
 
 

Delft University of Technology

Fast particle-mesh code for Milgromian dynamics

Visser, P.M.; Eijt, S.W.H.; de Nijs, J.V.

DOI
10.1051/0004-6361/202347830
Publication date
2024
Document Version
Final published version
Published in
Astronomy & Astrophysics

Citation (APA)
Visser, P. M., Eijt, S. W. H., & de Nijs, J. V. (2024). Fast particle-mesh code for Milgromian dynamics.
Astronomy & Astrophysics, 681, Article A90. https://doi.org/10.1051/0004-6361/202347830

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1051/0004-6361/202347830
https://doi.org/10.1051/0004-6361/202347830


Astronomy
&Astrophysics

A&A, 681, A90 (2024)
https://doi.org/10.1051/0004-6361/202347830
© The Authors 2024

Fast particle-mesh code for Milgromian dynamics
P. M. Visser1, S. W. H. Eijt2, and J. V. de Nijs1,2

1 Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
e-mail: p.m.visser@tudelft.nl

2 Department of Radiation Science and Technology, Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft,
The Netherlands

Received 30 August 2023 / Accepted 3 October 2023

ABSTRACT

Context. Modified Newtonian dynamics (MOND) is a promising alternative to dark matter. To further test the theory, there is a need for
fluid- and particle-dynamics simulations. The force in MOND is not a direct particle-particle interaction, but derives from a potential
for which a nonlinear partial differential equation (PDE) needs to be solved. Normally, this makes the problem of simulating dynamical
evolution computationally expensive.
Aims. We intend to develop a fast particle-mesh (PM) code for MOND (the AQUAL formalism).
Methods. We transformed the nonlinear equation for MOND into a system of linear PDEs plus one algebraic equation. An iterative
scheme with the fast Fourier transform (FFT) produces successively better numerical approximations.
Results. The algorithm was tested for dynamical systems in MOND where analytical solutions are known: the two-body problem, a
body with a circular ring, and a spherical distribution of particles in thermal equilibrium in the self-consistent potential.
Conclusions. The PM code can accurately calculate the forces at subpixel scale and reproduces the analytical solutions. Four iterations
are required for the potential, but when the spatial steps are small compared to the kernel width, one iteration is suffices. The use of a
smoothing kernel for the accelerations is inevitable in order to eliminate the self-gravity of the point particles. Our PDE solver is 15 to
42 times as slow as a standard Poisson solver. However, the smoothing and particle propagation takes up most of the time above one
particle per 103 pixels. The FFTs, the smoothing, and the propagation part in the code can all be parallelized.

Key words. gravitation – methods: numerical – planets and satellites: dynamical evolution and stability –
galaxies: kinematics and dynamics – galaxies: clusters: general – dark matter

1. Introduction

If stars and galaxies move under Newtonian gravity, dark matter
is required to bind the stars to galaxies and galaxies in clus-
ters. There is ample evidence. The mass inferred from the stellar
velocities in clusters (with the virial equation; Zwicky 1933,
1937) and in galaxies (with Huygens’ equation; Rubin & Ford
1970; Rubin et al. 1980) is much higher than the mass of the
luminous matter. ΛCDM cosmology requires six times as much
matter as can be directly detected, hence, a large nonradiative
matter component must dominate the Universe.

Despite a search of over half a century, no dark matter par-
ticle has been directly detected, while the list of astronomical
observations that are difficult to explain with dark matter mod-
els has been growing: (i) The absence of cusps at galactic cores
(McGaugh et al. 2003; de Blok 2010); (ii) bar structures at galac-
tic cores (Chiba & Schönrich 2021; Roshan et al. 2021a,b);
(iii) the low number of galaxy satellites (Bullock 2013); (iv)
the absence of dynamical friction on galaxy satellites by its
dark matter halo (Angus et al. 2011; Kroupa 2015; Oehm et al.
2017); (v) the shape and central brightness of the Fornax clus-
ter (Asencio et al. 2022); (vi) the symmetry breaking of tidal
tails of open star clusters (Kroupa et al. 2022); (vii) galax-
ies without dark matter (Moreno et al. 2022; Comerón et al.
2023); (viii) the intracluster gas does not cool (Fabian 1994);
(ix) strong local lensing in galaxy clusters (Meneghetti et al.
2020); (x) the early formation of very large galaxies and clusters

(Asencio et al. 2020, 2023; Labbé et al. 2023); (xi) the Hubble
H0 tension and the S 8 tension occur in standard ΛCDM cos-
mology (Planck Collaboration VI 2020; Haslbauer et al. 2020;
Asgari et al. 2021; Riess et al. 2021); (xii) the violation of
the strong equivalence principle (Blanchet & Novak 2011; Chae
et al. 2020); (xiii) and the velocities in wide binary star systems
(Banik & Zhao 2018; Pittordis & Sutherland 2019; Chae 2023;
Hernandez 2023).

An alternative to dark matter is modified Newtonian dynam-
ics (MOND), which was invented by Milgrom and Bekenstein
(Milgrom 1983; Bekenstein & Milgrom 1984; Milgrom &
Sanders 2008). Whereas Einstein’s general relativity modifies
Newton when the gravity potential ϕ is deep, Milgrom’s MOND
instead modifies Newton at low accelerations. The critical accel-
eration scale is close to the scale set by the cosmological constant
Λ. It is a0 ≈ .127 · c2Λ1/2. The strengths of the mutual gravity
between stars, the centripetal acceleration of stars in the galaxy
outskirts, and the accelerations in galaxy clusters all have values
of about a0. Because MOND is nonrelativistic, it applies in the
regime in which |ϕ| ≪ c2 and |∇ϕ| ≲ c2Λ1/2. The theory explains
some of the listed problems and it gives a natural explanation for
the observed flat rotation curves of galaxies as well as for the
Tully-Fisher relation (McGaugh et al. 2000).

Although the MOND model makes definite predictions with-
out the need for fit parameters, the model is complicated by the
fact that it is not relativistic. It needs a preferred inertial reference
frame (i.e., it is an aether theory) and the gravity from distant
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sources cause an external field effect (violating the strong equiv-
alence principle). These effects need to be considered when the
possibility of MOND is to be ruled out or confirmed.

General relativistic models that reduce to MOND at low
energies introduce additional degrees of freedom. The new
TeVeS theories of Skordis & Złośnik (2019, 2021) have resolved
the long-standing problem that gravitational waves traveled
faster than photons. This problem plagued older MOND-
extensions (Bekenstein 2004).

