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ABSTRACT   
 
Helical wires are a type of structure winding around on an underneath 
layer in flexible structures. They constitute a structure layer that 
provides mechanical protection and sufficient flexibility. The cross 
section of a helical wire could differ from round to rectangular. The 
curvature increments of a helical wire on a bent flexible structure can 
be influenced by the cross section shape due to the contact restriction 
from the neighbouring layer. The shape effect causes a different  
mechanical behaviour of the wire itself. However, this effect is not 
fully understood up till now. This paper mainly investigates the 
curvature increments of helical wires with rectangular and round cross  
section by using numerical method. This model takes advantage of the 
properties belonging to solid elements and beam elements by 
embedding the latter into the former. The solid element is able to retain 
the geometry detail of the cross section as much as possible in order to 
get deep insight of the shape effect. The beam element based on 
Timoshenko beam theory with well defined Frenet-Serret frames  can 
accurately output the curvature increments in three local directions. 
Then widly-used analytical models are presented and deployed to 
verify the numerical results. The research results show the application 
condition of the analytical expressions and benefit the 
cable/umbilical/flexible pipe designers. 
 
KEY WORDS:  cross section shape; helical wires; flexible structures; 
curvature; FEM 
 
INTRODUCTION 
 
Helical wires have played a key role in flexible structures such as 
flexible pipes, umbilicals and submarine power cables(Sævik, 1992, 
Witz and Tan, 1995, Fang et al., 2021). They usually serve as a 
structural layer to protect the inner layers from mechanical failure and 
meanwhile provide certain flexible property so that the flexible 
structure is able to bend to an aimed curvature. Even though they have 
been widely and extensively used in flexible structures for a long 
history, and helical wires can also date back to helical ropes that tons of 
studies have been put into(Raoof and Kraincanic, 1995, Wang et al.,  
2015, de Menezes and Marczak, 2021), their structural behaviour is still 
not clear to engineers, especially when the flexible structure is under 

bending, due to not only their complex geometry configuration, but  
also the contact between them and their neighbouring layers. 
In order to investigate the structural responses of helical wires, 
analytical method was firstly used and the analytical formulas have 
been evolved all the time. A systematic study about the helical wires  
used in helical ropes can be traced back to the literature(Costello, 
1997). Differential geometry is the fundamental for the derivation of 
the constitutive equation of helical wires under different loadings. 
Frenet-Serret frames or Darboux Frames are defined on helical wires as  
local coordinate system so that the structural responses in the local 
frame can be obtained. As the analytical models simplify helical wires  
as beam element, they are unable to consider the effect of cross section 
shape. More specifically, for example, the contact situation between a 
helical wire and its neighbouring underneath layer is different for a 
cross section with rectangular and circular due to the cross section twist 
restriction from the rectangular. However, this difference is unable to 
be reflected by a beam wire. Therefore, for the case of a wire on an 
underneath layer, no matter it is a round or rectangular shape, the slip 
path of the wire is usually treated as two ways(Dai et al., 2017): the 
loxodromic and geodesic slip path. The former one assumes the wire 
sticks on its neighbouring layers during bending without transverse 
slip, thus could cause a curvature change in this direction. The geodesic 
slip path, instead, is defined as the shortest path between the intrados 
and extrados on the neighbouring cylinder, thus causing a transverse 
slip and there is no curvature change in this direction. Based on either 
one of the two assumptions regarding helical wires on the underneath 
layer, the kinematic configuration is determined. However, it is found 
in fact the slip path of a helical wire in the real situation is somewhere 
between loxodromic and geodesic path. 
In order to consider the effect of cross section shape on the slip path, 
another popular approach that can be used to determine the structure 
behaviour of helical wires is numerical method. Although this method 
is not as efficient as analytical methods during the calculation process, 
it provides a good tool to capture the slip behaviour among the contact 
interfaces numerically without making assumption about the slip path. 
On the other hand, unlike that an analytical method is especially 
derived for helical wires with certain type of cross section, a numerical 
method can be used for helical wires with different types of cross 
section, requiring only a few revision to the numerical model. Many 
previous scholars have put much effort into the study of helical wires, 
no matter it is about all the helical wires on a full cross  
section(Lukassen et al., 2019), or a helical wire on the underneath 
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layer(Dong et al., 2019). In the open literature, the study is usually 
focused on helical wires with rectangular cross section because this  
type of cross section is more observed in flexible structures. However, 
there is also round cross section being used, especially in submarine 
power cables, and there is neither enough study about it nor comparison 
research about these two types of cross section shape. Therefore, the 
structural behaviour of these two types of cross section shape is not 
fully understood yet. 
In this paper, finite element method (FEM) is used to deal with the 
mechanical behaviour of helical wires with rectangular and round cross  
section. Then the influence of cross section shape is discussed based on 
the obtained results. The obtained conclusions will benefit the 
practitioner and scholars who are studying the mechanical behaviour of 
flexible structures with helical wires. 
 
