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Abstract

Agents improve by interacting with an environment and planning. By leveraging
information about what they don’t know, they can learn better and faster, at least in
environments that benefit from exploring. They do this by estimating the uncertainty
in their predictions. There are choices for how to estimate the uncertainty, and in this
work, we look at what effect this choice has on the exploration and strength of agents
playing board games. We compare the effect of a source of uncertainty which perfectly
tracks what the agent has seen, and a source which generalizes. We also describe the
challenges associated with tuning uncertainty estimators and show what considerations
have to be made when exploration is not all you need.

1 Introduction
We require autonomous agents. One way to create such agents is through reinforcement
learning (RL) [42], in which agents improve by interaction with the environment and by
receiving rewards for doing well. Agents need to explore the environment to find out which
actions give them reward. In the AlphaZero family of RL algorithms, agents plan during
interaction to take more informed actions, as well as to improve their understanding of the
state and the environment as a whole [39][37][12]. This improved understanding is used to
improve the agent so that future interactions and planning are even better. Agents produced
by this process are some of the best, especially in the domain of board games. Games are
used to test RL algorithms since they provide difficult, yet controlled challenges.

AlphaZero uses a planning algorithm called Monte Carlo Tree Search (MCTS) [8][14].
MCTS considers future reachable states and propagates information back to the current state.
In the case of AlphaZero, the information MCTS propagates comes from neural networks.
These networks take in a state and output how “good” the state is (called the value of the
state) and a policy over the possible actions. The policy associates each action with a value
(a probability of taking the action) saying how good that action is in the particular state
according to the agent. Both the policy and value are used during planning. The policy
dictates which actions are interesting and should be looked at first, and the value is used to
determine whether the reached state is good. By planning, both the value and the policy at
the current state are improved [15].

The value and policy predictions come from neural networks which can give unpredictable
outputs for states which have not been trained on. This means that there is an associated
uncertainty with the network outputs, which is low for states that were trained on, and high
for states which are unknown. This type of uncertainty is called epistemic, since it comes
from a lack of knowledge about a given state [18]. Quantifying epistemic uncertainty remains
an open problem because it requires identifying how neural networks generalize, although
approaches exist for estimating the uncertainty [32][28][27].

When we plan with uncertain predictions, the conclusions will also be uncertain. MCTS
does not propagate the uncertainty from network outputs. This is a missed opportunity
because the uncertainty can inform the agent’s decisions in the environment: For example, it
may be helpful to take actions with higher uncertainty since they contain novel information
to learn from [25]. Epistemic Monte Carlo Tree Search (E-MCTS) [29] modifies MCTS to
propagate uncertainty from future predictions back to the current state. The consequence is
that the agent can associate a confidence in the value of each action, based on the uncertainty
from predictions for possible future states.

It is necessary to perform some sort of exploration so that the agent can learn new things.
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AlphaZero approaches exploration by adding random noise to the policy at every step, as well
as by picking a random action during interaction. The random action is picked proportional
to how good the agent thinks the action is (which is reflected in the visitations to each action
during planning). Both of these approaches are examples of undirected exploration because
they try to randomly stumble into new and interesting states. This is contrasted by directed
exploration which actively uses information relevant to exploration, such as the uncertainty.

Directed exploration has been shown to induce learning when undirected exploration fails
to do the same [31][30][43][33][29], especially in hard exploration-focused environments, such
as mazes. These environments are characterized by having a single hard-to-reach reward.
The type of exploration which benefits RL agents in more complex environments, such as
board games, is less understood. With E-MCTS, AlphaZero-like algorithms can propagate
uncertainty during planning to then choose actions with a bias towards higher uncertainty,
following the Mantra of “optimism in the face of uncertainty” [24]. Exploration with E-MCTS
has worked remarkably in typical hard-exploration environments, but remains untested in
two-player zero-sum board games, for which AlphaZero is known. Exploration in these
environments could be beneficial to find strong strategies more quickly or to make the agent
resilient in a larger set of the state space [46].

