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I. INTRODUCTION 
This report provides a summary concerning the application 

of the Mean-Variance Mapping Optimization (MVMO) 
algorithm on two of the tests beds of the IEEE CEC 2016 
Special Session & Competitions on Real-Parameter Single 
Objective Optimization:  

i) Bound Constrained Single-Objective Computationally 
Expensive Numerical Optimization [1].  

ii) Learning-based Real-Parameter Single Objective 
Optimization [2]. 

In order to differentiate from previous variants of MVMO, 
the acronym MVMO-PHM is used henceforth. P denotes the 
population based approach, H the hybridization of the 
algorithmic framework to include local search strategy, and M 
the adoption of a new mapping function. 

The report is organised as follows: Section II recapitulates 
the main features behind the algorithmic procedure of MVMO 
and overviews a new mapping function. Sections III and IV 
show the numerical results concerning the solution of the 
computationally expensive problems, and the learning-based 
problems, respectively, followed by concluding remarks in 
section V. 

II. A SHORT OVERVIEW OF MVMO-PHM 
The overall algorithmic procedure of MVMO-PHM is 

shown in Fig. 1. For the sake of brevity, only a summary of the 
main features is provided below, and interested readers can 
find a detailed description of each step in [3].  

• Firstly, the parameters of MVMO-PHM are 
initialized, and a set of NP candidate solutions is 
randomly sampled within the min-max bounds of the 
optimization variables, which are simultaneously 
normalized from [min, max] into [0, 1], because the 
evolutionary mechanism of MVMO-PHM is 
performed within a normalized search space. The list 
of parameters is given in Subsection II.E. 

• The optimization variables are only de-normalized for 
computing the fitness value or launching local search. 
The fitness value corresponds with the error value 

presented in Sections III and IV. No strategy is 
needed to ensure fulfilment of bound constraints, 
since MVMO-PHM always generates new values for 
each optimization variable within [0,1]. 

• Local search is based on interior-point method (IPM) 
or sequential quadratic programming (SQP) and is 
launched after a given number of fitness evaluations 
i loc_start for any new solutions belonging to the group 
of good particles. A particle is selected for local 
search on a given probability LSγ , that is 

 LSrand < γ  (1) 

subject to: 
 LS_ min LS_ max max,    /i ia < a < a a =  (2) 

where i stands for fitness evaluation number and 
LS_ min LS_ max,a a represents the range scheduled for 

local search. rand denotes a uniform randomly 
generated number within the range [0,1]. 

• The normalized evolutionary mechanism of MVMO-
PHM comprises of: i) Filling-up and updating a set of 
solution archives containing evolved candidate 
solution from the initial population; ii) Classification 
of newly generated solutions into either good (to with 
the smallest fitness values so far) or bad solutions 
(relatively higher fitness values); ii) Determination of 
a parent solution, from which a new (child) solution is 
generated; and iv) Mutation of m selected dimensions 
of the parent solution through application of the so-
called mapping function. 

A. Solution archive: a dynamic knowledge database 
The solution archive constitutes a knowledge base that is 

updated whenever an improvement of the fitness value is 
achieved. It stores the n-best child solutions achieved so far in 
a descending order of fitness. The solution archive has a fixed 
size for the entire search process. As illustrated in Fig. 2, it 
records statistical measures like the mean ix , shape is , and d-
factor id  associated with each optimization variable. These 
measures are recalculated whenever an update of the archive 

 



takes place. However, for the calculation of mean a weighting 
of the old and new values is used according to (3) 

 update old new0.1 0.9x x x= ⋅ + ⋅  (3) 

The initial value inix  is set in this study to 0.5, that means 
exactly in the middle of the search space. Other options like 
random or user defined definitions are also possible. Similarly, 
the initial values and the updating procedure of is , and d-factor 

id  represent additional tuning factors allowing some 
adaptation to the function to be optimized. However, in this 
study the settings 0is = , 1id = and updating these values 
based on the archive only without weighting old and current 
values, have been used. All these parameters influence the the 
shape of the mapping function, which allows changing the 
search emphasis from exploration to exploitation. 

 
Fig. 1. Algorithmic procedure of MVMO-PHM. The fitness evaluation and 
candidate solution counters are denoted by i and k, whereas NP,  ∆FE,  and 
rand stand for number of candidate solutions, number of fitness evaluations, 
and uniform random number between [0, 1], respectively.  

