen-
sitively explore the genomes and transcriptomes of diverse gut E. coli, we
develop E. coli PanSelect, which uses probes designed to specifically capture E.
coli’s broad pangenome. We demonstrate its ability to enrich diverse E. coli by
orders of magnitude, in a mock community and in human stool from a study
investigating recurrent UTI (rUTI). Comparisons of transcriptomes between
gut E. coli of women with and without history of rUTI suggest rUTI gut E. coli
are responding to increased oxygen and nitrate, suggestive of mucosal
inflammation, which may have implications for recurrent disease. E. coli Pan-
Select is well suited for investigations of in vivo E. coli biology in other low-
abundance environments, and the framework described here has broad
applicability to other diverse, low-abundance organisms.

Urinary tract infections (UTIs) are among the most common bacterial
infections worldwide, with significant individual and societal impacts.
Recurrent UTIs (rUTIs) affect millions, mostly women1, and drain pre-
cious antibiotic resources2–6. The vast majority of UTIs are caused by
uropathogenic Escherichia coli (UPEC)7. In contrast to other E. coli
pathotypes, such as enterohemorrhagic E. coli (EHEC), the genetic

definition of UPEC has remained elusive, given the wide diversity of E.
coli that cause UTIs and rUTIs8–10. E. coli are prevalent but low-
abundance (<1% relative abundance) members of the gastrointestinal
tract (gut) from where they can be excreted in feces and go on to
colonize the bladder11–13. Culture and metagenomic sequencing-based
investigations have revealed much about this functionally and
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evolutionarily diverse group, including the carriage of multiple E. coli
strains in the human gut at once14. However, these approaches have
drawbacks that leave open key questions about UPEC lifestyle, includ-
ing the interplay between UPEC in the gut and infection of the bladder.

Advances in selective nucleic acid enrichment prior to sequencing
havemade it possible to study low abundance organisms in their native
habitats at high resolution. Solution hybrid selection (HS)15, also called
hybrid capture, relies on biotinylated oligonucleotides, or probes, that
selectively hybridize (i.e., bind) to target sequences, effectively tagging
themfor captureonstreptavidinbeads.Originallydeveloped forhuman
exome sequencing16, HS has also enabled sequencing malarial17,18 and
viral19 genomes despite an excess of human hostmaterial in the sample.
Since HS preserves the relative abundance (RA) of cDNAs in RNA-Seq
libraries20, it has also been used for transcriptomic applications, such as
expression profiling of Bacteroides fragilis from murine intestinal
compartments21. While these prior studies have focused on individual
target organisms, or species with limited overall diversity, many bac-
terial species, like E. coli, have large pangenomes (i.e., the entire set of
genes found across a species) that cannot be represented by a single
reference genome. Having emerged >100 million years ago from a
common ancestor of Salmonella22, E. coli have evolved considerably
with more than eight recognized distinct phylogroups23, collectively
accumulating a pangenome estimated at over 120,000 gene families24.
This functional variation can have broad implications for a strain’s
physiology, interactions, and disease potential14.

To increase our ability to understand UPEC in their native gut
habitat, and in the context of rUTI, we developed an HS probe set for

enrichment of the E. coli pangenome, using a combination of com-
parative genomics and a recently developed algorithm25 that enables
HS probe design for efficient tiling across diverse sequences. Our “E.
coli PanSelect” method selectively enriches, by orders of magnitude,
diverse E. coli genomes and transcriptomes present at low abundance
in complex communities. Applied to human stool from a clinical
cohort study of rUTI, E. coli PanSelect revealed some of the adaptive
strategies deployed by E. coliwhile residing in the rUTI gut, including a
shift from fermentative to aerobic metabolism, which may have
implications for understanding and treating recurrent disease. The
pangenome-based HS approach described here holds promise for
investigating other diverse taxa in a wide variety of community
contexts.

Results
Probe set design covers vast majority of E. coli pangenome
In order to design an HS probe set to cover known E. coli genetic
diversity, we downloaded all of the available 3436 high-quality E. coli
assemblies from NCBI’s RefSeq and Genbank databases and then
clustered them to a set of 1713 unique E. coli references spanning all
major phylogroups (Figure 1, Supplementary Fig. 1, Supplementary
Table 1; Methods). We used the CATCH algorithm for HS probe
design25. To reduce computational complexity, we provided CATCH
with refined orthologous gene clusters (80% or higher nucleotide
identity) containing three or more genes or a Pfam domain of interest
(Supplementary Table 2;Methods). CATCHdesigned911,618 probes of
length 60-75 bp, which we filtered to a final set of 892,415, based upon

Fig. 1 | E. coli PanSelect probe design and applications. a Probe design. i) All
available, complete E. coli genomes were downloaded from RefSeq (295) and the
NCBI Pathogens database (3141). ii) k-mer similarity was used to identify 1713
unique genome clusters. iii) Orthologous gene groupswereconstructed from these
genome clusters with SynerClust71, filtered based on prevalence, and further clus-
tered at 80% identity with UCLUST72. 60-75 bp probes with specificity to the
resulting clusters were iv) generated with CATCH25 and v) filtered based on
homology to other commongutmicrobes (ie Bacteroidetes and Firmicutes).b E. coli

PanSelect workflow. i) Sequencing libraries are constructed from complex com-
munities containing low abundances of E. coli (red). ii) Short, biotinylated oligo-
nucleotide probes are added to the sequencing library, which bind complementary
sequences. iii) Streptavidin pulldown is used to isolate bound target sequences
from the library before iv) sequencing. c Applications of E. coli PanSelect. i)
Enrichment of a four-strain mock community for initial benchmarking. ii) Analysis
of E. coli gene content and transcription in stool from a clinical study of recurrent
UTIs (rUTI). Created in BioRender. Young, M. (2024) BioRender.com/v86w986.
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predicted off-target specificity to other common gut bacteria (e.g.,
Bacteroidetes) (Methods).

We next performed an in silico experiment to determine howwell
the CATCH-designed probe set covered the E. coli pangenome by
querying each probe sequence against all 8,334,026 genes from the
full set of unique references. We classified a gene as “selected” by a
probe if it had a blast hit of at least 65 bp, and no more than 8 mis-
matches (Methods). A total of 97.92% of all genes in the E. coli pan-
genome were successfully selected, including 29,232 of the E. coli
genes that were not included in the probe design (likely due to
sequence homology). The remainder of the genes not selected corre-
sponded primarily to rare genes in the E. coli genome that were not
included in our probe set design. Of the 8,168,837 genes used in probe
design, 99.95% were selected, with most non-selected genes having
“hypothetical” protein annotations.