FINITE ELEMENT MODEL 
 
The aim of this paper is to study the mechanical behaviour of helical 
wires in a  bent flexible structure. Due to the periodic behaviour of the 
helical wires, only a single wire is built with an underneath layer to 
facilitate the simulation process. The finite element simulation is  
performed with the software package ABAQUS(Abaqus, 2014) and the 
final model is shown in Fig. 1. Noteworthy there are three components 
in Fig. 1 whereas only two are observed. This is because a beam wire is  
embedded inside the solid helical wire. The beam wire has a very low 
Young’s modulus, which contributes almost nothing to the structural 
response of the overall structure and only serves as a  medium to output 
the curvature change of the solid helical wire. 
The simulation includes two types of cross section shapes of the helical 
wire: rectangular and round. Their geometry parameters are given in 
Section 4 in detail. The radius of the helical wire cross section is  
determined according to the area equivalence to the rectangular wire. 

 
Fig. 1 The single wire finite element model  

 
Fig. 2 Helical wire on a cylinder 
 
Load and boundary conditions 
 
In order to reach constant curvature over the structure, a set of 
reference points (RPs) are built on the centreline, as shown in Fig. 3. 
Each RP is coupled to its corresponding cross section by means of 

kinematic coupling constraints with regard to all the degree of 
freedoms (DOFs). In this way, the movements of each cross section  
are controlled through the RPs. Meantime, the cross section is restricted 
in the radial direction, which means there is no radial deformation and 
therefore is corresponding to the assumption in analytical models. 
The cross section in the middle along the centreline is the symmetric 
plane of the structure when it is under bending, therefore, the RP in the 
middle is totally fixed to avoid rigid body motion. Since the bending is  
symmetric about the middle plane, only half of the structure is 
discussed here. Taking the right part as an example, except the RP in 
the middle, the other RPs are sorted into two types: master RP on the 
most right and slave RPs for the left, as shown in Fig. 4. The slave RPs  
move in certain rules according to the master RP. 
Two steps are applied for the model: a tension step and a bending step. 
The followed tension forces are applied on the most left and most right  
RPs, as illustrated by Fig. 4. The DOFs of the master RP and slave RPs  
on the right side are given in Table 1. Notice there is a bending angle in 
the X direction and a displacement in the Y direction on the master RP, 
the movement of the s lave RPs are obtained through nonlinear multi-
point constraint MPC ABAQUS user subroutines. According to Diehl 
(Diehl, 1993) and Abaqus (Abaqus, 2014), for ABAQUS to process an 
user-defined MPC, three components are supposed to be supplied: 
a. A matrix of DOF identifiers, JDOF(MDOF,N). 
b. Matrices representing derivatives of the constraint function 
regarding the nodal DOFs. 
c. The values of the dependent DOFs based on the independent 
DOF values. 
 
Table 1 Boundary conditions of the right  half-structure 

 Master RP  Slave RPs  
 Step 1 Step 2 Step 1 Step 2 
U1 0 0 0 0 
U2 0 M

yu  0 - 
U3 - - - - 

UR1 0 M
xϕ  0 - 

UR2 0 0 0 0 
UR3 - - - - 

• 0 means the corresponding DOF is fixed, whereas – means  

the corresponding DOF is free. M
yu  and M

xϕ  will be 
explained below. 