Games like Chess and Go are interesting environments because the adversary has as
much power to decide the future states as the agent does, and so it is important for the
agent to be robust in a large variety of situations. These environments also require long-term
planning, as the outcome of actions can often be seen only much later. Both properties are
seen in real-world problems, which makes them relevant to try to tackle. In board games
there is not just one desired goal state, but many. These environments have a practically
infinite state space which is infeasible to explore fully, and exploration can be punished by
the opponent, so we need to consider the trade-off between doing what the agent believes is
best (exploitation) and trying new things (exploration) carefully.

One design choice which has an impact on the trade-off and the kind of exploration that
is performed is the source of local uncertainty. Local uncertainty refers to the epistemic
uncertainty estimate for an agent at a given state. If we use uncertainty driven exploration,
the source of uncertainty determines what is considered interesting to explore. A source of
uncertainty which generalizes over some feature of the environment means that once that
feature is examined, it ceases to be a source of uncertainty, and no longer drives exploration.
What kind of local uncertainty is beneficial in the domain of two-player zero-sum games is
unknown.

We examine the effect of directed exploration with E-MCTS in a two-player, zero-sum,
deterministic, discrete environment, Tak [44], as well as the effect of the source of local
uncertainty. Specifically, we consider one aspect in which sources of local novelty differ,
which is whether they try to be truly epistemic, tracking exactly the states which were seen,
or whether they attempt to generalize in some way. We do this by training agents that
use hash-based uncertainty estimators: one powered by a conventional hash which tries to
avoid hash collisions, and a locality-sensitive hashing method which gives similar hashes to
similar states. The latter is an example of a generalizing source of uncertainty. Hashes were
used since they are easy to evaluate and tune compared to neural network based uncertainty
sources such as random network distillation (RND) [6] used in prior work.

The contributions presented in this papers are as follows:

1. We describe the challenges and pitfalls associated with choosing and tuning uncertainty
estimators;
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2. we justify the design of the experimental setup motivating our choices for directed
exploration with AlphaZero in board games;

3. we examine the effect of directed exploration with E-MCTS in AlphaZero for a two-
player zero-sum discrete environment;

4. and finally, we cover the effect of using a source of local uncertainty that is truly
epistemic compared to one that generalizes.

To examine the effect of directed exploration we look at the playing strength of the
agents during training and the ratio of unique positions encountered throughout training.
We empirically show how the two different sources of local uncertainty generalize by seeing
how much uncertainty is estimated for unseen states drawn from different distributions. To
showcase the difficulty of tuning uncertainty estimators we describe how even after significant
effort to tune RND, it fails to discern between seen and unseen states, and has undesirable
behaviour with respect to the uncertainty it predicts for different kind of states.

2 Background
We give a formal definition of reinforcement learning including relevant notation, followed
by a description of the algorithms and techniques which we used, such as E-MCTS [29],
AlphaZero [39], Reanalyze [38], Sequential Halving [20], and RND [6]. We also cover the two
hashing algorithms, SimHash [7] and an linear congruential generator (LCG) [21] based hash,
which form the sources of local uncertainty for our experiments.

2.1 Reinforcement Learning
Reinforcement learning [42] consists of an agent interacting with an environment, trying
to maximize the cumulative reward it receives. The environment is modelled as a Markov
Decision Process (MDP) [3]. At any point, the agent is in a state s, and can take an action a
out of the possible actions in the state A(s). After taking an action, the agent transitions to
the new state s′ and receives a reward r. Transitions and rewards may be stochastic, so we
annotate the probability of transitioning to s′ with reward r when taking action a in state s
as p(s′, r|s, a). This probability function defines the dynamics of the environment.

The agent interacts with the environment in episodes, which consist of discrete time steps
t. The state, action, and reward at time t are written as St, At, Rt, respectively. The episode
ends at time T with the terminal state ST . The agent acts in the environment according to
a policy π. The policy can be deterministic, in which case At = π(St), or stochastic, where
π(a|s) is the probability of taking action a in state s.

