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Abstract—On-demand transport has become a common mode
of transport with ride-sourcing companies like Uber, Lyft and
Didi transforming the mobility market. Recurrent patterns in
prevailing demand patterns can be used by service providers to
better anticipate future demand distribution and thus support
demand-anticipatory fleet management strategies. To this end,
we propose three steps for extracting such demand patterns
from travel requests: (1) constructing the origin-destination
zones by spatial clustering, (2) composing the hourly and daily
origin-destination matrix, and; (3) temporal clustering to extract
the dynamic demand patterns. We demonstrate the three step
approach on the open-source Didi ride-sourcing data. The data
consists of travel requests data for November 2016 from Chengdu,
China amounting to approximately 6 million rides. The analysis
reveals pronounced and recurrent and thus predictable daily and
weekly patterns with distinct spatial properties pertaining to ride-
sourcing production and attraction characteristics.

Index Terms—ride-sourcing, spatial clustering, temporal clus-
tering, demand patterns, taxi data

I. INTRODUCTION

Technical developments of smartphones integrating GPS
functionality, internet connectivity and trust in online mar-
ketplaces makes it possible for ride-sourcing to evolve to
phase five, a technology-enabled ride-matching [1]. These
ride-sourcing companies (also known as TNCs, Transportation
Network Companies in the US) are creating online market-
place platforms that allow matching incoming travel requests
and registered drivers in real-time. The estimated worldwide
market value of ride-sourcing services in May 2018 was over
150 billion U.S. Dollars with Uber, Didi Chuxing (Didi)
and Lyft on top with respectively a valuation of 72, 56 and
11.5 billion U.S. dollars [2]. Didi is the largest ride-sourcing
company in terms of operations with 30 million rides per day
and 21 million drivers, twice and seven times as much as Uber,
respectively [3]–[5].

Given the recent rapid growth of ride-sourcing services
and the commercial sensitivity, there is a great interest yet
only very limited knowledge insofar on their demand patterns.
Notwithstanding, recent studies examined the impacts of ride-
sourcing on the taxi market [6], passengers’ response to dy-
namic pricing [7]. In addition, there are also pioneering efforts

to develop methods for short-term demand predictions for ride-
sourcing services using deep-learning approaches that utilize
both spatial and temporal relations [8], [9], as well as propos-
ing a framework for predicting overall system performance
[10]. These studies provide initial insights into the potential
to mine historical demand data for improved forecasts. All of
these studies have adopted an artificial intelligence approach
and employed machine learning techniques for investigating
ride-sourcing data.

The approach taken in this study is anchored in transport
demand analysis and is aimed at identifying meaningful spatial
and temporal clusters in demand for ride-sourcing services to
better understand the underlying patterns and support planners
as well as service providers. The latter can better cater for
prevailing demand patterns by deploying proactive pricing and
fleet management strategies in anticipation of recurrent de-
mand characteristics and thus contribute to the efficiency and
effectiveness of the service provisioned. Previous research has
demonstrated that demand-anticipatory dispatching algorithms
that leverage on demand predictions can reduce passengers
waiting and in-vehicle times [11].

Clustering allows to reduce the computational resources
and dimensionality of the data which contains millions of
disaggregate origin and destination locations. Furthermore, we
assess the spatial features of the demand profiles in terms
of urban areas with a surplus or deficit (i.e. more rides
are attracted than generated to a given zone or vice-versa,
respectively) of rides within various temporal profiles. We
perform our analysis for a dataset of Didi services in Chengdu,
China.

The remainder of this paper is structured as follows. Section
II describes the methodology. Section III details the exper-
imental setup. The results of the spatial clustering and the
temporal clustering are discussed in section IV. Finally, section
V concludes with the key findings, limitations, and future
research.

II. METHODOLOGY

In this paper, we propose three steps for extracting demand
patterns from travel requests - (1) constructing the origin-
destination zones by spatial clustering (2) calculating time-
dependent origin-destination matrix, and (3) temporal cluster-978-1-5386-9484-8/19/$31.00 ©2019 IEEE



ing to extract the dynamic demand patterns. The flowchart
(Fig. 1) shows an overview of the inputs and outputs for the
three steps.

The clustering step for creating static OD zones is the spatial
clustering. Once the static zones are defined, we can create
the OD matrices at different aggregation levels which tells us
the number of trips between each origin zone to destination
zone at different levels. Such OD matrix can compactly define
the ride-sourcing demand for the entire network. Finally, the
OD matrices at different levels can be investigated to check
if distinct demand patterns emerges in the city which can,
ultimately, make the demand predictable. Fig. 1 shows an
overview of the framework.