Milgrom’s MOND modifies the equation for the gravita-
tional potential using a nonlinear PDE. The numerical codes
that have been developed to simulate the dynamical evolu-
tion in MOND are found in Brada & Milgrom (1999); Nipoti
et al. (2007); Llinares et al. (2008), N-MODY by Londrillo
& Nipoti (2009), and RayMOND by Candlish et al. (2014),
based on multigrid discretization. The work of Angus & Diaferio
(2011); Peng et al. (2016) solved for QuMOND, the quasilin-
ear MOND model (Milgrom 2010). The code called Phantom of
Ramses (Lüghausen et al. 2015; Nagesh et al. 2022) also solves
QuMOND. The codes RayMOND and Phantom of Ramses are
both based on RAMSES (by Teyssier 2002).

We describe an algorithm for N-body simulations in MOND.
The particles can be Solar System planets, stars in a galaxy, or
the galaxies in a galaxy cluster. The following main fields in
astronomy are affected by Milgromian gravity:

(i) Celestial mechanics. In the Solar System, the perturba-
tion of the planetary orbits due to a possible residual MOND
effect may have to be calculated. Because outer Solar System
dynamics is in the crossover regime, this correction critically
depends on the interpolation function, which describes the tran-
sition between MOND and normal gravity. In particular, the
perihelion precession of the outer planets, where acceleration
is lowest, could be affected (Pitjeva & Pitjev 2013; Paučo &
Klačka 2016; Paučo 2017; Yoon & Darriba 2020). Here, the
effect of MOND may lie just below the current detection limit.
Binary star systems with a wide separation are in the transi-
tion of the interpolation (Hernandez et al. 2019). For both these
systems a two-body model is appropriate when the external
field from the Milky Way is taken into account (Iorio 2009,
2017).

(ii) Dense stellar systems. These include open clusters
and globular clusters, where close encounters between stars
are relevant. The evolution requires inclusion of short-range
gravitational interactions. Hence, individual particles must
be tracked.

(iii) Galactic dynamics. Examples are transient phenomena
such as tidal effects between neighboring galaxies, the colli-
sions between galaxies, the formation of tails, and the collapse
or merging of smaller stellar systems. Galaxy-formation simu-
lations in QuMOND were made by Wittenburg et al. (2020);
Eappen et al. (2022).

(iv) Galaxy clusters. Here, the particles are the individual
galaxies. An N-body code for the dynamics with small parti-
cle numbers, between 102 and 103, possibly supplemented with
hydrodynamics for the gas component, would be the appropriate
model.

(v) Cosmology. Structure formation in the early Universe
would be affected by MOND because the density fluctuations
will initially be small, accelerations could begin with low val-
ues, and structure formation may start in the deep-MOND
regime. Cosmological simulations in QuMOND were made by
Katz et al. (2013); Haslbauer et al. (2020); Wittenburg et al.
(2023).

2. Theory and main result: The idea of the method

As the particles move in space under the influence of the grav-
itational potential ϕ(r, t), they experience an acceleration given
by Newton’s second law,

mir
..

i(t) = −mi∇ϕ(ri(t), t). (1)

The baryonic mass density for the set of N point masses is

ρB(r, t) =
∑N

i=1
miδ(r − ri(t)). (2)

Here, δ is the three-dimensional Dirac-delta function. Whereas
the potential is a solution of the Poisson equation in the Newton
theory, in MOND (the AQUAL formalism), the potential is a
solution to the following nonlinear partial differential equation
(PDE):

∇ • µ
(
|∇ϕ|

a0

)
∇ϕ = 4πGρB(r, t), (3)

with the boundary condition ∇ϕ(r, t) −→ 0 as |r| −→ ∞. The
scalar function µ(x) is called the interpolation function because
it interpolates between the regime of high and low accelera-
tions. At high acceleration, µ(x) −→ 1 so that the potential will
approach the Newton potential. At low acceleration, the deep
MOND regime begins, and µ(x) −→ x. An isolated and local-
ized mass m has the asymptotic spherically symmetric potential
ϕ(r) =

√
Gma0 log |r|. See Table A.1 for the symbols and nota-

tion. A popular choice for the interpolation function that is
consistent with all observations so far (Brouwer et al. 2021) is

µ(x) =
x

√
1 + x2

. (4)

2.1. An equivalent system for AQUAL

We now demonstrate how to rewrite the Eq. (3) for the potential
in MOND by transforming this equation into a system of coupled
linear PDEs for four vector fields gN, gM, H, and F, combined
with one algebraic equation. This system of equations is

∇ • gN = −4πGρB, ∇ × gN = 0,
F = gN + H,

∇ • H = 0,

gM = ν
( F
a0

)
F,

∇ × gM = 0,

F = µ
(
gM

a0

)
gM.

(5)
(6)
(7)

(8)

(9)

(10)

The vector fields gN and gM are the Newton and MOND accelera-
tion fields. With the identification gN = −∇ϕN, the two equations
in Eq. (5) are equivalent to the Poisson equation. Our new system
effectively expresses the MOND gravity field gM in the Newto-
nian gravity field gN. Equations (8) and (10) are not independent
equations, but are the inverse of each other. Here, F and gM
are the lengths of the vectors F and gM. The pair µ(x) and ν(y)
relate the strength of the Newtonian gravity to the strength of the
Milgromian gravity by

µ(x)x = y =
F
a0
, and ν(y)y = x =

gM

a0
.
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The choice Eq. (4) for the interpolation function gives

ν(y) =

√√√
1
2
+

1
2

√
1 +

4
y2 .

Here follows the proof that the system of Eqs. (5)–(10) is
equivalent to Eq. (3). Instead of an equation for the potential
ϕ, we have an equation for the acceleration field gM. We thus
need to identify gM = −∇ϕ. When we now combine Eq. (6) with
Eq. (10), solve for gN, then substitute this solution in the first of
Eq. (5), and use Eq. (7), we obtain

−4πGρB
(5)
=∇ • gN

(6)
=∇ • F − ∇ • H (7)

=∇ • F (10)
= ∇ • µ

(
gM

a0

)
gM.

Equation (9) states that the field is curl-free. Hence, gM is a con-
servative field with a potential. When we substitute gM = −∇ϕ,
we find Eq. (3). This proves that the system Eqs. (5)–(10) implies
Eq. (3). For the converse, we note that when we have a solu-
tion of Eq. (3), we can calculate gM. This automatically satisfies
Eq. (9). We can then define F with Eq. (10). We then let Eq. (6)
be its Helmholtz decomposition. This defines the functions gN
and H, which must satisfy the second of Eqs. (5) and (7), stating
that the first component is curl-free and the second component is
divergence-free. This completes the proof.

In any numerical code that uses this system, the linear
PDEs can be solved using standard numerical methods for lin-
ear equations. The nonlinear equation requires a special solver.
We have devised the following numerical iteration scheme that
approaches the solution of the system (5)–(10). We first solve
Eq. (5) for the Newtonian gravity field gN, which we store in
memory. Then we take H = 0 for the initial value. The iteration
scheme consists of the following steps:
1. Calculate F with Eq. (6).
2. Calculate gM with Eq. (8).
3. Project gM −→ gM∥ onto the curl-free part, as per Eq. (9).
4. Calculate F with Eq. (10).
5. Calculate H with Eq. (6).
6. Project H −→ H⊥ onto the divergence-free part, as per

Eq. (7).
7. Repeat: Go to step 1.

