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Summary

Technology improvements and growing maturity of the offshore wind industry have resulted in
significant cost reductions and rise in demand. More can be achieved by focusing on improving
the understanding of key design areas of an offshore wind turbine (OWT). Since fatigue is one
of the main design criteria for offshore structures and little is known about fatigue cumulative
development in time under operating conditions, it formed the basis of this thesis. However,
fatigue is a complex phenomenon that is dependent on numerous interlinked parameters, such
as damping, loading type, and stiffness of support structure (SUS).

For the purpose, data analysis was performed on measurements which were gathered over a
period of four years from a monopile-supported OWT site. The measurement data included infor-
mation about the environmental and operational conditions of the OWT; and strain, acceleration
and inclinometer readings from its SUS.

Use of different data acquisition systems during the measurement campaign inherently re-
quired significant efforts to synchronise and preprocess raw data to appropriate state for data
analysis. Time-dependent lag was identified via computation of cross-correlation sequences be-
tween data segment pairings, and the lag was successfully corrected.

With the use of a standardized rainflow cycle counting algorithm, strain-derived moment
time series were converted to constant amplitude events, which could be used to derive damage
equivalent bending moments, M-N curves and fatigue damage accumulation frequency spectra.

Short-term damage equivalent bending moment (STEL) was revealed to have a linear depen-
dency with turbulence intensity when the OWT was in the run-up operational state. Additionally,
the fatigue damage was demonstrated to be higher for downstream turbines due to wake effects.
Also, fatigue life consumption of OWT SUS increases above rated wind speed conditions despite
decrease in load magnitude due to increase in SUS response frequency.

The latter was confirmed with fatigue damage accumulation frequency spectra, which re-
vealed that the importance of high frequency band (1 – 5 Hz) increases in conjunction with wind
speed at above rated wind speed conditions. However, most of the overall fatigue damage is
accumulated at the low frequency band, which associated with wind and wave loading, first SUS
bending modes, 1P and 3P rotor harmonics.
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Chapter 1

Introduction

This first chapter provides background for the rise of renewables; the offshore wind industry and the
uncertainties in OWT design. The objectives are introduced in the second section, as the scope and
approach are described in the third section. The chapter is finalized with an outline of the structure
of this report.

1.1 Motivation

1.1.1 Rise of Renewable Energy

An unprecedented year with the constant evolution of the COVID-19 pandemic has imposed
significant changes in the global energy demand, which is approximated to be around 6% lower
than in previous year [5]. The main culprits being reduced mobility and economic activity,
together with the required lock-downs around the world. During the year, signs of longer-lasting
implications for the energy transition away from fossil fuels became evident [5, 17].

In April 2020 the high economic volatility of fossil fuel was exemplified by the price of oil
turning negative for the first time in history, just after the first hit of the pandemic when lock-
downs were ordered and demand for oil plummeted. Although its prices have recovered to a
stable, but lower, level, more reliable renewable energy sources rose into bigger demand [31].

Because of low operating costs and preferential access to many power systems renewable
energy demand has been estimated to have grown by 1% compared to 2019 levels, in contrast
to all other energy sources [20]. Similarly can be viewed the generation of energy proportions.
Thus, renewable energy has demonstrated to be the most resilient energy source to COVID-19
lock-down measures [20].

What is more, the European Union remained on track to reach its 20% renewables target by
2020 and EU leaders endorsed a plan to achieve 55% - up from previous 40% - cut in greenhouse
gas emissions by 2030, compared to 1991 levels. The latter decision came as part of a broader
European Green Deal programme, which aims to reach climate neutrality by 2050. A big part of
the programme involves phasing out fossil fuels for renewable sources like wind energy [12].

Additionally, over the years it has been observed that newly installed renewable power capac-
ity increasingly costs less than the cheapest power generation options based on fossil fuels, if the
Levelized Cost of Electricity (LCoE) is viewed (see Fig. 1.1). LCoE is the ratio of lifetime costs to
lifetime electricity generation - a parameter often used to compare the cost of different sources
of energy [22]. Lifetime costs refer to the expenditures related to building and operating the
power generating asset. However, the LCoE does not capture the whole picture and continuing

1



2 1. INTRODUCTION

to find cost-outs from the renewable energy sources is required to make low-cost climate and
decarbonisation solutions more appealing [22, 2].

Figure 1.1: Boxplot of LCoE by technology.
Note: Values at 7% discount rate. Box plots show maximum, median and minimum values, the boxed area

represents central 50% of values. Source: [2]

1.1.2 Offshore Wind Industry

Offshore wind could be seen, from Fig. 1.1, to produce clean electricity that sometimes is cheaper
than existing fossil fuel-based technology – more often so, as time has gone by. Over the last few
decades offshore wind energy technology has advanced significantly - a single offshore wind
turbine now possesses more capacity than two of the world’s first offshore wind parks together
[13]. Turbines can be made larger, blades longer, hub height higher, and site locations farther
from offshore than ever before.

The previous year - 2020 - demonstrated that wind power is one of the energy sources that re-
duces the exposure of our economies to fuel price volatility. Despite pandemic-caused equipment
supply disruptions and slowed construction due to lockdown measures, the impact of COVID-19
on offshore deployment remained limited. Although impact beyond 2021 may be of more signifi-
cance, the global offshore wind market outlook to 2030 has grown more promising over the past
year. Multiple governments have raised their ambition levels and new countries aspire to climb
the ranks in the market shares. Japan set out a goal to increase offshore wind power generation
up to 45 GW 2040 from the current level of 4 GW – leveraging Japan to 3rd largest offshore wind
generator. Their set out plan estimated that the cost to generate electricity from offshore wind
power is expected to become cheaper than thermal power energy around 2030 - 2035 [4].

Also, EU Strategy on Offshore Renewable Energy proposes to increase Europe’s offshore wind
capacity from its current level of 12 GW to 300 GW by 2050 [11].

Offshore wind currently accounts for 5% of global wind energy and generates a mere 0.3%
of global electricity production, but the potential for further growth is enormous[49, 13, 11].
Current estimates provide an average annual growth rate of 18.6 percent until 2024 and 8.2 per
cent up to the end of the decade, as shown in Fig. 1.2.

Technology improvements and growing maturity of the industry have resulted a 29% decline



1.1. MOTIVATION 3

in the global weighted average LCoE of offshore wind between 2010 and 2019 [13]. Continued
effort to seek further cost reductions can only improve the outlook of a sustainable future.

Figure 1.2: Predicted global offshore wind growth to 2030.

1.1.3 Joint Industry Project - DISSTINCT

Research is an integral part of seeking cost-outs: one of the examples is the DISSTINCT project -
a 4-year joint industry research project of Siemens Wind Power BV, BMO Measurement Solutions
BV, Fugro Geoservices, KEMA Nederland BV, Siemens Nederland NV, Delft University of Tech-
nology and DNV-GL aimed at improved dynamic soil characterization and modelling for offshore
wind turbines [42]. The main contribution of this project was the development of the ‘Effec-
tive Stiffness method’ for the estimating the lateral stiffness of rigidly behaving piles [45]. The
method was validated to predict the measured response of an in-situ monopile better than the
conventional p-y curves, mainly developed in the 1960–1980s [47].

It was demonstrated that the developed stiffness method, provided a 8% saving potential
for the primary steel (shell) mass of the complete offshore wind turbine support structure (MP,
transition piece and tower). To be noted, fatigue driven base case was utilized for the exercise.
Following the estimation of the MP support structures constituting more that 20% of the total
capital cost of an offshore wind farm, the method provided a beneficial impact on the feasibility
of future offshore wind projects [47].

The shaker measurement campaigns, carried out as part of the project, were performed in the
Westermeerwind wind park in the Netherlands, in 2015 (see Fig. 1.3). The campaign included
equipping a monopile-only installed structure with numerous strain gauges along its length,
accelerometers and an inclinometer near the top of it, and a shaker for force-controlled excita-
tion. Additionally, accelerometer probes were inserted in the surrounding soil of the monopile.
The gathered measurement data has contributed to numerous researche projects and revelations
[25, 46, 47].

Since the installation of the wind farm in spring 2016, as a continuation of the DISSTINCT
project, measurements continued to be collected from the operating wind turbines. Parts of this
data - gathered over more than four years from the wind turbine that is circled in red in Fig. 1.3
- will be analysed in Ch. 3 of this thesis.
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Figure 1.3: Location of the Westermeerwind wind farm in the Netherlands.
Red circle indicates the testing site. Source: [47]

Rotor nacelle assembly (RNA) data originates from the supervisory control and data acqui-
sition (SCADA) system, which is located at the RNA, at the level of the axel of the rotor at
approximately 95 m NAP (see 2.1). The RNA data includes information about wind turbine op-
erational state and surrounding environmental conditions – exact parameters can be found in
Sec. 2.1.1.

Support structure (SUS) data has been acquired with a system commissioned by a company
called HBM in March 2016. The installed measurement setup, which is depicted in Fig. 2.1, in-
cludes 36 strain gauges – eight on the tower and 28 on the inner wall of the monopile foundation
-, three accelerometers and an inclinometer. More elaborate description of SUS data acquisition
system is in Sec. 2.1.2.

Soil data comprises of soil parameter profiles from geotechnical and geophysical character-
ization – these can be found in [47, 45]. In general, the site is characterized by saturated and
stiff sandy soil conditions – similar to sandy North Sea sites.[47]. Additionally, soil data involves
soil acceleration and pore pressure measurement from eleven soil probes, which were placed at
various depths and radial distances from the pile. The positioning of soil sensors (Fig. 2.2) and
a more intricate information on soil DAQ system is provided in Sec. 2.1.3.

1.1.4 Problem Analysis

Offshore wind turbines are structurally exposed to a variety of excitations, such as hydrody-
namic loads, earth-induced loads, aerodynamic loads, loads from turbine dynamics (such as
blade shadowing effects), and in the Northern regions ice loads [37]. Neglecting ice and earth-
induced loading, the main loads wind, wave, 1P, and 3P have been schematized in Fig. 1.4. Each
of these loads can be seen to have unique characteristics in amplitude and frequency. Wind and
wave loads are stochastic and are thus often described statistically, whereas the 1P loading stems
from mass and aerodynamic imbalances of the rotor [37]. Hence, 1P forcing frequency equals
the rotational frequency of the rotor and 3P loading - caused by the blade shadowing effect - is
3 times the 1P frequency.

The combined effect of interactions between these excitations and the OWT leads to complex
dynamics, with many uncertainties [28, 38]. Many of the uncertainties are related to the in-
teraction between the surrounding soil and the OWT’s foundation, which is mostly a monopile.
Due to the ‘simplicity’ in construction and proven success of driven piles in supporting offshore
oil and gas infrastructures, compared to other foundation types, monopile foundation has been
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widely adopted [28, 21]. The proven track record has definitely now extended to offshore wind
energy sector. In Europe, in 2019 70% of OWTs were constructed with a monopile, and above
75% during 2013 – 2018 [50].

Figure 1.4: Overview of external loads acting on an OWT, along with characteristic waveforms.
Source: [2]

However, the increase in diameter of monopiles for OWTs has led the designers to venture
outside the original envelope of engineering knowledge from offshore oil and gas [28]. Hence,
the recommended usage of p-y curves by the current codes of practice (for example API, ISO,
DNV) for the design of monopile foundations of OWTs leads to conservative results. The reason
being that the proposed formulation of the p-y curves is based on small-scale tests of slender piles
(L/D ratio ¡ 20) under static loading for oil and gas application in the 1960s – 1980s [47]. A
typical length to diameter ratio for a monopile would be less than seven – making the behaviour
of pile more rigid [8].

The importance of accurately assessing the stiffness of the soil-structure system stems, among
others, from the matter that the first eigenfrequency of the OWT can only lie in a relatively
narrow band without causing detrimental damage to the structure. In general, it is economically
optimum if the OWT first eigenfrequency is within a range called soft-stiff [3], as shown in Fig.
1.5. In such a manner, the resonance from wind, wave, 1P and 3P excitation frequencies is
avoided. Soft-soft range would imply a rather flexible structure and stiff-stiff range a heavy and
rigid structure [3]. If the natural frequency of the OWT structure was to fall into the excitation
frequency bands, for instance via erroneous design methods, the lifeline would be compromised.

Fatigue is often the governing design parameter of OWTs, and consequently defines the tur-
bine’s age. The intended life time of an OWT is typically 25-30 years, but incorrect estimation
of natural frequency of an OWT can shorten it significantly [28]. In monopile support structure,
fatigue critical zones are located near or below the seabed, at the location of the highest bending
moments. Typically the first welds beneath the sea bed are most fatigue critical [19]. Given
the inherent conservatism of the p-y method, or other design assumptions, the real life fatigue
progression in offshore monopile foundations will most probably differ from design. In case of
the existing wind farms, decisions on lifetime extension are thus best supported by continuous
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monitoring of the accumulated fatigue damage of the offshore wind turbine (OWT) [21]. For
that, the complete distribution of stresses along the structure, especially at the fatigue hot-spots,
should ideally be known. However, retrieving such information requires direct measurement of
these hot-spot stresses – implying installation of strain gauges on the relevant structural parts,
and the monopile prior to pile driving [41, 19]. Unfortunately, this is unfeasible to be done
on existing OWTs and a costly activity for the future wind farms; hence rarely done. Examples
of strain measurement campaigns, where also other types of data were collected, include the
DISSTINCT project, but also the Nobelwind measurement campaign.

Figure 1.5: Generalised overview of forcing frequencies against power spectral density for a
three-bladed wind turbine.

Source: [3]

It can be realized that strain data, coupled with RNA and soil data, from an operational
OWT can provide invaluable insight with respect to uncertainties in soil-structure-environment
interaction and associated dependencies, accumulated fatigue damage, as well as existing non-
linearity effects in and around the support structure of the OWT. Eventually, measurements and
data analysis allows to identify differences between design models and the reality at the cost-
critical design points of the OWTs.

1.2 Objective

Since fatigue is one of the main design criteria for offshore structures and little is known about
fatigue cumulative development in time under random loading [28, 23], it will form the basis
of this thesis together with the data collected from an OWT in the Westermeerwind wind farm.
To distil information about fatigue from the collected strain data, cumulative fatigue damage
analysis procedures are to be employed. One of the procedures includes rainflow counting,
which is widely used in practice and implemented in design codes. Therefore, the first objectives
of the thesis can be formulated as follows:

Preprocess measured data and evaluate the fatigue damage accumulation of a monopile-supported
offshore wind turbine under normal operating conditions.
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However, fatigue is a complex phenomenon that is influenced by multiple of variables such
as damping in the system, loading types, structural materials, imperfections and many more.
Similarly it is influenced by the resonance frequency of the OWT. It is envisioned that the gath-
ered data, which is introduced in Chapter 2, allows to provide insight to the underlying relations
between fatigue, resonance frequency, and environmental and operational conditions. Thus, the
second objective of this thesis:

Identify qualitatively the parameters that influence the fatigue accumulation and the resonance
frequency of a monopile-supported offshore wind turbine.

1.3 Scope & Approach

Fatigue and data analysis are topics with a broad spectrum and herein it is tried to define the
scope of the current work and additionally outline the chosen approach to arrive at the objectives.

The available data has been gathered as part of a joint industry project and consequently
different data acquisition (DAQ) systems from different companies were used for data collection.
Inherently, synchronization of the three available data sets will be needed as part of the prepro-
cessing to ensure that relevant info can be extracted from the same point in time for the purpose
of combining data and exploring dependencies as part of both objectives. During the synchro-
nization, it is anticipated that the usability of sensor readings becomes apparent. It is known
that resistance strain gauges, which were also used, are susceptible to drifting over a longer
measurement period. Hence, the scope of data preprocessing would be limited to synchroniza-
tion, identification of abnormal readings and drifting in readings, and interpolating data to a
common sampling frequency – if possible.

To reach the first objective of assessing the fatigue damage accumulation, several steps are
required. The measured strain readings would need to be converted to stresses and bending
moments via laws of classical mechanics. The calculated moment-time histories are random,
and calculating the number of moment or stress cycles and ranges, which are required for ad-
vancement, is required. Hence, in order to relate a moment sequence to the damage it inflicts to
the material a standard cycle counting algorithm – rainflow counting – is going to be applied on
the moment-time history. Having shrunk a complex stress and bending moment histories into a
series of counted constant amplitude events, the most widely used S-N or M(moment)-N curves
can be constructed for different operational states of the OWT. Furthermore, post-processing of
counted results lead to damage equivalent loads (DELs) – constant load values that represent the
damage that is caused by a time varying load over a certain period of time.

The aim behind making the M-N curves and calculating DELs, is to make the measurement
data relatable with the design parameters used in the design guidelines and models. This would
provide an opportunity to identify discrepancies between the real world and design models.
Additional elements in the scope of fatigue analysis are the assessment of the spectral content
of accumulated fatigue damage and investigation of short-time damage equivalent loads, which
are determined from ten-minute recordings of the bending moments. The spectral content is
of particular interest as it shows the frequency characteristics of the loads causing the highest
contribution to the fatigue damage.

The information of resonance frequency of an OWT is included in the recordings terms of 10-
minute average data points. Having followed the previous steps, the relations between different
types of data are sought through trial. Focus will be given to identifying if the turbine has tilted
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with the usage of inclinometer data. To add, given the large amount of data, clustering and
prioritization of data points will be required.