E. coli PanSelect enriched four strains of E. coli in a mock
metagenomic community without biasing strain composition
As a first assessment of E. coli PanSelect, we enriched E. coli from an
Illumina sequencing library created from a previously described

mock community, containing an uneven mixture of DNA from
four sequenced E. coli isolates in a background of human DNA26.
The sequence quality of pre- and post-HS datasets were
comparable, though the duplication rates were higher post-HS,
which we adjusted for prior to comparisons (Supplementary
Table 3; Supplementary Results A; Methods). E. coli PanSelect
enriched the total RA of E. coli 40-fold, without changing the
strain composition of the community (paired t-test of RA ratios,
p > 0.1, Fig. 2a, Methods). The depth of E. coli genome coverage
increased from 6x to 200x for the most abundant strain, and from
0.6x to 27x for the least abundant strain (Figure 2b). After enrich-
ment, 72% (up from 0.8%) of the least abundant strain’s reference
was covered with 5 or more reads (Fig. 2c). As expected, we were
able to produce substantially more complete assemblies using the
HS-enriched data (Supplementary Tables 4-5, Supplementary
Results B). We observed enrichment in regions up to ~300 bp away
from predicted probe hybridization sites (Fig. 2d), leading to 97-
99% of each strain’s genome being enriched by HS instead of the 83-
86% which would be predicted based on probe coverage alone
(Table 1).
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Fig. 2 | E. coli PanSelect enriches E. coli DNA without bias from a 4-strain mock
community. a The RAs of the four E. coli strains, pre- and post-HS (hybrid selec-
tion), calculated using StrainGE. b Average depth of coverage pre- and post-HS for
each strain. c Genome coverage pre-HS (thin lines) and post-HS (thick lines) for
each strain. The dashed vertical line represents 5x coverage. d Average depth of

coverage in relation to the closest predicted probe binding site(s), for each of the
four strains. “1 probe” and “2+ probes” indicate regions where probes are predicted
to bind. Error bars denote standard deviations. Numbers above error bars indicate
the number of positions across the genome in each category. Thin lines represent
pre-HSdata; thick linespost-HSdata. Sourcedata areprovided as a SourceDatafile.
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E. coli PanSelect provides highly enriched views of E. coli DNA
and RNA within human stool samples without biasing the
unenriched, background community
Wenext used E. coli PanSelect to enrich E. coli from188DNA-based and
130 RNA-Seq (cDNA-based) Illumina libraries (Supplementary
Results A, Supplementary Table 6; Supplementary Dataset 1), con-
structed from human stool collected as part of a previously published
clinical study investigating the gut as a uropathogen reservoir in
recurrent urinary tract infection (rUTI)27. Post-HS DNA libraries had a
median 158-fold increase in E. coli RA (range of 5-2,232-fold increase)
compared topre-HS libraries (averageof0.07% E. coliRA), enabling the
detection of one additional strain for every 2.8 samples (Fig. 3a). E. coli
genome assemblies from post-HS samples were vastly improved,
including for one sample with a corresponding near-complete
assembly of a cultured isolate. The amount of the genome that we
were able to assemble from metagenomic reads from this sample
increased from<1% pre-HS to >99%post-HS (Supplementary Results B,
Supplementary Tables 7-8). As with the mock community, RA ratios
between strains were not significantly biased in samples harboring
multiple strains (Fig. 3b; two-sidedWilcoxon signed-rank test, p =0.28
for the subset of samples with two strains before and after
enrichment).

Results were largely similar for RNA-Seq libraries. There was a
median 30-fold increase in E. coli RA (range of 1.2- to-5,084-fold
increase), from a median starting RA of 0.12%. In a comparison of
metatranscriptomes downsampled to onemillion reads (Methods), we
found that a median of 142.5x (570 vs 4) more unique genes were
detected post-HS than pre-HS (Supplementary Fig. 2). Therewere only
41 instances of a transcript observed in a pre-HS sample that was not
detected post-HS, 25 of which came from a single sample (UMB12_02)
with a high pre-HS RA of E. coli (Fig. 3c).

Post-HS libraries contained sequences from other microbes
besides E. coli (83% for DNA and 92% for RNA-Seq libraries), consistent
with our prior experience using HS21. To determine the utility of post-
HS data to explore non-E. colimicrobial fractions, we constructed taxa
(DNA) and gene family (RNA) RA profiles with MetaPhlAn3 and
HUMAnN3, respectively, and compared profiles between pre- and
post-HS libraries.We observedonlyminor differences in the non-E. coli
composition of the taxa and gene profiles between pre- vs. post-HS
libraries (PERMANOVA on Bray-Curtis dissimilarities df=1, p = 0.785),
suggesting that E. coli PanSelect libraries could be used for analysis of
the full microbiome in addition to the E. coli population (Supplemen-
tary Fig. 3-4).

E. coli gene content did not differ significantly between healthy
women and those with rUTI
Though our prior work using unenriched stool metagenomes sug-
gested that E. coli in healthy and rUTI guts are similar in their RAs and E.

coli phylogroup membership27, the sequencing coverage of E. coli
genomes in these analyses was relatively scant. To explore this ques-
tion with greater sensitivity, we used the E. coli PanSelect data
described above to directly compare E. coli gene content between
women with and without a history of rUTI. Of the 13 participants in the
rUTI cohortwithmeasurable E. coli in at least one sample, we excluded
four individuals who did not reportUTI symptoms during the one-year
study period to focus on patients with active disease (i.e., recurrers)
(Supplementary Table 6). Using PanPhlAn 3 to profile E. coli coding
sequencing diversity at the level of UniRef90 clusters28, we identified
an average of 4,618 unique E. coli gene families per sample, roughly
equivalent to the number of genes in a typical E. coli genome29. Indi-
vidually, none of the ~16,000 gene families detected across samples
were significantly different in their occurrence in recurrer vs. healthy
cohort samples (Supplementary Dataset 2; Methods). Similarly, we
found no difference in the gene family composition of samples
between cohorts (PERMANOVA on Jaccard dissimilarity with permu-
tation across subjects, df =1, p =0.29; Supplementary Fig. 5a), though
we did observe the expected relationship between overall gene family
composition and the phylogroupmembership of themost abundant E.
coli strain (PERMANOVA, df =22, p < 1e-4; Supplementary Fig. 5b).

Type 1 pili are not differentially expressed in the feces of healthy
women vs. those with rUTI
The lack of gene content differences between cohorts extended to
well-studied urovirulence factors, including type 1 pili (T1P). T1P bind
to and aid in the invasion of bladder epithelial cells during UTI and
support E. coli’s colonization of the gut30–32. T1P expression is regu-
lated, in part, by the orientation of fimS, an invertible, non-coding
promoter element directly upstreamof the fim operon that modulates
fim transcription33. The operon encoding T1P, fim, was detected in all
but one sample across the enriched metagenomes (Supplementary
Dataset 2), as expected from previous analysis of sequenced
isolates34–36. We also observed the noncoding fimS sequence in 178 of
188 (95%) enriched metagenomes despite it not being included in our
probe design (Supplementary Fig. 6a-7). From the 140 samples having
at least five reads extending into the fimS region, which enabled sta-
tistical evaluation of whether fimS was in the ON (enabling fim
expression) or OFF (inhibiting fim expression) orientation (Supple-
mentary Table 6, Methods), we determined that only 7.7% (95% con-
fidence interval (CI) [5.8,9.6], p < 0.001, Weighted least squares with
Wald test, df = 139, β = 7.7) of fimS in each sample was in the ON
orientation, and that this was not significantly altered by rUTI history
(Supplementary Fig. 6b). However, there was considerable inter-
sample variation (Supplementary Fig. 6b), with some samples having
>10% of fim in the ON orientation, and some having none. For samples
with more than 60,000 RNA and DNA E. coli reads post-HS (Supple-
mentary Table 6, Methods), we confirmed that fimS orientation was
proportional to the expression of the downstream fim operon
(β =0.55, 95% CI [0.276, 0.821], p =0.0004, linear mixed regression
with Wald test, df = 34; Methods), as expected33,37,38.