B. Classification and determination of parent solution 
Initially, each candidate solution is independently generated 

and evaluated for at least two runs. The solution with the 
individual best fitness achieved so far (i.e. the first ranked 
position in its particular solution archive) is chosen as the 
parent for next generation solutions. 

Afterwards, the scheme shown in Fig.3 is used to classify 
the candidate solutions into the set of GP “good” solutions, or 
the set of Np-GP “bad” solutions. The classification is based on 
the individual best fitness achieved so far, i.e. ranking from the 
smallest to the largest fitness value (minimization problem). 

 
Fig. 2. Layour of the set of solution archives.  

`Fig. 3 also illustrates that the evolution of each “good” 
solution starts by picking up the best ranked solution of the 
corresponding solution archive as a parent parent

kx , whereas for 

the evolution of a “bad” solution kx , a multi-parent criterion 

is applied in order to determine parent
kx : 

 ( )parent best best best
RG GB LGk = + −x x x xb  (4) 

where best
GBx  represents one of the best solutions selected 

from a small group of global best solutions. The group includes 
initially five members which is reduced to one (global best) in 
the final stage. best

LGx  and best
RGx  are the last and a randomly 

selected intermediate solutions in the group of good solutions, 
respectively. In this selection the border between “good” and 
“bad” particles is not fixed a priori, but exhibits a small 
variation.  

Note also in Fig. 3 that the vector of mean values 
associated with kx , which are required for subsequent 
mutation via the mapping function, is determined randomly 
from the set of good solutions. For both “good” and “bad” 
solutions, the shape variables s i and d i are synthesized based 
on the corresponding solution archive. The factor b  is 
computed as follows: 



 
( )

( ) ( )2 2

1.1 0.5 2.0

3.0 1.0 2.5 1 0.8

b rand

b rand

= + − ⋅

b = d ⋅ ⋅ ⋅ + ⋅a ⋅ − −a ⋅
 (5) 

where δ  is a tuning parameter and can vary in the range of 
[0.1 – 20]. The factor β is re-drawn and (5) is recalculated for 
any element of parent

kx  going outside the range [0, 1].  
The relative number GP of solutions belonging to the group 

of good solutions is determined throughout the search process 
as follows: 

 ( )*
Pround N pGP g= ⋅   (6) 

 ( )* * 2 * *
p_ini p_final p_inig g g  pg = −a −   (7) 

This value is varied in a small range of 15% around *
pg  by 

using a simplified normal distribution function.  

Equation (7) is not calculated in the initial stage of the 
search process, where each solution is evaluated independently. 
Note that GP is linearly narrowed down following the decrease 
from *

p_inig  to *
p_finalg . 

 
Fig. 3. Procedure for parent selection in MVMO-SH.  

C. Selection of variables for mutation operation 
Finally, for each candidate solution, a child vector (array) 

[ ]new
1 2 3 D= , , , ,x x x xx  , where D is the number of problem 

dimensions, is created by performing mutation operation on m 

selected dimensions of parent
px . This operation basically 

consists of applying the mapping function based on the actual 
values of the parameters ix , is , and id  associated with each 
solution. The value of m is determined throughout the search 
process as follows: 

 ( )( )final finalround m * mm irand m= + −   (8) 

 ( )( )2
ini ini final* round m m mm = −a −   (9) 

where irand() denotes a random integer number generated in 
the range between zero and the value given in the brackets. The 
selection of the m variables to be mutated is done by using the 
random-sequential strategy described in [4]. 

D. Mutation based on new mapping function 

The new value of each selected dimension rx  of newx is 
determined, based on the classical mapping function 
(Mapping #1 in the following), by  

 *
r x 1 0 r 0(1 )x h h h x h= + − + ⋅ −  (10) 

where r
*x  is a randomly generated number with uniform 

distribution between [0, 1]. The term h represents the mapping 
function that is used for mutation operation, whereas hx, h1 
and h0 are the outputs of the mapping function calculated as:  

 *
x r 0 1( ), ( 0), ( 1)h h x x h h x h h x= = = = = =  (11) 

where 

 1 2(1 )
1 2( , , , ) (1 ) (1 )x s x sh x s s x x e x e− ⋅ − − ⋅= ⋅ − + − ⋅  (12) 

From (10), (11), and (12), it can be noticed that rx is always 
within the range [0, 1]. rs  is the shape factor calculated as 
follows:  

 r r sln( )s v f= − ⋅  (13) 

where rv  is the variance computed from the stored values of 

rx  in the solution archive, and sf  is a scaling factor. 