To identify OWT characteristic operational and environmental conditions, well-known per-
formance curves, for example wind speed – rotor speed curve, would be formed with the use of
RNA data. Additionally, behaviour of the OWT can be studied with the usage of performance
curves – allowing to identify first dependencies as part of the second objective of this thesis.

Next, data regarding the resonance frequency of the wind turbine throughout the measure-
ment campaign would be investigated, and its dependencies on parameters such as wind speed,
blade pitch position, tilting of the OWT structure are of interest. Inclinometer together with
strain readings could reveal permanent tilting of the OWT – possibly leading to a change in the
resonance frequency of the structure.

Due to time limitation on the current project, modelling for validation and comparison of
results from data analysis is left out of the scope. Modelling would be helpful for assuring that
the dependencies that are unravelled with data analysis are not biased or incorrect due to false
preprocessing of data, for instance. Hence, recommendations are to be provided to facilitate
the verification or adoption of the herein presented analyses. What is more, soil data that is
preprocessed and synchronized with other data sources in Sec. 2.2 is left out of the data analysis
part in Chapter 3 due to time limitations and short duration of available readings.

Throughout this research, MATLAB 2020a software will be used for programming appropriate
algorithms together with its in-built functions. Majority of used functions and tools are part of
MATLAB’s Signal Processing Toolbox [34].

1.4 Outline

In Chapter 1, an introduction to the motives of this work is provided. Additionally, the objectives
of the research and the structure of the report are presented.

Chapter 2 is split into three sections. The first part provides an overview of the measurement
data and its availability. In the second part, the centre of attention is on synchronization of
datasets – the biggest part of data preprocessing. The last section of the chapter summarizes the
performed data preprocessing and highlights some of the assumptions and possible sources of
errors that were found and introduced.

Chapter 3 contains the data analysis and is separated into six sections. In Sec. 3.1 the moni-
tored OWT’s performance curves, such as rotor speed dependence on the wind speed, are given
to understand the quality of the RNA data and the ‘behaviour’ of the OWT. Some data clustering
is additionally done for improving the quality of work in the upcoming sections. Section 3.2 ex-
tends the RNA data analysis to finding dependencies between wind speed, resonance frequency
and damping data. This is followed by inclinometer data analysis in Sec. 3.3 and evaluation of
usability of strain gauge readings in Sec. 3.4. Fatigue analysis according to the defined scope is
presented in Sec. 3.5, and lastly a summary of findings is is presented in Sec. 3.6.

Chapter 4 extends the discussion of results to the conclusions of the whole project, with
recommendations for possible future studies.



Chapter 2

Data Acquisition & Synchronisation

This chapter presents an overview of the data that has been gathered from the wind turbine, located
in the near-shore Westermeerwind farm in The Netherlands, situated at the East side of the IJsselmeer
Lake. In addition to introducing the availability and the types of collected data in the first part, an
applied method to correct for the identified synchronisation issues is described and supported by
several case-studies in the second part of this section.

2.1 Data Availability

The SWT 3.0-DD offshore monopile-supported wind turbine, referenced as W27 from now on-
wards, has been extensively monitored in the period 17/06/2015 – 26/07/2018 and is the sub-
ject of the current research project. The wind turbine is situated at the East side of the IJsselmeer
lake in the Westermeerwind wind park (red circle in Fig. 1.3), and the gathered data has been
subdivided into three categories:

• rotor-nacelle assembly (RNA) data, in Sec. 2.1.1;

• support structure (SUS) data, in Sec. 2.1.1;

• soil data, Sec. 2.1.1;

2.1.1 RNA Data

RNA data originates from the supervisory control and data acquisition (SCADA) system, which is
located at the RNA. The RNA data is collected approximately at the level of the axel of the W27
rotor at approximately 95 m NAP (see Fig. 2.1), and includes the following information:

• fore-aft (FA) and side-side (SS) accelerations;

• wind direction and speed, which is measured by an anemometer installed behind the rotor;

• blade pitch angle;

• power generation level;

• nacelle/yaw position;

• rotor speed;

9
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• resonance frequency;

• FA and SS logarithmic decrement estimates.

From the accuracy or level of error standpoint the resonance frequency and damping values
are estimates from curve fitting. The reported level of error of the resonance frequency values is
�0.0002 Hz, excluding noise-related error. Additionally, it is known that because the anemome-
ter is located behind the rotor, there is uncertainty in the measured values. However, all reported
RNA data is deemed accurate enough for the current work.

RNA data contains a separate, non-uniformly spaced, time vector for each measurement
channel. Non-uniformity stems from the used event-driven SCADA system. As a result, for
instance, the available time channels for the accelerations indicate a sampling frequency range
between 100 Hz to less than 1 Hz, with an average around 20 Hz. Continuous time-series in the
RNA dataset are utilized only during preprocessing of the data in Sec. 2.2, and 10-min statistics
of the continuous readings are used elsewhere due to the limited computational memory and
work capacity.

The 10-minute statistical RNA data is based on 10-min data records of each monitored pa-
rameter. From each 10-min record, over the measurement period, statistical parameters - mean,
minimum value, maximum value, and standard deviation - have been collected automatically by
the RNA DAQ system. Furthermore, because storing statistics of 10-min data records requires
much less memory than storing all 10-min continuous data records, 10-min statistical values are
always available, whereas the raw continuous data can be accessed on demand for limited peri-
ods in the data history. Hence, the RNA 10-min statistics is a preferred choice for data analysis,
if there is no direct requirement for the other.

Figure 2.1: Positioning of RNA and support structure data sensors: strain gauges, accelerometers
and an inclinometer.

Figure adopted from: [47]
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2.1.2 Support Structure Data

The support structure (SUS) data has been acquired with a system commissioned by HBM in
March 2016. The installed measurement setup, which is depicted in Fig. 2.1, includes nine rings
of strain gauges, three accelerometers and one inclinometer.

The nine strain gauge rings were distributed as such: two rings of strain gauges were attached
to the tower; and seven rings of strain gauges were attached to the inner pile wall, with six
rings below, and one ring just above mudline. The rings were vertically distributed, with a
concentration near the point where most bending was expected to occur [47]. It can be noted
that the strain gauge ring 1 has not been depicted in Fig. 2.1. The reason being that strain gauge
ring 1 was damaged during the driving of the pile. Each gauge ring consisted of four resistive
strain gauges – one for each quadrant -, which are labelled as A-B-C-D. Similarly to gauge ring
1, gauges in rings 3, 4, 5, and 6 at D position and gauge B in ring 3 stopped working - likely also
due to endured damage during the driving of the pile.

From here onwards, individual strain gauges will be referred to with a number-letter com-
bination. The number indicates the gauge ring where the strain gauge is located, and the letter
indicates the positioning of that individual strain gauge in the ring. For example, strain gauge
5C refers to the strain gauge at position C in ring 5 (-12.65 m NAP).

The unidirectional inclinometer, which measures only along the 39.4� - 219.4� line, is located
at the same level as two of the three accelerometers: acc. 1 and acc. 2. The two accelerometers
measure in N-S and W-E directions respectively. The third accelerometer was positioned on the
same level with the strain gauge ring 9. The third accelerometer, acc. 3, measures accelerations
only along the 39.4� - 219.4� line.

All devices recorded with a sampling frequency around 50 Hz and all SUS data was prepro-
cessed with Bessel 2nd order low-pass filter with a cut-off frequency of 5 Hz. This filter was
applied to avoid A/D converter receiving any frequency, which lies above half the sampling rate.

The level of error of the inclinometer and strain gauges were tested to be around �1-2 %
of the indicated values. For accelerometers, the reported error level was �0.02 m{s2. In the
reported error levels, the effects of incorrect attachment and misalignment of the sensors are not
taken account of.

2.1.3 Soil Data

Soil investigations were performed by Fugro in 2012. Investigative tests and actions included
CPTs and the retrieval of borehole samples, slug tests, and Seismic Cone Penetration Tests (SCPT)
in order to characterize the small strain behaviour of the soils. The resulting soil parameter
profiles from geotechnical and geophysical characterization can be found in [47]. In general,
the site is characterized by saturated and stiff sandy soil conditions – similar to sandy North Sea
sites.[47]

To monitor the soil-structure interaction during the operations of W27, eleven cones with
accelerometers and piezometers for pore pressure readings were placed at various depths and
radial distances from the pile. The positioning of the soil sensors in the top view can be observed
from the illustrative sketch in Fig. 2.2, and the associated data table in the figure. The cones
measure accelerations in two directions: vertical (Acc-Z) and radial (Acc-X), the radial direction
refers towards the center of the monopile. It is to be noted that it is unknown if accelerometers,
which were intended to capture the radial acceleration, remained oriented towards the center
of the pile after the installation. However, with the help of dual-slope sensors in the probes the
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actual depth of the sensors in the soil was confirmed.

Figure 2.2: Positioning of soil sensors with respect to W27 and with respect to the OWT and the
orientation of strain gauges in monopile foundation.

Table 2.1: Data availability timeline
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2.1.4 Data Availability Timeline

For the purpose of understanding the fatigue behaviour of W27 and soil-structure interaction,
it is important to have data from each one of the data sources available at the same point in
time. A general availability overview of collected time signals between the period 17/06/2015
– 01/03/2020 is provided in Table 2.1, where the availability of each data set is indicated with
coloured shading.

To provide more detail, the measurements between 17/06 – 04/07/2015 were done as part
of the DISSTINCT project shaker tests, where SUS and soil sensors were located differently, and
the tower was no installed yet. In the table, the RNA data refers to the continuous time signal. It
can be observed that there are no complete overlaps between all datasets. There are, however,
three periods where three out of four are available: (1) 04/03 – 27/11/2016; (2) 22/12/2016 –
18/07/2017; and (3) 16/08 – 28/08/2017. It can be noted that the RNA data statistics is always
available since the commissioning of the turbine at the start of year 2016. The total overlap
between the mainly used datasets in Ch. 3 - RNA data statistics and SUS data - is two years and
three days between the period 04/03/2016 – 26/07/2018.

2.2 Synchronisation of Datasets

It is desired to have all datasets synced in time with the same sampling rate frequency. In this
manner, information can conveniently be extracted from each data set from the same point in
time - making it possible to combine data from different sources. In order to achieve that, the
time signals had to be first re-sampled on a common time vector with a fixed sampling rate.
It was decided to resample all signals with a sampling frequency of 50 Hz. The decision was
motivated by the following considerations:

• Sampling frequency of RNA data goes up to 100 Hz; SUS data sampling frequency is ap-
proximately 50 Hz and soil data is sampled at 1000 Hz, which is too high and takes up a
lot of memory space.

• Expected highest frequency content of interest from any of the datasets is around 10 Hz,
and to ensure sufficient frequency resolution, 50 Hz is appropriate.

Linear interpolation was used as a way of resampling - it is illustrated in Fig. 2.3, where
purple and green data points are the original and re-sampled signal respectively.

Having the time vectors with the same sampling frequency, a devised synchronisation proce-
dure could be performed. Synchronisation is required as data sources utilized a different DAQ
system and the exact time-zone settings were not reported for the SUS and soil data. It is known
that RNA data time series corresponds to GMT+1 settings. Based on a previous study [16] on
the synchronisation between the SUS and RNA data, it was found that the SUS data time series
likely corresponds to GMT+0 time zone settings, but there is an additional unknown source of
discrepancy besides the time zone settings. It is also found in Sec. 2.2.2.



14 2. DATA ACQUISITION & SYNCHRONISATION

Figure 2.3: Example of resampling with linear interpolation.

2.2.1 Methodology

The aim of the synchronization is to find the lag between the SUS, RNA and soil data sets, which
are all recorded on different DAQs. For this purpose, an approach based on computing cross-
correlation sequence (CCS) between different sources of data was selected. It is a widely utilized
mathematical tool in multi-sensor signal processing [51]. CCS, also called the time-ambiguity
function ( qRxy), was defined in accordance with MATLAB’s Signal Processing Toolbox guidelines
[35] in the following way:

qRxyppq �

#°N�p�1
n�0 xn�py

�
n p ¥ 0qR�

xyppq p   0

where xn and yn are stationary random processes (e.g. collected acceleration, strain signals)
of length N samples; the asterisk denotes the complex conjugate; and p ranges from �pN � 1q
to N � 1.

The overall synchronisation approach consisted of several steps which had to be carried out
before arriving at a CCS between different measurements. Aligning each of the datasets with the
other had particularities, but the general procedure is described below:

1. Select a time period of interest and signals which are expected to have a correlation.

For example, acceleration signals are likely correlated and similarly strain readings with acceleration
measurements.

2. Collect 10-minute statistics of chosen signals (e.g. standard deviation), and via investiga-
tion of abrupt changes in maximum, minimum or standard deviation values, a first estimate
for the lag can be derived.

3. Select a segment of the continuous readings (e.g. a 2-hour segment) from one of the
datasets, and another segment from the other dataset.

Most importantly, the chosen data segments have to have some actual overlap, otherwise no correla-
tion can be found. Thus, for determining the length of the data segments, it would be important to
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take into consideration the knowledge from statistics comparison, uncertainties related to day light
saving time settings, time zone settings and other sources of differentiation.

4. Transform both data sets into a common or similar coordinate system, such as tower fixed
or nacelle fixed coordinate system, to improve the performance of the approach.

5. Explore the frequency content of the chosen signals. In case of common high energy fre-
quency bands, application of corresponding zero-phase band-pass filtering.

6. Scale the signals to a common magnitude range, as original signals may have different
magnitudes. Signal shape and trend is more important for lag identification with CCS.

7. Compute the cross-correlation sequence (CCS) between the selected processed (e.g filtered,
scaled) measurement signals, two signals can be correlated at a time.

8. Identify the time delay value, which theoretically corresponds to the value associated with
the peak value in the CCS.

9. Make appropriate lag corrections to one of the signals and check if time-corrected signal
aligns with the other.

If results are found to be satisfactory - meaning that the signals could visually be seen to be
aligned appropriately -, automation and additional data segments can be reapplied to steps 4
- 8 in the established routine. This allows to verify the found lag values, before applying an
appropriate correction - as step nine - to the datasets. The latter is done only if it is found
necessary.

When scaling data to a common magnitude range, ranges 0 to 1 and -1 to 1 were used. Min-
max scaling approach was chosen and the corresponding formula for scaling the data to either
of the ranges throughout this thesis was the following:

s1 � a�
ps�minpsqqpb� aq

maxpsq �minpsq
(2.1)

, where a and b are the destination range min-max values (e.g. [0, 1] or [-1, 1]; s is the
original signal; s1 is the scaled signal of s; minpsq refers to the minimum value in the signal s;
and maxpsq refers to the maximum value of signal s.

Having the general lag identification and data synchronisation approach lain out, the follow-
ing Secs. 2.2.2, 2.2.3 and 2.2.4 introduce how it was used on the gathered data.

2.2.2 Synchronisation of RNA Data and Support Structure Data

For the synchronization of continuous RNA data and SUS data, three short ”study periods”
(s.p) from the total overlap of approximately 1.3 years (4/3/2016 - 27/11/2016; 22/12/2016
- 18/7/2017) were studied: 10-17/3/2016; 6-9/1/2017; and 2-6/7/2017. In the same order,
these study periods are referred to as ”March 2016”, ”January 2017” and ”July 2017”. The
synchronization procedure is herein provided more elaborately for the 4-day ”July 2017” study
period, but the chosen parameters and final results will be shown for all study periods.

As per the methodology introduced in the previous section, having chosen the study periods,
the 10-minute statistics of acceleration signals from both data sources was studied. From Fig. 2.4,
it was found from the comparison of the standard deviation of SUS acc. 3 readings and RNA FA
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Figure 2.4: ”July 2017” study period 10-minute statistics comparison - standard deviation of SUS
acc. 3 readings and RNA FA acceleration.

motion accelerations that the estimated time delay between the two signals is around 80-90
minutes in the ”July 2017” study period measurements. This estimate was based on identifying
visually the abrupt changes in the 10-minute statistical parameter. The respective estimates for
the ”March 2016” and ”January 2017” study periods were 60-70 minutes and 70-80 minutes.
This increasing trend referred to the possibility that the SUS data time signal is falling behind
and, hence, there is likely a time-dependent lag.

In addition, SUS acc. 3 readings were chosen instead of acc. 1 or 2, because it was located
closest to the RNA accelerometer. Hence it should provide a recording that is closer to the one
from the RNA sensor – regarding the 1st mode tower response reading. It must be noted that the
acc. 3 has a fixed measurement direction, but the RNA accelerometer moves together with the
assembly. Regardless, sudden changes in the OWT structure are still visible in the unidirectional
sensors as the response of the system is global.