 
In the case over here, U2 and UR1 of the slave RPs are determined by 
the master RP. At first, the bending radius can be expressed as: 
 

M M

( , , ; ) z z
B M

x

X uF x y z t R
ϕ
+

= =  (1) 

Where X, u and ϕ  are the initial coordinate, displacement and rotation 
angle, respectively. The superscript M denotes master RP while the 
subscripts mean the coordinate axes. Then the displacement of the 
master RP in the Y direction is: 
 

M M M M
1( , ) (1 cos ) 0y x y B xf u u Rϕ ϕ= − − =

 
(2) 

 
Then the movement of the slave RPs can be calculated according to the 
maser RP’s displacement and the movement of the RPs are: 

S
S M

M
z

x x
z

X
X

ϕ ϕ=
 

(3) 
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S S(1 cos )y B xu R ϕ= −  (4) 
S S Ssinz x zu R Xϕ= +  (5) 

Where the superscript S denotes the slave node. Again, Eq. (3), Eq. (4)  
and Eq. (5) can be rewritten according to the form of the user 
subroutine MPC: 

S
S M S M

1 M( , ) 0z
x x x x

z

Xf
X

ϕ ϕ ϕ ϕ= − =
 

(6) 

S M M S S
2 ( , , ) (1 cos ) 0y z x y B xf u u u Rϕ ϕ= − − =  (7) 

S M M S S S
3 ( , , ) sin 0z z x z x zf u u u R Xϕ ϕ= − − =  (8) 

 
By inputting the partial derivatives of the constraint functions involving 
corresponding DOFs into the ABAQUS subroutine, a constant 
curvature can be achieved. 

 
Fig. 3 Illustration of the RPs 
 

 
Fig. 4 Illustration of master and slave RPs 
 
Mesh and interaction 
 
The underneath core layer is simplified by using shell element in order 
to decrease the computation resource. Meantime, radial deformation is  
disregarded in analytical models and shell element in FEM 
significantly decrease the effect of radial deformation of the underneath 
layer. Then solid element and beam element are selected for the solid 
helical wire and beam helical wire, respectively. The final mesh of the 
structure is shown in Fig. 5 where there are in total 250 elements along 
the pipe axial direction. An 8-node linear brick, reduced integration, 
hourglass control (C3D8R) element is assigned for the solid wire, A 2-
node linear beam in space (B31) element based on Timoshenko beam 
theory is assigned for the beam wire and A 4-node doubly curved thin 
or thick shell, reduced integration, hourglass control, finite membrane 
strains (S4R) element is assigned for the underneath core. Local 
coordinate frame is assigned on the beam wire, as illustrated in Fig. 6 
where 1 is the normal direction, 2 the transverse direction and 3 the 
torsion direction.  
The interaction between the underneath layer and the solid wire is 
simulated as surface-to-surface contact with a contact stiffness of 2000 
N/mm3 (Lukassen et al., 2019) and a friction coefficient of 0.2. In 
addition, the beam wire is put along the centre point of all the cross 
sections of the solid wire and tied together with the solid wire so that it 
can output the curvature change of the wire. 

Dynamic implicit algorithm is applied in the simulation and after the 
calculation, the energy ratio between Kinetic Energy for Whole Model 
(ALLKE) and Total Strain Energy for Whole Model (ALLSE) need to 
be checked before analyzing the results since a quasi-static status 
should be obtained. As a general rule, ALLKE should range in a small 
fraction(typically 5% to 10%) of ALLIE throughout most of the 
process (Abaqus, 2014). 
 
 

 

 
Fig. 5 Mesh of the structure 
 

 
Fig. 6 Local coordinate frame for the beam wire 
 
 
ANALYTICAL MODEL 
 
The analytical model is used to predict the curvature increment of 
helical wires on a bent structure, and then the results are used to verify 
the numerical results. (Dong et al., 2019) derive general expressions 
based on the generalized Frenet-Serret equations and then degenerate 
them to the same expressions given by the previous scholars by 
ignoring a few high-order items. Four of the most common equations  
for the curvatures in the three directions are summarized as follows: 
Analytical model 1: (LeClair and Costello, 1988) 

1 0 0sin cos cosκ κ α α θ∆ =  
 (9) 
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2 0sin sinκ κ α θ∆ =  
 (10) 

2
3 0cos cosκ κ α θ∆ =  

 (11) 
 
Analytical model 2: (Sathikh, 1990, Huang and Vinogradov, 1994) 

1 0 0sin cos cosκ κ α α θ∆ =  (12) 
2

2 0 0sin cos sinκ κ α α θ∆ =  (13) 
2

3 0cos cosκ κ α θ∆ =  (14) 
Analytical model 3: (Sævik, 1993, Sævik, 2011, Sævik, 1992, Sathikh 
et al., 2000, Skeie et al., 2012) 