The calculation in steps 3 and 6 can quickly be made in the
Fourier domain (see Appendix C for the equations). The use of
the fast Fourier transform (FFT) allows us to perform these steps
fast.

The iterative procedure converges to a numerically stable
solution. Because we start with a zero H field, its change after
the iterations allows us to estimate the error in the numerical
solution. It was found that the error initially drops with a fac-
tor of 10 per iteration, but after about 15 iterations, 5 iterations
are required for the error to drop with a factor 10, until machine
precision is reached (see Platschorre 2019, where it was used for
the first time). One clue to the explanation for the fast conver-
gence is the following. For a spherical field, we have H = 0 (see
Bekenstein & Milgrom 1984). Because the masses are spheri-
cal, close to a mass, the solution is approximately spherically
symmetric. Far away from a collection of masses, the solution
becomes spherical as well. Thus, near the masses and away from
the masses, the initial value is correct. In the iterative steps, the
field in the intermediate regions is changed. Here, H is not zero.

The apparent matter (baryonic plus dark matter) distribu-
tion can be calculated by substituting the correct potential (the
potential that is consistent with the observed particle motions

and lensing) in the incorrect Newton-Poisson equation. This is
equivalent to

ρB(r) =
−1

4πG
∇ • gN, ρA(r) =

−1
4πG
∇ • gM. (11)

The apparent density ρA is also known as the effective density
(see Banik & Zhao 2022). This leads to an apparent dark matter
density of ρA − ρB, also called phantom dark matter density. The
total baryonic mass and apparent mass in a volume W can be
found from the flux through its boundary,

MB(W) = −
	

∂W
gN • dS, MA(W) = −

	
∂W
gM • dS. (12)

2.2. An equivalent system for QuMOND

An alternative to the AQUAL formalism of MOND is quasi-
linear MOND or QuMOND (Milgrom 2010; Candlish et al. 2014;
Lüghausen et al. 2015; Nagesh et al. 2022). This model can be
cast as a similar system
∇ • gN = −4πGρB, ∇ × gN = 0,

gM + H = ν
(
gN

a0

)
gN, ∇ × gM = 0, ∇ • H = 0.

We do not consider QuMOND any further. However, the algo-
rithm can easily be adapted using the same steps.

3. The algorithm: Dealing with the self-gravity

We now describe the implementation of the method. The code
needs to numerically approximate the solution of the MOND
PDEs in Eqs. (5)–(10) and propagate particle motion and a time-
dependent mass density. The particle equations of motion Eq. (1)
are implemented with Leapfrog,

ui −→ ui + gi(t)∆t, ri −→ ri + ui∆t, i = 1 . . .N. (13)

Although the formulas do not explicitly show this, the velocities
and positions represent the values at a half time step difference.
In principle, an actual half time step needs to be made initially
(and also finally) to obtain the true Leapfrog integration scheme.

The code uses a discrete Fourier transform, so that space is
represented as a periodic cubic lattice of n3 cells we call pix-
els. Hence, the scheme does not have nested grids; the grid cells
are all equal and do not change. However, due to the periodic
nature of the simulated space, matter inside one cubic volume is
effectively influenced by the gravity of the neighboring copies.
This effect is nonphysical, and a volume of empty space needs
to surround the matter when this effect is to be small. Ideally,
the center of mass is placed in the origin, and it is ensured that
particles stay away from the boundary of the cube.

3.1. Interpolation for the particle density function

The main drawback of the particle-mesh (PM) method is the lack
of accuracy at the short-distance scale of the pixels. Although
each particle is located in a single pixel, we desire accuracy that
is below the grid size. This influences both the field created by
and the acceleration on the particle. First, the field created by par-
ticle i close to the mass should resemble a spherical field about
the point ri, which is not the center of a pixel. Second, we also
need to approximate the acceleration on particle i by the field at
ri, for which the value at the center of the pixel is not accurate.
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Fig. 1. Anti-aliasing needed to suppress the self-gravity. A cross section
of the Gaussian density Eq. (14) with one-pixel variance about (blue)
points in the middle grid cell, representing a 12th order weight func-
tion. We only account for the pixels inside a sphere with a radius of 4s
(dashed circles). This results in a domain of 251 cells (inside the con-
tours). The linear motion of a point particle across the middle cell (left
to top right) shows that the simulated density changes smoothly between
panels.

We used a Gaussian kernel to create a smoothed density in
order to suppresses anti-aliasing. The density of Eq. (2) was
replaced by

ρB(r) =
1

s3(2π)3/2

N∑
i=1

mi exp
(
−|r − ri|

2

2s2

)
. (14)

Hence, each of the N point particles is represented by the Gaus-
sian in Eq. (14) centered about the particle position. We chose
a standard deviation with a width of one pixel s. The Gaussian
is then effectively a cloud-in-cell (CIC) method of order 12 (see
Hockney & Eastwood 1988). This is explained in Appendix B.
Because Gaussians drop off fast, we implemented the calcula-
tion of the density by only addressing the pixels that are within
a distance of 4s from the central pixel containing the particle.
To do this, we stored a list with the 251 coordinates of the ball-
shaped domain with a radius of 4s. This is illustrated in Fig. 1.
Moreover, we created a lookup table for the exponential function.

3.2. Interpolation for the forces on the particles

Next, we describe how we approximated the acceleration of par-
ticle i. Again, we wished to know the acceleration at a point ri
inside some pixel with subpixel accuracy. However, the accel-
eration gB is only calculated at the pixel positions. We would
therefore need to interpolate between the values at different pix-
els. For the force on particle i, located at ri, we used the following
smoothed average:

gi =
−1

s3(2π)3/2

$
∇ϕ(r)exp

(
−|r − ri|

2

2s2

)
dx dy dz. (15)

On the mesh, the gradient of the potential ∇ϕ in this expression
is calculated with the finite-difference gradient, and the integral
in this expression becomes a pixel sum. We only summed over
pixels within a distance 4s from the pixel containing ri.

The smoothing methods discussed in this section will gen-
erally improve the accuracy in any PM method. However, in the
case of MOND, this smoothing is essential for dealing with the
self-gravity. The software is available on GitHub1 under the MIT
license and is archived in the ASCL (de Nijs et al. 2023).