A sequence of states and actions in an episode is called a trajectory, represented as
(St, At, St+1, St+2, ..., ST ). The return Gt for a trajectory is defined as the discounted sum
of rewards, i.e. Gt =

∑T−t
i=0 γiRt+i = Rt + γGt+1, where γ ∈ [0, 1] is the discount rate

used to devalue future rewards. The policy, transitions, and rewards may be stochastic,
which is why we define the value for a policy π and state s as the expected return: vπ(s) =
E[Gt|St = s]. Similarly, we define the action-value qπ(s, a) = E[Gt|St = s,At = a]. The goal
of reinforcement learning is to find the optimal policy which maximizes the value. The value
of the optimal policy is written as v∗(s).

Our experiments use Tak as the test environment. Tak is a deterministic, discrete-action,
two-player, zero-sum abstract strategy game like Chess and Go. Deterministic means that
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the current state and action determine the next state and reward exactly. More formally,
the transition probability p(s′, r|s, a) is equal to 1 for exactly one pair of next state s′ and
reward r, and 0 for all other pairs, for any given state s and action a. Discrete-action means
that the state space A(s) if finite for all s. Two-player zero-sum refers to the fact that two
agents alternate taking actions in the state, and that the benefit of one agent is an equal
deficit for the other. From the perspective of one agent, it is possible to model the adversary
as part of the environment, so that the transitions are once again stochastic, and p(s′, r|s, a)
depends on the adversary. In essence, every opponent defines different environment dynamics.
Finally, in abstract strategy board games, there is no reward for actions during episodes
except for the final action which leads to a terminal state. Wins receive a reward of 1, losses
−1, and draws 0.

2.2 MCTS, Bandits, and E-MCTS
Monte Carlo Tree Search (MCTS) [8] is a planning algorithm which tries to approximate the
value of a state v∗(s) by simulating possible trajectories from that state. MCTS iteratively
constructs a tree, where the nodes are states in the environment, and actions form the edges
from one state to the resulting state after taking said action1. The root node is the current
state. Every iteration of MCTS consists of three main steps: recursively select actions until
a leaf node is reached, expand the tree by adding a new leaf node along with a new value
approximation, and backup the value up the tree.

The earliest variations of MCTS approximate the value by simulating random action
sequences all the way to terminal states [4][14]. More recent versions of MCTS truncate the
simulations at the newly added leaf node and use a heuristic. The heuristic may come from
a neural network, in which case we label it vθ(s) for some network parameters θ. The value
is then propagated back up the tree, adjusting the values vmcts(s) stored at each node along
the path. The backup strategy is likewise configurable [9][19], but the standard is to use the
mean of propagated values vmcts(s) =

∑
a∈A(s) N(s,a)qmcts(s,a)

N(s) (which can be likened to the
Bellman equation), where N(s, a) counts the number of times the action has been visited.

Action selection is modelled as a multi-armed bandit problem [40], where during each
iteration of MCTS we want to balance between picking promising actions with high value
estimates (simulating good trajectories) and finding new interesting actions. Which actions
are good is not known ahead of time, so multiple must be tried before committing. Bandit
algorithms attempt to minimize regret, which is the lost reward when compared to choosing
the optimal action every time. Upper Confidence bound for Trees (UCT) [22] is a popular
algorithm that selects actions based on whichever maximizes the value of a formula of the
action-values q(s, a) and visit count N(s, a). PUCT (Predictor + UCT) [36] modifies the
UCT formula with prior information about which actions might be good. This policy prior
may come from a neural network, which we would annotate as πθ.

