
 
 

Delft University of Technology

A model for evaluating sharing policies for network-assisted HTTP adaptive streaming

Kleinrouweler, Jan Willem; Cabrero, Sergio; van der Mei, Rob; Cesar, Pablo

DOI
10.1016/j.comnet.2016.03.023
Publication date
2016
Document Version
Accepted author manuscript
Published in
Computer Networks

Citation (APA)
Kleinrouweler, J. W., Cabrero, S., van der Mei, R., & Cesar, P. (2016). A model for evaluating sharing
policies for network-assisted HTTP adaptive streaming. Computer Networks, 109, 234-245.
https://doi.org/10.1016/j.comnet.2016.03.023

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.comnet.2016.03.023
https://doi.org/10.1016/j.comnet.2016.03.023


A Model for Evaluating Sharing Policies for

Network-assisted HTTP Adaptive Streaming

Jan Willem Kleinrouweler1, Sergio Cabrero1, Rob van der Mei1,2,
and Pablo Cesar1,3

1Centrum Wiskunde & Informatica, Science Park 123, 1089 XG
Amsterdam, The Netherlands

2VU University, De Boelelaan 1105, 1081 HV Amsterdam, The
Netherlands

3Delft University of Technology, Mekelweg 4, 2628 CD Delft, The
Netherlands

{j.w.m.kleinrouweler, s.cabrero, r.d.van.der.mei,

p.s.cesar}@cwi.nl

Abstract

HTTP adaptive streaming (HAS) has become the dominant technology for
streaming video over the Internet. It gained popularity because of its ability to
adapt the video quality to the current network conditions and other appealing
properties such as usage of off-the-shelf HTTP servers and easy firewall traver-
sal. However, when multiple HAS players share a bottleneck link for streaming,
the individual adaptation techniques in the players have difficulties to maintain
a stable bitrate and fairly share the network resources. HAS-assisting network
elements can solve these performance problems and allow execution of advanced
policies for sharing the available bandwidth. Nonetheless, testing and evaluating
new sharing policies is costly and time consuming. This motivated us to formu-
late a model that allows to differentiate between groups of users depending on
the type of user or device, and that can describe the mean bitrate of the video
streams and how often this bitrate is expected to change during playout. To
show how our model can be used, we demonstrate two applications of our model.
Furthermore, we validate the model based results against results obtained using
our streaming testbed and proxy server based HAS-assistant. The results show
that our model is highly accurate for both the mean bitrate and the number
of changes in video bitrate. As such, our model is a useful tool for network
administrators and internet service providers for evaluating the performance of
sharing policies and for managing and provisioning video delivery networks.

1

© 2016 Manuscript version made available under CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ 



Keywords

HTTP adaptive streaming; Video streaming; Performance; Capacity sharing;
Markov model; Bitrate; Fairness; Instability

1 Introduction

HTTP adaptive streaming (HAS) has become the major technology for stream-
ing over the Internet. In HAS, a video file is split up into segments typically with
a duration between two and ten seconds. Each segment is encoded at multiple
bitrates and resolutions. All video segments are placed on an HTTP server to-
gether with a manifest file. This manifest file describes the index, URL, bitrate
and resolution of each segment. When a video player starts a stream, it first
downloads the manifest file and then downloads the video segments in a bitrate
or resolution that it sees fit. The major advantage of this technology is that it
allows video players to adapt the video quality to the current network condi-
tion. Furthermore, because HTTP adaptive streaming is based on known Web
technology, namely HTTP, content providers can leverage existing methods in
distribution such as content delivery networks (CDNs) and caching. Moreover,
the usage of HTTP tackles the issues with firewall and NAT traversal.

The reasoning behind HAS is that the video quality can be matched to
both the available bandwidth and the type of device. On the one hand, this
means that in situations where the available bandwidth becomes lower, buffer
under-runs can largely be avoided by (temporarily) lowering the video quality.
When more bandwidth becomes available the player can adapt the stream to
a higher video quality to optimize the streaming experience for the user. On
the other hand, since the intelligence is located at the player (i.e. the player
selects the bitrate and resolution of the stream) it can take into account device
capabilities, battery level, and data usage. This approach has its advantages
over non-adaptive streaming as it is more robust in networks with unstable
performance. However, it was found by several studies that the adaptation
mechanism in the players suffer performance problems when multiple players
share a bottleneck link [3, 2, 10]. The two most relevant problems are unfair
sharing of the available bandwidth and instability. Instability refers to too often
changing the video quality and it is identified to negatively impact the video
watching experience [4, 7, 17].

HTTP adaptive streaming players adapt the video quality based on esti-
mations of the available bandwidth. Most players use the download speeds of
the previous segments as a measure for the bitrate of future video segments.
However, partially due to the bursty nature of HAS traffic, it is difficult for
the players to make accurate bandwidth estimations [10, 5]. More sophisti-
cated adaptation algorithms with better heuristics and conservative switching
between video profiles can lower the number unnecessary quality switches and
improve fairness [12, 20, 11, 14, 15]. However, fixing the problems only in the
player remains difficult because players have a limited view on what occurs in

2



the network. In the case where several video players share a bottleneck link, for
example at home or on a hotel Wi-Fi network, the players are unaware of each
other and thus cannot use this information while selecting a video bitrate. This
eventually leads to a suboptimal distribution of the available bandwidth.

As an alternative to improving adaptation algorithms, several implemen-
tations have been proposed that use knowledge from devices in the network
to assist video players in selecting the video quality. These implementations
range from traffic shaping at the residential gateway [9], signaling players from
a measurement proxy [16], using OpenFlow [6], and our implementation in the
form of an HTTP proxy server [13]. Typically, these implementations target
networks where the bottleneck link is in the local- or access network, and thus
relatively close to the users. Network devices close to the players, such as home
gateways or switches in the access network, have a good view of the traffic on
the bottleneck link. They can share this view with the video players.