3
1 0 0sin cos cosκ κ α α θ∆ =  (15) 

2
2 0 0(1 sin )cos sinκ κ α α θ∆ = +  (16) 

4
3 0cos cosκ κ α θ∆ =  (17) 

Analytical model 4: (Pesce et al., 2010, Sævik and Li, 2013) 
3

1 0 02 sin cos cosκ κ α α θ∆ =  (18) 
2

2 0 0(1 sin )cos sinκ κ α α θ∆ = +  (19) 
2

3 0 0cos cos 2 cosκ κ α α θ∆ =  (20) 
It can be observed from the above expressions that the parameters 
influencing the curvature change 1κ∆ , 2κ∆  and 3κ∆  in three 

directions include pipe bending curvature  κ , the winding angle 0α  
and the angle θ  used to represent the wire location, as shown in Fig. 2. 
The fourth classical analytical models will be used to compare with the 
FE results. 
 
CASE STUDY 
 
Sections 2 and Section 3 discusses FE model and presents the classical 
analytical models, respectively. This part will use the FE model and 
analytical models to investigate the difference of helical wires with 
rectangular and round cross sections. 
 
Cross section and material properties 
 
For the case study here, there are two types of cross section shapes: 
rectangular and round, as shown in Fig. 7. The magnitudes of the areas  
of these two types of cross section are the same. The rectangular cross  
section has a thickness of 5 mm and width of 12.5 mm. The round cross  
section has a diameter of 8.92 mm and the other parameters are the 
same as the rectangular wire. The length of the model is 7144 mm, the 
length of four pitches. The material properties of the three components 
constituting the structure are listed in Table 2. Totally, 8 cases are 
studied in this paper in which Case 1-4 are for rectangular helical wire 
and Case 5-8 are for round helical wire. They are given in detail in 
Table 3. Again, the tension load is applied at first before the bending. A 
curvature of 6e-3/m is applied on the flexible structure. This is realized 

by applying corresponding angle M
xϕ  and displacement M

yu  on the 
master reference point, like the boundary condition in Table 1. 
 

  
(a) (b) 

Fig. 7 Model with rectangular (a) and round (b) wire cross section 
 
 
 
 
 
 
Table 2 Geometry information of the simulation structure with 
rectangular wire 

Component Geometry 
Outer 

diameter 
(mm) 

Materials 

Underneath 
layer Thickness = 0.1mm 258 

E = 2.1e5 MPa 
Poisson’s ratio 
= 0.35 

Solid wire Winding angle = 24.8 
deg 268 

E = 2.1e5 MPa 
Poisson’s ratio 
= 0.3 

Beam wire Circular cross section 
(r = 0.1 mm) 263 

E = 10 MPa 
Poisson’s ratio 
= 0.3 

 
Table 3 Details of the 8 cases 
Cases No. Case description (Unit: N) 
Case 1 Round, tension = 0 
Case 2 Round, tension = 50 
Case 3 Round, tension = 500 
Case 4 Round, tension = 5000 
Case 5 Rectangular, tension = 0 
Case 6 Rectangular, tension = 50 
Case 7 Rectangular, tension = 500 
Case 8 Rectangular, tension = 5000 
 
Results and Discussions 
 
The curvature increments in three directions along with the wire 
distance regarding Case 1 to Case 4 are shown in Fig. 8-10. 
Noteworthy, only one pitch of the helical wire in the middle along the 
axis of the structure is picked up to generate the curvature increment in 
order to get rid of the boundary effect. It can be observed that the 
curvatures in the three directions overlap with each other quite well no 
matter how much the tension is applied, and the curves are symmetric 
about the horizontal 0 axis, which means the curvature increment is  
symmetric about the bending plane. This is due to the free movement  
of the round cross section where there is no redundant contact 
restriction in the torsion direction. 
The comparisons of the three curvature increments of the analytical 
model 4 and FEM results are shown in Fig. 11-13. The agreement  
between these two methods regarding the round shape wire are quite 
good in general.  The largest differences between the analytical model 
and the FE model appear at the extrados and the intrados, i.e., where v 
= 180 deg and v = 360 deg, respectively.  This area contains the highest 
error of normal curvature of 19%. The given analytical model is found 
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to be able to predict the curvature increment of most wire area for 
round helical wire. 
 