Fig. 1: Flow chart of analysis framework

A. Spatial clustering

Travel request data is geo-located with an origin (pick-up)
location and destination (drop-off) location with given time-
stamps for boarding and disembarking for each ride. There are
millions of such unique geo-locations in the travel request data.
Hence, the first step for understanding the demand patterns is
to reduce the dimension of the locations by grouping/clustering
together origin-destination locations to create meaningful and
compact origin-destination zones. In this work, we use the
well-known k-means algorithm described in [12] for the clus-
tering.

Given a set of d-dimensional geo-locations (x1, x2, ...xn),
the k-means clustering aims at grouping the n observations
into k zones (Z1, Z2, ...Zk) that minimizes certain criteria. The
minimization criteria is the within-cluster distance between the
points in the zone i to the its cluster centroid ci for a given k
defined as:

argmin

k∑
i=1

∑
x∈Zi

||x− ci||2 (1)

k centroids are randomly selected from the geo-locations
and then they are iteratively updated N times until the min-
imum criteria given in (1) is reached for a given k. These
centroids are considered optimal for that k. One of the main
disadvantage of using k-means or any unsupervised clustering
is that the number of clusters k needs to be supplied as a
parameter. In this study, we use four metrics proposed in [13]
to quantitatively compute the optimal k to ensure creating
compact and meaningful clusters. These are two distance
metrics - intra-distance dintra and inter-distance dinter; and
two flow metrics - intra-flow qintra and inter-flow qinter.

Compact clusters can be created by using the distance met-
rics by minimizing the distance between the cluster centroids
and the points in the cluster (dintra) as formulated in (2) while
maximizing the distance between centroids of different clusters
(dinter) as defined in (3).

dintra =

k∑
i=1

∑
x∈Zi

d(x, ci) (2)

where d(x, ci) is the geodesic distance between a geo-location
x in zone Zi and the centroid ci of the same zone.

dinter =

k∑
i=1

k∑
j=1

d(ci, cj) (3)

where d(ci, cj) is the geodesic distance between centroid ci
of zone Zi and centroid cj of zone Zj .

Another important metric considered for finding the optimal
k is the flow metric. In this work, instantaneous flow between
geo-locations x and y is defined as q(x, y, t, τ) and is the
number of trips that originates at location x with destination
at location y at time t for a given day τ . This can be derived
directly from the travel request data. Since the spatial cluster-
ing is for creating static zones, we only need to know the total
flow between different the k clusters and not the instantaneous
flow between geo-locations. The total flow between zone Zi
and Zj is defined as:

Q(i, j) =
∑
x∈Zi

∑
y∈Zj

T∑
t=1

D∑
τ=1

q(x, y, t, τ) (4)

where t ranges from [1, T ] corresponding to time [00 : 00, 24 :
00] and D is the total number of days available in the travel
request dataset. We consider two flow metrics - inter-cluster
flow qinter and intra-cluster flow qintra. The aim of using the
flow metric is to find optimal k that maximizes the inter-cluster
flow as defined in (6) and minimises the intra-cluster flow as
defined in (5) so as to create distinct clusters that have high
flow between the different zones than high flow just within
the zones.

qintra =

∑k
i=1Q(i, i)∑k

i=1

∑k
j=1Q(i, j)

(5)

where Q(i, i) is the flow that originates in zone Zi with
destination in zone Zi as well and Q(i, j) is the flow with
origin at zone Zi and destination at zone Zj .

qinter =

∑
i 6=j Q(i, j)∑k

i=1

∑k
j=1Q(i, j)

(6)

These four metrics related to spatial distance and flow are
computed for different k and then they are investigated to
select the final number of spatial zones k∗ for the dataset. The
entire process for estimating the k∗ is given in Algorithm 1.