The solutions that solicit in-network devices for making adaptation deci-
sions show promising results. For example, in previous work we showed that
the number of changes in video quality can be reduced while improving the
fairness between video streams [13]. However, the sharing policy did not take
into account the types of streams or devices, and thus only represented fairness
on a bitrate level instead of targeting an equal quality of experience while con-
sidering device specific factors. Fortunately, this can be resolved by improving
the sharing policy. If an in-network device has an overview of both the streams
and the device specific factors, then it becomes the most convenient point to
make the adaptation decisions.

Changing the capacity sharing policy affects the streams’ bitrates, and how
often this bitrate will change during the playback of the video. In order to gain
insights on the performance of a policy under different circumstances, it has
to be evaluated. However, building testbeds to determine the performance of a
policy is costly and time consuming. In previous work, we proposed a model that
allows to accurately estimate the bitrate of the video streams and the bitrate
stability [13]1, and as such give an estimation of the quality of experience (QoE)
of the viewer. The QoE of the viewer improves when the bitrate of the video
increases, while the number of switches in bitrate should be kept low [18, 8].

The contribution of this paper is three-fold. First, we extend our model to
include player prefetching to become more accurate. Second, we show how our
model can be used by demonstration our model in the form of two example
applications. Third, we show that our model-based results are highly accurate
when comparing them to the actual performance in a testbed with our proxy
server.

Although the number of deployments of network-assisted HAS in currently
low, we expect it to become more common as a result of the standardization
of the Server and Network-Assisted DASH (SAND) architecture [19]. However,
SAND only specifies the communication between the HAS assistant and the

1Reference [13] presents an early version and evaluation of the model. In this paper we
extend this model and use it to evaluate different sharing policies.

3



players. This means that it is still up to the HAS assistant to decide how the
available bandwidth must be shared among the players. Our model can be used
to quickly evaluate a sharing policies for network-assisted HAS. As such, it is
possible to evaluate a large number of sharing policies prior to deployment of the
HAS assistant, and select the optimal policy for each network. We present our
model as a useful tool for network administrators and internet service providers
(ISPs), and encourage them to use it when developing new sharing policies,
as well as using the model for managing and provisioning a HAS based video
delivery network.

The remaining of this paper is organized as follows. In Section 2 our HAS-
assisting network element in the form of an HTTP proxy server is introduced, as
well as our streaming testbed. Section 3 presents the performance model that
describes the mean bitrate and number of bitrate changes. In Section 4 two
types of sharing policies are evaluated and the model-based results are validated
against results achieved using our streaming testbed. Section 5 concludes this
paper.

2 Network-assisted HAS

The adaptation algorithms in HTTP adaptive streaming players are designed in
such a way that they will provide the user with the highest possible video quality.
This approach relies on best effort and adaptation decisions are made from the
viewpoint of the player. This means that HAS players can be considered to be
selfish, because players only try to maximize the bitrate for their stream and do
not consider other traffic or other players. Instead of simply sharing the available
bandwidth, HAS players have to compete with each other for their own share.
As a result, the share of the bandwidth that is available to a player can vary.
Variations in bandwidth available to a player cause changes in video bitrate, even
though theoretically these changes should not have to occur when the available
bandwidth is fairly divided among the players. A higher number of changes
in video quality lowers the quality of experience of the viewer. Furthermore,
since HAS players by default are not aware of each other, they cannot take
into account other players and their characteristics when deciding on a bitrate.
When competing for bandwidth each player is equal, where for instance it would
have been better for devices with smaller screens to make room for devices with
larger screens.

2.1 HAS proxy server

In network-assisted HAS, the problem described above is countered by including
network devices that have a broader view of the use of the bottleneck network
link. These so called HAS-assisting network elements are aware of the active
streaming players through monitoring the network traffic. When players signal
the network element with their requirements (these can both be minimum and
maximum requirements) and characteristics, the HAS-assisting network element

4



can take these factors into account when dividing the available bandwidth. The
major difference from regular HAS is that adaptation decisions are not made
individually by the players, but by an overseeing network element while receiving
support from the players.

We implemented a HAS-assisting network element in the form of an HTTP
proxy server. The proxy server can be installed on routers and gateways that are
relatively close to the players and the bottleneck link that has to be guarded. In
practice this means that the proxy server approach can be applied to networks
where the bottleneck is the local network, the household’s or company’s internet
connection, or a link in the access network of the ISP. Figure 1 illustrates these
three scenarios and indicates placement of the proxy server. For scalability
reasons the proxy server should be placed as close to the players as possible, but
such that it processes the video traffic from all players on the shared bottleneck
link. For both scenarios (A) and (B) the proxy server would preferably be
located at the (Wi-Fi) router, even though the bottleneck is situated at opposite
sides of the proxy server. In scenario (C) the proxy server has to be placed
further upstream in a neighborhood station or switch.

(A) (B) (C)

Wi-Fi network Household DSL ISP access network

PROXY

ISP network

DSL line

LAN

LAN

Internet connection

PROXY

PROXY

Figure 1: Use cases for HAS-assisting network elements and indication of proxy
placement. Bottlenecks (marked in gray) are: (A) the Wi-Fi network, (B) the
DSL line, and (C) the ISP access network.

All HTTP traffic, i.e. TCP traffic with destination port 80, is transparently
forwarded to the proxy server2. HTTP traffic is monitored in order to detect
starting and stopping video players. When starting a stream, a HAS video player
first downloads the manifest file that contains the details of the stream, such
as the available bitrates, resolutions and the URLs of the video segments. The
proxy server will listen for manifest downloads that indicate starting players.
Like the player, the proxy server will also process the manifest file. The proxy
server uses the manifest to obtain characteristics of the stream that it uses when

2In theory it is also possible to proxy encrypted traffic that uses HTTPS, however for this
to work the the user must trust the proxy server and the player should accept the proxy’s
certificate. This requires user interaction and/or configuration.