Having found an estimate, the continuous data sets were studied next. The first thing was
to pick the duration of the data segments, which are to be cross-correlated. Trial-and-error was
required for optimal performance, because more accurate results can be obtained with longer
segments, but at the same time computational effort increases. However, the effect of the first
- accuracy - is reduced with time-dependent lag. From trials with the time signal, it was found
that using 2-hour data segments provides satisfactory results, which are shown later. Hence it
was decided to go over the whole period 2-6/7/2017 in 10-minute steps, resulting a total of 575
iterations. An example of data segment lengths in each iteration is illustrated below for the ”July
2017” study period:

1st iteration:

– RNA FA acc. segment: 02/07/2017 17:00:00 - 19:00:00
– SUS acc. 3 segment: 02/07/2017 18:00:00 - 20:00:00

2nd iteration:
– RNA FA acc. segment: 02/07/2017 17:10:00 - 19:10:00
– SUS acc. 3 segment: 02/07/2017 18:10:00 - 20:10:00

...
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575th iteration:
– RNA FA acc. segment: 06/07/2017 16:40:00 - 18:40:00
– SUS acc. 3 segment: 06/07/2017 17:40:00 - 19:40:00

It can be noticed that the previous knowledge about lag from statistics has been considered,
to a certain extent. It was seen in Fig. 2.4 that the SUS recordings are approximately 80-90
minutes ahead of RNA recordings, so the start of the SUS data segments was set 60 minutes later
in the RNA segment, similarly was done to the end point. For optimizing efficiency a delay of
around 80 or 90 minutes should have been chosen instead of the used 60 minutes.

The next step in the process is to transform both accelerometer data sets into a common
coordinate system. One way would be to transfer the SUS’s acc. 1 and 2 readings into the RNA
data coordinate (FA and SS) system. However, this transformation would require an accurate
knowledge of the lag between the two data sets, as the info about the yaw position from RNA
data is used to alter the SUS acceleration readings via trigonometry. It would be a possibility if
the nacelle/yaw positioning is constant for a long period of time, but - as can be examined in Fig.
2.5 – this is not the case for the ”July 2017” period. Hence, an alternative transformation was
chosen: the RNA FA and SS accelerations were converted to SUS acc. 3 measurement directions.

Figure 2.5: RNA 10-minute average - wind direction, yaw positioning, and operational status of
W27 for the period 02/07/2017 17:00:00 - 06/07/2017 18:40:00.

Following the conversion of the RNA signal to a fixed coordinate system, the frequency do-
main of the resulting signal is studied with the aim of finding common high energy frequency
bands – it improves the performance of the cross-correlation sequence for lag identification. The
reason is that in case of strong excitation the signal to noise ratio increases and resultantly the
correlation between studied signals increases. Examples of SUS acc. 3 and transformed RNA
acceleration readings with respective signal S-transforms (a type of STFT [24]) can be found in
Figs. 2.6 and 2.7.

From a general farm-wide W27-type OWT design model, it is known that the first three SUS
FA and SS bending modes, according to the lowest frequency design position, are expected from
frequency ranges 0.275 - 0.278 Hz, 1.508 - 1.525 Hz, and 2.752 - 3.128 Hz respectively. The
corresponding mode shapes (same for FA and SS) are shown in Fig. 2.8. The lowest design
frequency position of the Westermeerwind wind farm implies that the OWT is located in soft soil
conditions at the deepest water position of the wind farm. However, in Sec. 3.2 it is found from



18 2. DATA ACQUISITION & SYNCHRONISATION

RNA data analysis that W27 resonance frequency is higher than the lowest frequency design
position estimate of 0.275 - 0.278 Hz. Thus, high energy frequency bands - associated with
bending modes - in signals are expected to be located at frequency ranges that are higher than
the aforementioned lowest frequency design position estimates.

Figure 2.6: 10-minute snippet of RNA acceleration recording transformed to acc. 3 orientation,
with the S-transform of the corresponding signal, from the ”July 2017” study period.

Figure 2.7: 10-minute snippet of SUS acc. 3 recording, with the S-transform of the corresponding
signal, from the ”July 2017” study period.

Observation of Figs. 2.6 and 2.7 confirms the expected. Both acceleration signals illustrate
higher energy content at the first eigenfrequency that is around 0.3 Hz. It is anticipated, because
the 1st SUS modes of vibration are characterised by having the largest amplitude at the top
of the tower. The 1st mode amplitude reduces down the SUS, and the lowest amplitude of
motion is near the bottom of the SUS (Fig. 2.8). As a reminder, the two currently studied
signals originate from the top and approximately mid-point of the tower. Acc. 3 recording has,
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additionally, noticeable frequency content around 2 Hz - related to 2nd FA and SS SUS bending
modes. Stronger presence of the 2nd mode frequency band, in comparison to the 1st mode band,
in SUS acc. 3 recording (Fig. 2.7) is related to its position. The accelerometer is located at
a level, where large 2nd mode response is expected (Fig: 2.8). Following the same logic, RNA
accelerometer is more susceptible to 1st mode action, as is visible in Fig. 2.6

Figure 2.8: OWT lowest frequency design position model 1st, 2nd and 3rd mode shapes.

Having the frequency domain information of the acceleration signals, zero-phase filtering
with a Chebyshev Type II bandpass filter [34] was applied. The required filter parameters were
set as follows: (1) passband edges: 0.2 Hz, 0.6 Hz; (2) stopband edges: 0.1 Hz, 0.75 Hz; (3)
passband ripple: 0.1 dB; (4) stopband attenuation: 100 dB. The transient effects of the filter
were minimised by extending each of the signals by five times the order of the filter at the start
and end of each measurement segment, for the duration of the filtering procedure.

The next steps in the process were the scaling of the signals to a common magnitude range of
[-1, 1] and then setting up the discrete-time sequence pairings to calculate the CCS. CCS allows
to identify the existing lag between the pairings. For example, in the lag identification between
RNA and SUS data, the pairing of SUS acc. 3 and RNA Acc3-oriented signal readings was used.
Acc3 referes to acceleration readings along acc. 3 measurement directions (39.4� - 219.4�). After
determining the CCS and considering the location of maximum value of CCS to indicate the lag
between signals, the signals can be aligned and visually inspected for verification.

Figure 2.9: Scaled, bandpass filtered and lag-corrected support structure and RNA Acc3-oriented
acceleration signals overlain.
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Figure 2.10: Zoomed in from Fig. 2.9: scaled, bandpass filtered and lag-corrected support
structure and RNA Acc3-oriented acceleration signals overlain

An example of aligned signals from the results of the aforementioned 1st iteration in the ”July
2017” study period are shown in Figs. 2.9 and 2.10. The lag was found to be approximately
82.25 minutes – the initially introduced 60 min delay plus an additional 22.25 min, which can
be observed in Fig. 2.9.

Affirmation on the usage of the chosen approach for synchronising signals from different DAQ
systems allowed to automate the process and derive the trend lines of the collected lag values
between the two signals. In Fig. 2.11, the identified lag from all of the iterations was plotted with
respect to the respective start time of the RNA acceleration data subset. The outliers (5 out of
575) in Fig. 2.11 did not fit into the frame of the trendline – these corresponded to periods with
low wind speeds or standstill conditions where signal to noise ratio is low. It was revealed that
the lag is linearly increasing within the chosen study period (2-6/7/2017), similarly to ”March
2016” and ”Jan 2017” period results. In Fig. 2.11, the value of the fitted linear line gradient
represents the lag increase rate, for the ”July 2017” period.

Figure 2.11: July period lag identification study results from the filtered and scaled Acc3-oriented
signal pairing.

What is more, it can be observed that there is scatter in the results in Fig. 2.11, as the fitted
linear line lies between identified lag value data points. This scatter is thought to be caused by
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slight variations in the correlated signals and resulting numerical deviation in the CCS. Variations
can be considered to be different noise levels, in-phase or out-of-phase signal starting and ending
points between the two correlated signals. Additional deviations may come from having too long
data segments in each iteration, because the lag is examined to be increasing in time.

The results from the lag estimation routines on the three study periods are summarized in
Table 2.2. Comparison of the the lag increase rates in the table indicates that the lag increase
rate is not constant among the study periods but increases in time. Thus, the change in lag is not
completely linear, like was estimated in Fig. 2.11. In the table, in addition to the lag rates, the
lag value from the mid-point of a study period, from the linearly fitted lines, is provided. These
mid-period lag values were used to check the lag rate values in-between the three study periods
in Table 2.3, and are eventually used as reference points in the lag correction process.

Table 2.2: Results from the application of the cross-correlation based lag identification procedure
on the considered study periods.

Period Lag increase rate [s/day] Mid-period lag value [min]

Mar 2016 s.p. 1.9138 66.270
Jan 2017 s.p. 2.1141 76.165
Jul 2017 s.p. 2.1371 82.314

If theses mid-(study)period lag values in Table 2.2, would be connected by straight lines
over the respective time span, the lag increase rates would differ from the ones in Table 2.2.
The resulting lag increase rates are shown in Table 2.3. In Table 2.3 the three cases that
could be considered are presented. For example, by taking the ”March 2016” period mid-point
(13/3/2016 5:30:00) value of 66.27 minutes and connecting it to ”January 2017” period mid-
point (8/1/2017 1:50:00) value of 76.165 minutes, a lag increase rate of 1.9804 s/day results.

Table 2.3: Lag increase rates in-between studied periods according to the found mid-period lag
values.

Period Lag increase rate [s/day]

Mar 2016 s.p. - Jan 2017 s.p. 1.9804
Mar 2016 s.p. - Jul 2017 s.p. 2.016
Jan 2017 s.p. - Jul 2017 s.p. 2.0736

Before a lag correction could be applied to either of the datasets, it had to be decided, which
one of the readings is considered to be the ’correct’ one. Consideration was given to the fact that
the RNA data time series are used for high-level process supervisory management of wind farms
- it inherently is tested to be accurate. At the same time, SUS DAQ system utilised a clock, which
was installed for a shorter term purpose and was not tested for performance over a longer period
of time. Additionally, it would not be possible to change the 10-min RNA data statistics to take
account of the time-dependent lag. RNA data 10-min statistics forms an integral part of results
that are presented in Ch. 3. Resultantly, SUS data time series was considered to be ’wrong’ and
RNA readings as ’correct’. The chosen ’correct’ dataset is supported by results that are presented
in Fig. 2.19 in Sec. 2.2.3.

Considering the derived time-dependent lag characteristics, it was decided to divide the
whole two years (04/03/2016 – 26/07/2018) of SUS data into three ”correction periods” (see
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Table 2.4). The start and end points of the ”correction periods” were chosen based on the loca-
tions of small data gaps in either of the datasets. In each ”correction period”, the data would be
linearly stretched according to the values in Table 2.4 to best match RNA data. The first step in
stretching involved adjusting every SUS data point,i, time value, Ti as follows

Ti,new � pTi � Cref q � pTi � Tref q � pRcorq (2.2)

, where Ti,new is the new and corrected datetime stamp of a SUS data point; Ti is the original and
’wrong’ datetime stamp of a SUS data point; Tref is one of the mid-(study)period datetime points,
acting as a reference datetime point; Cref is the corresponding mid-(study)period constant lag
value; and Rcor is the chosen lag correction rate.

The chosen parameters and ”correction periods” are provided in Table 2.4. The chosen Tref
datetimes corresponded to the mid-points of the three study periods (”March 2016”, ”January
2017”, ”July 2017”). The corresponding correction values (Cref ) originate from Table 2.2. The
first two correction rates (Rcor) were decided to be approximated from Table 2.3, and the third
was guessed based on the previous values.

Table 2.4: Chosen parameters for lag correction of the support structure data.

Correction period
Reference

datetime, Tref
Correction rate,
Rcor [s/day]

Constant correction
value, Cref [min]

4/3/2016 - 27/11/2016 3/14/2016 5:30 1.98 66.270
22/12/2016 - 15/8/2017 8/1/2017 1:50 2.08 76.165
16/8/2017 - 26/7/2018 4/7/2017 17:50 2.10 82.314

Stretching of the original SUS datetime vector with Eq. 2.2 reduced the sampling rate of
SUS data by a small amount. Thus, SUS data had to be resampled at 50 Hz again to be able
to combine SUS data with RNA data during data analysis. For that purpose, nearest neighbour
interpolation [33] was utilised because it preserved the original magnitudes of all data points,
while allowing to remove the time-dependent lag.

After the application of the correction, the two data sets were checked to be synchronized by
rerunning the synchronization routine. The result is provided in Fig. 2.12 for the ”July 2017”
study period – the linear trend can be considered gone and the fitted linear least square line is
close to the zero-line. The latter proves that the lag is eliminated to an acceptable level (about
5 � 10�3 min). Additional single value adjustments could be made to bring the linear fitted line
closer to the zero, but was deemed unnecessary because of the shortness of the study period in
comparison to the overall data availability duration, and the unknown physical reason(s) for the
discovered time-dependent lag.

The guessed lag increase rate of 2.08 for the period 7/7/2017 - 15/8/2017, and 2.1 s/day
for the period 16/8/2017 - 26/7/2018 (Table 2.4) are likely the biggest sources of error in the
chosen correction approach. The reason being that there is no data to check how the lag would
continue to develop in these periods - the increasing trend may even have stoped. The latest
checkable period was the studied ”July 2017” period (2-6/7/2017). The only available option
for checking if the correction was performed appropriately beyond the ”July 2017” period, is to
compare 10-minute statistical data again. For the purpose, the alignment of RNA and SUS 10-
min acceleration standard deviation values between the period 25/7/2018 14:00 - 26/7/2018
15:10 was looked. In Fig. 2.13, the corresponding progression of RNA FA acceleration 10-min
standard deviation was plotted together with lag-corrected SUS acc. 3 data 10-min standard
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deviation values. From the comparison of the locations of peaks and troughs between the two
lines in Fig. 2.13, it is clear that the 10-min statistics of both data sets has been synchronised
and the lag continued to increase after the ”July 2017” study period with an increasing rate for
some period of time. The latter can be stated because the accumulated increase in lag, with a
rate of 2.1 s/day, over the period 7/7/2017 - 26/7/2018 would be around 13.44 minutes. Thus,
if the lag increase had stopped right after ”July 2017” period, the SUS data statistics peaks and
troughs in Fig. 2.13 would not have aligned with RNA data 10-min statistics. Instead, an offset
of at least 10 minutes - one data point in the plot - would have been visible.

Figure 2.12: July period lag identification study results from the filtered and scaled Acc3-oriented
signal pairing after lag correction.

Figure 2.13: RNA FA acceleration 10-min standard deviation and lag-corrected SUS acc. 3 data
10-min standard deviation development over time.

What is more, with the stretching of SUS data, the signal frequency content was altered by
a negligible amount. For example, in the current work, the highest relevant frequency content
is 5 Hz (in Sec. 3.5.5), which implies an oscillation/wave period of 0.2 seconds. If the data is
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stretched with a correction rate of 2.1 s/day, each of the data points would be moved further
from the previous data point by approximately 486 nanoseconds, in case of 50 Hz sampling rate.
Over a 0.2 second period, the first and last data points would be distanced by approximately 4.86
microseconds. Resultantly, the original 5 Hz frequency content in the signal would be decreased
to a rounded level of 4.9999 Hz. In case of the lowest relevant frequency level of 0.02 Hz, the
reduction is approximately 0.5 µHz with the chosen lag correction approach. The introduced
change in the frequency content of the SUS recordings was deemed acceptable for current work,
and so the synchronisation of RNA and SUS data was completed.

2.2.3 Synchronisation of Soil Data and Support Structure Data

The overlap between the soil and SUS data is approximately 11 days (16/08/2017 16:00 -
27/08/2017 14:20), as was indicated in Table 2.1. The main difficulty in the synchronization of
soil and SUS data laid in finding the soil probes that provided a similar reading to acc. 1 and
strain gauge recordings. Eventually it was discovered that soil sensors VP-19 (-9.4 NAP) and
VP-20 (-10.4 NAP) X-directional (radial) accelerometers were suitable (see Fig. 2.2).

From the SUS data set, acc. 1 (4.5 m NAP) and strain readings from levels 4 (-15.15 m
NAP), 5 (-12.65 m NAP), and 6 (-10.15 m NAP) were used (see Fig. 2.1). In the pairing of soil
acceleration versus SUS strain readings, acceleration was double integrated to displacements –
allowing to cross-correlate directly linked physical behaviors with the same phase angle. Acc. 1
(4.5 m NAP) readings were chosen because it was closer to the soil sensors than acc. 3 (42.505
m NAP). Furthermore, acc. 1 measurement direction - east-west - aligned better with the soil
sensors radial acceleration (Acc-X) measurements than in the case with acc. 2, which measured
along the north-south line. Strain gauge rings 4, 5 and 6 were picked due to their similar depth
to soil probes VP-19 and VP-20, see Figs. 2.1 and 2.2.

Before the identification of lag between SUS and soil data, it was unknown if the lag would
be linearly changing between the two like it was found to be between RNA and SUS data. Be-
cause of that, lag-corrected SUS data (Sec. 2.2.2) was not used in the process of SUS and soil
data synchronisation. Instead, the original SUS data was shifted forward in time only by a single
constant value of 84.01 minutes - no stretching was applied. This value was based on extrap-
olating the known lag value between the RNA and SUS data from the mid-point of the ”July
2017” study period (04/07/2017 17:50:00) to the mid-point of the 11-day period in August
(22/8/2017 03:10:00) with an increase rate of 2.1 s/day. By doing so, the SUS data would still
be approximately synchronised with RNA data. Because SUS data was not stretched in this case,
it would deviate from RNA data less than 13 seconds at the beginning and end of the August
11-day period. The previous holds if the lag increase rate between SUS and RNA data between
the end of ”July 2017” period and the 11-day ”August 2017” period is 2.1 s/day. Thus, if the
lag between SUS and soil data is identified and corrected, all datasets could approximately be
considered synchronised.