Broad shift towards expression of aerobic metabolism genes in
the rUTI gut
Given that UPEC’s transcriptional state leading up to entry into the
urinary tract has been shown to be more predictive of mouse bladder
colonization than its gene content10, we explored expression-level
differences between healthy and recurrer gut E. coli (Supplementary
Table 6, Methods). We identified a set of 2,182 expressed genes with
evidence for conservation in both cohorts, four of which were sig-
nificantly differentially expressed (Supplementary Dataset 3, Fig. 4a,
Methods). A gene encoding a suspected exporter of dipeptides and
arabinose, ydeE, was significantly over-expressed in samples from the
recurrer cohort (linear mixed regression with Wald test and FDR-cor-
rection; p =0.048), while genes encoding L-fucose isomerase (fucI),

Table 1 | Enrichment of strain genomes for the mock com-
munity: Post-HS breadth of coverage for the mock commu-
nity was increased for >96% of each strain’s genome

Breadth of coveragea

Strain Unenriched Enriched

Missing in bothpre-HS
and HSb

HS <= pre-HS HS > pre-HS

H10407 0.02% 0.58% 99.40%

UTI89 0.05% 0.70% 99.25%

Sakai 0.37% 1.18% 98.44%

E24377A 1.51% 1.62% 96.86%
aBreadth of coverage indicates the percentage of the genome with >5 reads
bMissing indicates neither pre-HS nor HS data had coverage. Other columns indicate HS data
compared to pre-HS data depth of coverage.
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aspartate ammonia-lyase (aspA), and a subunit of the fumarate
reductase complex (frdA), were all significantly under-expressed
(p =0.035). dcuA (p =0.054), encoding a C4-dicarboxylate transpor-
ter capable of exchanging fumarate for succinate, and fucO (p = 0.095),
encoding lactaldehyde reductase, were also under-expressed in
recurrer gut E. coli. An analysis of just samples with the same E. coli
phylogroup showed similar trends (Supplementary Results C, Sup-
plementary Fig. 8, Supplementary Table 9).

Some of the genes found to be under-expressed in recurrer gut E.
coli are known to work together to carry out either anaerobic

respiration on fumarate (frdA, aspA, dcuA), or anaerobic fermentation
of fucose (fucI, fucO) (Supplementary Fig. 9). To conduct a formal
pathway analysis, we grouped genes into transcription factor activator
and repressor (noted by “+” or “−”) regulons39,40, and KEGG Pathways
and Modules41. Roughly two-thirds (1,417 of 2,182) of the genes inclu-
ded in differential expression (DE) testing belonged to at least one of
284 gene sets. Using Gene Set Enrichment Analysis (GSEA)42, we
determined that 22 gene sets were over-represented among genes
either over-expressed or under-expressed (11 each) in the recurrer
cohort (GSEA with FDR-correction; all p < 0.05) (Supplementary

Fig. 3 | E. coli PanSelect enriched E. coli from human stool samples, revealing
previously missed strains and transcripts. a Pre- and post-enrichment RAs of E.
coli strains detected within 188 human stoolmetagenomes. Points to the left of the
dashed vertical line represent strains that were not detected (n.d.) within unen-
riched metagenomes. Strains were identified with StrainGST (Methods). b Strain
composition of samples from four randomly chosen participants, after enrichment
(top row) and before enrichment (bottom two rows). Pre-HS (hybrid selection) data
is shown using the same y-axis scale as post-HSdata, aswell as zoomed in to see the

strain composition. StrainRAswere estimatedwith StrainGST. Stars indicate strains
that could not be detected before HS. c Observed pre- and post-HS expression
levels of individual transcripts, for the set 94 pre- and post-HSmetatranscriptomes
with at least 1 million reads, downsampled to 1million reads. Transcripts expressed
below 10 copies per million (CPM) are classified as not detected (n.d.). Points
represent clusters of transcripts expressed at similar levels, formed with hier-
archical clustering. Source data are provided as a Source Data file.
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Fig. 4 | Shift towards aerobic metabolism in the rUTI gut. a Log fold change (x-
axis) and significance (y-axis) of the differential expression (DE) of 2,182 E. coli
genes between stool from healthy and rUTI women. The 4 individual genes that
were significantly DE after false discovery rate correction (Linear mixed regression
with Wald Test, p <0.05; Methods) are indicated with black outlines and labeled.
dcuA, which was near the significance threshold, is also labeled. Genes are colored
by inclusion in the global FNR+ and ArcA- regulons. b Distribution of fold-changes

for genes in each of the 22 gene sets (KEGG pathways/modules or regulons) sig-
nificantly enriched among under- or over-expressed genes (Supplementary Table
12). Gene sets are colored by enrichment among over- (red) or under-expressed
genes (blue) and are grouped by metabolic function. c Network diagram showing
the interconnectedness of the DE gene sets, colored according to up- or down-
regulation as in b. Source data are provided as a Source Data file.
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Table 10, Fig. 4b, c). These included the global repressor of aerobic
metabolism, ArcA- (enriched among over-expressed genes), the global
activator of anaerobic metabolism, FNR+ (enriched among under-
expressed genes), and the global co-regulators of nitrate response,
NarL- andNarP± (enriched among under-expressed genes). NarL/P and
FNR co-regulate a large number of genes involved in anaerobic
respiration on fumarate, including several that were also identified in
the individual gene-based analysis (Supplementary Dataset 3). Of the
332 genes that were part of at least one enriched gene set, 70% (233 of
332) were regulated directly by ArcA, FNR, or NarL/P.

The other 16 enriched gene sets were smaller, largely overlapped
with theglobal regulons (Fig. 4c), andhelped to specify differences in E.
coli behavior between the guts of the healthy versus the recurrer par-
ticipants. Gene sets over-expressed in the recurrer cohort pointed to
increased expression of: (i) TCA cycle enzymes (KEGG M00347,
dicarboxylate-hydroxybutyrate cycle; KEGG M00173, reductive citrate
cycle); (ii) amino acid biosynthetic machinery (KEGG 00660, C5-
branched dibasic acid metabolism; KEGG 01210, 2-oxocarboxylic acid
metabolism; TyrR-); (iii) β-oxidation of fatty acids (Rob-); (iv) reactive
oxygen and nitrogen species (RONS) detoxification (SoxR + ); (v)
ribosomes (KEGG 03010); and (vi) the YhaJ+ regulon, which may have
strain-specific roles in virulence and is entirely unrelated to the ArcA
regulatory network43. Under-expressed genes in the recurrer cohort
pointed to decreased expression of: (i) enzymes for anaerobic
respiration on fumarate (DcuR+ , FhlA + , FlhDC+ ); (ii) high-affinity
oxygen cytochromes, potentially used for redox balancing during fer-
mentation (YdeO+ , AppY+ ); and (iii) arabinose and xylose catabolic
enzymes in pathways mostly unrelated to the FNR:NarL/P regulatory
network (KEGG00040, pentose/glucuronate interconversion; AraC + ).

Collectively, the differences in E. coli gene expression suggested a
broad transcriptional response to increased levels of oxygen (ArcA,
FNR), nitrate (NarL/P), and reactive oxygen and nitrogen species, or
RONS (SoxR), in the rUTI gut (Fig. 5). RONS, produced during intestinal
inflammation, have been shown to degrade to oxygen and nitrate in the
gut, providing a growth advantage to facultative anaerobes, like E. coli,
leading to proteobacterial blooms44,45. Given the evidence for RONS-
associated oxygen and nitrate in the rUTI gut and the increased
expression of translational machinery, we hypothesized that E. colimay
be growing at a faster rate in the rUTI gut than in the healthy gut. Using
SMEG46, whichdetermines thedifference in coverage between theorigin
and terminus of replication as a proxy for growth rate46, we observed no
significant difference in estimated growth rate between the cohorts
(Linearmixed regressionwithWald test, p =0.56),with a greater average
growth rate in the healthy cohort (Supplementary Fig. 10).