5



dividing the available bandwidth among the players. Furthermore, the proxy
server can track the video players’ activities based on the HTTP request for
video segments. In general, a video player has stopped a stream when the last
segment in the stream has been downloaded. However, since users oftentimes
stop a stream before it is finished, the proxy server marks a player as stopped
after a certain period of inactivity. To set a value for this timeout we make use
of the periodic behavior of HAS players. In steady-state mode, segments are
requested with intervals equal to the duration of the segment. If the download
of a segment takes shorter than the duration of a segment, there will be a period
of inactivity.

segment duration

download inactivity

!1 !2 !3

Figure 2: Period of download activity followed by a period of inactivity

As depicted in Figure 2 the start of the download of a segment is marked τ1,
and the segment download is finished at τ2. If Tsegment is the segment duration,
then the maximum period that a player can be inactive before requesting the
next segment is:

Imax = max(Tsegment − (τ2 − τ1), 0) + 1. (1)

The inactivity period is unlikely to be higher than the duration of the segment
minus the download time. In case the download takes longer than the segment
duration there will no period of inactivity. To be certain a player is finished and
to cope with small variations in periodicity a margin of one second is added.

Detection of starting and stopping players happens through monitoring the
traffic. By inspecting the User-Agent field in the HTTP header, the proxy
server can obtain a rough estimate of the type of device. However, the HAS
players have to communicate more accurate and detailed information to the
proxy when more advanced sharing policies are considered. Players that are
modified to work with the HAS assistant can do this through in-band signaling
via additional fields in the HTTP header. This allows players to signal the proxy
server before the start of the stream as part of the request for the manifest file,
and during the stream in requests for the video segments. The proxy server can
provide players with additional information via the HTTP response.

The proxy server uses the information on how many players are active, the
characteristics of the streams and the types of devices and their capabilities to
divide the bandwidth among the players. How the proxy server divides the avail-
able bandwidth depends on the active policy. Currently we have implemented

6



three policies in the proxy server. The first policy equally divides the available
bandwidth among the players and for each player selects the highest bitrate
that is lower or equal to the fair share. The second policy classifies devices
based on screen size and resolution, and targets each device type accordingly.
The third policy makes a distinction between regular and premium users and
ensures higher quality video for premium users.

If the proxy server detects a player requesting a segment in a bitrate that is
different from the bitrate that it selected for this player, it corrects the request
by rewriting it into a request for the same segment but in the correct bitrate.
When the proxy server performs a rewrite, it will add an additional field to the
HTTP response informing the player about the rewrite. This allows the player
to act accordingly in the decoding and rendering pipeline. In some occasions the
forced rewriting of requests by the proxy server is unwanted. For instance, when
a player is not able to stream at the selected bitrate due to other limitations
in bandwidth on the path between server and client, or when buffer levels are
critically low. In these cases a player can request the proxy server not to rewrite
the request.

2.2 Streaming testbed

To evaluate the performance of the proxy server under a certain policy, we
installed the proxy server in our streaming testbed. All devices in the testbed
are implemented as lightweight virtual machines with their own process- and
network stack. The capacity and delay of the connections between the devices
is set by means of network emulation. The CORE network emulator [1] is used
to configure the setup as depicted in Figure 3. The VMs run on a GNU Debian
Linux 6 host that has a 2.83 Ghz Intel Core 2 Quad CPU and 8 GB ram.

The testbed consists of 20 virtual PCs, two routers and three servers. The
bottleneck link is the network connection between the two routers. The capacity
of this link is limited to 8 mbit/s to represent a network connection that is not
sufficient for multiple players streaming at the high bitrates. The round-trip
delay between the clients and each of the servers is set to 10, 20, and 40 ms
respectively.

The router closest to the client machines (router-1) is made into a HAS-
assisting network element by installing our proxy server. Although the bot-
tleneck link has a capacity of 8 mbit/s, the proxy server is configured with a
maximum channel capacity of 6.8 mbit/s, thus having a 15% safety margin.
The safety margin is included to allow for lightweight background traffic and
provide the video players extra capacity to maintain sufficient buffer levels. In
the experimental runs in this paper there is no background traffic present.

Video players are started at free clients according to a Poisson process. Each
client can hold a single instance of a video player, however the maximum number
of active video players at the same time is limited to 17. In all tested scenarios
the lowest available video bitrate is 400 kbit/s. To ensure sufficient bandwidth
for uninterrupted streaming, an 18th player that would cause a too high demand
on the network is denied service by the proxy server.

7



Figure 3: Streaming testbed using lightweight virtual machines and emulated
network connections

At the client machines a stripped-down version of our custom HAS player
is used. The supports signaling information about the device to the proxy
server. Decoding and rendering of the video is disabled to reduce the CPU
load and memory usage of the virtual machines. The players use an 8 second
buffer, unless otherwise stated. The videos that are used in the evaluations
are segmented with a duration of 4.0 seconds and described in a manifest file
according to the HTTP Live Streaming (HLS)3 format. The manifest files and
the video segments are placed on the three off-the-shelf Apache 2.2.22 HTTP
servers.

The URLs of the video segments are formatted such that they contain an
identifier of the player, an identifier of the video, the index of the segment, and
the requested video bitrate. For each evaluated setting, twelve hours of HTTP
traces are collected using tcpdump. Through analysis of the HTTP traces we
can obtain the mean bitrate of the streams and the number of times the bitrate
is changed during playback.

3 Performance model

The key difference between adaptation algorithms in the player and the band-
width division algorithm in the proxy server is that the proxy server bases it
decisions on a flow level view instead of on the individual downloaded segments.
Without the proxy server, players enter the bandwidth competition for every

3https://developer.apple.com/streaming/

8



segment, and the outcome of the competition can be different any time. For
the proxy server we expect that the total capacity of the bottleneck network
link is constant and that the available bandwidth is only re-divided among the
players when a new stream starts or a current stream stops. An advantage of
this is that the network usage becomes more predicable as it is predefined what
happens when a player of a certain type starts or stops. This behavior can also
be leveraged in model based performance analyses. At the core, it has to be de-
scribed how many players of each type are active and what the streaming bitrate
is for each of the players. Based on that, the mean bitrate of the streams can
be retrieved. By observing how often new players arrive or current players stop,
and thus observing how often the division of the available bandwidth changes,
we can obtain the number of quality changes in a stream.