Following the syncing methodology that was outlined in Sec. 2.2.1, the standard deviations
of accelerations from SUS and soil data set were studied. A 60-minute delay in the soil data 10-
min statistics with respect to the SUS data 10-min statistics was identified via Fig. 2.14. In the
figure, standard deviation readings from each signal were scaled to a common range [0, 1]. It
was done because soil accelerations had significantly lower values than SUS acceleration values
as expected due to signal energy dissipation in the soil medium. Resultantly, it would not be
possible to arrive at a lag estimate without scaling.
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Figure 2.14: August period 10-minute statistics comparison - standard deviation of SUS Acc1, soil
VP-19 Acc-X, and VP-20 Acc-X accelerations.

The estimate of 60 minute delay between the two data sets was taken into consideration for
the next step of the synchronization procedure. It was decided to take 2-hour continuous data
segments such that the start of the soil data recording would be taken an hour ahead of the SUS
data segment in the common time vector. Because of small data gaps in the soil and SUS data
near the start and end of the 11-day “August 2017” study period, the number of cross-correlation
iterations was limited to 1000. The step size in time – as previously in Sec. 2.2.2 – was set to
10 minutes. An example of data segment lengths in each iteration is illustrated below for the
”August 2017” period:

1st iteration:

– Soil (Acc-X or disp.-X) data segment: 17/08/2017 9:00:00 - 11:00:00
– SUS (Acc1 or strain) data segment: 17/08/2017 10:00:00 - 12:00:00

2nd iteration:
– Soil (Acc-X or disp.-X) data segment: 17/08/2017 9:10:00 - 11:10:00
– SUS (Acc1 or strain) data segment: 17/08/2017 10:10:00 - 12:10:00

...
1000th iteration:

– Soil (Acc-X or disp.-X) data segment: 24/08/2017 7:30:00 - 9:30:00
– SUS (Acc1 or strain) data segment: 24/08/2017 8:30:00 - 10:30:00

The S-transforms of signals were found to identify usable common high-energy frequency
bands. Figs. 2.15a, 2.15b, and 2.15c revealed that the soil acceleration, SUS acc. 1 and gauge
5C strain readings have a common band at around 2 Hz. Figs. 2.15a and 2.15c additionally show
content in the 4 – 5 Hz range. The band around 2 Hz would correspond to 2nd SUS bending
modes, which were also discussed in 2.2.2. Correspondingly, the 2 Hz band in S-transforms of
the soil acceleration readings (Fig. 2.15c) would come from the excitation of the SUS response to
the soil. The 4 - 5 Hz range could be caused by the interplay of three effects: (1) it is a multiple
of the 2 Hz band; (2) high (3rd and 4th) SUS bending modes are excited, and (3) in one of the
DISSTINCT related studies [47] it was proposed that the 2nd soil mode is located at 5.42 Hz.
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(a) Acc. 1 recording

(b) Strain gauge 5C recording

(c) VP-19 Acc-X recording

Figure 2.15: 10-minute snippets of SUS and soil recordings, with the S-transform of the
corresponding signal, from the ”August 2017” study period.
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Marginal signs of 1st SUS bending mode frequency content at around 0.3 Hz in the signals in
Figs. 2.15a, 2.15b, and 2.15c can be explained by visualising the mode shapes together with the
positioning of sensors. In comparison to 1st SUS bending mode, the amplitude of the 2nd and 3rd

modes is considerably higher at levels of the three sensors - acc1, strain gauge 5C, and VP-19.
It must not be forgotten though, energy (e.g. wind, wave, 1P loading) which would excite the
modes has to be first inserted into the structural system for any mode shape to form in reality.
The closer the frequency of the input energy is to the OWT SUS mode frequencies, the stronger
its presence in the measured response signals (Figs. 2.15a, 2.15b, and 2.15c).

Figure 2.16: OWT lowest frequency design position model 1st, 2nd and 3rd mode shapes.

Because a common higher energy frequency band around 2 Hz was identified in all readings
(Figs. 2.15a, 2.15b, and 2.15c), the data was zero-phase bandpass filtered with the following
Chebyshev Type II filter [34]: (1) passband edges: 1.2 Hz, 2.3 Hz; (2) stopband edges: 1.0 Hz,
2.5 Hz; (3) passband ripple: 0.1 dB; (4) stopband attenuation: 100 dB. The filtering was applied
to improve the accuracy and performance of lag identification.

The next step in the process was scaling each of the signals to a common scale [1,-1]. Then,
discrete-time sequence pairings could be set up to calculate the CCS for identifying the existing
lag between the pairings. A total of 20 data pairings were employed for the lag identification,
and 16 of them provided consistent results. These 20 pairings included: SUS acc. 1 versus VP-
19 & VP-20 Acc-X; and SUS strains from gauges A, B, C at levels 4, 5, 6 versus VP-19 & VP-20
X-directional displacement readings. A complete overview of pairings can be found in Table 2.5.

After determining the CCSs, the signals (in each pairing) could be aligned according to the
identified lag value and visually inspected for verification. An example of aligned signals (Acc1
and VP-19 Acc-X) from the results of the 112th iteration in the ”August 2017” study period are
shown in Figs. 2.17 and 2.18. Unlike in Figs. 2.9 and 2.10 in Sec. 2.2.2, the two aligned
recordings in Figs. 2.17 and 2.18 show less alikeness. The amplitudes of the scaled signals -
at approximately same points in time - vary and recordings can be seen to be out-of-phase at
points. The alignment of trends of amplitude increase and decrease in the scaled acceleration
signals can be observed - see readings between minutes 42.3 and 42.52 in Fig. 2.18. However,
the changes in trends are not aligning consistently. It is clear that the stiff soil medium has
distorted the monopile foundation response signal. Thus, the correctness of identified lag could
not be visually confirmed. However, the lag was found to be approximately 59.51 minutes in
that iteration – corresponding well with the expected lag of 60 minutes, which was based on the
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observation of 10-min statistics (see Fig. 2.14). Hence, the devised method of synchronization
(in Sec. 2.2.1) was still considered acceptable for the synchronization of SUS and soil data.

Figure 2.17: Normalised, bandpass filtered and lag-corrected Acc1 and VP-19 Acc-X acceleration
signals overlain.

Figure 2.18: Zoomed in from Fig. 2.17: scaled, bandpass filtered and lag-corrected Acc1 and
VP-19 Acc-X acceleration signals overlain

Completion of 1000 iterations with the chosen 20 data pairings, allowed to derive the trend
lines of the collected lag values between each pairing. In Fig. 2.11, the identified lag values
from all iterations, between the pairing of VP-19 X-directional displacement and SUS gauge 5C
readings, were plotted with respect to the respective start time of the SUS data segment in each
iteration. It can be observed that there is a time-dependent lag between SUS and soil data,
which has a change rate of -2.0974 s/day, according to the gradient of the linearly fitted line.
Furthermore, the duration of a time unit (e.g. a second) according to SUS DAQ system clock was
shorter than in the clock of the soil DAQ system - like between RNA and SUS data in Sec. 2.2.2.
It can be stated because soil data was found to be lagging 59.51 minutes behind SUS data and
the trend line in Fig. 2.19 is decreasing. Similar trend was found with other pairings also.

It is visible in Fig. 2.19 that several lag value data points are missing between 21-22 Aug
2017. These datapoints are missing, because the lag estimates were too far off to fit in the same



2.2. SYNCHRONISATION OF DATASETS 29

frame with the general trend. The outliers corresponded to periods with low wind speeds or
standstill conditions, where signal to noise ratio is low because of low level of excitation. In Fig.
2.20, 10-min average wind speed and rotor speed have been plotted to support the statement.
In the process of determining the linear trend lines and respective line gradients that show lag
change rates (like in Fig. 2.19), the outliers were neglected.

Figure 2.19: August period lag identification study results from the filtered and scaled VP19
X-directional displacement and SUS gauge 5C signal pairing.

Figure 2.20: 10-minute average wind speed and rotor speed development over the ”August 2017”
lag identification study period.

In case of all studied pairings, not all lag values from 1000 iterations matched the found
linear relation. Hence, the number of matches could be associated with a level of confidence in
the resulting two important parameters for the lag correction - mid-period lag value and rate of
change of lag. These parameters, together with the number of matches, are provided in Table
2.5 for all 20 pairings. As a reminder, “August 2017” mid-period lag value is considered to be the
lag value from the linear fitted line at 22/8/2017 03:10:00.

From the complete overview of lag identification results in Table 2.5, the parameters for the
lag correction were determined. To be noted, the pairings (16 out of 20), which had more than
725 matches out of 1000 iterations, provided very similar results. Thus, the results from these
16 pairings were trusted more and were used for calculating the average rate of change (Rcor)
and mid-period lag value (Cref ). Resultantly, mid-period lag between SUS and soil data was
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found to be 59.373 minutes and the average rate of change in lag as -2.1 s/day. Having these
two parameters in place, synchronisation corrections could be made.

Table 2.5: SUS and soil data lag identification results from 20 pairings.

CCS Pairing
Lag change rate,
Rcor [s/day]

No. of matches
(out of 1000)

Mid-period value,
Cref [min]

VP19 Acc-X and Acc1 -2.10 804 59.374
VP20 Acc-X and Acc1 -1.68 702 59.408

Disp. VP19-X and Str. 4A -2.10 890 59.373
Disp. VP20-X and Str. 4A -2.11 876 59.373
Disp. VP19-X and Str. 4B -2.03 725 59.375
Disp. VP20-X and Str. 4B -2.10 896 59.373
Disp. VP19-X and Str. 4C -2.10 893 59.373
Disp. VP20-X and Str. 4C -2.11 874 59.372
Disp. VP19-X and Str. 5A -2.10 867 59.373
Disp. VP20-X and Str. 5A -2.11 860 59.372
Disp. VP19-X and Str. 5B -2.03 715 59.375
Disp. VP20-X and Str. 5B -2.10 899 59.373
Disp. VP19-X and Str. 5C -2.10 864 59.373
Disp. VP20-X and Str. 5C -2.10 879 59.373
Disp. VP19-X and Str. 6A -2.10 892 59.373
Disp. VP20-X and Str. 6A -2.11 884 59.372
Disp. VP19-X and Str. 6B -2.03 711 59.375
Disp. VP20-X and Str. 6B -2.09 890 59.373
Disp. VP19-X and Str. 6C -2.10 884 59.373
Disp. VP20-X and Str. 6C -2.11 871 59.373

For performing the corrections between SUS and soil data, several aspects have to be consid-
ered. Firstly, SUS data was found to be ahead of soil data by 59.373 minutes in time at mid-point
of “August 2017” period. Moreover, SUS data was approximately synchronized with RNA data
prior to the lag identification between SUS and soil data – only the stretching was not applied to
SUS data within the “August 2017” period. Now, if soil data is corrected to align with SUS data,
and SUS data is stretched, all data sets could be considered closely synchronized. What is more,
similarly to the results in this section, in Sec. 2.2.2 it was found that SUS DAQ system clock had
a shorter definition of a time unit. Due to the latter, the lag was identified to be time-dependent –
this has been captured by the rate of change factor (Rcor). In this section, Rcor was identified as
-2.1 s/day between SUS and soil data. In Sec. 2.2.2, Rcor was estimated to be 2.1 s/day between
SUS and RNA data over the “August 2017” period (see Table 2.4). The sign difference is caused
by the fact that in this section SUS data was ahead of soil data, and in Sec. 2.2.2 SUS data was
identified to be lagging behind RNA data. Consequently, lag time-dependency between SUS data
and other two source in the “August 2017” period can be removed by stretching SUS data with
and absolute Rcor factor of 2.1 s/day.

Thus, for achieving synchronisation soil data time stamps can be adjusted by adding a value
of 59.373 minutes. With regards to the SUS data, no further corrections were done as part of
the soil and SUS data synchronisation. Instead, the already corrected (stretched) SUS data from
Sec. 2.2.2 could be used. Because the absolute rate of change of lag factor of 2.1 s/day was
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approximated to be exactly the same between SUS and soil data, and SUS and RNA data over
the “August 2017” period.

To demonstrate the validity of aforementioned statements and a successful application of the
correction, Fig. 2.21 has been presented. If outliers are ignored, then the newly found lag values
are less than 1.5 seconds. What is more, the rate of change of lag has been visibly reduced to a
negligible level from 2.1 s/day in Fig 2.19.

Figure 2.21: August period lag identification study results from the filtered and scaled VP19
X-directional displacement and SUS gauge 5C signal pairing after the application of lag correction.

2.2.4 Synchronisation of RNA Data and Soil Data

The only way to identify the lag between RNA and soil data during the ”August 2017” period
(16/08/2017 16:00 -27/08/2017 14:20) is to check the 10-minute statistical readings as per
the timeline in Table tab:timeline. In Fig. 2.22 the soil sensors VP-19 and VP-20 X-directional
and RNA FA acceleration 10-minute standard deviation values have been plotted against their
original time vectors. In the figure, the standard deviation readings from each source signal have
been scaled to [0, 1] range.

Comparison of peaks and troughs in RNA and soil data statistics allows to detect that the
lag between soil and RNA data is approximately 60 minutes. This value can differ by five min-
utes, because 10-min statistics was used. The exact value cannot be found because there is no
continuous time series of RNA data during the ”August 2017” period. However, the value of
60 minutes suggests that the soil DAQ system clock had a time-zone setting corresponding to
GMT+0, whereas RNA DAQ system clock is known to correspond to GMT+1.

With this consideration, some additional adjustments were required to be made to corrected
SUS and soil data sets from Secs. 2.2.2 and 2.2.3. In Sec. 2.2.3, it was determined that the
soil data lagged behind SUS data by 59.373 minutes at mid-point of ”August 2017” period. At
the same time, SUS data was made to be in sync at that mid-point with RNA data, based on
the estimated lag correction parameters in Table 2.4 in Sec. 2.2.2. Consequently, soil data
timestamps had to be increased by 60 - 59.373 = 0.627 minutes. Similar adjustment would
need to be applied to SUS data timestamps in the ”correction period” 16/8/2017 - 26/7/2018,
in Table 2.4. Alternatively, the stretching correction of SUS data with Eq. 2.2 - over the same
”correction period” - should have been done with Cref � 82.314� 0.627 � 82.941 minutes.
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Figure 2.22: August period 10-minute statistics comparison - standard deviation of RNA FA
acceleration, and soil sensors VP-19 and VP-20 X-directional accelerations

2.3 Summary & Discussion

This chapter presented an overview of the data sources and the required preprocessing of the
datasets. The results of lag identification and synchronization between the three data sources,
revealed that the definition of a time unit was shorter in the SUS DAQ system, than in the soil
and RNA DAQ system clocks. The underlying reasons were not able to recover, as the SUS DAQ
system has now been discarded.

The shorter definition of a time unit resulted in a time-dependent lag between SUS data
and the other sources. What is more, in Sec. 2.2.2 it was revealed that the time-dependency
of lag was changing in time - different lag increase rates were identified in each study period
(Table 2.2). At the same time, lag increase could be approximated to be linear over the SUS and
RNA data lag identification study periods. Hence it was decided to divide the whole two years
(04/03/2016 – 26/07/2018) of SUS data into three ”correction periods” (see Table 2.4), where
lag change was approximated to be linear with defined parameters (Tref , Rcor, Cref ). With the
defined parameters, SUS data was was stretched, with Eq. 2.2. The resulting errors with this
approach were deemed acceptable.

In Sec. 2.2.3, the absolute lag change rate between SUS and soil data in the ”August 2017”
period was approximated to be 2.1 s/day. The same rate was guessed to exist between SUS and
RNA data in Sec. 2.2.2 during the same period - allowing to assume that the RNA and soil DAQ
system clocks had the same definition of a time unit.

Thus, the only source of lag between RNA and soil data was assumed to be the difference in
time-zone settings in corresponding DAQ system clocks. This assumption was supported by two
results. Firstly, in Sec. 2.2.4, soil and RNA data statistics comparison showed that soil data is
lagging behind RNA data by 60 minutes. Secondly, in Sec. 2.2.3, the lag identification results
suggested that the lag between RNA and soil data is close to 60 minutes.

With considerations to all performed lag identification results, appropriate adjustments were
performed on soil and SUS data to make these synced with RNA data. To demonstrate successful
synchronisation of all data sources, acceleration data 10-min standard deviation values from all
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sources over part of the ”August 2017” period are presented in Fig. 2.23. Again, min-max scaling
(Eq. 2.1) was applied on standard deviation readings in Fig. 2.23.

Figure 2.23: August 2017 period 10-minute statistics comparison - standard deviation of RNA FA
acceleration, SUS Acc1, and soil sensor VP-19 Acc-X readings
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Chapter 3

Data Analysis

Completion of synchronization of data sets now allows to explore the data to the fullest. First a
look is provided into the performance curves, derived from RNA data, to look into the wind turbine
behaviour. Next, the resonance frequency of the wind turbine throughout the measurement campaign
is studied, followed by the analysis of inclinometer and strain data. Strain data is transformed to
moments, which are used for fatigue analysis.