Epistemic Monte Carlo Tree Search (E-MCTS) [29] modifies MCTS by allowing it to
estimate and propagate epistemic uncertainty. When a neural network is used to predict the
value of a state, there is a distribution of vθ(s) which are consistent with what the network
has been trained on. The variance of this distribution σ2(s) is how we interpret epistemic

1This definition could result in an arbitrary graph depending on the environment dynamics, so we
additionally impose that different action sequences which reach the same state in the environment are
different nodes in the tree. A variation of MCTS called Monte Carlo Graph Search (MCGS) [11] can work
with directed acyclic graphs (DAGs) which occur in the case of transpositions (reaching the same state by
two different action sequences).
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uncertainty. We estimate the uncertainty using two sources: the local uncertainty and the
Uncertainty Bellman Equation (UBE) [34]. UBE approximates an upper bound on the total
uncertainty along the future trajectory of the policy, i.e. the uncertainty which will be
reached in the future when following the policy.

The combination of these two sources lets us categorize states. When the local uncertainty
is high, the state is new. When the local uncertainty is low but UBE is high, it means that the
current state is not new, but new states are reachable from it. When both the local uncertainty
and UBE is low then the state is a “dead end” in terms of novelty. UBE is approximated by
a neural network, written as uθ, and so it is also susceptible to epistemic errors. That is why
low UBE should be ignored in the case of high local uncertainty. We combine the two sources
by taking the maximum: σ2(s) = max(local_uncertainty(s), uθ(s))

2. The propagated
uncertainty is accumulated at each node as the mean standard deviation σmcts(s).

The propagated uncertainty can be used for directing exploration. E-UCT is a modification
of UCT [22] which replaces the the action-value q(s, a) in the formula by the optimistic
action value q(s, a) + βσmcts(s), where β ≥ 0 is an exploration hyper-parameter. By using a
predictor we get E-PUCT. The result of adding the standard deviation is that actions with
higher uncertainty will be visited more.

2.3 AlphaZero and Reanalyze
Consider an agent which produces state value approximations vθ(s) and a prior policy
πθ(s) for any state s using a neural network. By planning with MCTS, it produces an
approximation vmcts(s) of the value for a state, approximate action-values qmcts(s, a) for
each action, as well as the visits to each action N(s, a). Because visits were allocated to each
action according to a bandit algorithm, they correlate with how good each action is3, and
the visit distribution can be used as a policy for acting in the environment. In fact, MCTS
with PUCT acts as a policy improvement operator that takes a prior policy πθ(s) and makes
it better [15]. We can use the improved policy to update the network parameters θ to predict
better policies in the future. This is the core idea behind AlphaZero.

AlphaZero (AZ) [39] and its follow-up algorithms such as MuZero (MZ) [37] and Gumbel
MuZero (GMZ) [12] are able to learn without prior knowledge about what is good. A bad
agent can act as a slightly better agent with search, which can be distilled into a neural
network so we end up with that slightly better agent with which to repeat the process.
This search-guided interaction in the environment is referred to as self-play. The result
of self-play is targets, which include the improved policy and the value target. In AZ the
improved policy is recovered from the visit counts N(s, a) to each action from the root, and
the value target comes from the result of the game, or more formally the return Gt, which is
just the discounted terminal reward γT−tRT in the case of typical abstract strategy game
environments.

Sample efficiency refers to how strong of a policy we are able to create per amount of
interactions in the environment. Sample efficiency is improved by using reanalyze [38], which
is a process which is able to take old targets and renew them. This is done by sampling
an old target and by redoing the planning at that state using the newest agent, which
produces an updated improved policy. The value target is different than in self-play, since

2We also clip the size between 0 and the maximum variance, which is 4 in the case of a value that ranges
from −1 and 1.

3At least in the case of bandit algorithms which minimize cumulative regret. For algorithms which
minimize simple regret this is not true. This becomes relevant when we discuss Sequential Halving [20].
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this is done outside of an episode and there is no terminal reward. Several choices exist for
how to get the value target, one of which is temporal difference (TD) learning [41]. TD
learning means that the target for the current state is the discounted prediction for the state
that comes later in the episode (n steps for n-step TD learning). The future states used
for TD-learning in reanalyze are those taken from earlier self-play episodes. In notation:
vtarget(St) = γnvθ(St+n).