3.1 Starting and stopping players

One of the characteristics of a policy is that a policy can distinguish between
different types of players. To keep the policies concise and easy to execute in
the proxy server, devices are grouped based on their type. The idea behind
grouping players is that players in the same group are treated equally by the
policy, where players in different groups can be treated differently. This implies
that all players in a group will get the same video bitrate assigned by the policy.

The process of starting and stopping players is captured in a Markov pro-
cess. Let K be the number of different groups considered by the policy and nk
denote the number of active players is group k, then each state in the process is
described by a vector (n1, n2, . . . , nK). We assume that HAS-assisting network
elements do not allow more video players than the network allows for. Although
our proxy server was not initially intended for access control, it can take this
role and prevent streaming interruptions caused by a too heavy demand on the
network. This implies that the state space of the Markov process is finite. The
state space S is defined as all states with non-negative integer valued entries
(n1, n2, . . . , nK) that satisfy the following condition:

K∑
k=1

nkB̃k ≤ C, (2)

where B̃k is the lowest available bitrate for players in group k, and C is the
capacity of the bottleneck link.

Transitions between states are linked to the arrivals of new players and
the termination of active players. We assume that players of group k arrive
according to a Poisson process with intensity λk. In HAS video streaming, the
download of video segments has to keep up with the playback. Therefore, the
video segments are typically chosen such that the time to download a segment is
equal to (or slightly shorter) than the duration of that video segment. Adapting
the video bitrate means that the job size (the number of bytes in the video
stream) changes accordingly to the load on the network, and that the time that
video players are active in the network is tightly linked to the duration of the

9



video. Therefore, the rate for transitions nk → (nk − 1) is nk/βk, where βk is
the mean duration of videos in group k. The Markov process at the base of our
model is equal to the Erlang multi-rate loss model, for which it is well-known
that a stationary distribution exists with the following product form solution:

π(n1, n2, . . . , nk) =
1

G

K∏
k=1

(λkβk)nk

nk!
, (3)

where G is the normalization factor:

G =
∑
x∈S

K∏
k=1

(λkβk)nk(x)

nk(x)!
. (4)

The Erlang multi-rate model has the advantage of being insensitive to the dis-
tribution of service times. In our model the service time refers to the durations
of the video streams βk. A summary of the notation for our model can be found
in Table 1.

Table 1: Model notation
Notation Description
Input
C Capacity of the network connection
λk Rate of the Poisson process at which group-k users

start the video streams
βk Mean duration of the video streams for group k
Bk Available bitrates for video streams for group k
Tsegmentk Segment size used in the video streams for group k
Intermediate
S State space of the Markov process
π(x) The probability that the Markov process is in state x
nk(x) The number of group-k players in state x
qk(x) The bitrate of group-k players in state x
γ(x→ y) The number of group-k players that change video

bitrate when transitioning from state x to state y

Output
E[Nk] The expected number of players of group k
E[Qk] The expected number of bitrate switches for players

of group k
E[Bk] The expected bitrate for players of group k

3.2 Streaming bitrate and bitrate switches

The bitrate of a video stream, and how often this bitrate changes, depends
on how the policy divides the bitrates among the players. From an abstract

10



level, a policy is a function that takes the capacity of the network, the number
of players in each group, and the available bitrates for each player as input,
and outputs for each group k a video bitrate qk while taking into account the
streams, devices and users. Because in each state x ∈ S the number of players
of each group is different, the policy has to be computed for all states in S. We
use the notation nk(x) to denote the number of players of group k in state x,
and qk(x) to denote the bitrate for players of group k in state x.

Given the number of players and the bitrates selected by the policy the
mean bitrate can be straightforwardly obtained. If the mean number of players
in group k is defined as:

E[Nk] =
∑
x∈S

π(x)nk(x), (5)

then the mean bitrate for the streams in group k becomes:

E[Bk] =
1

E[Nk]

∑
x∈S

π(x)nk(x)qk(x). (6)

The number of quality switches relates to how often the Markov process
transitions between states. If the selected bitrate for a group of players is
different between two states, then a bitrate switch is potentially made when
the process transitions between those states. The intuition behind determining
the number of bitrate switches is that by observing the number of transitions
between states with different selected bitrates, we can obtain the number of
switches in video quality. However, HAS players can technically only switch
in between segments, and not during the download of a segment. The reason
for this is that requested video quality is part of the HTTP request, and only
when making a new request a new bitrate can be selected. Therefore, to include
this behavior of the HAS player in the model, we observe the Markov process
with intervals equal to the segment duration. The probabilities that the process
transitions from state x to state y in Tsegment seconds can be retrieved via
uniformization of the continuous time Markov chain, by conditioning on m. If
Pm
x,y is the probability that the Markov process transitions from state x tot state

y in m steps, and if b is the uniform rate parameter, then the probability that
a transition x→ y occurs in Tsegment seconds becomes:

Px,y = e−bTsegment

∞∑
m=0

(bTsegment)
m

m!
Pm
x,y for x, y ∈ S. (7)

The duration of the videos is variable, therefore we express the number of
switches in video quality not as an absolute number but as a rate: number of
bitrate switches per second. The expected bitrate instability rate is defined as:

E[Qk] =
1

TsegmentE[Nk]

∑
x,y∈S

π(x)Px,yγk(x→ y), (8)

11



where γk(x→ y) is the number of players in group k that make a bitrate switch
on the transition x → y. Note that the bitrate instability rate is defined from
the viewpoint of single player. Players in group k only make a bitrate switch
when the bitrate in state x is different from the assigned bitrate in state y.
Furthermore, the number of players that make a switch is limited to the players
that are both active in x and y. A player that is started will already stream
at the selected bitrate and does not have to make a switch. Similarly, a player
that terminated a stream cannot make bitrate switches anymore. The number
of players that make a bitrate switch on the transition x→ y then becomes:

γk(x→ y) =

{
0 if qk(x) = qk(y),

min(nk(x), nk(y)) if qk(x) 6= qk(y)
(9)

Equations 5, 6 and 8 are defined per group k to allow for a more detailed
evaluations. The overall mean number of players, mean bitrate, and expected
bitrate instability rates can be found via a weighted average, weighted by the
mean number of players for each group:

E[N/B/Q] =

K∑
k=1

E[Nk] · E[Nk/Bk/Qk]

K∑
k=1

E[Nk]

. (10)

3.3 Inclusion of player prefetching

The model presented above describes the steady-state behavior of HTTP adap-
tive streaming players. In practice, HAS players first enter the prefetching phase
before going into the steady-state phase. This behavior does effect the stream-
ing bitrate, but is not yet included in the model described above. In this section
we describe how we can improve the accuracy of our model by taking player
prefetching into account.

During the prefetching phase, video segments are requested immediately
after the finishing downloading the previous segment, i.e. without the period of
inactivity after the segment download. A buffer is maintained during streaming
to prevent interruptions in playback caused by small variations in the available
network capacity. Depending on the type of stream this buffer size can vary.
For live streams the buffer size is kept small because it is important that the
play-out point is close to the actual broadcast. For video-on-demand (VoD)
this timing requirement can be relaxed and larger buffers with better resilience
agains video interruptions are more common.

The size of the buffer in the player has an effect on the mean bitrate of the
videos when our HAS proxy is used. This effect is illustrated in Figure 4, where
three players with different buffer sizes are compared. PlayerA uses a buffer of
two video segments or 8 seconds. PlayerB and PlayerC have buffer sizes of 16
seconds and 24 seconds respectively. All players are evaluated in our streaming

12



testbed and stream the same video with a duration of 144.0 seconds encoded at
400, 720, 1020, 2300 and 4200 kbit/s. Figure 4 also includes the model based
results for comparability.

0.01 0.02 0.03 0.04 0.05 0.06

500

1,000

1,500

2,000

2,500

λ (arrivals/s)

M
ea

n
b

it
ra

te
(k

b
it

/s
) PlayerA - 8s buffer

PlayerB - 16s buffer
PlayerC - 24s buffer

Model (for comparability)

Figure 4: The effect of the players’ buffer sizes on the mean bitrate of HAS
streams. Larger buffers result in a higher mean bitrate.

The results show that the mean bitrate increases when players with a larger
video buffer are used. The reason for this is that players with larger buffers
are shorter active in the network. During prefetching, the time that players are
active in the network is less than the duration of video that is downloaded during
that time. In the steady-state phase, the network activity equals the duration
of downloaded video. The difference between not including and including player
prefetching is illustrated in Figure 5.

1 2 3 4 5

1 2 3 4 5
Player prefetching

Figure 5: Prefetching causes the player to be active in the network for a shorter
period of time. No prefetching (top) versus prefetching (bottom).

This also explains why our model is accurate for players with small buffers,
but shows an underestimation of the mean video bitrate for players with larger
buffers. To account for the prefetching behavior in the model, it has to be
determined how much time is spent in the buffering phase, and how much time
is spent in the steady-state phase. An estimation of the mean time that it takes

13



to download a single video segment can be found as:

Tdownload =
E[B] · Tsegment

C/E[N ]
=

∑
x∈S

π(x)n(x)q(x) · Tsegment

C
. (11)

Based on the time that it takes to download a single segment, it can be estimated
how many segments need to be downloaded to reach a certain buffer level.

A common buffer strategy in HAS players is as follows. The player starts by
downloading one segment of video. Then, it starts playback while prefetching
(i.e. requesting video segments without inactivity period in between segment
downloads) until the player reaches a certain buffer level. During prefetching,
the inflow into the buffer is Tsegment seconds, and the outflow from the buffer
is Tdownload seconds. To reach a certain buffer level Buff so that the player can
go into steady-state mode, dα+ 1e segments have to be downloaded:

Buff− Tsegment = (Tsegment − Tdownload)α

α =
Buff− Tsegment

Tsegment − Tdownload

(12)

The download of the first video segment – while there is no outflow from the
buffer – is accounted for by subtracting Tsegment from the total buffer level in
Equation 12, and increasing α by one to come to the total number of video
segments that is required to be downloaded to reach Buff. The number of
segments is rounded up, dα+1e, because moving from prefetching to steady-state
phase can only occur in between segments, but not during segment downloads.

The effective service time βeff that video players are active in the network,
given a certain video length βvideo and β = βvideo, then becomes:

βeff = dα+ 1e(Tdownload − Tsegment) + βvideo. (13)

The effective service time βeff is lower than the actual service time β that is
used in the model. Therefore, to obtain a more accurate mean bitrate, β has
to be lowered to match βeff. However, Tdownload and α are dependent on β and
lowering β will thus affect βeff. The intersection β = βeff is found by iteratively
lowering β while keeping βvideo constant. A comparison of the model based mean
bitrate, the corrected model based mean bitrate, and the actual mean bitrate of
players with a 24 second buffer (PlayerC) is displayed in Figure 6. The results
show that including prefetching info the model results in better accuracy when
players with larger buffers are used, making it more broadly applicable.