Algorithm 1: Spatial Clustering

1 Function
Input : geo-locations x, number of zones k, number

of random centroids R, iterations N
Output: Centroids ck, labelled geo-locations x′

2 foreach K = 1 to k do
/* Perform k-means clustering */

3 foreach r = 1 to R do
4 foreach iter = 1 to N do
5 cKiter,r ← K random centroids from x
6 x′iter,r ← map x into these K centroids
7 erroriter,r← Eq:(1) for k = K

8 x′K ← x′iter,r, cK ← cKiter,r that minimizes
erroriter,r
/* Compute distance metric */

9 Compute dintraK , dinterK

/* Compute flow metric */
10 Compute qintraK , qinterK

11 x′ ← x′K , ck ← CK that
min(dintraK , qintraK ) & max(dinterK , qinterK )

B. OD matrix computation

With these static zones as the origins and destinations,
we can compute the OD matrix to represent the demand
of the network. Each cell in the OD matrix corresponds
to the number of trips started within a time period from a
particular origin to a particular destination for a given day.
The OD matrix can be used to understand where the demand
is produced and attracted with respect to the zones. Depending
on the application, the OD matrix can be computed at different
aggregation levels. In this work, we aggregate the OD matrix
at different levels - hourly and daily. The hourly OD matrix
Q(i, j, t) for all the days in the dataset at time t which ranges
from [00:00,24:00] in increments of one hour is defined as:

Q(i, j, t) =
∑
x∈Zi

∑
y∈Zj

∑
τ

q(x, y, t, τ) (7)

Thus, there are 24 k × k hourly OD matrices for the whole
dataset, where k is the number of spatial zones.

The daily OD matrix Q(i, j, τ) for day τ with time ranging
from [00:00,24:00] is defined as:

Q(i, j, τ) =
∑
x∈Zi

∑
y∈Zj

∑
t

q(x, y, t, τ) (8)

where τ determines the day. Thus, there are D k × k daily
OD matrices for the whole dataset where D is the number of
days that have travel request data available.

C. Temporal clustering

For studying the demand dynamics of the spatial zones, we
use the vectorized form of the hourly and daily aggregated OD
matrices as feature vectors for the temporal clustering. The aim
of this is to study if regular patterns emerge for different time

periods of a day or different days. These insights can be used
for developing demand-oriented fleet management for different
time periods within a day and between days. In this work,
we use hierarchical agglomerative clustering for the temporal
clustering [14]. This is because of the power of such clustering
in revealing the distribution of the feature vectors in the form
of a dendrogram which can aid in determining the optimal
number of clusters as shown in [15]. Dendrogram is a tree
diagram illustrating the arrangement of the clusters [16]. The
hierarchy or distribution of the feature vectors is constructed
based on a dissimilarity metric between the feature vectors.
The dissimilarity metric used in this work is the city block
distance and the connectivity between any two d-dimensional
feature vectors, u, v is determined based on the city block
distance as:

d(u, v) =

d∑
i=1

|ui − vi| (9)

The temporal clustering is performed on both the hourly
and daily OD matrices separately. The k × k OD matrix
is vectorized to obtain one dimensional feature vector of
dimension k ∗ k for each hour and each day respectively.
Each feature vector is initialised as a single cluster and then
two clusters will be merged based on the dissimilarity metric
and this merging process continues until only one cluster
remains. The result of this merging can be illustrated using
the dendrogram which can be used to decide the number of
clusters.

For each cluster, we build a representative OD matrix
inorder to make the analysis informative and comprehensible.
The representative OD matrix of the cluster is the medoid of
all the OD matrices that belongs to the clusters defined as:

xmedoid = argmin
y∈{x1,x2,...,xn}

n∑
i=1

d(y, xi) (10)

where x1, x2, ...xn are a set of n feature vectors in a given
cluster with d-dimensional real vectors and d(y, xi) is the pair-
wise dissimilarity metric. A mediod is an object in the cluster
that minimizes the dissimilarity to all other objects in that
cluster. We considered the medoid instead of the centroid as
the medoid is an actual data point corresponding to an actual
demand.

III. EXPERIMENTAL SETUP

We demonstrate the three step approach on the open-source
Didi taxi data for the region of Chengdu, China. In this section,
we explain the Didi data, some descriptive statistics of the data
and define the parameter choices for the clustering and some
of the key metrics used to explain the clustering.

A. Data

The open-sourced Didi data is composed of 1 month
(November 2016) of travel requests data from a small area
in Chengdu, China, with approximately 200 000 rides for
a single day on average. Chengdu is a city that has been
gaining more economical importance over the years as it has



been rapidly developing and becoming a main hub for several
different industries [17]. Like many Chinese cities, Chengdu
has a large urban area of more than 1,700 km2. The capital of
the Sichuan province currently has a population of almost 11.5
million inhabitants, and a population density of 6,500 people
per km2 [18].