Discussion
Here, we provide a framework for enriching nucleic acids from a low
abundance bacterial species within a complex community, where the
diversity and genetic content of the species in the community are
unknown a priori but expected to be diverse. Focusing on a low-
abundance but important human commensal and opportunistic
pathogen, we used this framework to develop the E. coli PanSelect
probe set to cover the large pangenome of E. coli. Applied to
sequencing libraries generated from a controlled mock community
sample and human stool, E. coli PanSelect increased the coverage of E.
coli by many orders of magnitude, equivalent to sequencing
unenriched libraries to a depth required to cover the human genome
150 times. This significant enrichment in sequencing data did not
skew either the E. coli or non-E. coli data fractions and revealed new
fundamental details about the genetics and transcriptional pro-
gramming of E. coli in their native gut habitat, including the dysbiotic
rUTI gut.

The gut is an important pre-infection reservoir for UPEC, and it is
hypothesized that conditions in the gut may modulate recurrent
infection in the bladder47. In an E. coli PanSelect-powered analysis of E.
coli transcription in stool from women with and without a history of
rUTI, we observed significant differential expression of genes encod-
ing aspects of core energy metabolism, primarily under the control of
two global regulators of anaerobicmetabolism, ArcA and FNR (Fig. 4a).
A facultative anaerobe, E. coli carries cellularmachinery for respiration
on multiple electron acceptors, but will shift its metabolism towards
anaerobic respiration on nitrate or aerobic respiration on oxygen
whenever possible48,49. In healthy conditions, the gut environment is
typically deficient in nitrate and oxygen, and colonized by fermenta-
tive, obligate anaerobes45. However, during periods of inflammation,
the intestinal epithelium produces antimicrobial reactive oxygen and
nitrogen species (RONS)45. Facultative anaerobes like E. coli are more
resistant to oxidative stress and can co-opt secondary products of
RONS as terminal electron acceptors for respiration, resulting in
changes to microbiome composition, including the increased number
of facultative anaerobes45. In the recurrer cohort, we observed a tran-
scriptional response consistent with increased RONS and related elec-
tron acceptors, including changes to global respiratory metabolism
(ArcA, FNR) and nitrate response (NarL, NarP), and increased expres-
sion of nitric oxide and superoxide stress responses (SoxR). However,
we did not observe higher RAs of E. coli in rUTI guts in our prior analysis
of unenriched stool metagenomes27, nor increased growth rates within
the HS-enriched dataset. Possibly, the growth potential provided by
RONS was small enough that it was only detected at the transcriptional
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level, or repeated antibiotic exposure among rUTI women may have
curbed the expansion of drug-susceptible strains.

A RONS-driven change in E. coli transcription is consistent with
our prior finding of a depletion of butyrate-producing taxa in the rUTI
gut within this same dataset27, accompanied by a significant decrease
in microbial richness. Butyrate, a short-chain fatty acid (SCFA) pro-
ducedbymembersof the gutmicrobiome, activates anti-inflammatory
PPAR-γ signaling by the intestinal epithelium50–52. In the absence of
PPAR-γ signaling, luminal nitrate and oxygen levels are elevated by the
induction of nitric oxide synthase and the reduced expression of the β-
oxidation pathway within epithelial cells, respectively53. Depletion of
butyrate-producing taxa by antibiotic treatment is sufficient to disrupt
PPAR-γ signaling and provide a growth advantage to E. coli53. In our HS-
enriched dataset, apparent differences in carbon utilization between
cohorts suggested further disruption to microbe-driven PPAR-γ sig-
naling. Independent of the main FNR regulatory network, genes
involved in the catabolism of arabinose and fucose were under-
expressed in the guts of recurrers. Prior work has shown that both
sugars are fermented to SCFAsby the gutmicrobiota, with themajority
of carbon in secreted fucose returned to the host as butyrate54–56. Diet,
the primary determinant of arabinose concentration57, was not differ-
ent between cohorts, and fucose-liberating taxa, like B. thetaiotaomi-
cron, were not depleted in the rUTI gut27, suggesting that the
difference in carbohydrate metabolism may be part of the broader
metabolic shift induced by the gut environment.

What could the recurrer E. coli transcriptional program tell us
about rUTI susceptibility? Transcriptional regulation is thought to be
central to UPEC virulence. In a comparison of diverse urine-associated
E. coli strains, Schreiber et al. found that transcriptional state, including
of type 1 pili, in cultures used for bladder inoculation was a better
predictor of murine urinary tract colonization than strain genetic
background10. Though we did not observe a difference in T1P expres-
sion between cohorts, the metabolic functions for which we observed
the greatest evidence for increased activity in the rUTI gut, respiration
on oxygen and nitrate, have been previously identified as key coloni-
zation factors of the bladder, including of bladder-associated intra-
cellular bacterial communities, and the wider urinary tract58–61. Up-
regulation of these transcriptional programs pre-infection may make
successful bladder colonization more likely. However, other inflam-
matory diseases of the gut, such as IBD, also lead to conditions that
benefit respiring E. coli, but are not associated with an increased rUTI
risk, to our knowledge45,62. Further investigations into the differences
between the conditions that E. coli experiences in the rUTI gut and that
of other inflamed gut environments may clarify the relationship
between gut environment, E. coli lifestyle, and recurrence.

There were limitations in the design of the E. coli PanSelect probe
set, and the degree to which we were able to use it to study UPEC
biology within the gut microbiome. First, due to the computational
complexity of producing HS probes, we adopted a coding sequence-
focused design and prioritized common gene families identified
through a comparative genomics workflow. Despite excluding rare
gene families, we still predicted enrichment of more than 97% of the
pangenome in silico, and observed remarkably even enrichment of E.
coli on both amock community and human stool samples. Enrichment
extended to non-coding regions not included in probe design, such as
fimS, due to the length ofDNA fragments captured inour hybridization
steps. Second, we found that enrichment of DNA-based libraries was
greater than the enrichment of RNA-Seq libraries, possibly due to
cDNA libraries being processed in larger pools (24 vs 8 sample pools),
which may have saturated probe occupancy. Finally, while not a lim-
itation of E. coli PanSelect tool, our use of human stool did limit the
interpretation of our data as the stool is only a portion of the gut
environment inhabitedby E. coli. Stoolmicrobial communitiesmaynot
accurately reflect the gene expression profiles of E. coli that are
adherent to the mucosa (or within the colonic crypts) or found in the

small intestinal tract. Therefore, the use of stool may explain our
finding that the fimS region was primarily in the OFF orientation,
despite the importance of T1P in mediating gut colonization30,36. Pre-
viously, we showed that E. coli that are planktonic in urine have lower
T1P expression (and more fimS in the OFF orientation) than when the
same E. coli is adherent to the bladder mucosa63. Here, it is possible
that E. coli found in stool exhibit T1P expression patterns more like
planktonic urine growth, while E. coli that are closer to the mucosa
have adifferent T1P expressionprofile. In futurework,E. coliPanSelect,
which can be applied to sequencing libraries regardless of specimen
type used to construct the libraries, will be a useful tool to measure
gene expression profiles of E. coli throughout the gastrointestinal
tract, including in mucosa-associated microhabitats.