3.1 Performance Curves & Operational States

The performance or state curves of a wind turbine are considered to be, among many others,
the relationships between: (a) rotor speed - wind speed; (b) power – wind speed; (c) pitch
angle - wind speed; (d) power - rotor speed. These are respectively shown in Fig. 3.1 for the
herein studied W27 OWT. Performance curves are necessary to monitor the operating conditions
of wind turbines, allowing to observe deviations from warranted performance curves and plan
maintenance. Herein the performance curves are plotted in order 1) to understand the behaviour
of the main OWT control parameters in practice, 2) identify and classify usable data for analysis
in this chapter and 3) justify that no evident faults are present in the operation of the turbine.
The curves in Fig. 3.1 are made out of RNA 10-min statistical data collected over a four-year
period (Table 2.1).

Table 3.1: OWT design parameters: Vrated, Vin, Vout, Prated

Parameter Design/Model Value

Rated wind speed, Vrated 12 m/s
Cut-in wind speed, Vin 4 m/s

Cut-out wind speed, Vout 25 m/s
Rated power, Prated 3 MW

The power-wind speed curve in Fig. 3.1b confirms that power at rated wind speed (Prated) is
3 MW and rated wind speed (Vrated) is around 12 m/s - point where the maximum power gener-
ation is achieved. Additionally, cut-in wind speed (Vin) can be seen to lie close to 4 m/s, a point
where the power curve starts to increase similarly to a sigmoid function, in case of operational
conditions. A horizontal line at about zero generator output can be seen – representing idling
or parked states. The data points that lie between these two curves/lines are transitional points,

35
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(a) Rotor speed - Wind speed (b) Generator power - Wind speed

(c) Blade pitch position - Wind speed (d) Generator power - Rotor speed

Figure 3.1: Performance curves based on RNA 10-minute statistical data.

the turbine is changing states. What is more, cut-out wind speed (Vout) is approximately 25 m/s
as the power generation drops away. The identified Prated, Vrated, Vin and Vout match the chosen
model parameters that were used in the design phase of W27 – these are presented in Table 3.1.

In Fig. 3.1a, the wind speed–rotor speed indicates that from around Vin at 4 m/s there is an
almost linear growth – called the run-up state – up until rated rotor speed (nrated) at 15.5 rpm.
The almost linear line reaches nrated at a wind speed of around 8 m/s and then remains steady
until Vout at 25 m/s. The definition of the run-up phase that will be also used in Sec. 3.5.2 is
provided in Table 3.2 and indicated in yellow in Fig. 3.1a. Other operational states that are in
interest for the designers and for the study in Sec. 3.5.2 are rated and idling states. These have
been defined also in Table 3.2. To note, in Table 3.2, subscript m refers to the 10-minute average
value, and subscript min to the 10-minute minimum value. The remainder of data points in Fig.
3.1a are as expected and no abnormalities can be detected visually.

The wind speed– blade pitch angle curve is depicted in Fig. 3.1c. The feathering position for
OWT idling and above cut-off wind speed states appears to be around 80�. Feathered position
refers to a situation when blades are pitched close to parallel with wind direction to reduce
unwanted rotational torque. Examining the region below Vin and pitch positions at less than
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80�, a stand-by state can be distinguished, at which the pitch position is lowered from the fully
feathering position to boost rotor speed for start-up at sufficient wind speeds. Reversely, the
pitch angle is increased to slow down the rotor for shut-down [44, 26, 6]. A vertical route
from 80� to 28� is evident and then there is a scattered region between 28� and �2.9�. Both
regions correspond to the aforementioned functions of boosting and slowing down the rotor
speed. Moreover, between Vin and Vrated, the pitch angle is predominantly at around 0� for
maximum output and above Vrated the blades are continuously adjusted to maintain rated output.
The latter implies a curvy trend.

In comparison with the theoretical state curves presented in [44], the RNA data appears valid
based on figures in Fig. 3.1.

Table 3.2: Definitions of W27 OWT states

OWT
State

Limiting Parameters

Idling
0.08 rpm   nm   1.93 rpm;
3.5 m/s   Vm   35 m/s

Run-Up

350 kW   Pm   2100 kW;
8 rpm   nm   15 rpm;
Vm   11 m/s

Rated
Pm ¡ 2900 & Pmin ¡ 2700;
nmin ¡ 14.5 rpm

3.2 Wind Speed, Damping & Resonance Frequency Dependencies

In this section, only RNA 10-minute statistical data from the evaluated period of four years
will be used (Table 2.1). According to the different design models, which were developed with
SGRE’s in-house aeroelastic code – BHawC -, a range of eigenfrequencies were determined. Two
distinct farm-wide design positions were reported in the design report: low frequency design
position, and high frequency design position. Lowest frequency design position corresponded to
the deepest water position of the nearshore wind farm and with soft soil conditions. The highest
frequency position was found for conditions with shallowest water position with clamped soil
conditions 1m below the seabed level.

The lowest frequency from the respective design position was determined to be 0.275 Hz and
the highest frequency from the respective design position was found at 0.32 Hz. Both values
correspond to their respective 1st FA SUS bending mode. The estimated design value for W27
turbine was reported as 0.279 Hz. To provide a comparison with the values in the data, the
10-min average resonance frequency dependency on wind speed is presented in Fig. 3.2.

Knowing that the RNA resonance frequency 10-min averages may be subject to some discrep-
ancies due to the curve-fitting based method in the energy producing state, it was decided to
additionally look at the data from the perspective of standstill conditions. The latter is known
to provide more accurate estimates. In this case, the idling condition was defined as having a
10-min maximum power output lower or equal to 0 kW, and the 10-minute average rotor speed
less than 3 rpm. Production condition was defined to have a 10-min average rotor speed above
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5 rpm and the 10-minimum rotor speed as 4.5 rpm. In Fig. 3.1d, rotor speed of around 5 rpm
corresponds to the point where turbine starts to generate power.

(a) Production state (b) Idling state

Figure 3.2: 10-min average resonance frequency versus wind speed at the defined OWT
operational states

Figures 3.2a and 3.2b indicate that with the increase in wind speed the resonance frequency
is also increasing. Hence, there is some stiffening effect in the system, despite the presence of
higher damping at higher wind speeds due to feathering of the blades. Additionally, it can be
observed that the frequency varies between 0.295 and 0.304 Hz. These values lie between the
low and high design point estimates from modelling. The discrepancy between the W27 estimate
of 0.279 Hz, which is close to the low frequency design point value, and values in data indicate
that the turbine is located in stiffer than estimated conditions. This would mean, the soil is not
as soft as in the low design point case and/or W27 is not located in the deepest water position
of the farm.

(a) (b)

Figure 3.3: (a) 10-min average SS logaritmic decerment estimate versus wind speed at the defined
production conditions; (b) the average decrement values per wind speed range, data points are

located at the centre of the respective wind speed bin.
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To provide evidence of higher damping due to the increase in wind speed, the SS logarithmic
decrement (δSS) estimates in production state are plotted against wind speed, in Fig. 3.3. Side-
side estimates were chosen because their estimates are known to be more reliable. For idling
state δSS estimates have not been shown because there were too few data points to cover the
whole considered wind speed range. The logarithmic decrement estimates exist for only half
of the evaluated period of four years. The increase in δSS is associated with the increase in
aerodynamic damping, which is related to the pitch position of the turbine blades. A noticeable
increase in δSS occurs between wind speeds 10 - 20 m/s - a range that in majority falls into rated
OWT operational state. In Fig. 3.1c, the pitch of turbine blades increases from 10 m/s onwards
near rated and at rated state. Thus, increased pitch of blades translates to higher aerodynamic
damping and observed increasing trend in Fig. 3.3b.

In Fig. 3.4, the average resonance frequency values per wind speed are shown. Due to lack
of data points in the defined idling state (Fig. 3.4b) the curve is not as smooth as in production
state (Fig. 3.4a. However, the increasing trend is apparent in both figures.

(a) Production state (b) Idling state

Figure 3.4: Average resonance frequency per wind speed range at the defined conditions, data
points located at the centre of wind speed bin values. Based on values presented in Fig. 3.2

The average trend line corresponding to production state shows that the resonance frequency
remains level at below rated wind speed (12 m/s) conditions. At around rated wind speed
conditions, the resonance frequency starts to increase until wind speeds above 20 m/s.

In case of the trend line corresponding to idling state (Fig. 3.4b), a slight drop occurs between
5 to 7.5 m/s wind speed conditions. That is followed by a constant resonance frequency level
up until a wind speed level of 15 m/s. With a slight drop at 17.5 m/s, the resonance frequency
increases. It has to be noted from Fig. 3.2b, that the averaged values between wind speeds 12.5
to 20 m/s in Fig. 3.4b have been derived from little amount of data points. Thus, the results can
appear biased.

In Fig. 3.4a, the difference between the highest and lowest average resonance frequency
values is approximately 0.0018 Hz and in Fig. 3.4b it is 0.0025 Hz. Both differences are less
than 1% of data values in Fig. 3.2a, thus the change is small. Additionally, in case of the idling
state (Fig. 3.4b) the low average resonance frequency value at 17.5 m/s is heavily affected by
data bias in the form being calculated from lack of data points (Fig. 3.2b). To add, the level of
error in resonance frequency values was �0.0002 Hz, excluding noise-induced errors that have
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an unknown influence on the accuracy. What is more, it was checked that according to the low
frequency design model the change can be around 2%, so higher than the observed percentage
change in measured data. Less than 1% change in resonance frequency can also fall into the
region of statistical scatter caused by variable environmental conditions. For example, in case
of Vestas V112-3.0 OWTs in the Eneco Luchterduinen wind farm, it has been found that a water
level variation of 1.5 m (or more) can cause a 2% change in resonance frequency [36]. In the
IJsselmeer, where W27 is located, the water level can vary by more than a meter, depending on
wind speed, wind direction and time of the year [40]. In conclusion, based on the raised sources
of uncertainty and scatter, the observed change in resonance frequency is considered small.

Although the changes in average resonance frequency values is small, Sthe cause of the in-
creasing trend in Fig. 3.4a remains a question. Due to the fact that the resonance frequency
starts to increase near Vrated, suggests that the trend is associated with increased level of damp-
ing and the way the resonance frequencies are estimated by RNA DAQ system. Firstly, in Fig.
3.1c, it was shown that above Vrated, the pitch of the blades starts to increase, and consequently
there is an increase in aerodynamic damping, which is the main source of damping in. The latter
is demonstrated in Fig. 3.3, where the trend line is similar to the resonance frequency increase
in Fig. 3.4b.

Regarding the method of resonance frequency estimation, the frequency values are found via
a curve-fitting method. The method entails fitting the frequency response function of a simplified
computational model of the wind turbine with the one derived from measured acceleration data.
In the computational model, damping of the OWT is included via Rayleigh’s formulation, which
has a stiffness proportional term (ψK) [43]. The Rayleigh equation is the following:

C � τM � ψK (3.1)

where C represents the damping matrix; M is the mass matrix; K is the stiffness matrix; τ and
ψ are constants of proportionality.

Based on Eq. 3.1, if damping increases and involved mass remains the same, stiffness has
to increase, and vice versa. Stiffness is proportional to the resonance frequency and thus the
trends in Figs. 3.4b and 3.3 show similar dependency with wind speed. Given the similarity in
trends, the mass proportional term (τM) in the computational model formulation either has less
influence in comparison to the stiffness proportional term or it is not included.

3.3 Wind Turbine Tilt Analysis

The measured inclination of the W27 turbine after the installation was 0.14� in an unknown
direction. For reference, according to the imposed design requirements, the maximum allowed
permanent pile tilt at the interface is 0.25� after installation and 0.5� by the end of the lifetime.

The unidirectional inclinometer, that is part of the SUS DAQ setup, was located inside the pile
at 4.5 m above NAP (Fig. 3.5a). The device was positioned at 39.4� from the North and measured
tilt along the 39.4�–219.4� line. Hence, to identify maximum tilt values, which correspond to FA
motion, only the following environmental and operational conditions were considered:

• wind direction and RNA orientation at 39.4� � 20�;

• wind direction and RNA orientation at 219.4� � 20�.

The �20� deviation was chosen to have sufficient data points, while retaining the directional
requirement. Once the time instances meeting the directional requirements have been identified
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from the RNA data, the associated 10-min statistics of the inclinometer readings are calculated.
The 10-min averages of the inclination are subsequently plotted against the corresponding 10-
min mean wind speed (from RNA data), as presented in Fig. 3.5b.

In the figure, a distinction has been made between the winds coming from directions 39.4�

and 219.4� with allowed deviations, and several observations can be made:

• Inclination in data points is negative, the pile appears to be tilted towards the 39.4� side,
as illustrated in Fig. 3.5a. However, because there are no records of the inclinometer being
calibrated after the installation of the SUS DAQ system, it cannot be confirmed.

• Two thrust curve shapes have formed with an absolute maxima located at Vrated; reproduc-
ing the figure found in literature [33].

• The points between -0.25� and -0.30�, in the wind speed range 5 to 30 m/s do not follow
the thrust curve trends but remain level.

• Data points seem to have excessive scatter, for example the ‘FA – wind 219.4�’ data points
appear to form several thrust curves. Similarly, the points between -0.25� and -0.30� form
multiple horizontal trend lines. This points to the possibility of permanent deformations in
the soil or pile, or drifting of inclinometer output. Drifting refers to a change in the sensors
zero point with time and it is known to occur in inclinometers deployed for long-term
monitoring [29].

(a) (b)

Figure 3.5: (a) Sketch of the tilting of the OWT along the 39.4� � 219.4� line according to data
statistics, and a visualization of the sign convention of the inclinometer and the considered wind

directions; (b) 10-min average inclination versus 10-min mean wind speed, only values
corresponding to the wind directions 39.4� � 20� and 219.4� � 20� are included

The presence of thrust curves in Fig. 3.5b relates to the applied loading on the OWT at
corresponding wind speed conditions. It is presented in Sec. 3.4.4 that the loading also follows
the thrust curve shape. In the case of the currently studied OWT, which is located in a lake,
the main source of loading is wind. Wind loading can be idealised to act as a point load at the
RNA level (95 m above NAP). Higher loading magnitude at the RNA level translates to larger
deformation and tilt magnitudes at the location of the inclinometer (4.5 m above NAP).
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The points between -0.25� and -0.30� correspond to time periods when the turbine was in
parked or idling state, where turbine blades are feathered and thrust load is minimized. The
remaining significant sources for the presence of inclination are then the existing permanent tilt
and the tilt originating from the eccentricity of the centre of mass of the RNA with respect to the
centre of the tower. The centre of mass of W27 RNA is in the direction where the rotor blades
are directed. If the RNA is directed towards 219.4�, then the centre of mass is on the 219.4�

side. These two sources are of static nature and thus the parked or idling state data points form
horizontal trends in Fig. 3.5b.

In order to identify if permanent deformation or drifting has occurred, 10-min average tilt
values in conditions where the system can be considered static should be observed. Thus the
following additional constraints were required to be applied on the already filtered data: 10-
min maximum rotor speed  2 rpm and 10-min average wind speed  2 m/s. Because the wind
turbine has been highly operational, there were not enough data points that would fulfill those
conditions in case of wind direction and yaw position being 39.4�. Hence, only the filtered input
for the 219.4� directional case could be plotted against time (Fig. 3.6a).

(a) (b)

Figure 3.6: (a) Change in tilt of the OWT over time at conditions where 10-min nmax   2rpm and
the 10-min Vm   2m{s and wind direction is 219.4� 20�, according to 10-min statistical values;

(b) change in gauge 8A 10-min average strain values over the same time instants.

Figure 3.6a shows that the OWT inclination has changed in a time span of 2 years approxi-
mately 0.04�. Largest change occurred at the very beginning of the shown measurement period,
and since then the rate of change has decreased – indicating that the system has stabilized. On
the other hand, the soundness of the readings can be debated as the inclinometer might have
started drifting at some point in time. The reasoning behind the latter claim originates from
the fact that the respective 10-min average strain readings from gauge 8A do not show a similar
trend in Fig. 3.6b.

Gauge 8A is located 2.5 m above the inclinometer (Fig. 2.1), and thus there should be an
increase in strain readings similarly to tilt. As the blades, and centre of mass, are considered to
be on the 219.4� side, the strain gauge at location A is in tension (positive values in Fig. 3.6b). If
the OWT would be tilting toward the 219.4� side as Fig. 3.6a suggests, then the tension should
be increasing. However, this trend cannot be identified. For example, a significant change in
tilt occurs before July 2016 in Fig. 3.6a, but it is not observable in Fig. 3.6b. Moreover, the
difference between the first and last data points in Fig. 3.6b is close to none.
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To investigate what is occurring in the data clusters that appear as vertical lines in Figs. 3.6a
and 3.6b, the extended period of OWT standstill in July 24th is brought to spotlight in Figs. 3.7a
and 3.7b. Inclinometer readings suggest that at first the pile is tilting towards the 219.4� side,
but then starts shifting back after 12:00, as if the soil started to recover. Alternatively, influence
could have come from momentary changes in wind speed and wind direction. After all, 10-min
statistical data is used and short-term changes are not entirely captured. These can cause such
discrepancies. However, the strain readings, at the same point in time, suggest that tension in
the gauge is decreasing, so the tilt should be increasing towards the 39.4� side from the start,
whereas the centre of mass is located on the opposite side. Hence, contradicting readings from
both sensors in multiple ways.

(a) (b)

Figure 3.7: (a) Tilt and (b) strain development at the data cluster on 24/07/2016.