The states reached by earlier policies might be quite different than those the current policy
would reach. This essentially means that reanalyze is a way to learn from off-policy data,
without suffering from the common pitfalls associated with off-policy learning [26]. Reviewing
older episodes might also help address catastrophic forgetting [13]. When exploring according
to an uncertainty-seeking policy produced by E-MCTS + E-PUCT, the agent generates
off-policy data. Reanalyze provides a way to learn from exploratory episodes.

2.4 Gumbel MuZero and Sequential Halving
Gumbel MuZero [12] is named such for its use of the Gumbel top-k trick [23]. The trick allows
sampling k actions from the policy distribution without replacement in an efficient way by
sampling Gumbel noise for each action. We sample actions to concentrate planning on fewer
actions so that they are searched deeply even with low planning budgets [17]. The actions
which are left out do not get analyzed at all, and if we were to use the improved policy based
on visit counts, these actions would receive a probability of 0. This is undesirable because
we technically have no information about those actions, which is why GMZ introduces an
improved policy formula based on the action-values qmcts(s, a), using the root value prediction
vθ(s) as an approximation for the unvisited actions.

GMZ made another interesting choice regarding the selection algorithm at the root of
search. MCTS typically uses bandit algorithms which try to minimize cumulative regret, but
when selecting an action to take in the environment we do not care about the rewards reached
during search. We only care about the reward of the picked action. This is the minimization
of simple regret, and referred to as “pure exploration” [5]. GMZ chooses to use Sequential
Halving [20]. Sequential Halving is an aptly named algorithm because it sequentially halves
the actions that it considers until it arrives at one action that it deems best. At each step
of the halving it visits all actions equally often, and then removes the worse half based on
the prior policy πθ and the action-values qmcts(s, a). When using E-MCTS with Sequential
Halving it is possible to select for actions which maximize for the optimistic action-value
qmcts(s, a) + βσmcts(s).

2.5 RND, SimHash, and LCGs
Random Network Distillation (RND) [6] is a technique that can be used for local uncertainty
quantification. It uses two randomly initialized networks, a target and a predictor. As part
of training, the predictor’s weights are adjusted to minimize the mean squared error (MSE)
between the outputs of the two networks. The target network is not modified. The idea is
that for states which are unobserved, the difference between the outputs of the two networks
is large, signifying high epistemic uncertainty, while for states which have been trained on,
the MSE is low.

RND is a relatively cheap (computationally-speaking) source of uncertainty, which can
scale to handle arbitrarily large state spaces. Unfortunately, it has a considerable downside
in being very difficult to tune. The predictor generalizes to some degree, which means the
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MSE between its outputs and the outputs of the target will tend to decrease during training,
even for unseen states. This means some form of normalization is required on the output to
maintain a difference between seen and unseen states.

SimHash [7] is a locality sensitive hashing technique. It has the property that the
probability that a specific bit in the hashes of two states is the same is proportional to the
angle between the two state vectors. This means that states which have a similar state
vector direction will have similar hashes. When used as a source of epistemic uncertainty,
this produces an arbitrary generalization which does not require any domain knowledge, but
it is affected much by the state vector representation. SimHash has been successfully used
for exploration in hash-explore [43]. Hashes extend simple count-based and pseudo-count
exploration [2] [33] to large state-spaces for which it is infeasible to keep a count for each
possible state in memory.

Linear4 congruential generators (LCG) [21] are a family of recurrence relations of the
form xn+1 = (axn + c) (mod m), i ≥ 0, m > xn ≥ 0. The sequences produced by these
recurrence relations are used for pseudo-random number generation [35]. The recurrence
formula always produces the same output for the same input, and the sequence produces
values which are uniformly distributed, which makes this recurrence relation also useful for
simple conventional, albeit insecure, hashing. Since it is a conventional hashing technique, it
produces different hashes even for similar inputs, and so it can be used as an almost perfect
source of epistemic uncertainty (imperfections come from unlikely hash collisions).