The travel request data obtained from the GAIA initative of
Didi Chuxing [19] is used in this paper. The ride request data
is available for all rides started in November 2016 which have
at least one Global Positioning System (GPS) point within a
specified area of Chengdu as shown in Figure 2. Some of
the origin and destination points in the travel request data
are outside this specified area. However, the travel requests
outside the specified GPS trace area is not complete, hence
there is a inherent bias in the data which might be reflected in
the demand patterns as well. The travel request data includes
the origin point (pick-up location), destination point (drop-off
location), ride start time and ride end time. The trip route
data which contains the GPS traces are included separately,
however that data is not used in this study.

Fig. 2: Spatial plot of the first 25000 rides from the DiDi data
with origins, destinations and GPS traces. The real size of the
plot is about 76.7 x 88.7 km (width x height) and the rectangle
with the GPS traces is about 8.3 x 8.1 km (width x height).

The dataset is cleaned by removing the orders that are
repeated with the same order ID, which is approximately 15%
of the requests. Our assumption is that the duplicated requests
correspond to multiple passengers per ride or ride-sharing and
these are not considered within this study. Also, some outliers
(126 rides) with geodesic trip distance higher than 400 km are
removed. The cleaned dataset contains 6,104,877 unique rides
for 30 days of November 2016.

B. Descriptive statistics

For understanding the dynamics of the specified area, the
following descriptive statistics are considered of the travel
requests:
• temporal distribution over the day,
• geodesic distance of the trip, and
• trip travel time.
From Figure 3, it can be seen that the temporal distri-

bution of the travel request data over the day binned with

different time periods is relatively stable between 09:00-21:00.
In comparison to traditional modalities, there is no distinct
morning and evening peaks. The morning peak peaks between
09:00-09:30, which is quite late in comparison to traditional
modalities. Here, those traditional rush hour peaks are less
pronounced, while the highest peak is between 13:30 to 14:00
implying an afternoon peak.

Fig. 3: Distribution of the travel requests over different time
periods, in the range (0, 24) [h]

Figure 4 shows the distribution of geodesic distances of each
travel request and it shows that the service is mainly used for
rides shorter than 10 km. The peak is between 3-4 km. The
average geodesic distance is 6.44 km and the median is 5.28
km.

Fig. 4: Distribution of the travel requests based on the
geeodesic distance of the each trip, in the range (0, 25) [km]

The histogram of travel times in Figure 5 shows that most
rides are between 5-35 minutes. The peak is between 10-20
minutes. The average ride duration is 22.12 minutes and the
median is 19.28 minutes.

Fig. 5: Distribution of the travel requests based on the ride
duration, in the range (0, 75) [minutes]

The distance and travel time distributions follow a positive
skewed bell shape, meaning the mass is in the shorter rides.
Thus, it can be said that Didi is mainly be used for short rides
with an average geodesic distance of 6.44km and an average
ride duration of 22.12 minutes.



C. Parameters choices

There is a couple of parameters that needs to be set for the
different algorithms involved in the three step approach. First,
for the spatial clustering, we ran the algorithm for different
number of clusters ranging from 5 to 100. An optimal number
of clusters is chosen based on the different defined metrics
within these range of clusters. For the k-means itself, there are
two key parameters - the number of initial centroids which is
set to 10 in this work and maximum number of iterations is
set to 300. The maximum number of iterations is an additional
stopping convergence criteria for the k-means clustering.

For the temporal clustering, we set mainly two parameters
for the hierarchical agglomerative clustering - the connectivity
method and the distance metric. The connectivity method used
is average and the distance metric is the city block distance
which uses the sum of the absolute difference between all OD-
pairs of different OD-matrices. The optimal number of clusters
is chosen based on the insights gained from the dendrogram.

IV. RESULTS

In this section, we report the results of the spatial cluster-
ing and analyse the resulting zones and their corresponding
descriptive statistics. The result of the temporal clustering of
different time periods and days are illustrated using the tree
diagram - dendrogram and the resulting clusters are analysed
to infer the type of demand each of these clusters represents.

A. Spatial clustering

We performed a sensitivity of number of clusters on the
spatial clustering based on four metrics - two distance metrics
(dintra, dinter) and two flow metrics (qintra, qinter). The
results of these four metrics for varying number of clusters
are shown in Figure 6. Both intra distance and intra flow
is a decreasing function with the first increments dropping
rapidly with the number of clusters and then decreasing at
a slower pace for larger number of clusters. This was to be
expected as the number of clusters increases, each cluster is
composed of less elements but with less dissimilarity in terms
of distance and flow while the total flow remains constant. The
property for the inter distance and inter flow is an increasing
function with the dissimilarity between the clusters increasing
with higher number of clusters as shown in Figure 6.