4 Capacity sharing policies

At the proxy server the bandwidth that is available for video streaming is di-
vided among the players, according to a policy. In this section we perform a
model-based evaluation of two example sharing policies. These examples are

14



0.01 0.02 0.03 0.04 0.05 0.06
500

1,000

1,500

2,000

2,500

λ (arrivals/s)

M
ea
n
b
it
ra
te

(k
b
it
/s
)

PlayerC
Model
Model incl. prefetching

Figure 6: Comparison of the model-based mean bitrate, corrected model-based
mean bitrate, and the mean bitrate achieved in experiments. The model includ-
ing prefetching shows higher accuracy for the player with a large buffer.

to show sensitivity of our model to changes in the sharing policy, as well as to
demonstrate how the model can be applied. The first example compares a policy
that takes all devices as equal, to a policy that takes into account the screen size
and resolution of the devices. The second example compares two policies that
include priority or premium users. In addition to demonstrating how our model
can be used for policy evaluations, the model-based results are validated by
comparing them against results that are obtained using our streaming testbed.

4.1 Example: Device heterogeneity

Mobile devices have become more powerful and are fully enabled for streaming
videos using their Internet connection. It is not uncommon that smartphone and
tablet devices are used for video streaming. Traditional devices, like television
sets, nowadays also come with a network connection and they offer the same
streaming services that are available on the PC. Together these devices create an
interesting mix of different screen sizes and potentially different usage patterns.
Because of the different screen sizes it is not fair to equally divide the available
bandwidth among the players, since this would not yield an equal quality of
experience.

Georgopoulos et al. describe how different bitrates and resolutions can be
compared among devices with different form factors [6]. In our examples we will
use the same groups of devices, video profiles and video quality mapping. The
first group is smartphone sized devices that stream a 360p video of 60 seconds,
encoded at 400, 600 and 1000 kbit/s. The second group represents tablet viewers
that stream a 720p video of 120 seconds, encoded at 400, 600, 1000, 1500, and
2000 kbit/s. The third group is large screen devices that stream a 1080p video
of 180 seconds, encoded at 400, 600, 1000, 1500, 2000, 4000 kbit/s.

Each player will report its screen size to the proxy server, via the signaling

15



mechanism. This way, the proxy server can take different device types into
account. Based on the screen resolution and the available bitrates, a device-
aware quality mapping is created and listed in Table 2. Depending on the
number of players with each resolution, the proxy server selects a quality level
from Table 2 that fits the capacity of the channel. For example, the test if the
current active players would fit the capacity of the network given quality level
2 would be:

#360p ∗ 600 + #720p ∗ 1500 + #1080p ∗ 2000 ≤ C (14)

For quality levels 1-3 the perceived video quality is similar for the different
device resolutions. From level four and up it is not possible to maintain the
same perceived video quality. However, when the network capacity allows it,
the bitrate of the 1080p streams is higher than those of the 720p streams, and
the bitrate of the 720p streams is higher than those of the 360p streams.

Table 2: Device-aware video quality mapping (in kbit/s)
Quality level 360p 720p 1080p
1 1000 2000 4000
2 600 1500 2000
3 400 1000 1500
4 400 600 1000
5 400 400 600
6 400 400 400

Figure 7 shows the model-based comparison between the policy that equally
divides the available bandwidth among the players (Policy1) and the policy
that takes the devices’ resolutions into account as defined in Table 2 (Policy2).
Players are started according to three independent Poisson processes with arrival
intensities between λ = 0.0025 and λ = 0.0030 for 360p and 720p devices, and
between λ = 0.00125 and λ = 0.0150 for 1080p devices. The arrival rate λ in
Figure 7 is the combined arrival rate for the three independent Poisson processes.

0.00 0.02 0.04 0.06 0.08
0

1,000

2,000

3,000

λ (arrivals/s)

M
ea
n
b
it
ra
te

(k
b
it
/s
)

Policy1/equal share - 1080p

Policy2/device aware - 1080p

Policy1/equal share - 720p

Policy2/device aware - 720p

Policy1/equal share - 360p

Policy2/device aware - 360p

Figure 7: Model-based comparison of mean bitrates of a non-device aware and
a device-aware sharing policy

16



0.00 0.02 0.04 0.06 0.08
0.00

0.01

0.02

0.03

λ (arrivals/s)

B
it
ra
te

sw
it
ch
es
/
se
co
n
d

Policy1/equal share - 1080p

Policy2/device aware - 1080p

Policy1/equal share - 720p

Policy2/device aware - 720p

Policy1/equal share - 360p

Policy2/device aware - 360p

Figure 8: Model-based comparison of quality switches for a non device-aware
and a device-aware sharing policy

For tablet devices the two policies do not show a difference in mean bitrate.
However, it can be observed that the small screen devices are set to lower
bitrates to make room for the big screen devices. This is a result of the quality
level mapping from Table 2. Differences between different type of devices also
shows in the number of bitrate switches in Figure 8. The biggest difference
in the number of switches between the two policies is for 360p devices. This
class shows opposite behavior for the two policies. Under Policy1 the small
screen devices can stream at the highest available bitrate of 1000 kbit/s under
low arrival rates. The fair share of bandwidth is likely to be above the highest
bitrate. Therefore, 360p devices do not have to make a switch. When the load
on the network becomes higher, the equal share of the available bandwidth is
lower than 1000 kbit/s and requires the small screen devices to make a switch.
This results in a higher number of switches for higher arrival rates.

Under Policy2, this effect is reversed. At the lower arrival rates, the 360p
type devices have to make room for the large screen devices and thus switch to
a lower bitrate. This is again a result from the quality mapping in Table 2. At
high arrival rates the small screen players are likely to already stream at the
lowest available bitrate and cannot make a switch anymore, resulting in a lower
bitrate instability rate.

Figures 9 and 10 show the comparison of the model-based results with the
results that we obtained through experimentation using our streaming testbed
with the device aware policy (Policy2) installed on the proxy server. The results
show that our model is highly accurate for both the mean bitrate of the video
players as well as the bitrate instability rate.