3 Method

3.1 Tuning Sources of Local Uncertainty
A source of local uncertainty is required to explore with E-MCTS. RND [6] has been used
successfully in prior work, although it must be tuned for best results. The process of tuning
RND consisted of three main challenges: output normalization, input normalization, and
distinction between “seen” (states that were trained on) and “unseen” states (states that were
not trained on).

We tried normalizing the output using a minimum and maximum like RNDnormalized =
RNDout−RNDmin

RNDmin−RNDmax
, where the minimum and maximum come from outputs seen during plan-

ning, or from a reference batch of states. Although it seems sensible, this is actually a bad
way to normalize, because the smallest and largest inputs come from outliers which are far
from other reasonable outputs. The result of this normalization is that it “squishes” all other
outputs into a small range which is undesirable. Dividing by the running standard deviation
works better.

The RND output is sensitive to the input size. Larger input size tends to give a larger
output, regardless of whether the state has been seen. The standard approach of subtracting
the element-wise running mean from the input and then dividing by the running standard
deviation does not work well for board game inputs. The input representation is typically
a boolean tensor with many zeroes which might change to ones only rarely. Diving by the
running standard deviation for such an element will only amplify the problem where larger
inputs give a larger output.

To address the issue of input size effecting output size, we tried several normalization
approaches: resize the input so that the magnitude is equal to one, resize per layer, apply a

4The convention is to call them linear even though when c ̸= 0 the recurrence relation is an affine
transformation.
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constant random noise to the inputs, modify the network architecture to include a LayerNorm
[1] at the start, and more. None were particularly effective at solving the problem.

For RND to work as an uncertainty estimator at all, it is crucial that it distinguishes
seen and unseen states. We observed that outputs for seen and unseen states decreased at
about the same pace, and that the difference between them was small (smaller than the
difference between small and large inputs). To try to make it more difficult for the predictor
to generalize, we tried using different architectures for the two networks, multiplying the
input by a constant for one of the networks or both, multiplying the network weights by
a constant, and changing how many times each state is trained on. Again, none of these
approaches seemed to work.

Results with a correctly working RND would have been nice to have since they would
clearly build off of prior work in E-MCTS [29], but after extensive RND tuning while being
no closer to something that works reliably, we were forced to move on. We considered which
kind of source could be trusted absolutely, such that its effect could be isolated and easily
analyzed. We arrived at hash-based exploration [43] powered by different hashing algorithms
for different behaviour, namely SimHash and a conventional locality-insensitive hash.

SimHash is a known technique, but for the locality-insensitive hash we had to develop
new methods. The idea to use LCGs to hash tensors (states) is not new [16], although it has
not been used as a source of epistemic uncertainty. We improve on the existing algorithm
(hereafter LCGHash) by first taking the element-wise product with a constant tensor, and
then reinterpreting the floating point numbers as integers, before using the LCG algorithm.
The constant tensor was initialized with random values drawn from a uniform distribution
with bounds −100 and 100. Without the random tensor there was an undesirable correlation
in the hashes for early states. To avoid collisions, we used a massive hashset with one bit
per entry (allowing for only binary outputs, but saving a lot of memory).

3.2 Exploration - Exploitation Trade-off
We use reanalyze [38] in tandem with self-play to generate targets, but only reanalyze
generates targets from the data which comes from directed exploration. The portion of
self-play and reanalyze data is a hyper-parameter. Using more self-play data means the agent
learns from more recent data, from the most “critical” trajectories, those, which are close to
what the agent thinks is best. Using more reanalyze data means better sample efficiency,
better retention of old information, as well as learning from exploratory data. Running
planning during episodes in self-play and running planning for reanalyze is identical from a
computation cost, so they both generate fresh targets at the same pace. The catch is that,
without self-play, reanalyze is useless, because there is only so much information to be gained
from looking at the same positions many times. In our experiments we use an equal portion
of self-play targets and reanalyze targets in each training batch. This equal ratio is also
reflected in the amount of computation we dedicate to each system.