Although we focused on E. coli within the gut, broader applica-
tions of E. coli PanSelect include the detection of low-abundance
strains across other environments such as the skin64, catheter,
bladder7,65,66, hospitals67 and in the food industry68. Future studies may
also make use of the background metagenome and metatran-
scriptome data, which we confirmed to be minimally biased in this
work, thus, integrating the tool into established analytical pipelines
andprecluding the need for additional sequencing costs. In addition to
applications to E. coli, our pangenome-based approach for probe
design can be adapted into a cost-effective alternative to ultra-deep
metagenomic sequencing to examine other low-abundance, geneti-
cally diverse bacteria, particularly thosewith numerous representative
reference genomes.

Methods
This research complies with all relevant ethical regulations and was
conducted with the approval and under the supervision of the Insti-
tutional Review Board ofWashington University School of Medicine in
St. Louis, MO. Samples were obtained from a previously published
cohort study of women with rUTI27. Participants provided written
informed consent for the work presented here.

Probe design and synthesis
E. coli reference genome selection, clustering, and annotation. All
E. coli and Shigella (hereafter collectively referred to as E. coli) com-
plete genomes were downloaded from NCBI RefSeq as of June 2017
(total of 295 genomes). To supplement the Refseq collection with
additional diverse genomes, 3141 publicly available, high-quality
(L50< 20) genomes of E. coli that were listed in the NCBI Pathogen
Detection database were downloaded from GenBank from July to
August 2017 (Supplementary Dataset 4). In order to remove nearly
identical Genbank genomes, we performed k-mer-based clustering. All
3141 Genbank genomes were k-merized (using 23mers) with the
StrainGST “kmerize” tool from StrainGE26, then their pairwise all-vs-all
Jaccard similarities were calculated. Single-linkage clustering was per-
formed on these similarities at a 95% threshold to construct 1485
genome clusters, of which 1124 contained a single genome and 361
contained two or more Genbank genomes. Of the 361 multi-genome
clusters, 67 included a genome identical to one of the RefSeq refer-
ences, and were discarded. For the remaining 294, the largest refer-
ence was chosen as a representative for the cluster. Our final set
included these 294 representatives, the 1124 singletons, and the 295
RefSeq genomes. This final set of 1713 genomes represented a large,
diverse collection, with references from all eightmajor phylogroups of
E. coli (Supplementary Table 1; Supplementary Fig. 1), asdeterminedby
the tool ClermonTyping69, and 515 distinctmulti-locus sequence types,
as determined by the tool mlst (https://github.com/tseemann/mlst).

The 1713 genomes were then uniformly re-annotated with the
Broad Institute prokaryotic genome pipeline10,70. Genes were clustered
into orthogroups using SynerClust71, which resulted in a total of 174,584
orthogroups containing 8,334,026 total genes. As the computational
time to analyze all these orthogroups using CATCHwas prohibitive, we
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filtered out rare orthogroups found in fewer than three genomes,
leaving 64,146 orthogroups (containing a total of 8,165,358 genes). In
order to ensure that our set contained all potential instances of key
genes important in clinically relevant E. coli, we retained all instances of
orthogroups containing 59 Pfam domains of interest, obtained from a
curated list (Supplementary Table 2). Using this list, we added back a
total of 2434 orthogroups (3479 genes) that were found in fewer than
three genomes. Our final set contained 64,580orthogroups comprising
8,168,837 genes. In order to reduce design constraints in CATCH,
thereby decreasing computational cost and time, we further clustered
each orthogroup using UCLUST72, with an 80% identity threshold. This
generated one or more clusters of genes within each orthogroup, in
which all cluster members had ≥80% identity to one other. This gen-
erated 87,218 gene clusters from the 64,580 orthogroups. These gene
clusters were the input for the CATCH probe design.

Probe design and filtering. CATCH25 was run to generate probes for
each gene cluster using the following parameters: 2 bp mismatch
allowed; 25 bp cover extension; expand “N” to ACGT; 30 bp island of
the exact match; 60-75 bp length. In addition, three non-E. coli Enter-
obacteriaceae assemblies were used as part of the CATCH algorithm to
“blacklist” probes that matched off-target sequences with a mismatch
tolerance of 8 bp: a Citrobacter, a Salmonella, and a Klebsiella genome
(Genbank accessions GCA_000648515.1, GCF_000195995.1, and
GCA_000240185.2, respectively). Representatives from these three
genera were chosen as they represent well-characterized Enter-
obacteriaceae, closely related to E. coli; blacklisting them was thought
to help to improve the specificity of the probe set to E. coli vs. other
similar organisms. Duplicate probes were removed, resulting in a total
of 911,618 unique probe sequences.

We also used an additional set of filters to remove remaining
probes thatmight capture off-target sequences.Weused the blastn tool
from BLAST+73,74 to search probe sequences for homology against the
NCBI prokaryote reference genome database (downloaded in October
2017), using the following parameters: max_target_seqs 30; evalue 1e-5;
qcov_hsp_perc 80; perc_identity 80. Using these results, we removed
probes that hadmatches of 65 bp or more to: 1)≥ 100 references in the
database (1798 probes removed); 2) Bacteroidetes references (2470
probes removed); 3) Firmicutes references (14,935probes removed).We
were left with a final total of 892,415 probes that were unlikely to hit
other commonly found bacterial species in the human gut.

In silico probe set validation. To verify that our probe set would
actually be able to capture the vast majority of genes in the E. coli
pangenome, we used blastn from BLAST+ to query our probe
sequences against the entire pangenome from our set of 1713 refer-
ences, which included genes that had previously been filtered out at
the probe design stage.We used probe sequences as queries for blastn
with the following parameters: max_target_seqs 30; e-value 1e-5;
qcov_hsp_perc 80; perc_identity 80. We retained alignments with
>65 bp length and nomore than 8mismatches in the entire alignment.
The probe set was considered to capture a gene if one or more probes
met these criteria for a given gene.

Probe synthesis. For this study, the probeswere synthesized by Roche,
though the probe set was not specifically tailored to their technology
and could be synthesized by other manufacturers. All probes could be
synthesized, although 330,387 (37%) probes had one or more bases
truncated from the 3’ end. The average number of bases trimmed per
probe was 1.27 ± 2.16. Only 5423 probes had 10 ormore bases trimmed.
All of themost highly truncated probes had low nucleotide complexity,
primarily due to long stretches of homopolymers. As these changes
were unlikely to affect the performance of the probe set as a whole, we
used this slightly modified probe set in our experiments. The average
probe length after synthesis was 73.7 ± 2.2 bp.