4. Results: Validation using analytic solutions

The problem of self-gravity dominating the actual force on a
point particle is inherent to the PM method for MOND. The
effect of an imprecise subpixel resolution for the position of

1 MONDPMesh codebase: https://github.com/Joost987/
MONDPMesh

a particle and the consequently imprecise evaluation of the
acceleration on that particle is always present, even for a sin-
gle particle. We therefore also need to test the accuracy of the
method for linear motion. We have found that in our simulations,
a point particle of mass m experiences nonphysical accelerations
with the average value of 1.08 · 10−3√Gma0 /s for a 2563 grid
(see de Nijs 2023). This small error is independent of the number
of pixels.

In this section, we present results of simulations with the
code for three systems: the two-body problem, a ringed system,
and an isotropic three-dimensional system. Because the main
interest is in MOND, we considered the deep MOND case. This
means that the interpolation functions we used in our simulation
are

µ(x) = x, ν(y) =
1
√
y
.

For this regime, Milgrom (1994, 1997, 2014) found, using the
method of the virial, that the kinetic energy for a bound system
with the center-of-mass motion at rest is

Ekin =
Mu • u

2
=

Mv2

2
=

√
Ga0

3

M3/2 −
∑

i

mi
3/2

 , (16)

with mi the individual particle masses, and M the total mass.
If there is no external field, this single equation allows us to
calculate the MOND forces between particles for highly sym-
metric cases, thereby bypassing the nonlinear PDE. We used
these analytic solutions to test our PM code.

4.1. Example I: Wide binary system

We considered the two-body problem in MOND. This is a model
for a binary stellar system with two comparable masses with a
wide separation. The interparticle force is found from Eq. (16) to
be

F12 =
2
√

Ga0

3r

(
M3/2 − m3/2

1 − m3/2
2

)
, (17)

with M = m1 +m2, and where r = |r2 − r1| is the separation. We
can rewrite the mass dependence using

M3/2 − m3/2
1 − m3/2

2 = m1

(√
M −

√
m1

)
+ m2

(√
M −

√
m2

)
= m1m2

(
1

√
M +

√
m1
+

1
√

M +
√

m2

)
.

(18)

The equations of motion of the two particle system are

r.1 = u1,

r.2 = u2,

u
.

1 =
2
√

Ga0

3
M3/2 − m3/2

1 − m3/2
2

m1

r2 − r1

|r1 − r2|
2 ,

u
.

2 =
2
√

Ga0

3
M3/2 − m3/2

1 − m3/2
2

m2

r1 − r2

|r1 − r2|
2 . (19)

A numerical solution of this system of ordinary differential equa-
tions (ODE) is shown in Fig. 2. Here, it is compared with the
results of our PM code, showing that the two methods agree
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Fig. 2. Simulated orbits of the two-body system projected onto the xy
plane for the mass ratio m1/m2 = 3/2. The mesh has a size of 1283,
and there are 100 time steps, each with four iterations for the MOND
force. Red (m1) and cyan (m2) are the orbits obtained from numerical
integration of Eqs. (19). Purple and blue are the orbits calculated with
the PM code. The difference between the PM code and the ODEs is a
slow dephasing of the orbits.

reasonably well, but diverge ultimately. The system has the
following constants of motion:

P = m1u1 + m2u2,

R(t) −
P
M

t =
m1r1 + m2r2

M
−

P
M

t,

R(t) × P,
L = m1r1 × u1 + m2r2 × u2,

E =
m1v

2
1 + m2v

2
2

2
+ 2

√
Ga0

M3/2 − m3/2
1 − m3/2

2

3
log |r1 − r2|.

Because the PM is cubic, which breaks the local spherical sym-
metry, we expect that the total angular momentum does not
remain constant in the simulations. How well angular momen-
tum is conserved by our PM code is shown in Fig. 3. If the center
of mass is located at the origin, R = 0, the single-particle angular
momenta L1 and L2 are also constant. However, the numerical
error in L1 and L2 becomes large when the particle is within
a distance of one pixel from the origin. The reason is that the
center of mass may have drifted away from the origin by one
pixel. When we subtract R from r1 and r2, the errors disappear.
For grid sizes 1283, 2563, and 5123, the error in total angular
momentum is 4%, 2%, and 1%, respectively.

The solution with the two particles in circular orbit about the
center of mass is

r1 =
m2r
M

(i cosωt + j sinωt), r2 =
−m1r

M
(i cosωt + j sinωt),

u1 =
−m2v

M
(i sinωt − j cosωt), u2 =

m1v

M
(i sinωt − j cosωt),

where r = |r2 − r1| = r1 + r2 is the separation, v = |u2 − u1| is the
relative velocity, and ω is the orbital frequency. With Huygens’
law of the centripetal force applied to the motion of the reduced
coordinate r, we obtain for the force

m1v
2
1

r1
=

m2v
2
2

r2
=

m1m2v
2

Mr
= F12,

and for the kinetic energy

m1v
2
1 + m2v

2
2

2
=

m1m2v
2

2M
=

Mv2

2
= Ekin.

0 10 20 30 40 50 60
−1

0

1

2

3
k•L
Mvr

v
r t

L L1
L2 r × m1m2

M u
R × P

Fig. 3. Angular momentum vs. time t for the simulation shown in Fig. 2.
These are constants of motion of the ODE system Eq. (19) and numer-
ically constant (with machine precision, not shown) when integrated
with Leapfrog. In the PM code, the total angular momentum (blue) is
well conserved, but the single-particle angular momenta (orange and
red) have large errors when the distance to the origin is smaller than
one pixel.
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Fig. 4. Force times radius (blue) and squared velocity (orange) vs. mass
ratio for the two-body system. The horizontal axis is logarithmic, mak-
ing the curves symmetric about m1/m2 = 1.

Using Eqs. (16)–(18), we find that the velocity v of the reduced
motion and the orbital frequency ω are given by the expression

v2 = (ωr)2 =
M2v2

m1m2
=

2
√

GMa0

3

( 1
1 +
√

m1/M
+

1
1 +
√

m2/M

)
.

(20)

The velocities are independent of the separation. The theoreti-
cal dependence of the velocity on the mass ratio is plotted in
Fig. 4. Figure 5 shows the numerical simulation of our PM code
for two particles with the initial relative velocity from Eq. (20).
It convincingly shows that motion is circular, which verifies
Milgrom’s two-particle force law. It also illustrates that we can
obtain reasonable subpixel resolution.

4.2. Example II: Ring galaxy

Again, we tested the code with a system that was solved analyti-
cally by Milgrom (1994): a central mass m0, surrounded by a ring
with a radius r2 with N particles with a mass m (i.e., the system
has N + 1 particles). A beautiful realization of such a ring galaxy
is Hoag’s Object (Schweizer et al. 1987). The central mass is at
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Fig. 5. Simulated orbits of two bodies with a mass ratio m1/m2 = 3/2
as in Fig. 2, but with 400 time steps. The initial velocities are given by
Eq. (20) and should result in circular orbits. These are plotted in Fig 4.
This simulation thus confirms the force formula Eq. (17) for the deep
MOND case and validates the algorithm. It also illustrates how well the
algorithm performs on the subpixel scale.

rest at the origin. We created a rotating ring of N particles on a
regular N-gon (N ≥ 2),

ri = r2i cos(ωt + 2πi/N) + r2j sin(ωt + 2πi/N),
ui = −vi sin(ωt + 2πi/N) + vj cos(ωt + 2πi/N).