The optimal number of clusters would ideally have large
dissimilarity between clusters (high inter distance and inter
flow) and small dissimilarity within clusters (low intra distance
and intra flow). This implies a larger number of clusters as
evident from the continously increasing and decreasing func-
tions of the metrics. However, with large number of clusters,
the clusters become less interpretable and more complex.
Hence, there needs to be a trade-off between complexity
and optimization. Based on these metrics and considering the
trade-off, the number of clusters is chosen as 50 as they are a
comprehensible number of zones and after around 40 clusters,
the rate at which the metrics increases or decreases have
started becoming more stable. This results in the 50 spatial
zones as shown in Figure 7.

(a)

(b)

Fig. 6: (a) Intra and inter distance (b) Intra and inter flow for 5
to 100 clusters. Each clustering is achieved with 300 iterations
and 10 random centroid seeds.

Fig. 7: 50 zones obtained after the spatial clustering

A look at the number of rides for different zones shows that
there is around 500,000 rides per month in the center whereas
the number of rides in the outer zones are in the range of
100,000 rides or less. A breakdown of these rides into rides
that originates from a zone (production) or have it as the ride
destination (attraction) is shown in Figure 8. There is large



variation between the center and the outer zones indicated by
the large color differences between the different zones. The
center zones with the small spatial dimension has a much
higher number of rides in comparison to the neighbouring
zones.

(a)

(b)

Fig. 8: (a) Number of arrivals per zone or Attraction (b)
Number of departures per zone or Production; for the month
of November 2016.

This is also clearly evident from the cumulative density
functions (CDF) of the production and attraction given in
Figure 9. Both production and attraction shows similar cdf
plots. The differences between the zones with less rides and
zones with more rides is large. 20% of the zones have less than
10,000 departures or arrivals in the month of November while
the top 20% has more than 200,000 departures or arrivals.

Fig. 9: CDF of production and attraction of the 50 zones

From the Figure 8, the production and attraction volumes
seems proportionally correlated with each other in all respec-
tive zones. However, a closer look at the actual differences

between productions and attractions in Figure 10 shows more
spatial variability. This is further evident from Figure 11 which
shows the relative share of arrivals in the different zones, i.e,
number of arrivals divided by the total number of arrivals
and departures in that zone (total flow). High value implies
a surplus of arrivals while a low value implies deficit.

Fig. 10: Difference between number of arrivals and departures
per zone.

From the Figure 11, it can be seen that the ride-sourcing
services are used more frequently to travel away from the
center than towards the center. Although there are a few zones
in the center that have much more arrivals than departures.
This might be attributed to different mode choices for trips
made in opposite directions. However, this requires further
research and additional data sources.

Fig. 11: Share of arrivals in relation to the total flow of the
zone.

This can also be observed from the cdf of the relative share
of arrivals of all the zones shown in Figure 12. 60% of the
zones have more attraction than production. This means that
on average the zones with more attraction than production
have less rides in comparison to zones with more production
than attraction. In other words, zones with more rides have on
average more production and zones with less rides have more
attraction.

B. Temporal clustering

In this section, the results of the temporal clustering are
analyzed using the dendrogram for both different time periods



Fig. 12: CDF of the share of arrivals in a zone relative to the
total flow in the zone

and different days. Then the different clusters are analysed and
labelled according to the demand it represents.

Figure 13 shows the dendrogram of the temporal clustering
based on the hourly OD matrices. Since, we considered
increments of one hour for the aggregation in the methodology,
there are 24 OD matrices and hence 24 leaves in the dendro-
gram. There are clearly well-defined clusters with similar time
periods grouped together. We chose the number of clusters as
5 as it is a comprehensible number of clusters. We can merge
or further divide the clusters based on the insights we gain
from these clusters.

Fig. 13: Dendrogram of the temporal clustering based on the
hour of the day

The classes in the dendrogram are numbered from left
to right from 1 to 5. The cluster sizes for clusters 1 to 5
are 6,9,1,1 and 7 respectively. There are three large classes
and two single cluster classes. Within the large clusters,
the distance between the feature vectors differs a lot. This
means that within a cluster, some feature vectors have high
dissimilarity index whereas others are more similar. A more
in-depth look at each cluster and their corresponding medoid
is given in Figure 14.