E-PUCT provides exploratory planning that might not be desirable in the context of
two-player, zero-sum games. If we were to use E-PUCT throughout the whole tree, we would
be pretending that the adversary also wants to explore, but we should actually expect them
to exploit. As such it makes more sense to use E-PUCT only for the current agent’s move,
and PUCT for the opponent’s turns.

PUCT (and by extension E-PUCT) begins by choosing actions based on the prior policy
and slowly transitions to prioritizing the value of each action. This behaviour is very nice
when the policy is good and when we want the agent to exploit. The problem is when we
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want to explore: Exploration should help find actions the policy might otherwise miss. This
makes PUCT a subpar choice for exploration because it will overvalue the prior policy and
make it difficult to plan away from it.

A natural alternative is UCT [22] and E-UCT, the precursors to PUCT which do not use
the prior policy. The benefit of UCT is that it visits actions much more evenly, and is able
to optimise for the desired value well, but the fact that it visits actions so evenly is also its
downside. We have a limited search budget, and the broader we explore, the shorter the
planning horizon beyond which we cannot see. Using UCT also means we throw away the
prior policy which is a bad idea since the policy is a helpful tool for pruning uninteresting
actions.

Sequential Halving [20] seems like the perfect choice as a trade-off between being selective
(to search deeply), but also visiting broadly enough at the start to see interesting actions
for exploration. Sequential Halving was successfully used in Gumbel MuZero [12], and in
our experiments we use it as well, although we choose to sample a much larger number of
actions so that we are able to explore further away from the policy.

3.3 Targets
We have to be careful about the targets we extract in reanalyze. Consider that in exploratory
episodes we are intentionally going into areas where the agent is uncertain, so predictions
there are unreliable. If we use TD-learning targets which take the “raw” output from a state
along this trajectory, it is likely to have a large error. We would also be approximating the
value of the exploratory policy vπexplore

(s) (produced when we select actions according to
the optimistic value). To minimize these errors, we choose to use the discounted action-value
vtarget(s) = γq(s, a) of the action that the exploitatory policy would have picked after
planning.

The UBE target we use reflects the type of exploration we want and expect. We
acknowledge that we will never fully explore the state space, and we cannot afford to waste
resources exploring in every direction, so we disregard those actions for which we already
have a negative preconception. This is echoed in the type of UBE targets which we give: The
target is the uncertainty of the action we would have chosen if we had followed the exploratory
policy utarget(s) = γ2σ2

mcts(s
′). This means the UBE target follows the uncertainty of the

target we would actually choose during exploration.

4 Evaluation
We compare how the two sources of evaluation generalize throughout training in Figure 1.
SimHash reports that most early positions were seen almost immediately, even though these
states are not included in the dataset. This shows SimHash generalizes well over the early
states. The late states are more unique, so as expected, we do not see as much of an increase.
LCGHash should not generalize, and that is what we see: both early and late remain close
to zero, since they are filtered out of the training data. Based on this we can conclude that
SimHash and LCGHash behave as designed: SimHash generalizes, while LCGHash does not.
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Figure 1: Ratio of positions in a batch that are “seen” throughout training. Each line refers to
a different kind of batch: training is the batch being put into the hash set. early is a batch
of early positions (ply = 8), and late is a batch of late positions (ply = 60). Both early
and late were filtered out from the dataset, so the pictured increase is directly because of
hash-collisions.