It must be highlighted that the deviation presented in Fig. 3.7a can fall into the reported
level of error (1-2% of the reported values) in the readings. Moreover, the true sensitivity and
accuracy of SUS sensors is unknown due to the absence of information on performed calibration
after the installation of the SUS DAQ system.

In conclusion, the observed 0.04� change in tilt over a time span of two years may be due to
permanent deformation or drifting, but it is small. The allowed tilt by the end of the design life of
the turbine is 0.5�. If the observed change is added to the measured (after OWT installation) tilt
of 0.14� in an unknown direction, the sum would be insignificant in comparison to the allowed
value.

In order to identify if possible permanent deformation has occurred and caused a change in
the resonance frequency of the system, the corresponding 10-min average resonance frequency
values are displayed in Fig. 3.8. The start and end value have a difference of 0.0004 Hz, but no
effect can be concluded because the change falls into the region of error in resonance frequency
values. The level of error is known to be �0.0002 Hz, excluding noise-induced error.

Additionally, wind direction values are shown in Fig. 3.8, proving that the correct time
periods were observed. Also, the 10-min average wind direction values in the spotlighted period
(Fig. 3.8b) remain relatively constant, not providing a reasoning for change of tilting direction
in Fig. 3.7a. But, 10-minute minimum and maximum wind direction readings in the spotlighted
period in Fig. 3.9 do support the presence of contradicting trends in Figs. 3.7a and 3.7b,.as was
speculated. The minimum and maximum values significantly deviate from the 10-min average
values. The duration of deviation is unknown, but an influence from these momentary deviations
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is clear.

(a) (b)

Figure 3.8: (a) 10-min average wind direction and resonance frequency development over the
same time instants as in Fig. 3.6a; (b) values at the data cluster on 24/07/2016.

Figure 3.9: 10-min average, minimum and maximum wind direction development at the data
cluster on 24/07/2016.

3.4 Moment Lines

In this section, maximum bending moments endured by the support structure over a period
of 2.5 years (Fig. 2.1) are determined with the use of strain recordings and laws of mechanics,
together with the information about the nacelle positioning, wind direction and rotor speed from
RNA statistics. Nacelle orientation data will be used for transforming moments from their fixed
coordinate system to follow the FA and SS reference system. Wind direction and rotor speed are
mainly used for data filtering.

3.4.1 Calculation of Moments from Strain & Sign Convention

Before data analytics, the adopted sign convention and required formulas for deriving moments,
MBD and MAC , from strain data are introduced, in junction with the information provided in
Fig. 3.10.
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Figure 3.10: (a) Sketch on the adopted sign convention for bending moments; (b) positioning of
the strain gauges; and (c) the local coordinate system for deriving FA and SS moments, drawn on

the top view of the RNA.

The positive moment, as per Fig. 3.10, is considered when gauge A or gauge D provide
positive readings – meaning that this side is in tension. Subsequently, negative strain readings
would imply that there is compression on the side where the strain gauge is located. The strain-
derived moments can be calculated as follows:

MBD �
EIxxpεA � εCq

2 � yu
; MAC �

EIyypεD � εBq

2 � xu
(3.2)

, where E is the modulus of elasticity; Ixx � Iyy are the second moments of area about the x
or y axis line; xu � yu are distances to the strain gauge from the centre of the pile; and ε is the
strain reading. Essentially, the average of the opposing strain gauge readings is multiplied with
a factor to arrive at a moment value. This factor includes information about the geometry and
the material properties of a cross-section. Material properties are the same at each strain gauge
ring level, but the geometry – diameter and wall thickness – varies along the length of the SUS.
To add, the second moment of area for a hollow circular cross-section is found as follows:

Ixx � Iyy �
πpr4outer–r

4
innerq

4
(3.3)

, where router is the outer radius of a cross-section; and rinner is the inner radius of a cross-
section, found by subtracting the wall thickness of a cross-section from router.

Bending moments, MBD and MAC can be transformed to bending moments in the FA and SS
directions. To achieve that, x and y axes that were defined for the derivation of MBD and MAC

in Fig. 3.10a have to align with X and Y axes that follow the movements of the yaw according
to the drawn arrows in Fig. 3.10c. The z-axis is the same in both coordinate systems. According
to the adopted directional conventions (Fig. 3.10), MFA and MSS are calculated with the use of
trigonometry and information about the yaw orientation, αyaw, accordingly:

MFA �MAC cospαyaw � 39.4�q �MBD sinpαyaw � 39.4�q (3.4)

MSS � �MAC sinpαyaw � 39.4�q �MBD cospαyaw � 39.4�q (3.5)

Because the strain gauges are not located at the four cardinal directions (Fig. 3.10), but are
offset by an angle of 39.4�, it had to be accounted for during the transformation. In equations
3.4 and 3.5, it has been done by subtracting that value from the yaw orientation value.
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3.4.2 Determining Usability of Resistive Strain Sensors

Bonded resistive strain gauges, which were used for data acquisition, are known to be susceptible
to drifting over longer measurement periods [18, 39]. Drifting is referred to as low frequency
change in sensor readings with time. Reasons can include debonding of gauges from the pile
surface, inaccurate temperature drift compensation or physical damage. It is known that tem-
perature drift compensation was applied to the readings. However, the measurement duration
was more than two years and strain gauges might have started to detach from the pile surface.
Also, during the driving of the pile (before the start of the measurement campaign) some gauges
were damaged.

Thus, a check on the usability of the survived gauges is required. For doing that, 10-min
average values from periods in clean production were used. Production state was defined as
having a 10-min average rotor speed as 5 rpm and the 10-minimum rotor speed as 4.5 rpm.
Data points corresponding to non-production state were neglected because these appeared as
irrelevant outliers in the process of identifying reliable strain gauge sensor data.

First method of evaluating the condition of the strain sensors (Fig. 2.1) is based on plotting
the mean strain values with the respective 10-min average nacelle position value. In Figs. 3.11
and 3.12 that has been done with gauge 8C and 4C statistical values, per indicated wind speed
ranges. In Fig. 3.11, multiple sine curves with varying amplitudes are distinguishable from the
scattering of data points. It can be observed that the maxima and minima are located around
219.4� and 39.4�, as expected due to the location of C-gauges at 219.4� (see Fig. 3.10). Thus, at
yaw positions 129.4� and 309.4�, the strain values should be zero. However, it is not the case,
allowing to identify an offset of about 35 µm/m, which must be corrected before moments are
to be transformed to FA and SS directions. The found offset may originate from an initial tilt of
W27 (Sec. 3.3) or some other source of static load caused offset which was not calibrated for.

Figure 3.11: Gauge 8C 10-min average strain values plotted agaist respective 10-min average yaw
position, per wind speed range.

At the same time, Fig. 3.12 reveals that 4C sensor is not working properly, because the
sine curves that would be formed per wind-speed range appear to be torn into several ones.
Additionally a large offset from the zero-line can be identified, but the maxima and minima are
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located at right direction – similarly to gauge 8C (Fig. 3.11).

Figure 3.12: Gauge 4C 10-min average strain values plotted agaist respective 10-min average yaw
position, per wind speed range.

To understand the cause for large scatter in Fig. 3.12, strain gauges 4C and 8C 10-min
average values are visualized over time for several wind speed ranges, in conditions where wind
direction is 219.4� � 20�, in Figs. 3.13b and 3.13a. It can be observed from the comparison of
these two figures that gauge 4C has drifted severely before July 2016 and has continued to waver
after that. A non-drifting behavior can be seen in Fig. 3.13a, corresponding to gauge 8C data.

(a) Gauge 8C (b) Gauge 4C

Figure 3.13: The development of strain gauges 4C and 8C 10-min average values over time per
indicated wind speed ranges, in conditions where wind direction is 219.4� � 20�

Having performed the two exercises on data from all sensors, non-drifting and drifting sen-
sors were identified. Non-drifting sensors are highlighted with green in Table 3.3. Next, a check
was performed to verify that the sensitivity of sensors had not reduced as a consequence of drift-
ing or any other reason. For the purpose of verification, the 10-min average strain values, at
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conditions corresponding to approximately FA motion with respect to the location of the consid-
ered sensor at around rated wind speed, were plotted against time - see Figs. 3.14 and 3.15.
Taking gauges 8C and 4C as examples for the explanation of the applied procedure, the approxi-
mate true FA moment can be found when the yaw position and wind direction are approximately
39.4� or 219.4�. By taking the opposite directions and values, which correspond to near rated
wind speed levels, the maximum and minimum strain values can be identified – providing a
maximum range. Next, the identified strain range can be used to calculate a maximum moment
value with the following idealizing assumption, in case of gauge C:

MBD �
EIyyp�εC � εCq

2 � yu
(3.6)

In comparison to equation 3.2, it can be noticed that the strain value of the opposite gauge
of the reference gauge, is assumed to be the value of the reference gauge multiplied by minus
one. Multiplication by minus one is required because if, for example, gauge C is providing
positive readings, the opposing gauge A would provide negative readings. As a reminder, positive
readings indicate tension and negative readings compression. Thus, based on the example, to
compensate for the missing compressional readings, gauge C data is idealized to provide the
readings with the same magnitude at both sides of the SUS. In reality, there would be some
discrepancies which are dependent on the overall load level and characteristics. However, wind
thrust induced bending moment is the main source of loading and linear-elastic SUS behavior
is expected. Consequently, tension and compression readings from opposing sides should be of
similar magnitude – so the idealization is not unrealistic. This idealizing assumption allows to
test each strain gauge individually, and additionally provide an approximate maximum (quasi-
)static moment value imposed on the wind turbine structure at each strain gauge ring level. To
add, in case of evaluating A, B or D gauges, the subtraction of strains in respective Eq. 3.2 would
respectively change to pεA–p�εAqq, pp�εBq–εBq, and pεD–p�εDqq.

Figure 3.14: Drifting strain gauge 4C 10-min average values over time, in conditions where
10-min average wind direction is 219.4� � 20� or 39.4� � 20� and wind speed is 10-14 m/s.

Continuing the explanation of the procedure based on gauge 8C and 4C data, Figs. 3.14 and
3.15 are taken into consideration. In Fig. 3.14 gauge 4C 10-min averages corresponding to the
indicated wind conditions are shown. Then, points which would give the largest strain range,
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δε, at similar points in time were picked based on visual inspection. It can be noticed that δε is
about 26% smaller after evident drifting.

Figure 3.15: Non-drifting strain gauge 8C 10-min average values over time, in conditions where
10-min average wind direction is 219.4� � 20� or 39.4� � 20� and wind speed is 10-14 m/s.

In Fig. 3.15, roughly constant strain values allow to easily identify an appropriate range,
which can then be used for calculating a moment value. The obtained value can be used for
comparison with moment values from other gauges that are located at the same ring/level – see
Table 3.3.

Table 3.3: Summary of the results from the process of deriving approximate maximum moment
values from 10-min statistics of strain data for the purpose of verifying the usability of strain

sensors for further analysis.
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In Table 3.3, the gauge usability from the study results are presented. A column header “MBD:
Gauge C” would imply that the bending moment about B(309.4�)�D(129.4�) line was calculate
by assuming that gauge A readings are equal to C readings, which are multiplied by minus one.
Exactly like it was demonstrated with Eq. 3.6. More on the results, five of the sensors did not
provide any data to process. Drifting phenomena were identified in 13 out of the 27 working
gauges, highlighted in yellow or red. Moreover, three of the sensors provided more than 20%
lower values in comparison to the highest value of the respective ring and these are highlighted
in red. Because the three gauge sensors (4C, 4B, and 6C) appeared to have reduced sensitivity,
likely due to debonding, the data from these sensors was not used any further. The amplitude
of readings is important in the data analysis in Secs. 3.4.4 and 3.5. What is more, it was found
that position A gauges show the most reliable results, although at rings 2, 4, and 7 these are
affected by some level of drifting. The only strain gauge rings where all sensors appear to give
trustworthy results, with unnoticeable level of drifting in readings, were rings 8 and 9.

3.4.3 Additional Assumptions and Preprocessing for Derivation of Bending Mo-
ments

The results in Table 3.3 indicated that several sensor limitation exist and assumption were needed
to proceed with moment calculations in fore-aft (FA) and side-side (SS) directions (MFA and
MSS). It is an integral part of the fatigue analysis in Sec. 3.5 of this report.

Since the gauges from rings 8 and 9 were seen as ‘healthy’, no modifications were required to
be applied to Eq. 3.2, hence MFA and MSS were derived at these rings. However, due to drifting
in most of the gauges at rings 2, 3, 4 and 7 only moments MBD and MAC with an idealizing
assumption, as was first presented in Sec. 3.4.2 with Eq. 3.6, can be found. In the case of rings
5 and 6, gauges at positions A and B were deemed accurate and could thus be used to find MFA

and MSS , by assuming that εC � �εA and εD � �εB. The aforementioned considerations are
summarized in Fig. 3.16.

Figure 3.16: Summary of the adjustments and assumption made to derive moments from gauge
data at each ring level, only gauges located at rings 5, 6, 8 and 9 can be used to derive MFA and

MSS due to no apparent drifting in their readings.
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The gauges that were considered usable for derivingMFA andMSS needed further processing
by means of adjustment of the data by a constant value to avoid distorting the readings when
combining two different measurements. It was identified from the 10-min average strain versus
yaw position plot (in Fig. 3.11) that there is a constant offset, which needs to be adjusted.
Thus, as shown in Fig. 3.17, the data points corresponding to wind speed level 10-14 m/s were
plotted, and a sine curve was fitted to allow the identification of offset of -35 µm/m (Fig. 3.17a).
Application of offset correction led to satisfactory results, which are shown in Fig. 3.17b, where
the lowest wind speed range scatter points closely follow the zero-line and the shifts in sign occur
at 129.4� and 309.4� (not visible) positions.

(a) (b)

Figure 3.17: (a) Sine curve estimate to the curve formed from gauge 8C 10-min average values
(at wind speeds 10-14 m/s) versus yaw position scatter plot. (b) Offset corrected strain versus yaw

position relation per wind speed range.

3.4.4 Results and Comparison with Design Values

After the application of the offset correction on gauges 5A, 5B, 6A, 6B and all gauges at rings
8 and 9, FA and SS moments were derived and its 10-min maxima were then checked and
compared with ULS design values.

For the verification of estimated FA and SS moments, ring 8 and 9 moment values were used.
Because the OWT is located in a lake, the main source of forcing is from the wind thrust, which
could be considered to be acting as a point load at the nacelle level (95 m above NAP). Hence,
the ratio between ring 8 and 9 FA moments (M8FA and M9FA) should be closely equal to the
ratio of distances between the respective ring and nacelle level. The distance between ring 8 and
nacelle level is 88.05 m and the distance from ring 9 to the nacelle is 52.495 m. The resulting
ration is approximately 1.68, and by dividing each M8FA data point with its corresponding M9FA

value, the ration should be the same (Eq. 3.7).

M8FA

M9FA
�

88.05

52.495
� 1.68 (3.7)

To check if the relation holds, ratios for all data points from the wind speed range of 10-14
m/s were found and plotted against their respective yaw position value - to validate consistency
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of results – in Fig. 3.18. It can be seen that the relation widely holds, so results were considered
acceptable. The deviations can be attributed to other load effects, sensor deviations and some
level of inaccuracy in determining offset levels.

In Fig. 3.19, the approximated maximum moment values, that were presented in Table 3.3
and were not highlighted in red, are drawn over the height of the support structure. All values
that were found at ring 7 (-3.55 m) – just above mudline – are the highest in the respective
moment lines.

Figure 3.18: Ratio of M8FA and M9FA

10-min average moment values versus 10-min
average yaw position value.

Figure 3.19: Approximated maximum
moment lines, compiled with values from

Table 3.3.

Figure 3.20: Comparison between approximated maximum moment line and design ULS moment
line for the case with unfactored soil.

If the maximum value from each level would be considered and drawn together with the ULS
design moments (in unfactored soil), Fig. 3.20 would be received. According to the measured
data the highest moment occurs just near the mudline, but the design model has the peak value
at -11.9 m NAP. The maximum moment value that was obtained from data is 40.7% of the ULS
design peak moment value. A portion of discrepancy in the location of peak moments in the
moment lines in Fig. 3.20 originates from the fact that the design ULS moment line corresponds
to the worst case estimate. In the worst case design model, the mudline would be 0.5 m below
the measured mudline level of -4.4 m (Fig. 3.20) and an allowance for a meter of scour was
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made. Another source of discrepancy comes from modelling assumptions related to soil springs,
which are defined with p-y curves that cannot capture all the particularities in the existing soil.

Having earlier affirmed the acceptability of the MFA and MSS values, the 10-min average
moment versus wind speed scatterplots could be plotted. Figs. 3.21a and 3.21b include data
points from all operational states of the wind turbine when the 10-min average wind speed
was larger than 3 m/s. The thrust curve shape with a peak moment values near Vrated in Fig.
3.21a is expected. Similarly, the SS moment versus wind speed scatterplot has the anticipated
characteristics with the moment magnitudes significantly smaller than the FA moment values.
Moment values that correspond to standstill or idling states, form a horizontal line below the
zero-line in Fig. 3.21a.

(a) M8FA (b) M8SS

Figure 3.21: 10-min average bending moment versus wind speed at ring 8 (6.95 m above NAP).