Alternatively, two new mapping functions have been 
developed and used in this paper. Mapping #2 is based on 
Mapping #1, but the function is defined slightly differently in 
the two halves of the random variable *

rx . In this way the 

function crosses the mean value x  always at *
r 0.5x = . 

Consequently, the probability of the optimization variable 
decreasing or increasing is the same in both directions. 

Mapping #2 
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The same idea was followed in the function Mapping #3 
but additionally the exponential functions were replaced by 
hyperbolic functions.  
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The three mapping functions are illustratively compared 
with one another in Fig. 4 a) and b) for different mean and 
shape factors. Note that by using the new function Mapping #2 
and Mapping #3 the mean value is always reached at 0.5 at the 
x-axis. Therefore, the probability of generating a new value of 

rx that is greater or smaller than the mean value is equal. This 
is not the case in the classical mapping (Mapping #1). For the 
same shape value r1s and r2s the slope of the Mapping #3 is 
higher than that of Mapping #1 and Mapping #2 around the 
mean value. Thus, it allows a higher global search capability. 
On the other hand, for performing local search Mapping #2 is 
more favorable. In the optimization task presented in this paper 
initially Mapping #3 was used. After the first local search run 
using SQP or IPM algorithms the mapping was switched to 
Mapping #2.  

In the first evaluation of every solution, the mean rx  is set 
to the predefined initial value (0.5 in this study) and the 
variance rv  is set to 1.0 which corresponds with sr=0. But as 
the optimization progresses, they are recalculated after every 
update of the particle’s solution archive for each selected 
optimization variable. Both input and output of the mapping 
function cover the range [0, 1]. From (10) and (15), it can be 
observed that the shape of the mapping function is influenced 
by the mean rx  and shape factors r1s and r2s . So, the search 
diversity can be enhanced through proper variation of the shape 
factors. To this end, the scaling factor sf can be additionally 
used to change the shape of the function. Thus, sf  is increased 
as the optimization progresses from a small initial value (e.g. 

*
s_ini 1f = ) up to a higher final value (e.g. *

s_final 20f = ) by 
using (16) and (17). 

 ( )* * 2 * *
s s_ini s_final s_inif f f f= +a −   (16) 

 ( )( )*
s s 1.0 4.0 0.2f f rand= + ⋅ −   (17) 

The shape factors r1s  and r2s  of the variable rx  are 
assigned by using the procedure given in [7]. 

 

 
Fig. 4. Classical and the proposed mapping functions.  

E. Summary of parameters of MVMO-PHM  
The following set of parameters are required for the algorithm:  

- Number of particles 
- Archive size 

- Initial and final fs factor * *
s_ini s_final,f f   

- Initial and final ratio of good particles * *
p_ini p_finalg ,g  

- Initial and final number of mutated variables  
 ( ini finalm ; m ) 

- Local search probability LSγ   
- Initial/final bound of range of local search probability 

( LS_ min LS_ max,a a ) 

- Factor δ in Eq. (5) 
 
For each test function, the parameters of the algorithm were 

tuned by performing sensitivity analysis of the achieved fitness 
value under a single parameter change within 10 independent 
optimization runs.  

The execution of local search by SQP or IPM may require 
performing tens, hundreds or even thousands of fitness 
evaluations. Thus, the use of this option is recommended for 
optimization problems that can be solved without considerable 
computing time constraints (i.e. large number of fitness 
evaluation budget), whereas, for optimization problems to be 
solved within reduced time (i.e. limited amount of function 
evaluations), the local search should be started earlier to have 
the chance of finishing the calculation within the range of the 
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evaluation budget, but not before MVMO-PHM was able to 
perform global search beforehand. The local search will always 
start with the best solution (first in the best solution group) and 
continues with the second and subsequent particles if enough 
evaluation budget is available.  