We compare how much of the state space is reported as seen by the two hashes in Figure 2.
We generate random states at different depths, and then check whether the two hashes
have seen these states. LCGHash starts seeing unseen states almost immediately, while for
SimHash the early states are consistently seen. If we use LCGHash to explore, we would still
be exploring the many unseen early game states. On the other hand, further exploration
with SimHash would be focused on later states, since that is where the uncertainty still is.
The behaviour of LCGHash undesirable, because after just a few moves, all states are new.
When faced with this situation, directed exploration fails, because all directions look equally
new and interesting. This makes LCGHash a bad choice for environments with a large state
space and branching factor.
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Figure 2: The ratio of unseen states at different depths along random trajectories.

We examine the effect of directed exploration as well as the exploration parameter β
on the uniqueness of visited states throughout training in Figure 3. Directed exploration
increases the ratio of unique states, and higher values of β increase it even further. There is
no noticeable difference when SimHash or LCGHash is used.

Figure 3: Ratio of unique states (compared to the growing replay buffer) in the last 250k
interactions at each point during training.

Finally, we look at the strength of the resulting models in Figure 4. The rating is
determined by playing many matches between each checkpoint and then using bayeselo [10]
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to compute Elo ratings which best predict the match outcomes. All agents achieve similar
Elo rating despite different sources of uncertainty and kinds of exploration. This shows that
the kind of exploration we are driving with E-MCTS and these sources of uncertainty is not
beneficial, and in the case of LCGHash with β = 0.5, might even be detrimental.

Figure 4: Relative Bayes Elo throughout training. The shaded regions are the standard
error across seeds. Each checkpoint played roughly 10k games. The standard deviation
reported by bayeselo was below 10 for all ratings. Number of seeds per agent: (undirected:
2), (SimHash β = 0.1: 2), (LCGHash β = 0.1: 3), (LCGHash β = 0.5: 1).

5 Responsible Research
We briefly discuss reproducibility and ethical considerations.

The source code has been made public, with instructions for how to run the experiments
in the provided README.md file. We used a university cluster with 21 Graphical Processing
Units (GPUs) working continuously for around two days per seed. It is possible to seed the
random number generation of each process, but as soon as the system becomes distributed,
the inter-process communication introduces uncontrolled random behaviour. We throttle
each process as necessary to maintain a precise ratio of environment interactions to network
training steps.

Training of these larger reinforcement learning models requires significant compute which
uses much electricity, and so it has an environmental impact. Furthermore, by using a shared
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university cluster to perform computations, we delayed the experiments of other researchers.

6 Conclusion
We described the challenges associated with tuning RND [6] and developed LCGHash as a
foil for SimHash. We analyzed the effect of directed exploration with these two hash-based
sources of uncertainty and saw that although E-MCTS induced additional exploration (as
shown in Figure 3) with both sources, neither had an effect on the strength (Elo rating) of
the resulting agents. We compared the generalization of the two sources as well as how much
of the state space they report as seen.

Just because the local uncertainty sources that we tried did not improve playing strength
does not mean that some other source will not benefit. An aspect of uncertainty sources
which is perhaps the most interesting is the way the source generalizes. SimHash provides
an arbitrary generalization, but the variance of a bootstrapped value-ensemble [31] might
provide a more useful source, as a disagreement between good agents would indicate that
the state is unclear and we might be able to benefit from exploring it.

It is possible that the agents we trained have not exhausted the “free” novelty that is
reachable by undirected exploration, and that with longer training runs, directed deep-
exploration agents might benefit once undirected exploration exhausts the close-by novelty.

In self-play, the agent faces a copy of itself. That means that it has a good chance of seeing
a positive reward (winning) even without exploration. If we used a much stronger adversary,
exploration might be useful in finding a way to beat that specific opponent, without having
to cheat by using the other agent’s evaluation like in victim-play [45].

There were many other design choices and hyper-parameters which we were not able to
explore fully, and each one could induce a benefit from the additional exploration. We did
show an important finding though: a truly epistemic source of uncertainty such as LCGHash
is not useful when the state space and branching factor is large, because at some depth, all
states look new. Future work should only consider generalizing sources of uncertainty when
dealing with these complex environments.
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