4.2 Example: Premium users

The second example of sharing policies that we demonstrate in this paper are
policies that differentiate between regular and premium users. The existence of
premium users in a video delivery network can come from different reasons. For
example, some devices are considered more important because they are being
watched by multiple persons, or some users pay more for Internet access and

17



0.00 0.02 0.04 0.06 0.08
0

1,000

2,000

3,000

λ (arrivals/s)

M
ea
n
b
it
ra
te

(k
b
it
/
s) Experiment - 1080p

Model - 1080p
Experiment - 720p
Model - 720p
Experiment - 360p
Model - 360p

Figure 9: Model-based mean bitrate versus mean bitrate achieved in experi-
ments for a device-aware sharing policy

0.00 0.02 0.04 0.06 0.08
0.00

0.01

0.02

0.03

λ (arrivals/s)

B
it
ra
te

sw
it
ch
es
/s
ec
o
n
d

Experiment - 1080p
Model - 1080p
Experiment - 720p
Model - 720p
Experiment - 360p
Model - 360p

Figure 10: Model-based instability rate versus instability rate achieved in ex-
periments for a device-aware sharing policy

therefore assume a higher video quality.
In our policies we consider two groups of users: regular users and premium

users. Premium users can expect that the video quality of their stream will be
higher than those of the regular users when the network allows for it. The first
policy, PolicyA, gives the group of premium players the highest possible bitrate
regardless of the bitrate for the regular players. The second policy, PolicyB,
takes the same approach of selecting the highest possible bitrate for premium
players, but will never select more than two bitrate-steps lower for regular users.

A video with a duration of 140 seconds encoded at 400, 720, 1020, 1600,
2300, and 4200 kbit/s is used in the evaluation. Both primary and regular
players stream the same video. Regular players are started following a Poisson
process with arrival rates between λ = 0.0025 and λ = 0.0300, primary players
are started with arrival rates between λ = 0.00125 and λ = 0.0150. This results
in an environment where there are on average twice as many regular players as
there are primary players. Figure 11 shows the comparison of the two policies for
primary users in terms of mean bitrate. Figure 12 shows the difference between
the two policies in terms of number of bitrate switches.

The results show that PolicyB if more friendly towards regular players and

18



0.00 0.01 0.02 0.03 0.04 0.05
0

1,000

2,000

3,000

4,000

λ (arrivals/s)

M
ea
n
b
it
ra
te

(k
b
it
/s
)

PolicyA - regular
PolicyA - premium
PolicyB - regular
PolicyB - premium

Figure 11: Model-based comparison for mean bitrates of two sharing policies
for premium users

0.00 0.01 0.02 0.03 0.04 0.05
0.00

0.01

0.02

0.03

0.04

λ (arrivals/s)

B
it
ra
te

sw
it
ch
es
/s
ec
on

d

PolicyA - regular
PolicyA - premium
PolicyB - regular
PolicyB - premium

Figure 12: Model-based comparison for bitrate instability rates of two sharing
policies for premium users

the difference between primary and regular players under PolicyB is smaller.
This can be observed by the two lines representing Policy A to be closer to each
other, compared to the two lines representing Policy B. However, the impact of
switching from PolicyA to PolicyB is bigger for premium users compared to the
gain for regular when looking at absolute bitrates. The differences between the
two policies also shown in the comparison of the number of switches in video
bitrate. Under PolicyA, premium users are kept longer on the high bitrates and
thus require less switches at lower arrival rates. Regular users are the first to
switch to lower bitrates when the network becomes loaded. At higher arrival
rates it is more likely that regular players are already at the lowest bitrate,
resulting in less quality switches.

For our proxy server we decided to implement PolicyA because it yields the
highest bitrate for premium users. In the experimental runs a video stream with
the same characteristics as in the comparison above is used. Figure 13 shows
that the mean bitrates of the streams during the experimental runs are close
to the model-based mean bitrate. Similarly, the model-based bitrate instability

19



shows to be highly accurate when comparing them to the number of bitrate
switches achieved using the streaming tested, as displayed in Figure 14.

0.00 0.01 0.02 0.03 0.04 0.05
0

1,000

2,000

3,000

4,000

λ (arrivals/s)

M
ea
n
b
it
ra
te

(k
b
it
/s
)

Experiment - regular
Experiment - premium
Model - regular
Model - premium

Figure 13: Model-based mean bitrate versus mean bitrate achieved in experi-
ments for a premium device policy

0.00 0.01 0.02 0.03 0.04 0.05
0.00

0.01

0.02

0.03

λ (arrivals/s)

B
it
ra
te

sw
it
ch
es
/s
ec
on

d

Experiment - regular
Experiment - premium
Model - regular
Model - premium

Figure 14: Model-based instability rate versus instability rate achieved in ex-
periments for a premium device policy

From both examples in this section we can conclude that our model is sen-
sitive to changing the sharing policy while and remains highly accurate.

5 Conclusion

Video streaming over the Internet is getting extremely popular. With the rise of
handheld devices such as smartphones and tablets it is no longer an exception
that multiple users share a network connection for video streaming. However,
when this network connection contains a bottleneck that prohibits HTTP adap-
tive streaming players to stream at the highest bitrates, it is important to think

20



about how the capacity of the shared link should be shared among the players
in order to provide an optimal viewing experience. Traditionally, HAS play-
ers are ”selfish” in trying to achieve the highest possible video bitrate without
taking into account the existence of other players in the network. With the
introduction of HAS-assisting network elements, network connections can be
shared more stable and fair, and policies that take into account various user
and device specific factors can be executed.

Developing new sharing policies for network-assisted HAS requires the poli-
cies to be thoroughly tested and evaluated. However, simulation and experimen-
tal runs are time consuming and error prone. This motivated us to formulate
a Markov model that can describe the performance of network-assisted HAS
under a certain policy. The model presented in this paper allows to classify
different types of players or streams, and to estimate the mean bitrate and
number of changes in video bitrate for each class of players. The usage of our
model is demonstrated by means of a model-based evaluation of two types of
sharing policies: device heterogeneity and premium users. The model-based
results are validated agains experimental runs using our streaming testbed and
HAS-assisting proxy server. The results show to be highly accurate for both the
mean bitrate and the bitrate instability.