Numerical experiments shown in the next sections III were 
performed on a computer with Intel Core i7-3770 CPU, 3.4 
GHz and 16 GB RAM, under Windows 8.1 pro, 64 bit OS. The 
implementation of MVMO-PHM was done in Matlab 
Version R2014b and the functionalities of the Parallel 
Computing Toolbox are used to set a cluster with 7 cores to 
perform the optimization trials in a distributed manner. 
Stochastic integrity is guaranteed by performing independent 
initialization of random number streams on individual 
processes with respect to time plus the process identifier. The 
local search is performed by the IPM algorithm implemented in 
Matlab.  

For the optimization task described in section IV the 
Fortran implementation of MVMO-PHM was used where the 
C-code for the function evaluation is embedded. In this way 
simulation time was reduced drastically compared with the 
Matlab version. For local search only a SQP algorithm 
implemented in the IMSL mathematical library was available.  

III. COMPUTATIONALLY EXPENSIVE PROBLEMS 
The performance of MVMO-PHM is firstly evaluated on 

the IEEE-CEC 2016 benchmark problems on Bound 
Constrained Single-Objective Computationally Expensive 
Numerical Optimization. The problems are summarized in 
Table I. Detailed description can be found in [1]. 

Statistical tests on convergence performance and quality of 
final solution provided by MVMO were carried out under the 
following considerations: 

• Problem dimension D = 10, 30. 

• Search range: [ ]D100,100− . 

• Maximum number of function evaluations:  50*D. 

• Repetitions of the optimization: 20 runs. 

• Uniform random initialization within the search space. The 
random seed is based on time, which is done using the 
command rand('state', sum(100*clock)) in Matlab 
environment. 

• The objective function is defined as the error value
i iOF=TF ( ) - F *,x where iF * is the theoretical global 

optimum of the i-th benchmark function TF is given in 
Table 1. The values of OF smaller than 1E-08 are taken as 
zero. 

• The optimization is terminated upon completion of the 
maximum number of function evaluations. 

The parameters of MVMO-PHM were tuned by 
minimizing the total score measure defined in [1]: 

15 15

D=10 D=30
1 1

15 15

D=10 D=30
1 1

Total Score ( ) | ( ) |

( ) | ( ) |

a a

a a

mean f mean f

median f median f

= + +

+

∑ ∑

∑ ∑

   (18) 

where 

 ( )MaxFEs 0.5MaxFEs0.5af f f= ⋅ +  (19) 

The chosen parameters for 10D and 30D dimensions are 
included and highlighted in the Matlab source code, which will 
be made available at [5] after the completion of the CEC2016. 

TABLE I.  IEEE-CEC 2016 EXPENSIVE OPTIMIZATION PROBLEMS 

Type No. Description Fi* 

Unimodal 
function 

TF1 Rotated Bent Cigar Function 100 

TF2 Rotated Discus Function 200 

Simple 

Multimodal 
functions 

TF3 Shifted and Rotated 
Weierstrass Function 

300 

TF4 Shifted and Rotated 
Schwefel’s Function 

400 

TF5 Shifted and Rotated 
Katsuura Function 

500 

TF6 Shifted and Rotated 
HappyCat Function 600 

TF7 Shifted and Rotated HGBat 
Function 

700 

TF8 
Shifted and Rotated 

Expanded Griewank’s 
plus Rosenbrock’s Function 

800 

TF9 
Shifted and Rotated 

Expanded Scaffer’s F6 
Function 

900 

Hybrid 
function 

TF10 Hybrid Function 1 (N=3) 1000 

TF11 Hybrid Function 2 (N=4) 1100 

TF12 Hybrid Function 3 (N=5) 1200 

Composition 
function 

TF13 Composition Function 1 
(N=5) 1300 

TF14 Composition Function 2 
(N=3) 1400 

TF15 Composition Function 3 
(N=5) 1500 

 

In Appendix 1, the statistical attributes of the error value 
OF (i.e. best, worst, mean, median, and standard deviation 
values) calculated after 20 runs are summarized for 10D and 
30D (cf. Table III and Table IV).  

The numerical linearization methods used by IPM method 
for local search in each function were different, i.e. they were 
selected by performing sensitivity analysis with respect to the 
best achieved solution so far. For most of the functions forward 
linearization was sufficient. However, for TF2, TF3, TF11, 
TF12 and TF15 central linearization was possible (it requires 



twice as many function evaluations) and resulted in 
considerable improvement.  

As the function evaluation budget is pretty much limited, 
the main task for MVMO-PHM is therefore to perform global 
search. In the final stage local search is started with particles in 
the ascending sequence of their finesses archived so far.  