A comparison between the idealized estimates (Figs. 3.19 and 3.20) and the maximum values
from FA moment thrust curves - one of them shown in Fig. 3.21a - showed a difference of less
than 8.5%. The maximum moment values can be found in Table 3.4. It must be noted that
the peak values from moment versus wind speed plots were appearing as slight outliers and
3rd highest values were less than 3% apart with the idealized estimates from Sec. 3.4.3. As a
reminder, the idealized estimates were derived with visually picked strain values. Having a good
alignment between the two, the derived FA and SS moments for production conditions can be
considered reliable for the process of performing the fatigue analysis. The accuracy of conversion
is questionable with data recorded at standstill or idling states, as relative FA and SS moment
errors can be significant due to misjudgment in determining offsets in strain gauge readings.

Table 3.4: Comparison between peak moment values derived from ‘hand-picked’ strain data
values, and from the 10-min average MFA and wind speed scatter plots, for rings 5, 6, 8, and 9.

Ring Height [m NAP]
’Picked’ maximum

moment
Maximum from moment-wind

speed plot

9 42.51 20.0 MNm 21.5 MNm
8 6.95 34.7 MNm 36.4 MNm
6 -10.15 41.1 MNm 44.5 MNm
5 -12.65 35.8 MNm 38.3 MNm
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3.5 Fatigue Analysis

The derived moment time series can now be used to perform the fatigue analysis, which entails
dissecting complex and random time series into moment cycles, which can then be used for
understanding fatigue accumulation in different operational states of the wind turbine. First, the
chosen fatigue analysis approach is outlined, and then M-N curves, short-term damage equivalent
bending moments and damage frequency spectra are derived. Herein performed fatigue analysis
is not intended to estimate the fatigue life of the turbine, thus no wind speed or turbulence
weighting is applied, nor is the design life of the turbine used.

3.5.1 The Rainflow Counting Method

In order to relate a moment sequence to the fatigue damage that inflicts to the material a stan-
dard cycle counting algorithm – rainflow counting – is applied on the moment-time history.
Rainflow counting is a standardized procedure for determining the number of moment or stress
cycles and ranges [1, 14, 23]. The chosen rainflow counting algorithm, which MATLAB provides,
corresponds to the ASTM’s standard [15].

Because of the long duration of the measurement campaign, the data has been stored as in-
dividual 10-min records. The rainflow cycle counting was applied to each individual 10-minute
record separately, and the result was then assembled to form a single cumulative rainflow spec-
trum. An assumption was made here that load cycles with a period greater than ten minutes
will not be considered. Thus, for example, slow variations in the wind speed may not be cap-
tured. However, the fatigue effect of these slow variations for a Vestas V112 OWT was found to
be small in [48]. V112 OWT has slightly higher power output and size than W27. It has to be
noted that the referenced OWT is located at a deeper offshore site and is not located in a lake
like W27. Hence, influence from wave loading is increased and may have diminishing effect on
the influence of slow variations in relative terms.

After shrinking a complex bending moment time histories into a series of counted constant
amplitude events, the most widely used S-N or, as in the current case, M(moment)-N curves
can be constructed for different operational states of the OWT. Furthermore, the analysis of the
fatigue damage can be performed in terms of the damage equivalent loads (DELs), the definition
of load is herein taken as bending moment. With the use of the Miner’s rule [9], fatigue damage
equivalent bending moment, MDEL, or short-term damage equivalent bending moment, MSTEL,
can be derived to be:

MSTEL{DEL �

�°nb
i�1 ni �M

m
i

Nref


1{m

(3.8)

, where nb is the number of bins used for cycle counting; Mi is the bending moment of the ith

range bin of the fatigue load spectrum; ni is the number of cycles in the ith range bin of the
fatigue load spectrum; m is the Woehler slope; and Nref a predefined number of cycles.

In line with the values reported in the design documents of the monitored OWT, m was taken
as 3 and Nref for DEL calculations as 107. However, in case of the STEL calculations, Nref equals
600. STEL is considered to be the 1Hz damage equivalent bending moment for a ten minute
time series [1]. Thus, STEL is found for every individual 10-min record.

To add, in the DEL and STEL calculations, the resulting half-cycles from the rainflow counting
routine were taken into account with a factor of 0.5, as advised in IEC 61400-13 [1]. According
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to the same standard, it is allowed not to consider the mean load effects, which have been found
to increase fatigue damage, as was concluded in [7].

In the current work, the mean load effects are ignored also for two reasons. Firstly, the strain
sensors were not accurately calibrated after the completion of the OWT, so knowing the mean
static or mean strain/load level without an accurately calibrated computational model is complex
and unfeasible. Secondly, in 13 out of 27 sensors noticeable drifting was identified – making the
identification of the true mean strain/load level very difficult.

Lastly, all filtering of moment time series was performed with MATLAB’s idealfilter [32], with
considerations to the transient response effects.

3.5.2 M-N Curves in Characteristic Operational States

The cumulative rainflow spectra – M-N curves – require a predefined bin size to be able to
construct them. According to [14] the minimum number of bins is 100. Hence, the maximum
moment ranges from each moment time-series was first identified, and to have at least 100 bins
in the case of the moment record at ring 2, bins with a width of 100 kNm were chosen.

The overall FA and SS moment M-N curves, in log-log scale, are shown in Fig. 3.24.These
curves were derived from readings on the ring 6 (-10.15 m NAP) of the pile, where according
to the design models the highest moment should occur. Additionally to the ‘All’-curve, curves
derived by band-pass filtering for the 0-1 Hz and 1-5 Hz range are shown. The summation of
these two should ideally result in the overall line, but filtering effects cause slight discrepancies.
The comparison of the two curves, reveals that the first order motion of the OWT (resonance
frequency around 0.3 Hz) and response to thrust loading are responsible for the high ampli-
tude moment cycles, as the 0-1 Hz curve follows closely the overall curve at higher moment
ranges. Similarly, it can be deducted that the higher order motions are related to lower, but more
frequent, moment ranges.

In case of the overall SS M-N curve, in Fig. 3.22b, there appears a distinctive top lobe,
which corresponds to low-frequency dynamics. Low-frequency dynamics relates to 1st FA and SS
bending modes, 1P (up to 0.258 Hz) and 3P (up to 0.775 Hz) oscillation and wind thrust. The
lower lobe corresponds to the high frequency effects.

(a) M6FA (b) M6SS

Figure 3.22: FA and SS motion M-N curves, from readings at ring 6 (-10.15 m NAP).
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In Sec. 3.1 in Fig. 3.1a, three operational states were defined: idling, run-up, and rated.
In Figs. 3.23b, 3.23c and 3.23d, the derived cumulative fatigue spectra for these three states
are shown, with the overall for FA and SS motion provided in Fig. 3.23a. Some discrepancy
between the three cases can be distinguished. It can be noticed that at rated conditions, SS M-N
curve has two distinguishable lobes, whereas the FA curve appears to be smoothened. As was
suggested in [48], this phenomenon can be related to the large aerodynamic damping in the
FA direction during power production - it can be considerably stronger than SS damping [10].
Via the comparison of the curves at different conditions, it is visible that with the reduction in
rotor speed, the M-N curves appear more linear on the log-log scale. This implies that the higher
frequency effects are reducing, and the system’s behaviour is more static.

(a) (b)

(c) (d)

Figure 3.23: FA and SS motion M-N curves, from readings at ring 6, composed with data records
corresponding to (a) all ; (b) rated; (c) run-up; (d) idling operational states.

The FA and SS M-N curves of the different states are plotted together in Figs. 3.24a and
3.24b, respectively, for the purpose of seeing the difference in fatigue damage from the different
states relative to each other.

Both figures confirm that the idling condition, in comparison to other states, contributes
more by means of low cycle high amplitude oscillations. Run-up and rated states have a higher
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contribution via more high-frequent low amplitude oscillations. Although, at run-up and rated
states, high amplitude low frequent oscillations do still occur.

It has to be noted that the differences in cumulative fatigue spectra on their own do not allow
to assess, which of the three operational cases causes most fatigue damage. For that, the already
mentioned Miner’s rule could be used, but due to the fact that the turbine has been in each state
for a different amount of time, it would not be very insightful without methodical scaling.

(a) FA (b) SS

Figure 3.24: M-N curves, from readings at ring 6, composed with data records corresponding to
rated, run-up, and idling operational states.

3.5.3 Damage Equivalent Load Curves

Similarly to the 10-min average static moment lines that were presented in Fig. 3.19, damage
equivalent bending moment lines can be formed. Because of the drifting of some of the strain
gauges and resulting restriction on transferring strains to FA and SS moments at each of the
monitored OWT strain gauge rings, data filtering and approximations had to be made to arrive
at approximate MFA,DEL values.

The derivation of DEL started by converting strain data to MAC and MBD, based on Fig.
3.16. Because of the demonstrated better reliability of gauges at A and B positions at rings
2, 3, 5, 6, and 7 – only the readings from these gauges at these rings were used for the DEL
calculation herein, and STEL calculation in Sec. 3.5.4. From the RNA 10-min statistical data,
the time periods where the wind direction aligned with the 39.4�–219.4� (A-C directions) or
129.4� � 309.4� (B-D directions) line, were extracted and an allowance of deviation was set as
�20�. The periods which correspond to ‘39.4�–219.4�’ directional conditions (Fig. 3.16), would
contribute to the calculation of MBD,DEL, representing approximately MFA,DEL at that time
period. The same logic can be applied to the contributions with periods where the wind direction
aligned approximately with the 129.4�–309.4� line.

Based on the described logical filtering, damage equivalent moment lines, shown in Fig. 3.25
resulted. It is visible that the shape of the DEL lines is similar to the (quasi-)static moment lines
(Fig. 3.19). Similar shapes are expected because the moment amplitudes at each ring level
follow the trend in Fig. 3.19 and the number of bending moment cycles is similar at each ring.
The latter holds as the response of the OWT to the main loading of wind thrust is not local to
one ring only.
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Figure 3.25: Damage equivalent bending moment curves.

3.5.4 Short-Term Damage Equivalent Load Relation with Wind Speed & Turbu-
lence Intensity

The STEL relation with turbulence intensity (TI) and wind speed is explored in this subsection.
Turbulence intensity is defined as the ratio of the standard deviation of wind speed and its
respective mean. Because STEL values are found for a 10-min moment record, the corresponding
statistical wind parameters can be directly obtained from the 10-min RNA data statistics.

It was found that FA STEL values are linearly related to the turbulence intensity if the OWT
is in the run-up operational phase, see Figs. 3.26a and 3.26b. To construct these figures, the
following approximations and conditions were applied:

• Only the data points corresponding to the run-up operational state were considered (de-
fined in Table 3.2).

• Due to the limitation of transforming moments to FA and SS directions, the considered data
points corresponded to periods when 10-min average wind direction aligned with either of
the two lines, ’39.4�–219.4�’ or ’129.4�–309.4�’, with an allowable deviation of �20�.

Figure 3.26a corresponds to the M2AC,STEL values (the resulting STEL value from 10-min
moment, MAC , record, which was derived from gauge readings at position B at ring 2), and the
scattering of data points into two groups indicates another interesting relation that is also visible
in Fig. 3.26b. In Fig. 1.3, the map of the wind farm was shown, including the position of the
OWT. It could be noted that there are other turbines located in the directions 39.4� and 129.4�

with respect to the W27 OWT. However, there are none in the 219.4� and 309.4� directions. Thus,
if the wind is approaching from the East side, the turbine is located downstream. As a result of
the wake effects and higher turbulence intensity, the fatigue damage on the OWT structure is,
in general, higher compared to the upstream positioning - when the wind direction is from the
West side.

Figure 3.27a comprises all the linear least squares fitted lines at all rings for STELs derived
from MBD readings. Because a linear relation was found at all rings of the turbine, it can
be realized that the loading on the OWT is dominantly wind-induced. In case of significant
wave-induced loading, the linear relation would not hold at lower ring levels along the SUS,
unlike in the current case. What is more, the slopes of the linear lines in the figure appear
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to follow the trend that has been previously revealed with damage equivalent (Fig. 3.25) and
approximated (quasi-)static bending moment lines (Fig. 3.19).The trend formed with the slopes
of the linear lines is presented in Fig. 3.27b. It can be explained by considering that the bending
moment amplitude at each ring follows this same trend of having the peak value near the mudline
(Fig. 3.19). The difference between numbers of oscillation measured at each ring cannot differ
significantly as the response of the support structure is expected to be global. Thus, the STEL
values and inherently the slopes of the linear lines can only form the presented trend.

(a) M2AC,STEL (b) M8BD,STEL

Figure 3.26: STEL values at run-up operational state in approximated FA motion conditions versus
turbulence intensity.

(a) (b)

Figure 3.27: (a)Overivew of the 1st order lines fitted to the MBD,STEL versus TI scatter plots,
where only data points corresponding to run-up operational state in approximated FA motion

conditions were considered; (b) the slopes of the fitted lines plotted over the height of the SUS.

For the purpose of exploring the relation between STEL and wind speed, STEL data points,
which were derived from FA and SS moment readings at rings 5, 6, 8, and 9 were considered
with some additional filtering. Conditions for inclusion were set as follows: (1) 10-min minimum



60 3. DATA ANALYSIS

rotor speed bigger than 4.5 rpm; (2) 10-min minimum wind speed bigger than 2 m/s. The reason
for avoiding no production conditions was due to the chosen way of moment transformation to
FA and SS directions which potentially introduces larger errors due to low excitation conditions

After determination of STEL values, these were binned according to their respective 10-min
average wind speed value. The wind speed ranges were set as such: 2.5 - 3.5 m/s, 3.5 – 4.5
m/s and so forth. All the STEL values in each wind speed range were then averaged and plotted
against their corresponding mid-bin (wind speed) value. The results are shown in Figs. 3.28a
and 3.28b.

(a) (b)

Figure 3.28: FA and SS average STEL values per wind speed range at levels 5, 6, 8 and 9; data
points are located at the centre of the chosen wind speed bins.

Unlike the maximum moment versus wind speed curves (Fig. 3.21a), the damage equivalent
bending moment continues to increase after the rated wind speed level of 12 m/s. Fore-aft STEL
values show a slight drop at around Vrated, before the fatigue damage starts to creep up again
with the increase in wind speed. The likely reason lies in the fact that at higher wind speeds,
the OWT response is more dynamic – frequency of response oscillations increases. Consequently,
equivalent fatigue damage increases due to higher amount of lower magnitude oscillations of
W27 in FA and SS directions.

What is more, comparison between the average STEL values in Figs. 3.28a and 3.28b are of
similar magnitude, unlike in (quasi-)static FA and SS bending moment versus wind speed plots
(Figs. 3.21a and 3.21b). The results in Figs. 3.28a and 3.28b suggest that the SUS oscillations
in SS direction are more frequent than in FA direction over the observed short-term periods.
It was found from M-N curves in Sec. 3.5.2 that FA bending moment time series has higher
amplitude cycles than SS bending moment time series. Furthermore, between the wind speed
range 10 - 20 m/s in Figs. 3.28a and 3.28b, the SS STEL values are bigger than respective
FA values. This can again be related to the large aerodynamic damping in the FA direction
during power production [48]. Following this explanation, the aerodynamic damping in the SS
direction increases noticeably more at wind speed conditions above 20 m/s, while the OWT is in
production state.
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3.5.5 Fatigue Damage Frequency Spectrum

To explore further the fatigue damage consumption over the frequency spectrum for the bene-
fit of understanding the impact of certain dynamic events on fatigue life progression, damage
equivalent bending moment calculations were coupled with a low-pass filtering routine.

Only rings 5, 6, 8, and 9 FA and SS moment records were included and production state
(same as in Sec. 3.5.4) was considered. The overall routine for arriving at the results depicted
in Figs. 3.29 - 3.31 included filtering the moment readings with a varying cutoff frequency, in
increments of 0.02Hz from 0.02Hz to 5.00Hz. The filter was chosen as the MATLAB’s low-pass
‘ideal filter’ for its fast computational speed and great performance. At every filtering instance,
a damage equivalent bending moment value was calculated via rainflow counting and Eq. 3.8.
Having obtained a total of 250 DEL values for a moment time history, the values were normalised
with respect to the highest value (the value from last filtering instance) amongst these 250
DEL values, resulting a [0, 1] range to represent the consumption of fatigue damage over the
frequency spectrum.

As illustrated in Fig. 3.29, FA fatigue is mainly triggered at low frequencies – at rings 6
and 8 about 68% of the total damage was inflicted in the 0 - 0.5 Hz range. In this range, the
thrust load, wave loading and the first bending modes (approx. 0.3 Hz) are located, together
with 1P oscillations. The rotor 3P harmonic reaches up to 0.78 Hz, where the FA curve has
started to flatten. Thus, higher order dynamics bears less importance in damage equivalent
FA bending moment accumulation, as the second and third SUS bending modes are located
around 1.51 - 1.53 Hz, and 2.75 - 3.13 Hz respectively according to the lowest design frequency
position estimates. In case of damage equivalent SS bending moment accumulation, the biggest
contribution comes from low frequency thrust loading and 1P harmonics as the there is a sudden
change in slope at the 0.14 Hz mark. From there onwards the DEL accumulation is gradual. A
slight increase in slope can be noticed near 3P highest frequency (0.78 Hz). The frequency range
0 – 1 Hz accounted for approximately 50% of the total damage.

Figure 3.29: FA and SS fatigue damage accumulation frequency spectra at rings 6 (-10.15 m
above NAP) and 8 (6.95 m above NAP).