As such, our model is a useful tool that can be used in the development
of sharing policies, as well as for managing and provisioning video delivery
networks. Given our model, a large number of configurations can be evaluated
to come to the optimal configuration given a network setting.

Depending on where the bottleneck is located in the network, the model
is aimed at network administrators and internet service providers. Network
administrators can use the model as support while configuring HAS-assisting
network elements such as our proxy server. ISPs can gain insights on HAS
traffic requirements on a larger scale. Furthermore, they can use it for planning
and provisioning a dedicated video-on-demand service over their IP network.

Future research efforts will focus on applicability and accuracy of our model
in larger architectures with multiple bottleneck links, and how to express re-
quirements and dependencies in the policy formulation. Furthermore, we will
investigate the possibilities of online usage of our model in the proxy server,
such that our proxy server, or multiple instances of the proxy server together,
can dynamically update their internal sharing policies to provide an optimized
viewing experience based on the current usage of the network.

References

[1] J. Ahrenholz. Comparison of CORE network emulation platforms. Technical
report, Networked Syst. Technol., Boeing Research & Technology, Seattle, WA,
USA, 2010.

[2] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis. What happens
when HTTP adaptive streaming players compete for bandwidth? In NOSSDAV
’12: Proceedings of the 22nd international workshop on Network and Operating

21



System Support for Digital Audio and Video, pages 9–14, New York, New York,
USA, June 2012. ACM Request Permissions.

[3] S. Akhshabi, A. C. Begen, and C. Dovrolis. An Experimental Evaluation of Rate-
adaptation Algorithms in Adaptive Streaming over HTTP. In Proceedings of the
Second Annual ACM Conference on Multimedia Systems, pages 157–168, New
York, NY, USA, 2011. ACM.

[4] N. Cranley, P. Perry, and L. Murphy. User perception of adapting video quality.
International Journal of Human-Computer Studies, 64(8):637–647, 2006.

[5] J. Esteban, S. A. Benno, A. Beck, Y. Guo, V. Hilt, and I. Rimac. Interactions
Between HTTP Adaptive Streaming and TCP. In Proceedings of the 22Nd Inter-
national Workshop on Network and Operating System Support for Digital Audio
and Video, pages 21–26, New York, NY, USA, 2012. ACM.

[6] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race. Towards
network-wide QoE fairness using openflow-assisted adaptive video streaming. In
FhMN ’13: Proceedings of the 2013 ACM SIGCOMM workshop on Future human-
centric multimedia networking, pages 15–20, New York, New York, USA, Aug.
2013. ACM Request Permissions.

[7] R. Hamberg and H. de Ridder. Time-varying Image Quality: Modeling the Rela-
tion between Instantaneous and Overall Quality. SMPTE Journal, 108(11):802–
811, 1999.

[8] T. Hossfeld, M. Seufert, C. Sieber, and T. Zinner. Assessing effect sizes of influ-
ence factors towards a QoE model for HTTP adaptive streaming. In Quality of
Multimedia Experience (QoMEX), 2014 Sixth International Workshop on, pages
111–116. IEEE, Sept. 2014.

[9] R. Houdaille and S. Gouache. Shaping HTTP adaptive streams for a better user
experience. In MMSys ’12: Proceedings of the 3rd Multimedia Systems Confer-
ence, pages 1–9, New York, New York, USA, Feb. 2012. ACM Request Permis-
sions.

[10] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari. Confused,
timid, and unstable: picking a video streaming rate is hard. In IMC ’12: Pro-
ceedings of the 2012 ACM conference on Internet measurement conference, pages
225–238, New York, New York, USA, Nov. 2012. ACM Request Permissions.

[11] D. Jarnikov and T. Özçelebi. Client intelligence for adaptive streaming solutions.
Signal Processing: Image Communication, 26(7):378–389, 2011.

[12] J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and stability in
HTTP-based adaptive video streaming with FESTIVE. In CoNEXT ’12: Pro-
ceedings of the 8th international conference on Emerging networking experiments
and technologies, pages 97–108, New York, New York, USA, Dec. 2012. ACM
Request Permissions.

[13] J. W. Kleinrouweler, S. Cabrero, R. van der Mei, and P. Cesar. Modeling Stability
and Bitrate of Network-Assisted HTTP Adaptive Streaming Players. In 27th
International Teletraffic Congress (ITC 27), Ghent, Belgium, Sept. 2015.

[14] C. Liu, I. Bouazizi, and M. Gabbouj. Rate adaptation for adaptive HTTP stream-
ing. In Proceedings of the second annual ACM conference on Multimedia systems,
pages 169–174. ACM, 2011.

22



[15] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz. Adaptation algorithm for
adaptive streaming over HTTP. In Packet Video Workshop (PV), 2012 19th
International, pages 173–178. IEEE, 2012.

[16] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang. QDASH: a QoE-
aware DASH system. In MMSys ’12: Proceedings of the 3rd Multimedia Systems
Conference, pages 11–22, New York, New York, USA, Feb. 2012. ACM Request
Permissions.

[17] D. C. Robinson, Y. Jutras, and V. Craciun. Subjective Video Quality Assessment
of HTTP Adaptive Streaming Technologies. Bell Labs Technical Journal, 16(4):5–
23, 2012.

[18] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-Gia. A
Survey on Quality of Experience of HTTP Adaptive Streaming. Communications
Surveys Tutorials, IEEE, PP(99):1–1, 2014.

[19] E. Thomas, M. O. van Deventer, T. Stockhammer, A. C. Begen, and J. Famaey.
Enhancing MPEG dash performance via server and network assistance. In The
Best of IET and IBC, pages 48–53. Institution of Engineering and Technology,
2015.

[20] Z. Yuan, H. Venkataraman, and G.-M. Muntean. ibe: A novel bandwidth es-
timation algorithm for multimedia services over ieee 802.11 wireless networks.
In Wired-Wireless Multimedia Networks and Services Management, pages 69–80.
Springer, 2009.

23