 Additional observations are summarized in the following: 

• Unimodal functions: MVMO-PHM was effective in 
finding near zero error values for OF in all runs for both 
10D and 30D (in the order of 1E-04 and 1E-011). Thus, the 
local search strategy helped MVMO-PHM to overcome the 
narrow ridge property of TF1 and the sensitive direction 
property of TF2. 

• Simple multimodal functions: For both 10D and 30D, the 
evolutionary mechanism of MVMO-PHM is effective in 
obtaining near zero error values for OF in all runs for TF5, 
TF6, and TF7 (in the order of 1E-01). This success is 
mainly attributed to the predominance of the evolutionary 
mechanism of MVMO-PHM over the launching of the 
local search strategy. 

• Hybrid and composite functions: For 10D and 30D, 
MVMO-PHM was able to find OF values in the order of 
100, 101, and 102. This highlights the possibility of using 
and alternative strategy for local search (e.g. based on 
heuristic algorithm) to overcome the high risk of being 
trapped into local optima within the complex (narrow, 
asymmetrical and multi-modal) search space of these 
functions. 

IV. LEARNING-BASED PROBLEMS 
MVMO-PHM is also tested on the IEEE-CEC 2016 

learning-based benchmark problems on Learning-based Real-
Parameter Single Objective Optimization. The problems are 
summarized in Table II. Detailed description can be found in 
[2]. Statistical tests on convergence performance and quality of 
final solution were performed under the following 
considerations: 

• Problem dimension D = 10, 30. 

• Search range: [ ]D100,100− . 
• Max. number of function evaluations:  10000*D. 
• Optimization trials per problem: 51. 
• Uniform random initialization within the search 

space. The random seed is based on time, which is 
done using the command rand('state', 
sum(100*clock)) in Matlab environment. 

• The objective function is defined as the error value
i iOF=TF ( ) - F *,x where iF *  is the theoretical global 

optimum of the i-th benchmark function TF given in 
Table II. The values of OF smaller than 1E-08 are 
taken as zero. 

• The optimization is terminated upon completion of 
the maximum number of function evaluations. 

The chosen parameters for 10D, 30D, 50D, and 100D 
dimensions are listed in separate files and will be made 

available after the completion of the CEC2016 at [5]. The 
MVMO-PHM parameters for solving the learning based 
problem were tuned by minimizing the total score defined as: 

( )

15 15

D=10 D=30
1 1
15 15

D=50 D=100
1 1

15 15

D=10 D=30
1 1

15 15

D=50 D=100
1 1

MaxFEs 0.5MaxFEs

Total Score ( ) | ( ) |

( ) | ( ) |

( ) | ( ) |

( ) | ( ) |

0.5

a a

a a

a a

a a

a

mean f mean f

mean f mean f

median f median f

median f median f

f f f

= + +

+ +

+ +

+

= ⋅ +

∑ ∑

∑ ∑

∑ ∑

∑ ∑

 (20) 

TABLE II.  IEEE-CEC 2015 EXPENSIVE OPTIMIZATION PROBLEMS 

Type No. Description Fi* 

Unimodal 
function 

TF1 
Rotated High 

Conditioned Elliptic 
Function 

100 

TF2 Rotated Bent Cigar 
Function 

200 

Simple 
Multimodal 

functions 

TF3 Shifted and Rotated 
Ackley’s Function 

300 

TF4 Shifted and Rotated 
Rastrigin’s Function 

400 

TF5 Shifted and Rotated 
Schwefel’s Function 

500 

Hybrid 
function 

TF6 Hybrid Function 1 (N=3) 600 

TF7 Hybrid Function 2 (N=4) 700 

TF8 Hybrid Function 3 (N=5) 800 

Composition 
function 

TF9 Composition Function 1 
(N=3) 

900 

TF10 Composition Function 2 
(N=3) 1000 

TF11 Composition Function 3 
(N=5) 1100 

TF12 Composition Function 4 
(N=5) 1200 

TF13 Composition Function 5 
(N=5) 1300 

TF14 Composition Function 6 
(N=7) 1400 

TF15 Composition Function 7 
(N=10) 1500 

 