The force on the particles in the ring is given by

F2 =
2
√

Ga0

3Nr2

(
M3/2 − m3/2

0 − Nm3/2
)
. (21)

Here, M = m0 + Nm. We can now write

M3/2 − m3/2
0 = m0

(√
M −

√
m0

)
+ Nm

√
M

= MNm
(

1
√

M +
√

m0
+

√
m0

M

)
.

The velocity of the ring particles and the orbital frequency are
found by equating the force Eq. (21) to F2 = mv2/r2 = mω2r2,

v2 =
Mv2

Nm
=

2
√

GMa0

3

(
1

1 +
√

m0/M
+
√

m0/M −
√

m/M
)
. (22)

The force times radius and squared velocity is plotted in Fig. 6.
The result of the simulation for N = 100 particles is plotted in
Fig. 7. If the mass of the ring is not very low compared to the
central mass, the system is unstable, and the ring breaks apart
after a few orbits.

4.3. Eample III: The isothermal sphere in MOND

Our third application is the simulation of a spherically sym-
metric system in thermodynamic equilibrium. This could be a
globular cluster with up to 106 stars or a galaxy cluster with up
to 103 galaxies. These system are in the deep MOND regime or
in the crossover regime (accelerations around a0).

A system of N point particles with equal mass m in hydro-
static equilibrium with a temperature T has a velocity dispersion
given by

3kBT
2m

=
u • u

2
=
v2

2
=

√
GMa0

3
. (23)
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Fig. 6. Force times radius (lower curves) and squared velocity (higher
curves) vs. the mass ratio for particles on a regular N-gon orbiting a
central body in circular motion. From Eqs. (21)–(22), where m0 is the
central mass and Nm is the ring mass.
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Fig. 7. Simulated orbits for a ring of N = 100 particles with a mass m
around a central mass m0 for a mass ratio of m0/Nm = 3/2 as in Fig. 2.
The orbits of the first 80 time steps of 10 particles are shown in color. In
gray we plot 576 steps for all particles. The initial velocities are given
by Eq. (22), plotted in Fig. 6, which in theory results in circular orbits.
Although this confirms the force formula Eq. (21), numerical round-off
errors on the subpixel scale propagate and cause the orbits to diverge.

The last equality is the thermodynamic limit of Eq. (16). For
a spherical system, the particle number density in terms of the
potential is given by

n(r)
n(0)

= exp
(
−mϕ(r)

kBT

)
= exp

(
−3ϕ(r)

v2

)
= exp

(
−9ϕ(r)

2
√

GMa0

)
. (24)

Here, we used hydrostatic equilibrium and the ideal gas law. Sub-
stitution of the mass density ρB(r) = mn(r) and Eq. (24) in the
MOND Eq. (3) gives the following equation for the potential:

1
a0r2

d
dr

(
r

dϕ
dr

)2

= 4πGρB(0) exp
(
−9ϕ(r)

2
√

GMa0

)
. (25)
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Fig. 8. Potentials and mass distributions for the isothermal state. In teal
and orange we show the potential ϕ(r) as given by Eq. (26) and the
deflection potential ψ =

∫
ϕdz for the line of sight passing the center at

distance r, determining weak gravitational lensing. The asymptotes are
shown (in gray) and the units are

√
GMa0 b j, j = 0, 1. In blue and red

we show the density ρB(r) as given by Eq. (29) and the surface mass
density σ =

∫
ρBdz in units of 3M/4πb j, j = 3, 2.

The solution of this equation is found to be

ϕ(r) =
2
√

GMa0

3
log

(
1 +

r3/2

b3/2

)
, (26)

gM(r) = −r
√

GMa0

b3r

(
1 +

r3/2

b3/2

)−1

, (27)

M(r) =
Mr3

b3

(
1 +

r3/2

b3/2

)−2

, (28)

ρB(r) =
3M

4πb3

(
1 +

r3/2

b3/2

)−3

. (29)

Here, b is a parameter with the dimension of a length. When the
function in Eq. (26) is substituted in Eq. (25), we can solve for
this parameter b in terms of the mass M and the central density
ρB(0). Hence, we have found a two-parameter family of solu-
tions. The function M(r) in Eq. (28) represents the mass inside a
sphere of radius r, and M = limr→∞ M(r) is the total mass. The
physical meaning of the parameter b becomes clear when we
calculate the mass of a homogeneous sphere with radius b, with
the constant density equal to the value ρ(0) at the center of the
isothermal distribution, given in Eq. (29). This mass is precisely
equal to the total mass

M = 4π

∞∫
0

ρB(r)r2dr = 4π

b∫
0

ρB(0)r2dr =
4πb3

3
ρB(0).

The density is finite at the origin and also drops off sufficiently
fast to zero to allow normalization: No cutoff is needed to keep
the total mass finite. These physically convenient properties are
absent from the isothermal solution in Newtonian gravity. The
potential and density and the resulting deflection potential and
surface-mass density are plotted in Fig. 8. Kinetic energy and
potential energy are, with Eq. (23),

Ekin =
Mv2

2
, Epot = 4π

∞∫
0

ρB(r)ϕ(r)r2dr =
3Mv2

2
.

The solution given in Eqs. (26)–(29) is applicable for gM ≪ a0.
Because the maximum acceleration is found at r = b/22/3, the
requirement becomes GM/b2 ≪ 9a0/24/3. The Virgo cluster,
for example, satisfies this. Equation (29) could be a realis-
tic description for spherical gas clouds, elliptical galaxies, and
clusters.

We derived the formula for the apparent mass density,
which would give the apparent dark matter distribution function.
Equations (11)–(12) give

MA(r) =

√
Ma0

G
r
(
1 +

b3/2

r3/2

)−1

,

ρA(r) =
1

4π

√
Ma0

Gb3r

(
5
2
+

r3/2

b3/2

)(
1 +

r3/2

b3/2

)−2

.

The total apparent mass diverges as r −→ ∞. Whereas the actual
density ρB is smooth at the center, the apparent mass density ρA
has a cusp at the core. The isothermal solution shows typical
deep MOND behavior: Only the total baryonic mass M deter-
mines the velocity distribution, with a central density that can
be varied independently. The lower the density at the center, the
larger the system system size and the higher the apparent dark
matter mass.