Analysis of four-strain E. coli mock community
Library construction and sequencing. We used a previously reported
mock community26, which included 99% human DNA and 1% E. coli
DNA. The E. coli DNA was composed of: i) H10407 (phylogroup A;
80%), ii) E24337A (phylogroup B1; 15%), UTI89 (phylogroup B2; 4.9%),
and Sakai (phylogroup E; 0.1%). TheNextera XT library construction kit
(Illumina) was used to generate sequencing libraries following the
manufacturer’s recommended protocol. To enrich E. coli sequences in
the mock library (~100 ng into the HS reaction), we performed HS
using a Roche SeqCap EZ Hypercap kit with our designed custom
capture probe set. Hybridization and target capture followed the
SeqCap kit instructions except that we diluted the probe pool 1:2
before use, and substituted custom Nextera adapter-blocking
oligonucleotides25 for the SeqCap HE Universal adapter and index-
blocking oligonucleotides. After hybridization (18 h), beadcapture and
washes, we performed 10 cycles of PCRwith generic universal Illumina
P7 and P5 primers. The final libraries were quantified by Qubit
fluorometry (Thermo Fisher Scientific), and the size distribution was
analyzed by TapeStation electrophoresis (Agilent) before Illumina
sequencing. Then, pre- and post-HS libraries were sequenced on an
Illumina HiSeqX, generating 21,460,598 and 75,576,717 paired-end
151 bp reads for the pre- and post-HS libraries, respectively.

Downsampling and quality control. Pre-HS and HS libraries were
downsampled to equal depth (3Gb, or approximately 20,000,000
paired-end reads) with Picard-Tools prior to analysis (https://
broadinstitute.github.io/picard/). Quality control was performed with
FastQC75 and MultiQC76. Due to observed heightened rates of PCR
duplications in the HS libraries, both HS and pre-HS sequencing
datasets were de novo deduplicated with FastUniq (Supplementary
Results A, Supplementary Table 3)77.

Calculation of enrichment, bias, and coverage levels. We assessed
the enrichment of total E. coli within the metagenome with a one-
sample t-test of the log2 fold-change for all four strains. In order to
examine enrichment bias between different strainswithin a sample, we
compared the ratios of the RAs of individual strains in HS metagen-
omes to the ratios in pre-HSmetagenomes with paired t-tests. RAs and
depth of coverage for each of the four strains were estimated using
StrainGST26. We first built a StrainGST database consisting of just the
reference genomes of the four strains of E. coli in the mock
mixture–H10407, UTI89, Sakai, and E24377A–all downloaded from
NCBIGenbank. Then, we k-merized both pre- and post-HS data and ran
StrainGST (without k-mer fingerprinting) against the database to
determine the RAs and depth of coverages for all four strains.

Coverage levels for each of the four strains were obtained by
aligning downsampled and deduplicated data with Bowtie2 v. 2.3.4.378

withdefault parameters to a concatenationof all four strains’ reference
genomes. Only properly paired aligned reads with a minimum map-
ping quality (MQ) of 5 were retained with samtools (http://www.htslib.
org/). This filtering was done to exclude reads and regions of the
genomes where reads aligned equally well to different strains, with the
goal of reducing bias in less abundant strains due to sequence
homology to sequences deriving from the more abundant strains.
Then, coveragesofMQ ≥ 5 readswere assessedusingBedtools (https://
bedtools.readthedocs.io/en/latest/).

Assembly of E. coli mock community. Downsampled and dedupli-
cated data were used to generate metagenomic assemblies. First, pre-
and post-HS data were digitally normalized with the program khmer79.
Then, downsampled data were processed with Trim Galore
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/)
to remove leftover adapter content. Then, reads were aligned to the
hg38 reference using Bowtie2 v. 2.3.4.3 (with the “very sensitive” flag).
Reads that did not align to the human genome were assembled with
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MetaSPAdes80 with default parameters. Contigs and scaffolds <1 kb
were removed and GAEMR was used to assess assembly metrics and
determine the taxonomy of each remaining contig/scaffold.

We used BLAST+ to search for coverage of the strain reference
genomes by the assembled E. coli contigs >1 kb. Hits >1 kb and with
>90% identity were included in the final coverage calculation. To
identify strain-specific genes in each strain in themock community, we
used an all vs. all BLAST+ approach to look for homologous genes
between all reference genomes. Any gene that did notmatch a gene in
any other strain (E-value < 1e-10) was considered strain-specific.

Comparison of actual to expected probe coverages. To determine
probe hybridization sites on each strain’s reference genome, all probe
sequences were aligned using Bowtie2 v. 2.3.4.3 to each of the four
reference genomes, individually. The intervals where probes aligned
were designated as putative probe hybridization sites. Bedtools was
used to calculate the probecoverageof the four referencegenomes, as
well as the coverage of the reference genomes by the pre-HS and post-
HS metagenomes.

Statistical analysis and reproducibility
No statistical methods were used to pre-determine sample sizes, but
our sample sizes are similar to those reported in previous longitudinal
microbiome studies which were able to detect significant effects26,81,82.
No data were excluded from the analyses. Our study was an observa-
tional cohort study and no replication was performed, although we
have described the recruitment process and sampling strategy suffi-
ciently such that the study may be replicated. Our study was an
observational study with no intervention and cohorts based on pre-
determined criteria; as such, no randomization was required. Control
participants were age-matched to rUTI participants, and few dietary
differences existed between the cohorts based on survey responses.
We adjusted for race in cohort comparisons of microbiome structure.

Clinical cohorts from urinary microbiome (UMB) study
This study recruited onlywomen, sincewomen are the vastmajority of
patients who suffer from frequent recurrent UTI, the subject of this
study. Sex was self-reported. The number of participants used in each
experiment, along with their age, is presented in Supplementary
Tables 6 and 11.

Sequencing of clinical stool samples
Total nucleic acid was extracted from stool metagenomes collected
into ethanol during the Urinary Microbiome (UMB) project, as pre-
viously described (Bioproject PRJNA400628)27. The total (~100 µL)
nucleic acid from each sample was divided into equal aliquots for DNA
and RNA sequencing. 191 samples were used for pre- and post-HS
metagenomic (DNA) sequencing, of which 130 samples were used for
pre- and post-HS metatranscriptomic (RNA) sequencing (Supplemen-
tary Table 5). The RNA aliquots were treated with DNase and Agen-
court AMPure beads for a SPRI clean-up. The 130 non-enriched RNA
libraries were sequenced with an Illumina NovaSeq, generating an
average of 56.0 ± 56.7 million paired-end 151 bp reads. The 191 non-
enrichedDNA libraries were sequencedwith a combination of Illumina
HiSeq 2500 and HiSeq X10 technologies, as previously reported27.

Enrichment and sequencing of E. coli PanSelect libraries. We enri-
ched E. coli sequences frombothDNA andRNA sampleswithmultiplex
solution HS using a Roche SeqCap EZ Hypercap kit with our designed
custom capture probe set. DNA-Seq libraries were processed in pools
of 8 libraries (~200ng each). RNA-Seq libraries were prepared as pools
of multiplex RNAtag-Seq libraries from 24 RNA samples83,84 and
amplified by 14 cycles of PCR to generate at least 100 (mean 140) ng of
each library pool for HS (one 24-plex pool per reaction). Hybridization
and target capture were performed as for themock community above.

All post-HS libraries were run on an Illumina NovaSeq, generating an
average of 9.6 ± 3.9 million paired-end 151 bp reads for post-HS DNA
libraries, and 10.2 ± 10.7 million paired-end 151 bp reads for post-HS
RNA libraries. Three samples for which HS DNA sequencing failed (low
post-QC read depth) were removed from the analysis (UMB13_09,
UMB08_04, UMB24_08).