The statistical attributes of the error value OF (i.e. best, 
worst, mean, median, and standard deviation values), which 
were calculated after 51 runs, are summarized in Tables VI to 
IX in Appendix 2, for 10D, 30D, 50D, and 100D. The 
following remarks are drawn from these results: 



• Unimodal functions: For all dimensions, MVMO-PHM is 
capable of finding zero error values (i.e. smaller than 1E-
08) for OF in all runs. Besides, it was found out that 
convergence to these values was achieved shortly after the 
local search call. MVMO-PHM performs in this case just 
the global adjustment and the interior-point method used as 
local search function improves the optimization until zero 
error is reached. Therefore, MVMO-PHM constitutes a 
powerful tool to effectively tackle unimodal problems 
irrespective of dimensionality and the underlying 
mathematical features (e.g. asymmetrical, separable/non-
separable). 

• Simple multimodal functions: For TF3 most of the 
solutions converge to the local minimum around 20. 
However, in case of 10-D almost 50% of the solutions 
reach the global minimum of zero. TF4 and TF5 are 
successfully solved in all cases for 10D case. For the other 
dimensions, MVMO-PHM was able to find OF values in 
the order of 101, and 102. 

• Hybrid functions: Even though the problems here are 
more challenging, MVMO-PHM is also capable of 
providing near zero error values, which are in the order of 
10-2 and 10-5 for all functions in 10D case in almost all runs. 
The errors are in the order of 100 to 103 for the other 
dimensions in most optimization runs. 

• Solving composition functions: For the TF11, TF13, and 
TF14, MVMO-PHM is capable of providing small fitness 
values in the range of 100 and 10-2 for both dimensions. For 
the remaining functions and evaluations in other 
dimensions, the errors are in the order of 102, and 103. 
TF15 converges always to the local minimum of 100.  

V. CONCLUSIONS 
This paper overviewed the features of MVMO-PHM, 

which is a new variant of MVMO algorithm. The upgraded 

version includes a new mapping function to enhance the 
capability of the algorithm to adaptively shift the search 
emphasis from exploration to exploitation throughout the 
search space. Numerical results on the test beds of the IEEE 
CEC 2016 Special Session & Competitions on Real-Parameter 
Single Objective Optimization evidenced the potential of 
MVMO-PHM to successfully tackle formulations of the test 
problems in different dimensions for both computationally 
expensive case (with limited computing budget) and learning 
based case (without limited computing budget). The addition of 
local search helped to improve the quality of obtained results. 
Nevertheless, it was also found out that this finding does not 
hold for every problem and every dimension. Thus, current 
research work is directed toward the development and addition 
of an alternative local search strategy into MVMO-PHM. 
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APPENDIX 1 
 

TABLE III.  RESULTS FOR 10D – COMPUTATIONALLY EXPENSIVE PROBLEMS 

Type Function Best Worst Median Mean Std. 

Unimodal 
functions 

TF1 8.3211409E-02 2.8728670E-01 2.8505850E-01 2.5430055E-01 5.8003068E-02 
TF2 4.0330406E-11 1.2880426E-07 6.1277206E-11 1.6324708E-08 3.9157388E-08 

Simple 
multimodal 
Functions 

TF3 5.9060976E+00 9.6624855E+00 7.4263857E+00 7.5004925E+00 1.0016074E+00 
TF4 7.3368619E+01 4.6181011E+02 2.4769440E+02 2.6887479E+02 9.2222606E+01 
TF5 6.3665921E-01 1.8129485E+00 1.2461696E+00 1.1560639E+00 3.0766503E-01 
TF6 1.0385587E-01 7.1486387E-01 1.8770458E-01 2.6989016E-01 2.0604179E-01 
TF7 2.4625742E-01 1.0404678E+00 4.8502620E-01 5.4635208E-01 2.5928454E-01 
TF8 3.5381389E+00 4.3220248E+02 2.7482157E+01 6.7403535E+01 1.0623392E+02 
TF9 3.1944964E+00 4.2620638E+00 3.7730652E+00 3.7051547E+00 3.3805877E-01 

Hybrid 
functions 

TF10 1.5050711E+02 1.0117779E+03 5.6238626E+02 5.8750163E+02 2.3006930E+02 
TF11 6.2035435E+00 1.4113582E+01 9.5903659E+00 9.9614404E+00 2.0415214E+00 
TF12 5.1866707E+01 3.7442588E+02 2.6373327E+02 2.6566261E+02 8.3934150E+01 