We now study the dynamics of the isothermal solution with
our PM code. We need the cumulative distribution function for
the radial probability density. According to Eq. (28), this is

M(r)
M
=

(
1 +

b3/2

r3/2

)−2

.

In order to obtain random realizations, our point masses were
found from seven random numbers ξ1 ∈ (−1, 1), η1, η2, η3 ∈

(0, 1), ζ1, ζ2, ζ3 ∈ (0, 2π), sampled homogeneously from these
intervals and the formulae

ri = b
(√

1 − ξ2
1

(
i cos ζ1 + j sin ζ1

)
+ kξ1

)(
1
√
η1
− 1

)−2/3

, (30)

ui =

√
− 2

3 v
2 log η2

(
i cos ζ2 + j sin ζ2

)
+

√
− 2

3 v
2 log η3 k cos ζ3.

The Box-Muller transform was used to generate the Gaus-
sian values of the Maxwell-Boltzmann velocity distribution.
Figures 9 and 10 show how close the realizations are to the cumu-
lative distributions for the radial coordinate and for the velocity.
Figure 11 shows the realizations projected onto the celestial
plane and the resulting apparent dark matter surface density. For
N = 103 or larger, the potential is nearly spherical, and it is well
described with our analytic solution.

We solved the evolution of N particles in the external poten-
tial Eq. (26) as a system of ODEs, and we simulated the N
particles in MONDian gravity using the PM code, both with
the same initial distribution. The two models are comparable
because both must behave identical in the thermodynamic limit
N −→ ∞. We also tested whether the distributions are stationary,
as they should be for large N. In the external potential, the ener-
gies and angular momenta of the individual particles are strictly
conserved, and so is the total energy and angular momentum.
The single-particle kinetic energies and momenta oscillate, and
so does the total kinetic energy and the total momentum. We
compare this with the exact system of Eqs. (1)–(3). Here, the
total energy, total momentum, and total angular momentum are
conserved. The PM code simulates this system. The fluctuations
in the energies are shown in Fig. 12. Because the mesh in our PM
approach breaks spherical symmetry, angular momentum also
fluctuates slightly.
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Fig. 9. Cumulative mass M(r) of the spherical isothermal galaxy vs. r.
The (free) parameter b determines the galaxy size. The (blue) curve is
the theoretical result given by Eq. (28). The realizations (orange, red,
and purple) are calculated from Eq. (30).
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Fig. 10. Cumulative velocity distribution for the spherical isothermal
galaxy. This is the fraction #(≤ v)/N of particles with velocities below
v vs. the value v of this upper bound. The realizations (orange, red, and
purple) are calculated from Eq. (30).

5. Discussion

5.1. Accuracy of the method

The inaccuracies in the algorithm arise from the fact that we used
a fixed grid. The discrete grid has n pixels in each dimension
with a pixel width s and has a finite volume n3s3.

The use of FFTs in the calculation of the potentials and accel-
eration fields generally gives rise to anti-aliasing: The functions
obtain nonphysical short-wavelength oscillations. This effect is
particularly strong when the point particles are represented with
isolated nonzero pixel values in the mass density, but also when
the CIC method is used. Smoothing with a minimum variance
of one pixel width s in a spherical domain of radius 4s needs to
be used to overcome this problem. Although the discretization
creates a minimum size, we reach a subpixel spatial resolu-
tion by using interpolation. We found that the retrieval of the
forces on the particles with a Gaussian smoothing gives the
most accurate results. To further limit the aliasing and increase
accuracy, we did not use the numerical acceleration field, but

calculated the potential, and we derived the forces instead using
the finite-difference gradient of this scalar function.

The runtime of our code has a time complexity of
O(Nn3 log n), hence it scales linearly in the number of parti-
cles and almost linearly in the number of pixels because we
made use of the FFT. The runtime as a function of particle
count is plotted in Fig. (13). For a 1283 grid, the evaluation
of the accelerations or/and densities starts to dominate the run-
time at N = 103. Therefore, in the general case, we expect that
the crossover occurs at a critical density of 103/1283 ≈ 1/103

particles per pixel.

5.2. Improvements of the code

The code could be made faster, allowing simulations with higher
resolution/larger volumes, with smaller time steps/longer simu-
lated times, or with more particles. We list below a few ideas for
possible improvements that we did not implement.

(i) The code is currently written in Python, using the FFTW
library, which is a C library for the FFTs. The code could be
entirely rewritten in a compiler programming language such as
C, and compiled into fast-running machine code.

(ii) A primitive data type can be chosen for the floats with
half-precision, used by GPUs (with the cuFFTW library). The
machine precision would be 10−3, which is close to the unavoid-
able error due to self-gravity. Its implementation should reduce
memory use and speed up the code.

(iii) Both the potential solver and the particle propagator in
the code can be parallelized. The calculation of the potential
requires 42 FFTs (3 scalar plus 13 vector FFTs). These three-
dimensional FFTs need to be performed sequentially. For each
direction, we have n2 normal FFTs of a vector with n elements.
These can be performed in parallel. The increments of positions
and velocities of the N particles are independent, hence their cal-
culations can also be made in parallel. Parallelizing the updating
of the density is less straightforward. If the distance between two
particles is smaller than 8 pixels, the density needs to be updated
one particle at a time.

(iv) If the density function changes only slightly at each
time step, the potential solver needs just one iteration when it is
seeded with the previous solution. This strategy can be employed
when the spatial steps are smaller than the width of the weight
functions (i.e. for small time steps), or when nearby particles
have mostly overlapping weight functions (i.e. for high number
densities). Densities are also smooth when the matter is mod-
eled as a fluid. We found that the PDE solver indeed sped up by
a factor three.

(v) If changes in the fields at the time steps are small, we can
calculate the increments ∆ρB, ∆gN, ∆gM, ∆F, and ∆H, instead
of the full fields. This will improve the accuracy and reduce the
required number of significant digits so that half-precision can
be used. For the nonlinear Eqs. (8) and (10), we can use the
linearizations

∆gM(r) = ν
(

F
a0

)
∆F + ν′

(
F
a0

)
F • ∆F

a0F
F,

∆F(r) = µ
(
gM

a0

)
∆gM + µ

′

(
gM

a0

)
gM • ∆gM

a0gM
gM.