 
Fig. 8 Normal curvature increment along with the circumferential wire 

location 

 
Fig. 9 Transverse curvature increment along with the circumferential 
wire location 

 
Fig. 10 Torsion increment along with the circumferential wire location 

 
Fig. 11 Normal curvature increment for the round wire under analytical 
model and FE model 

 
Fig. 12 Transverse curvature increment for the round wire under 
analytical model and FE model 

 
Fig. 13 Torsion increment for the round wire under analytical model 
and FE model 
 
The curvature increments for the rectangular shape wire, i.e., Case 5 to 
Case 8, are given in Fig. 14-16. It can be observed from the three 
images that, unlike the round shape wire, normal curvature increment  
and torsion curvature increment of the rectangular shape wire are 
affected much by the tension. There is an error near 13% and 114% for 
these two curvatures when the wire is located at the extrados. The 
transverse curvature increment, on the contrary, is hardly affected by 
the applied tension. When the tension force is less equal to 500 N, the 
curves basically symmetric about the 0 horizontal axis, illustrating the 
curvature change is symmetric about the bending plane. However, 
when the tension is increased to 5000 N, the wire near the extrados has  
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higher absolute value regarding the normal curvature and torsion 
curvature. 

 
Fig. 14 Normal curvature increment along with the circumferential wire 
location 
 

 
Fig. 15 Transverse curvature increment along with the circumferential 
wire location 
 

 
Fig. 16 Torsion increment along with the circumferential wire location 
 
The curvatures from Case 5 are also extracted out to compare with the 
analytical model 4. They are shown in Fig. 17-19. It can be observed 
that there is a big discrepancy regarding the three curvatures from the 
analytical and FE models. The reason could be caused by the cross 
section of the rectangular wire that restrict the rotation around its own 
axis. This restriction makes the torsion increment much less than that 
predicted by the analytical model. Meanwhile, rectangular is not able to 

move transversely totally free. This also causes the transverse curvature 
from the FE model less than that from the analytical model. On the 
other hand, the normal curvature increment from FE model is observed 
to be higher than that in the analytical model. The results show that 
cross section shape of a wire needs to be carefully considered while 
doing the analytical study. The derivation of analytical models in the 
previous study did not consider this point, causing the difference 
between the analytical model and FE model. 

 
Fig. 17 Normal curvature increment for the rectangular wire under 
analytical model and FE model 

 
Fig. 18 Transverse curvature increment for the rectangular wire under 
analytical model and FE model 
 

 
Fig. 19 Torsion increment for the rectangular wire under analytical 
model and FE model 
 
CONCLUSIONS 
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In this study, an FE model under constant bending curvature is  
proposed to study the cross section shape effect on the structural 
behavior of a wire. The FE model takes advantage of the solid element 
that can represent the geometry detail, and meanwhile exploits the 
beam element with well defined Frenet-Serret frames that is able to 
output the curvature increments in local directions. The differences of 
helical wires between rectangular and round cross sections are studied 
and discussed. A few findings are concluded below: 
 
1) The normal and torsion curvatures of wires with rectangular 
cross section can be affected by tension, with a largest error of 114%, 
while the counterparts of wire with round cross section are hardly 
affected by tension.  
2) Tension force can cause the curvature unsymmetrical about 
the neutral plane of the flexible structure. The value in the tension part 
is higher than that in the compressive part. 
3) The previous analytical models can be applied on the helical 
wires with round cross section, causing acceptable error in most of the 
wire area. However, the analytical models do not fit the helical wires  
with rectangular cross section. There could be a three times of 
difference between the analytical and numerical results. This could be 
caused by the slip assumptions during analytical derivation. 
 
Helical wires as key components inside flexible structures protect the 
inner layers and provide enough flexibility, their mechanical behaviour 
always attracts much attention. This paper probes into the difference of 
helical wires with different cross section and discovers that previous 
analytical expressions might not be able to predict the curvature change 
of helical wire with rectangular cross section appropriately. Numerical 
method using solid elements that considers the geometry detail of a 
wire is highly recommended during the prediction. Practitioners and 
engineers should be more cautious when the analytical expressions are 
applied to predict the curvature increment. 
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