By looking at the distribution of the hours in each cluster
in Figure 14, we have labelled each cluster as follows:

• Cluster 1 : Evening peak hours starting around 17:00 to
23:00 with high demand and passengers movement from
the center towards the neighbouring areas.

Fig. 14: Medoid and distribution of days in each cluster for
temporal clustering based on hourly OD matrix.

• Cluster 2 : Morning peak hours starting around 08:00
to 17:00 with high demand and passengers move towards
the center and a little towards the outer areas from the
neighbouring areas.

• Cluster 3 : Off peak hours starting around 00:00 to 07:00
with low demand where passengers move from center
towards the outside.

• Cluster 4 : Transition hour starting around 23:00 to
00:00 is a distinct hour between the evening peak and the
off peak where passengers move from the center towards
the outside.

• Cluster 5 : Transition hour starting around 07:00 to
08:00 is the distinct hour between the off peak and the
morning peak where passengers strongly move towards
the center and a little towards the outer areas from the
neighbouring areas

There are clear distinct clusters that represents the demand for
the different time periods of the day with the demand lowest
during the night (cluster 3) followed by the transition periods
before and after the night (cluster 4 and 5) and the demand is
highest during the day (cluster 1 and 2).



For the temporal clustering for different days, the dendro-
gram is shown in Figure 15. We chose the number of clusters
as 5 for this case as well. The difference between different
clusters is comparable to the differences between the different
feature vectors within a cluster. There are one large cluster,
three small clusters and one single cluster. The large class
contains 60% of the days.

Fig. 15: Dendrogram of the temporal clustering based on the
daily patterns

Based the distribution of the days in each cluster and their
corresponding medoid shown in Figure 16, the clusters were
labelled as follows:

• Cluster 1 : Monday to Thursday
• Cluster 2 : Friday
• Cluster 3 : Saturday
• Cluster 4 : Sunday
• Cluster 5 : Special Sunday
There is clear division between the demand for different

days. There are distinct weekday and weekend patterns. The
weekday patterns are further divided with two distinct groups
of Monday to Thursday together with demand on Friday differ-
ent from the normal weekdays. There is also clear distinction
between the weekends. All Saturdays in the one month of
data are clustered together and the Sundays as well expect
one Sunday. Our assumption is that this is a special day given
it is being clustered in a group of its own. However, additional
information and data is needed to validate this hypothesis. All
clusters show similar demand pattern with deficit in the center
and surplus in the outer areas with the difference being in the
amount of rides for the different days.

V. CONCLUSION

The results of our clustering analysis suggest that there are
pronounced recurrent and thus predictable demand patterns for
ride-sourcing services. We find that, differently from demand
for private car and public transport, the overall service usage
is stable over the day from 09:00 to 21:00 with minor morning
and evening peaks and a global peak around 13.30 in the
afternoon. The service is mostly used for geodesic distances
shorter than 10 km and the typical ride duration is less than
30 minutes. Spatial clustering using the metric inertia resulted
in usable zones for further research yielding distinctive types

Fig. 16: Medoid and distribution of days in each cluster for
temporal clustering based on daily OD matrix.

of zones radiating from the center with increasingly larger ge-
ographical area yet lower overall demand level. Ride-sourcing
services are mostly used to move either within central zones or
from the center to outer neighborhoods (rather than travelling
into the center, with the exception of late night hours).

The results of the temporal clustering indicate that the
time of the day is most decisive in which class a OD-matrix
fits although noticeable differences between weekdays and
weekends and recurrent weekly patterns are also manifested.
Interestingly, transition hours between the night and morning
periods as well as between evening and night periods exhibit
a distinctive pattern which differs from the periods preceding
and proceeding them. A caveat related to the dataset used is
that it contains only orders that have a GPS trace within a
pre-defined area, hence under-representing flows within and
between outer zones.

While the approach and techniques adopted in this study
can be transferred to other contexts and locations, the results
of this study are not directly transferable. The dataset pertains
to a single month and city. Seasonal variations can thus not be



identified. Another direction for future research is to examine
the relation with the service offered by alternative modes,
primarily the privately owned car and fixed public transport
and their impact on the demand for ride-sourcing services.
Also, the clustering could be done taking into account the
relative differences between OD-matrices instead of only using
the absolute differences. This could give more insights in travel
patterns in the city.

The insights gained in this study can aid in developing
demand-oriented fleet management for different time periods
within a day and between days. Using demand-anticipatory
dispatching and rebalancing strategies could improve the ser-
vice performance as well as the level-of-service by reducing
operational costs and shorten waiting times.
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