5.3. Applications targeted to special systems

We validated the PM code by simulating the two-body system
and ring systems. For applications of systems with a high sym-
metry like this, however, the code could be adapted to make it
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Fig. 11. Surface-mass densities σ(x, y) and deflection potentials ψ(x, y) for a globular cluster from the central 128 × 128 part of a simulated
cube of 2563 pixels. The yellow dots are the stars that define the actual density. The resulting apparent dark matter surface density is plotted
in blue according to Eq. (11). Negative value are shown in red (Milgrom 1986). They are found for N ≤ 102. The equipotential curves of the
deflection potential for Newtonian and Milgromian gravity are plotted in green and cyan. Although the densities are far from circularly symmetric,
the deflection potential is nearly circular for N ≥ 103. This indicates that the retrieval of a clumpy mass distribution from weak lensing may be
problematic for large N.

more accurate and much faster. For example, a binary system
can be simulated using ODEs and does not require a PDE solver,
as shown in Sect. 4.1 for the deep MOND system Eq. (19). For
the general case, the interpolation function µ is different, but the
system is still governed by a two-body force that is a function
of distance and the masses. One could now use the PDE solver
of our code to calculate the force. This numerical force function
can then be used in the ODE system for the actual simulations of
the binary.

In absence of an external field, the two-body system has a
perfectly cylindrical symmetry: The potential is a function of
the distance to and height on the axis of symmetry. By writing

the PDE in cylindrical coordinates and using the Hankel trans-
form, we limit the number of transforms in the PDE solver. The
evaluation of the force function could thus be calculated fast,
allowing one to test various choices of interpolation functions.
For other systems with cylindrical symmetry, such as the motion
of a test particle in a disk galaxy, this method can also be used
to enhance the accuracy and speed (see Platschorre 2019, for a
study of rotation curves using the Hankel transform in this way).

The external field can be included in our PM code by fixing a
plane at maximum distance from the particles in the cube where
a permanent dipolar mass distribution is placed, that is, a layer
of pixels with mass M and an adjacent pixel layer of mass −M.
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Fig. 12. Energies vs. time for N = 100 particles on a 2563 grid. The
kinetic, potential, and total energy for the self-consistent interacting sys-
tem of the particles from the PM code are shown as solid curves (red,
purple, and blue). The kinetic, potential, and total energy from the ODE
system of the particles in the external potential are shown as dashed
curves (orange, violet, and teal). The fluctuations in the total energies
are purely numerical, and the other energies have thermal fluctuations.
The dashed gray curve is Epot =

∫
ρBϕdxdydz with the PM matter den-

sity and Eq. (26), hence substituting a finite N solution in the potential
obtained in the thermodynamic limit. We subtracted the self-energies.
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Fig. 13. Runtime vs. particle count N for a 1283 grid with the Python
code on an Intel Core i7-9750H. The time spend on the FFTs (blue) is
roughly constant, and the time for the evaluation of the particle accel-
erations and/or densities grows linear with N (orange, red, and purple).
The total runtime shows a crossover around 103 particles (black). The
dashed lines are guides with slopes of zero and one.

When the external field is included, one can again evaluate the
force function for the two-body problem numerically. Now, the
force also depends on the polar angle (the angle between the
direction of the external field and the vector r2 − r1), and not
just on the interparticle distance.

5.4. Extensions and future research directions

Extensions to the code could make the code useful for more
realistic modeling and other fields. Some examples are listed
below.

(i) Close encounters. If the ratio Gm/s2 is much higher than
a0, the field on the pixel scale is Newtonian. It may be possible

to obtain subpixel resolution for this case by calculating the near
field with a particle-particle component.

(ii) Hydrodynamics. In galaxy clusters, the intergalactic
gas component dominates the total mass contribution from the
galaxies. One could implement Euler’s equations for inviscid
flow inside the MOND acceleration field. The evolution of the
density ρB, pressure p, and flow field u can be calculated from
the system
ρ
.

B = u •F −1(ikρ̂B
)
+ ρBF −1(ik • û

)
,

p. = u •F −1(ikp̂
)
+ γpF −1(ik • û

)
,

u. = F −1(ikÊ) − u ×F −1(ik × û
)
+F −1(ikp̂

)
/ρB + gM.

Here, Ê = F
(
u • u

)
/2 is the transformed specific kinetic energy,

and γ is the polytropic constant. These are the Euler equations in
Lamb form, where the derivatives are calculated using Fourier
transforms. By running these on a GPU with cuFFTW in half-
precision floats, one gains a speed-up of at least one order of
magnitude.

(iii) Cosmology. In simulations of structure formation in
the early Universe, one can introduce comoving coordinates
to model the expansion of the Universe. This amounts to the
equations for particle motion (Peebles 1993)

r. i = ui/a, u
.

i = gM(ri) − uia
.
/a,

and the density in Eq. (5) can be replaced with aρB(r) − aρB,
where the scale factor of the expanding Universe is given by a(t).

6. Conclusions

We described, coded, and tested an algorithm for the simulation
of the dynamical evolution of N bodies for AQUAL-MOND.
MOND is an alternative model for the gravity between stars,
galaxies, and galaxy clusters, where standard theory requires
CDM. We now list our final conclusions:

(i) The MOND Eq. (3) is shown to be equivalent to the sys-
tem Eqs. (5)–(10) of linear PDEs plus an algebraic equation.
Therefore, linear PDE solvers can be used;

(ii) Because we have a linear system, we can use Fourier
transforms to solve it. Our PM code relies on 42 FFTs, where a
standard Poisson solver needs only two. The use of FFTs makes
it faster than the finite-element codes N-MODY and RayMOND
(Londrillo & Nipoti 2009; Candlish et al. 2014), especially for
large grids;

(iii) Four iterations are required to obtain an accuracy of 1%;
(iv) Self-gravity is the dominant cause of the numerical error.

We needed a Gaussian smoothing kernel of one pixel width over
a spherical domain with a radius of four pixels. The standard CIC
method used in Poisson solvers cannot be used;

(v) When the number of particles per pixel exceeds 1/103,
particle propagation takes more time than the PDE solver;

(vi) We derived the analytic isothermal state Eqs. (26)–(29)
for the spherical deep MOND case. It is a two-parameter family,
with a mass and a length scale. Because the deflection poten-
tial deviates significantly from that for a point mass, the solution
could be relevant for elliptic galaxies and clusters;

(vii) We tested our PM code for systems where deep MOND
analytic solutions (by Milgrom 1994) are known and found
good agreement. We also tested the isothermal state by creat-
ing a Maxwell-Boltzmann distribution with density Eq. (29) and
verified that the system is stationary.
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Promising applications of the N-body MOND code include
the numerical comparison with actual astrophysical observations
on the Solar System, wide-binaries, and galaxy clusters.
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Appendix A: Table of symbols

Table A.1. List of symbols and notation.

symbol quantity
n pixel count for each axis
s pixel width
L = ns system size
N particle count
i = 1 . . .N particle index
t time
ω orbital angular frequency
r = xi + yj + zk coordinate vector
r distance
b width of isothermal
k wave vector
k = |k| length of the vector
mi mass of particle i
ri(t) position of particle i
ui(t) = r. i velocity of particle i
gi(t) = u