Quality assessment. The quality of sequencing files was assessed with
FastQCandMultiQC.Wedid not denovodeduplicateDNA reads, aswe
observed far lower PCRduplication in theHSDNA libraries than for the
mock community (Supplementary Results A, Supplementary Data-
set 1). We processed DNA and RNA data with KneadData (https://
huttenhower.sph.harvard.edu/kneaddata/) to remove low-quality
sequence, adapter content, and human contamination.

Benchmarking E. coli PanSelect enrichment using stool samples
Enrichment estimation. For both DNA and RNA, per-sample E. coli
enrichment was estimated as the fold change in the depth-normalized
read coverage of the UTI89 reference genome between pre-HS and
post-HS sample pairs. Global alignments (with Bowtie2 v. 2.3.4.3) were
used for estimating fold change in reference coverage. Strain com-
position was estimated with StrainGST. To track changes to strain RAs
with HS, strain calls were paired between pre- and post-HS samples.
First, pre- and post-HS strains assigned to the same reference were
paired (184 strain pairs). Next, strains assigned to different references
of the same phylogroup were paired (14 strain pairs). There were 16
instances where one strain in one sample appeared to match two
strains in the corresponding sample. Because it was unclear if this was
due to a strain-calling error, these 16 instances were removed from the
analysis. The remaining strainswith no clear pairwere assumed to only
be detected in one sample (55 strain discoveries).

The expression levels of individual transcripts were used to illus-
trate RNA enrichment. First, ordinary least squares regression was
used to find the average relationship between log10-transformed pre-
HS andpost-HS E. coliRA. Three sampleswere identified as enrichment
outliers via t-tests on studentized residuals and were removed (Ben-
jamini-Hochberg FDR correction, p <0.1). Of the remaining samples,
the 94 with >1 million post-QC pre- and post-HS reads were down-
sampled to 1 million reads. Reads were aligned to the UTI89 reference
with bowtie2 and counted with FADU v.1.885, run without the
expectation-maximization algorithm. Transcript expression levels
were estimated in counts per million (CPM). Transcripts expressed
below 10 CPM were classified as not detected (n.d.). For visualization,
transcripts from all 94 pre-HS/post-HS sample pairs were plotted on
the same axes (Fig. 3b). To show density, clusters of transcripts
expressed at similar rates were formed with hierarchical clustering.

Background metagenome and metatranscriptome analyses. Pre-
and post-HS metagenomes and metatranscriptomes were down-
sampled to a maximum depth of 3.5 Gb. Taxonomic and tran-
scriptomic profiles for allmetagenomes andmetatranscriptomes (pre-
and post-HS) were calculated with MetaPhlAn3 and HUMAnN328 for
samples with more than 1,000,000 post-QC reads. E. coli and Shigella
were removed from the MetaPhlAn RA table and the HUMAnN gene
family output. The remaining values were sumnormalized. Bray-Curtis
dissimilarity values were calculated with the Python package scipy
v.1.7.1 (https://scipy.org/). PERMANOVA was implemented by the per-
manova function from the python package scikit-bio v.0.5.6 (https://
scikit.bio/index.html).

Sequencing and assembly of E. coli isolate for benchmarking of
metagenomic assembly. We sequenced a single E. coli isolate from
Participant 8, timepoint 2, using a combination of Illumina and Oxford
Nanopore Sequencing. Sequencing and hybrid assembly were
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performed as previously published86. This assembly has been sub-
mitted to NCBI Genbank with accession GCF_011751425.1.

Metagenomic assembly. Metagenomic assemblies were generated
for ten samples using all available sequencing data. Digital normal-
ization, adapter trimming, assembly, and calculation of assembly
metrics were performed as for the mock community data. Metrics
were calculated based on only contigs assigned to E. coli using blastn.
After assemblies were produced, a binning program, MetaBat287, was
used to produce metagenome-assembled genomes (MAGs). MAGs
were analyzed with CheckM88 to determine taxonomy and assembly
completeness for MAGs that were classified as Enterobacteriaceae by
CheckM.

Analyses of full set of enriched stool samples
Comparison of gene content between cohorts. We calculated gene
family presence/absence profiles for enriched metagenomes with
PanPhlAn3 (v. 3.1), run with the UniRef90 Escherichia coli pangenome
generated on Nov 2, 2020 by the Segata Lab28. Samples were filtered
based on the evenness of E. coli coverage with the profiling workflow
contained within PanPhlAn (panphlan_profiling.py), run with the ‘very
sensitive’ parameters (--min_coverage 1 --left_max 1.70 --right_min 0.30).

We used omnibus and per-gene tests to test for differences in gene
content between the recurrer and healthy cohorts. First, we quantified
differences in overall gene content profiles between samples with the
Jaccard Index and tested for differences between cohorts with PERMA-
NOVA. We used the scikit-bio implementation of PERMANOVA to assess
the marginal effect of cohort, controlling for subject, by permuting
subject labels while keeping samples from the same subject together. In
order to test for differential abundance of individual gene families, we
used logistic regression, and Fisher’s exact tests for genes where we had
issues with model fitting. For logistic regression, we selected the genes
that were found in between 10% and 90% of all samples, and detected in
at least one sample from both the recurrer and healthy cohorts (4,114
gene families). We fit models with the function pglmm from R package
phyr v.1.1.289, using random intercepts for subjects and a phylogenetic
covariance structure based on the most abundant strain identified
within each sample by StrainGST. No gene families were significantly
differentially abundant after Benjamini-Hochberg false discovery rate
correction. Samples from individuals in the rUTI cohort who did not
have a UTI during the study period (e.g. nonrecurrers) were included in
modeling, but only the contrast between the recurrer and healthy
cohorts was reported. To evaluate the remainder of gene families for
which we had issues with model fitting, we used Fisher’s exact tests to
calculate the significance of the association between gene families and
rUTI history, at both the sample and subject carriage levels. For the
subject level, we called a genepresent in a subject if it was identified in at
least one sample in a subject series. For both sets ofmodels (subject and
sample level), the most significantly differentially abundant genes were
those that were already shown to be insignificant by the more compre-
hensive logistic regression model. Thus, we concluded that the
remaining genes were not differentially abundant either.

fimS structural variation profiling. We estimated the fraction of fimS
in the ON orientation within enriched metagenomes by aligning reads
(Bowtie2 v. 2.3.4.3; MQ> 5) to a reference containing a copy of the
UTI89 genome with fimS in the ON orientation and a copy with fimS in
the OFF orientation. For many samples, we observed a mixture of
alignments to both the ON and OFF references, indicating subpopula-
tions of fim-expressing (piliated) and non-expressing (smooth) E. coli
within the same samples. We used the proportion of reads aligning
uniquely to the ONorientation as an estimate for the size of the piliated
population. Because there was significant inter-sample variation in E.
coli RA (and thus fimS coverage), wewere able to estimate the RA of the
piliated population more accurately in some samples than others. In

order to reflect this variation in our estimates of average fimS activation,
we used weighted averages and regressions with weights proportional
to per-sample fimS coverage (ON+OFF), and filtered samples with <5
fimS-aligning reads from analysis (Supplementary Table 5).

Selection of E. coli coverage threshold for fim and differential
expression analysis. Post-HS RNA and DNA samples were aligned to
the UTI89 reference genome with bwa-mem v.0.7.17-r118890, and
alignments were countedwith FADU85 (runwith parameters: -M -p).We
then filtered samples based upon total post-HS DNA and RNA E. coli
content, using a threshold of 60,000 UTI89 coding sequence-aligning
reads. We determined this threshold by examining the relationship
betweenRNA E. coli content andobservedRNA transcript diversity.We
used ‘relative abundance-weighted transcript diversity’ as a metric,
defined as the sum of average RAs of all unique transcripts detected in
a sample. We selected our threshold of 60,000 E. coli reads, because
unique transcripts representative of 80% of the average E. coli tran-
scriptome could be observed in samples with >60,000 E. coli reads
(Supplementary Fig. 11).