If the damage equivalent FA and SS bending moment envelopes would be unfolded to sep-
arate DEL values per wind speed ranges and their accumulation over the frequency spectrum
would be considered, Figs. 3.30 and 3.31 would be derived. In Fig. 3.30, M6FA,DEL values
per defined wind speed range conditions were analysed. The wind speed ranges were chosen



62 3. DATA ANALYSIS

to have a case for below rated, at rated, and above rated wind speed conditions. It can be
observed that in higher wind speed conditions, the importance of higher frequency oscillation
rises, as the pronounced jump in damage accumulation at low frequencies flattens respectively.
At low wind conditions, with low excitation, about 75% of the total fatigue damage is obtained
by 0.5 Hz mark, whereas it is about 50% and 21% for the rated and high wind speed conditions
respectively.

Figure 3.30: M6FA,DEL accumulation frequency spectra at specified wind speed conditions.

Figure 3.31 provides the accumulation spectrum for the damage equivalent SS bending mo-
ments at the defined wind conditions. At light wind conditions 60% of the total damage is
inflicted around 2.76 – 3.16 Hz. This region would correspond, according to the low frequency
design point, to the expected 3rd SS SUS bending mode frequency range 2.75 - 3.13 Hz. At rated
wind speed conditions, the 1st mode with thrust loading, wave loading and 1P oscillations have
become dominant again, whereas their contribution lessens again at higher wind speed condi-
tions. The increase in slope due to 3P harmonics at rated wind speed conditions is visible as
well.

Figure 3.31: M6SS,DEL accumulation frequency spectra at specified wind speed conditions.

Due to the appearance of significant fatigue damage accumulation at the expected 3rd SS
bending mode frequency range in Fig. 3.31, additional spectra for other below rated wind speed
ranges were plotted. Figure 3.32a corresponds to results from ring 6 and Fig. 3.32b to ring 8
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(6.95 m above NAP). Both accumulation spectra are very similar, but the damage accumulation
at low frequency range is slightly higher at ring 6. It can be explained by considering the location
of ring 6 and 8. Ring 8 is positioned at a level, where the 2nd and 3rd mode shapes would have a
much larger amplitude than at the position of ring 6, see Fig. 3.33. To add, the relative difference
in 1st mode amplitudes between the two locations is much smaller in comparison to higher mode
amplitudes.

(a) M6SS,DEL (b) M8SS,DEL

Figure 3.32: M6SS,DEL and M8SS,DEL accumulation frequency spectra at specified wind speed
conditions.

Figure 3.33: OWT lowest frequency design position model 1st, 2nd and 3rd mode shapes.

However, Figs. 3.32a and 3.32b show that with the increase in wind speed, significance
of low frequency range increases. Also, the 60% damage gain between 2.76 - 3.16 Hz in the
spectrum corresponding to 3-4 m/s wind speed conditions starts to decrease in relevance and
shift towards higher frequency ranges. For instance, at 5-6 m/s wind speeds, 60% of the damage
is accumulated between 3.3 – 5 Hz. This region likely also includes the presence of 3rd bending
modes as W27 does not exactly correspond to low frequency design point. Additionally, in one
of the DISSTINCT related studies [47] it was proposed that the 2nd soil mode is located around
5.42 Hz. The high frequency content was noticed in SUS and soil acceleration signals, which
were taken from an arbitrary point in time, in Figs. 2.15a and 2.15c.
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3.6 Summary & Discussion

The performance curves of the monitored OWT closely followed the design parameters and al-
lowed to identify suitable data clustering for SUS data analysis as well as for RNA data analysis.
Additionally the relations between environmental and operational conditions could be viewed.

Resonance frequency and side-side damping versus wind speed plots demonstrated a depen-
dency – an increase in frequency is linked to an increase in damping for increased wind speeds
(due to aerodynamic source). At the same time, it is to be noted that the highest and lowest res-
onance frequency, 0.295 Hz and 0.304 Hz respectively, fall between the design point estimates.

From the 10-min average tilt versus wind speed relation, in Fig. 3.5b, the anticipated thrust
curve shapes were found. What is more, inclinometer data indicated that over a time span of two
years, the tilt has changed about 0.04�. This change was investigated to have had unnoticeable
influence on the monitored W27 parameters.

For the purpose of arriving at moment lines, M-N curves, DEL values and related dependen-
cies with environmental conditions, the usability of strain gauge readings had to be checked and
therefore two procedures were applied. First, the 10-min average strain values were visualized
with respective yaw position per wind speed level (Fig. 3.11), with the addition of exploring the
strain development over time at specific wind speed conditions (Fig. 3.13). Secondly, the ampli-
tudes of statistical averages of strain measurement were used to evaluate sensitivity of sensors
and for estimating maximum 10-min average moment values. Out of 27 working strain gauges,
13 were found to be drifting and 3 of them provided useless readings.

The previously found statistical moment values were converted into moment lines and com-
pared with ULS design values in Fig. 3.20. As expected, the envelope of maximum bending mo-
ments across the height was much lower compared to the ULS design values. Moreover, it was
noted that the measured location of peak moment did not match with the location pronounced
by design model line. Reasons being that the design model corresponded to a worst-case scenario
where the mudline is lowered due to excessive scour and modelling assumptions related to the
soil.

After achieving an acceptable level of accuracy in the conversion of MAC and MBD to FA and
SS moments, the cumulative rainflow spectra – M-N curves – were constructed. It was found
that the low frequency (0-1 Hz band) moments account for the higher moment ranges, whereas
higher frequencies are related to lower, but more frequent, moment ranges. Additionally, it could
be deducted from the comparison of the M-N curves corresponding to different operational states
of the wind turbine, that lower rotor speed flattens the M-N curves to a more linear line on
the log-log scale (Fig. 3.23). It would suggest that the higher frequency effects are reducing
respectively.

The differences in cumulative fatigue spectra on their own did not allow to assess which of
the three (rated, idling, run-up) operational cases causes most fatigue damage. For that, the
already mentioned Miner’s rule could be used, but due to the fact that the turbine has been in
each state for a different amount of time, it would not be very insightful unless some scaling
parameters would be derived or it would be tried to randomly pick equal amount of time series
segments for each state.

However, having the overall M-N curves, damage equivalent bending moments could be cal-
culated using Eq. 3.8. Some assumptions and approximations had to be made in connection
with the restriction on transferring moments at each strain ring level to FA and SS orientation.
In the end, DEL lines that – in shape (Fig. 3.25) – aligned with the found approximated moment
lines in Fig. 3.19 were derived.
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Short-term equivalent bending moment values, corresponding approximately to FA motion,
revealed linear dependencies with turbulence intensity, when the OWT was in the run-up opera-
tional state. The linear relation was evident at all rings of the turbine (see Fig. 3.26 and 3.27a)
– suggesting that the loading of the wind turbine is dominanted by wind thrust, and wave action
is minor since the OWT is located in a lake after all.

Following the thread on positioning of the herein studied OWT, other OWTs are located to
the East, South and North of it. From the shown STEL versus TI plots (Figs. 3.26a and 3.26b),
it was noted that the STEL values were smaller when the wind was approaching from the West
side of the turbine – meaning that it was the upstream turbine. As a result, it can be concluded
that the downstream wake effects and consequent likely higher turbulence intensity leads to
increased consumption of OWT fatigue life, in comparison to upstream positioning. Knowing
that the dominating wind direction in the wind farm is between 190��300�, the monitored OWT
is mainly located upstream, thus on the safe side.

Studies on fatigue damage accumulation over the frequency spectrum demonstrated that FA
fatigue is triggered at low frequencies, with approximately 68% of the total damage inflicted in
the 0-0.5 Hz range (Fig. 3.29). In this range, the thrust load, wave load (identified to be small)
and the first structural modes (approx. 0.3 Hz) are located, together with 1P oscillation. In
the case of damage equivalent SS bending moment accumulation, the 50% of the damage was
accumulated over 0-1 Hz frequency band.

Determination of damage equivalent bending moment accumulation at different wind speed
conditions, revealed that the FA motion fatigue accumulation would reduce in the lower fre-
quency band with the increase in wind speed. An unexpected result came from SS DEL accu-
mulation curves (Figs. 3.31, 3.32a and 3.32b), where it was seen that at light wind conditions
significant amount of damage is inflicted at high frequencies. However, the actual contribution
of light wind conditions to the overall SS motion DEL value is limited, as the pronounced jumps
in fatigue damage gain were diminished in Fig. 3.29.

With regards to the interplay between loading amplitude and response frequency, the shown
wind speed dependent damage equivalent FA and SS bending moment accumulation curves over
the frequency spectra (Fig. 3.30), the discovered averaged MFA,STEL or MSS,STEL versus wind
speed relation (Fig. 3.28), and the 10-minute average FA moment curves (Fig. 3.21a) could be
consulted. The latter showed that loading amplitude peaks at Vrated, and starts to decrease after
that. The increasing trend of STEL values with wind speed indicated that although the moment
amplitudes might be decreasing, the oscillatory action of the OWT increases. As a reminder, the
damage equivalent load is a scaled relation between number of oscillations and its amplitudes.
Lastly, FA DEL accumulation at higher than rated wind speed conditions was seen to possess
a hire share of gain in the high frequency part than at rated wind speed conditions - higher
frequency would translate to more oscillations.
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Chapter 4

Conclusions & Recommendations

4.1 Conclusions

Before the formulation of objectives for this research project, several motives were identified.
It was recognized that fatigue is one of the main design criteria for offshore structures and
additional knowledge about fatigue cumulative development under random loading is desired.
Additionally, it was acknowledged that fatigue is a complex phenomenon that is influenced by
multiple of variables such as damping, resonance frequency of the OWT, loading types. With the
availability of more than two and half years of extensive measurement data, the following two
objectives were set:

1. Preprocess measured data and evaluate the fatigue damage accumulation of a monopile-
supported offshore wind turbine under normal operating conditions.

2. Identify parameters that influence the fatigue accumulation and the resonance frequency
of a monopile-supported offshore wind turbine.

With respect to the first objective, the following conclusions were reached:

• As part of the preprocessing of data, synchronization of the three - SUS, RNA and soil –
data sets was required. A significant time-dependent lag was identified between SUS data
and the other two sets (Secs. 2.2.2 and 2.2.3) The underlying reasons for the presence of
time-dependent lag were not able to be determined, as the SUS and soil DAQ system have
now been dismantled.

• Stretching of SUS data readings proved to be an appropriate method for removing the lag
and synchronizing all data sets (Figs. 2.12, 2.21 and 2.23).

• After synchronization, preprocessing continued by assessing the quality of strain readings
from all strain gauges (Sec. 3.4.2). Drifting of strain signals in 13 out of 27 gauges was
identified and three of the gauges provided unusable readings. The occurrence of drift
may have been caused by debonding of gauges from the pile surface and endured damage
during the driving of the pile. The exact reasons are unknown as there are no records of
the status of strain gauges prior to their removal.

Conclusions that were drawn in connection with the second objective of seeking interdepen-
dencies were the followings:

67
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• In production state, the resonance frequency of W27 increases with a similar trend as side-
side logarithmic decrement estimates for increased wind speeds (Figs. 3.4a and 3.3b).
According to the trend, at noticeable increase in data values occurs between wind speeds
10 to 20 m/s. The identified dependency and similarity stemmed from the computational
model, which is used for the determination of resonance frequency and side-side logarith-
mic decrement estimates. In the model, damping is defined to be predominantly stiffness
proportional.

• Increase in damping estimates in relation with increase in wind speed was associated with
increased level of aerodynamic damping due to change in pitch of the blades.

• From the observations on cumulative rainflow spectra – M-N curves – it was found that the
low frequency (0-1 Hz band) moments account for the higher moment ranges, whereas
higher frequencies are related to lower, but more frequent, moment ranges (Sec. 3.5.2). It
was proposed that due to high FA aerodynamic damping, the distinctive top lobe, which is
visible in SS M-N curves, is not apparent in FA M-N curves (Fig. 3.24).

• Fore-aft direction STEL values revealed a linear dependency with TI at all monitored levels
of the SUS when the OWT was in the run-up operational state. Thus, the loading on
the OWT is dominated by wind thrust (Fig. 3.26). This is explained by the fact that
Westermeerwind wind park is located in a lake, where wave action is not significant.

• STEL versus TI relations (Fig. 3.26 showed that in wind conditions when W27 is a down-
stream turbine, the consumption of fatigue life is increased due to downstream wake ef-
fects. W27 can be considered a downstream turbine when wind is approaching from the
East side.

• In productions state fatigue life consumption of OWT SUS increases above rated wind
speed conditions (Fig. 3.28a). It occurs despite a decrease in load magnitude (Fig. 3.21a),
which is caused by increased pitch position of the blades (Fig. 3.1c). Increased pitch angle
of blades leads to increased aerodynamic damping (Sec. 3.2) and reduced loading. The
increase in fatigue damage is, thus, caused by increase in SUS response frequency, which
translates to increased number of oscillations and moment cycles. Fatigue damage is a
combination of bending moment amplitude and number of moment cycles (Eq. 3.8).

• At rings 6 (-10.15 m above NAP) and 8 (6.95 m above NAP), most fatigue has accumulated
over the low frequency band (0-1 Hz). The percentage values for FA and SS fatigue are
approximately 81% and 51% respectively (Fig. 3.29). The low frequency band is associated
with wind loading, wave loading, 1st FA and SS SUS bending modes, 1P and 3P oscillations.
The high frequency band (1-5 Hz) is associated with rotor harmonics and higher SUS
bending modes.

• At ring 6, FA and SS damage equivalent bending moment frequency spectra were addition-
ally derived per wind speed ranges (Figs. 3.30, 3.31). The examined wind speed ranges
were 3-4 m/s, 12-13 m/s and 21-22 m/s. Fore-aft fatigue damage accumulation frequency
spectra revealed that at higher wind speeds the importance of higher frequency oscillations
rises. The same conclusion was found from the comparison of SS DEL accumulation spec-
tra which corresponded to wind speeds 12-13 m/s and 21-22 m/s (Fig. 3.31). However,
at wind speeds 3-4 m/s, most fatigue damage was accumulated in the frequency range
that corresponds to 3rd SUS bending modes. The contribution of fatigue damage from 3-4
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m/s wind speed conditions to the overall DEL value was concluded to be small. But, it
was highlighted that it is important to consider SUS bending modes, which lie in the high
frequency band, in the fatigue design analysis.

4.2 Recommendations

The recommendations for future work stem from ideas that were left out of the scope of the
current research. Also, ideas that were considered as alternatives to the chosen research direction
are recommended:

• In the process of synchronization of SUS data with RNA data in Ch. 2, the lag increase
rate was idealised to be constant over three “correction periods”. The parameters for the
“correction periods” were based on the results of lag identification on the three study pe-
riods. The total duration of the study periods was approximately 14 days, although the
total overlap between RNA data time series and SUS data is about 1.3 years. Additionally,
the corrections were applied on SUS data that was collected over a period of 2.5 years.
Thus, in the case of using data from outside the three study periods (“March 2016, “Jan-
uary 2017” and “July 2017”) additional lag identification studies would be recommended
if close alignment of data is required.

• During lag identification studies, the frequency content of strain and acceleration signals
was explored (Secs. 2.2.2 and 2.2.3). Common higher energy frequency bands were iden-
tified between the data sets. Hence, there is potential to study dynamic soil-structure inter-
action (SSI) and attempt identify soil damping. Both aims would link to previous studies,
where monopile-only system under shaker excitation was investigated [47, 25]. Similar
studies for the operational W27 have not been performed yet, but can yield more insightful
results as shaker-induced excitation was noted to be small in comparison to loading levels
in fully operational state [47]. With the presence of higher loading, it may be possible to
identify soil damping and soil modes [47]. Some difficulties may stem from the fact that
time-dependent lag was identified between the original SUS and soil data (Sec. 2.2.3). As
part of the current work, the synchronization has been achieved to an approximate level of
�1.2 seconds (Fig. 2.21).

• What is more, the justification of higher energy frequency bands in Secs. 2.2.2 and 2.2.3
and the shapes of DEL accumulation frequency spectra curves in Sec. 3.5.5 were based
on results from models that were not specific to W27. Instead, information regarding SUS
bending modes corresponded to farm-wide lowest frequency design position model. The
first bending mode frequency estimates from the design model provided approximately
8.3% lower values than the resonance frequency values in RNA data statistics (Sec. 3.2).
Thus, to verify that correct conclusions were drawn, W27 specific modelling and modal
analysis would be recommended. Existing lowest and highest frequency design position
models could be adopted for the purpose.

• The performed fatigue analysis, in Sec. 3.5, was not intended to estimate the fatigue
life of the turbine nor to provide a comparison with actual design values. However, as
future work, these actions should be done for the purpose of verifying if real measurements
align with fatigue design assumptions and DEL values. In the case where residual fatigue
life is identified from the comparison of data and design values, a case for wind-farm
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lifetime extension can start to be built. An additional recommendation would be to build
a predictive computational model of W27 fatigue life consumption, based on published
studies such as [21, 30, 27]. The found linear dependency between FA STEL and TI in
OWT run-up operational state (Fig. 3.26) could form a good basis for the predictive model
validation. The availability of detailed information about the soil parameters and W27
design, together with approximately two years of synchronized measurement data allow to
construct trained in-depth model.
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