.
i acceleration of particle i

R(t) center of mass
P total momentum
L total angular momentum
Epot, Ekin potential, kinetic energy
E = Epot + Ekin total energy
M total mass
ϕ(r, t) MOND potential
ψ(x, y, t) deflection potential
gM(r, t) = −∇ϕ Milgromian gravity
gN(r, t) Newtonian gravity
F(r, t) = gN + H vector field
H(r, t) magnetic component of F
c speed of light
a0 = 1.2 10−10ms−2 Milgrom’s constant
G Newton’s constant
Λ cosmological constant
a(t) cosmological scale factor
x = gM/a0 strength of MOND force
y = F/a0 strength of surface density
µ(x) = y/x interpolation function
ν(y) = x/y reciprocal interpolation
ρB(r, t) baryonic matter density
ρD(r, t) dark matter density
ρA(r, t) = ρB + ρD apparent matter density
σ(x, y, t) surface mass density
∆t time step
F 3d FT operator
f̂ (k) = F ( f ) 3d FT of f (r)
i, j, k standard basis vectors
i, j, k pixel coordinate index
ξ, η, ζ random floating-points

Notes. Symbol and significance of the physical quantities used. Vectors
and vector fields are in boldface. The length of a vector or the strength
of a vector field is in normal font. Most MOND research papers simply
use g for the Milgromian gravity field gM.

Appendix B: Fourier transforms

In the text, we did not distinguish much between continuous
functions on R3 and the discrete representation on (Z/nZ)3 for

the n×n×n grid. We simply considered the discrete functions as
an approximation of the continuous functions on a finite interval.
Let the physical dimension of the cubic pixels be s, and let the
cubic volume have length L = ns. We assume that the functions
smoothly drop to zero (or a constant) for |x| > L

2 , |y| > L
2 , |z| > L

2 .
The position coordinates that correspond to the grid points take
on the values

r =

x
y
z

 =
 i

j
k

 s, i, j, k ∈
{
− n

2 , . . . ,
n
2 − 1

}
.

Fourier space has the elements k as reciprocal vectors. It has the
grid values

k =

k1
k2
k3

 =
 i

j
k

 2π
L
, i, j, k ∈

{
− n

2 , . . . ,
n
2 − 1

}
.

The scalar function ϕ(r) is expressed in its Fourier transform
F (ϕ) = ϕ̂(k) via the expansion in plane waves, that is, the
inverse Fourier transform

ϕ(r) =
1

(2π)3

$
ϕ̂(k)eik•rdk1dk2dk3 ≈

1
L3

∑
k

ϕ̂(k)eik•r,

and the Fourier coefficients, that is, the direct Fourier transform
is

ϕ̂(k) =
$

ϕ(r)e−ik•rdx dy dz ≈ s3
∑

r
ϕ(r)e−ik•r.

In our PM algorithm, we modeled point particles with a
smooth density centered around the points ri. The standard
CIC method uses the n-fold convolution of the box function
box(x/s)box(y/s)box(z/s) for the nth-order method (Hockney &
Eastwood 1988). Here, the box function is defined by

box(y) =
{

1 if |y| < 1
2 ,

0 else
.

For large n, the convolution in one dimension and its Fourier
transform may be approximated by

1
sn box

(
x
s

)
∗ · · · ∗ box

(
x
s

)
︸                      ︷︷                      ︸

n times

≈
1

s
√
πn/6

exp
(
−6x2

ns2

)
, for n ≫ 1,

(
sinc

sk1

2

)n

≈ exp
(
−ns2k2

1

24

)
, for n ≫ 1.

We therefore used the following density, with order n = 12:

ρ(r) =
mi

s3(2π)3/2 exp
(
−|r − ri|

2

2s2

)
.

The Fourier transform of this single-particle density is

ρ̂(k) = miexp
(
−s2|k|2

2

)
e−ik•ri .

A standard deviation of a single pixel in position space implies a
drop off of below e−π

2/2 = .007 at the boundary of the reciprocal
space. Furthermore, the density is very nearly spherically sym-
metric. The difference between the 12th-order CIC function and
the Gaussian with the same variance in three dimensions is 10−7

at most.
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Appendix C: Flow scheme of the PM code

This is the initialization procedure.
1. Create a lookup table for the exponential function.
2. Create a table of the 251 coordinates in a sphere of radius 4.
3. Create a n3 matrix with the vector function k.
4. Create a n3 matrix for the inverse Laplace operator,

A =


1

k • k
if k , 0,

0 if k = 0.

5. Clear a n3 matrix for the density: ρB(r) = 0.
6. Loop through the particles i = 1 . . .N.

– Set the mass mi, and initialize the position ri and velocity
ui.

– Next i. End particle loop.
This is the main loop for time steps in the simulation.
1. Loop through all particles i = 1 . . .N (in case n3 > 251N).

– Remove particle i from the mass density by filling the
pixels with zeros according to the list of 251 pixels.

– Next i. End particle loop.
2. Loop through all particles i = 1 . . .N.

– Implement the position step of Leapfrog: ri −→ ri + ui∆t.
– Add particle i to the mass density, with the list of 251

pixels and the lookup table: ρB(r) −→ ρB(r)+ρi(r), using
Eq. (14).

– Next i. End particle loop.
3. FFT the density: ρ̂B(k) = F (ρB).
4. Calculate ϕ̂N(k) = 4πGAρ̂B.
5. Inverse FFT the potential: ϕN(r) = F −1 (̂ϕN).
6. Find Newton gravity gN(r) from ϕN with finite differences.
7. Initialize the mass flux field by F(r) = gN.
8. Start the iteration loop.

– Calculate the gravity field: gM(r) = ν
(√

F • F /a0
)
F.

– FFT the gravity field: ĝM(k) = F (gM).
– Calculate the potential in Fourier space: ϕ̂(k) = iAk • ĝM.
– Make the field conservative: ĝM(k) = −ikϕ̂.
– Exit the iteration loop at the fourth iteration.
– Inverse FFT the gravity field: gM(r) = F −1 (̂gM).
– Calculate the field: F(r) = µ

(√
gM • gM /a0

)
gM .

– Calculate the magnetic component, H(r) = F − gN.
– FFT the magnetic field: Ĥ(k) = F (H).
– Make the field divergence free: Ĥ(k) −→ Ĥ − kAk • Ĥ.
– Inverse FFT the magnetic field: H(r) = F −1(Ĥ).
– Calculate the field with F(r) = gN + H.
– Next iteration.

9. Inverse FFT the potential: ϕ(r) = F −1 (̂ϕ).
10. Loop through all particles i = 1 . . .N.

– Evaluate gi, with the list of 251 pixels and the lookup
table using Eq. (15).

– Implement the velocity step of Leapfrog: ui −→ ui + gi∆t.
– Next i. End particle loop.

11. Update time t −→ t + ∆t, and
12. Go to the next time step.
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