Relationship between fimS orientation and fim operon expression.
For testing the relationship between fimS orientation and fim operon
expression, we used the subset of samples for which we could both
estimate fimS orientation (5 fimS-aligning reads) and measure gene
coverage and expression (60,000 E. coli DNA and RNA reads) (Sup-
plementary Table 5) We quantified fim operon coverage and expres-
sion as the sum of coverage of all genes in the protein-coding fim
operon (fimAICDFGH). We used mixed effects models for
metagenome-controlled differential expression testing, as described
in Zhang et al.91. Models were fit with the form: f im RNAðlog cpmÞ �
f im DNAðlog cpmÞ + f imSðlog%Þ+ ð1jsubjectÞ with the function lme
from the R package nlme. To control for variation in E. coli content
between samples, we used weights proportional to sample E. coli
content: weights=varFixed(~ (1/DNA_ecoli + 1/RNA_ecoli)).

Selection of samples and genes for differential expression testing.
For differential expression testing between cohorts, we filtered sam-
ples based upon total coverage of E. coli (60,000 DNA and RNA reads,
see above) and coverage evenness, as determined by the profiling
workflow contained within PanPhlAn3, run with ‘very sensitive’ para-
meters (--min_coverage 1 --left_max 1.70 --right_min 0.30) on align-
ments to the UTI89 reference (bwa-mem v.0.7.17-r1188, counted with
FADU, run with parameters -M -p; see above) (Supplementary Table 5).
We used genes that were classified as ‘single copy’ within metagen-
omes by PanPhlAn. For differential expression testing, we selected a
subset of genes present in at least 50% of all metagenomes from both
the recurrer and healthy cohorts (15 samples/cohort) and expressed in
at least 15 metagenome/metatranscriptome pairs across the full study.
Gene presence was defined as coverage by at least 20 reads within a
metagenome. Expression was defined as presence with additional
coverageby at least 20 readswithin the associatedmetatranscriptome.
We set the read threshold (20) based on the E. coli content range of
samples included in DE testing. The sample with the 15th greatest RNA
E. coli content had 10-foldmore E. coli than the samplewith the least E.
coli. Thus, setting the threshold at 20 reads ensured that for any gene
classified as expressed in 15 samples, we would have sensitivity to
detect at least two reads in all samples where the gene was expressed
at an equal or greater rate.

Between cohort differential expression testing. We used mixed
effects models for per-gene metagenome-controlled differential
expression tests91. We fit models of the form:

RNA logcpmð Þ � DNA log cpmð Þ+ cohort + E:coli RNA log%ð Þ+ ð1jsubjectÞ
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with the function lme from theRpackagenlme. To control for variation
in E. coli content between samples, we used weights proportional to
sample E. coli content: weights = varFixed(~ (1/DNA_ecoli + 1/RNA_e-
coli)). We included E. coli RA as a fixed effect based on model com-
parisons using Akaike’s information criterion (AIC). We quantified the
coverage of genes within metagenomes and metatranscriptomes as
copies per million scaled by E. coli content (CPM), and used a natural
log transformation for variance stabilization of RNA and DNA CPM
values, as well as E. coli RAs. RNA zeroes were replaced before trans-
formation with a gene-specific pseudocount equal to half the lowest
non-zero RPM value measured for each gene, as done in Zhang et al.91.
There were no zero values for DNA (because we used single copy
genes) or E. coli RA.

Gene set enrichment analysis. We used Gene Set Enrichment Analysis
(GSEA)42 to test for the overrepresentation of gene sets among genes
over and under-expressed in the recurrer cohort. We grouped genes
into TF regulons, using gene:TF interactions reported in RegulonDB39,
as well as KEGG Modules and Pathways. For TFs with dual activity, we
grouped genes into separate regulons consisting of genes activated and
repressed by the TF. Because RegulonDB reports regulatory informa-
tion for E. coli K12 and we used a E. coli UTI89 reference, the TF:gene
interactions were not immediately transferable to our dataset. We used
SynerClust71 to pair orthologs between the two reference genomes, and
transferred annotations from the K12 reference to UTI89 orthologs. For
annotation of KEGG Pathway and Module membership, we used KEGG
gene name annotations from RegulonDB and the KEGG E. coli K12 (eco)
Pathway and Module maps. For GSEA, we used gene sets that were five
genes in size or larger. We used the t-scores from the differential
expression tests (reported above) as input for GSEA.We reported GSEA
results at an FDR-corrected significance threshold of 0.05.

Metagenomic growth rate estimation. The growth rate of E. coli
strains within metagenomes was estimated as the difference in cover-
age between the origin and terminus of replication, as implemented in
SMEG46. We constructed a SMEG species database using the strain
reference genomes reported by StrainGST, and ran SMEG using the
‘referencebased’modewith the strainRAestimatedbyStrainGST, using
the post-HS sequencing data. Per sample, we calculated the average E.
coli growth rate as the average of strain growth rates, weightedby strain
RA.We used linear mixed effects models to compare strain growth rate
between cohorts, of the form growth rate � cohort + ð1jsubjectÞ.

Statistics and graphical plotting
All statistical analysis and plotting was performed in R v3.692 and
Python. R was primarily used for validation of the probe set and dif-
ferential expression testing with the libraries ggplot293, data.table
(https://rdatatable.gitlab.io/data.table/), Rmisc (https://cran.r-project.
org/package=Rmisc), andnlme94. Pythonwasused for other analysis of
samples from the UMB study with libraries: pandas v.1.3.295, numpy
v.1.21.296, scipy v.1.7.197, statsmodels v.0.12.198, pysam v.0.19.199, scikit-
bio v0.5.6100, matplotlib v.3.4.3101, and seaborn v.0.11.281.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Post-HS sequencing data generated in this study are publicly available
and have been submitted NCBI’s Sequence Read Archive (SRA) under
Bioprojects PRJNA685748 for the mock community and PRJNA400628
for the UMB stool samples. Pre-HS sequencing data was previously
submittedunder these sameBioprojects (pre-HSDNAdata for themock
community and stool samples from the UMB project). The assembly of
the E. coli isolate UMB08_02 generated in this study is publicly available

and has been submitted to NCBI’s Genbank database under accession
GCF_011751425.1 (https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_
011751425.1/). Source data are provided with this paper.

Code availability
No custom code was used. Analysis was performed using publicly
available or open-source software, including StrainGE26, CATCH25,
UCLUST72, SynerClust71, ClermonTyping69, BLAST + 73,74, Picard-Tools
(https://broadinstitute.github.io/picard/), FastQC75, MultiQC76,
FastUniq77, Bowtie278, Samtools (http://www.htslib.org/), Bedtools
(https://bedtools.readthedocs.io/en/latest/), GAEMR, KneadData
(https://huttenhower.sph.harvard.edu/kneaddata/), MetaPhlAn328,
HUMAnN328, MetaBat287, CheckM88, PanPhlAn328, phyr89, bwa-mem90,
FADU85, GSEA42, and SMEG46.
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