Composition 
functions 

TF13 3.1537583E+02 3.1797911E+02 3.1683096E+02 3.1668844E+02 6.0639648E-01 
TF14 1.9158277E+02 2.0535900E+02 1.9699979E+02 1.9801811E+02 3.7411054E+00 
TF15 1.0170334E+01 5.9665913E+02 4.4609015E+02 4.1544852E+02 1.8272531E+02 

 



 

 

TABLE IV.  RESULTS FOR 30D – COMPUTATIONALLY EXPENSIVE PROBLEMS 

Type Function Best Worst Median Mean Std. 
Unimodal 
functions 

TF1 2.4508713E-01 4.5354479E+02 5.0342901E+01 9.5961638E+01 1.3334466E+02 
TF2 6.3380412E-11 9.1904437E-07 2.2860121E-08 2.2860995E-07 3.4584672E-07 

Simple 
multimodal 
Functions 

TF3 1.9536502E+01 2.8419218E+01 2.4483993E+01 2.4728202E+01 2.2897036E+00 
TF4 4.5992486E+02 1.6658622E+03 1.0688505E+03 1.1718018E+03 3.6346325E+02 
TF5 8.1906523E-01 2.6612810E+00 1.4093392E+00 1.5234015E+00 4.2070096E-01 
TF6 1.3554694E-01 4.6837339E-01 4.1381007E-01 3.7958659E-01 9.9580431E-02 
TF7 3.3693884E-01 4.9970283E-01 4.4061227E-01 4.3328325E-01 6.4591599E-02 
TF8 7.1122001E+01 9.7627659E+02 3.1042876E+02 3.1063179E+02 2.6333317E+02 
TF9 1.1321078E+01 1.3543539E+01 1.3359465E+01 1.2998498E+01 6.8644221E-01 

Hybrid 
functions 

TF10 8.0364140E+02 8.1575535E+05 3.5386855E+03 1.1623419E+05 2.2539217E+05 
TF11 2.4050431E+01 1.3425059E+02 8.6649848E+01 8.0579215E+01 4.3257353E+01 
TF12 1.7199864E+02 7.7590854E+02 4.4869950E+02 3.9447239E+02 1.5164278E+02 

Composition 
functions 

TF13 3.4073786E+02 3.6769244E+02 3.5244270E+02 3.5409712E+02 8.4609156E+00 
TF14 2.4072486E+02 2.9560615E+02 2.6120415E+02 2.6183924E+02 1.4560999E+01 
TF15 7.6605495E+02 1.1207065E+03 9.4236409E+02 9.2841203E+02 1.1778148E+02 

 

 
TABLE V.  COMPUTATIONAL COMPLEXITY – COMPUTATIONALLY EXPENSIVE PROBLEMS 1 0

ˆ /TT  

Function D=10  D=30  
TF1 5.8663333e+01 1.0653750e+02 
TF2 6.5066667e+01 1.2661875e+02 
TF3 6.9066667e+01 1.4720000e+02 
TF4 7.2266667e+01 1.6789375e+02 
TF5 7.6233333e+01 1.8425000e+02 
TF6 8.0256667e+01 2.0526875e+02 
TF7 8.4433333e+01 2.2223750e+02 
TF8 8.8570000e+01 2.3934375e+02 
TF9 9.1963333e+01 2.5743750e+02 
TF10 9.7100000e+01 2.7127500e+02 
TF11 1.0131333e+02 2.8812500e+02 
TF12 1.0484000e+02 3.0490000e+02 
TF13 1.0843667e+02 3.2310625e+02 
TF14 1.1170667e+02 3.4259375e+02 
TF15 1.1549333e+02 3.6477500e+02 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX 2 
 

TABLE VI.  RESULTS FOR 10D - LEARNING-BASED PROBLEMS 

Type Function Best Worst Median Mean Std. 

Unimodal 
function 

TF1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
TF2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Simple 
Multimodal 
functions 

TF3 0.0000E+00 2.0000E+01 2.0000E+01 1.8753E+01 4.7593E+00 
TF4 4.9748E+00 1.2934E+01 8.9546E+00 8.8571E+00 1.9624E+00 
TF5 1.8736E-01 1.2210E+02 4.9630E+00 1.1242E+01 2.3380E+01 

Hybrid function 
TF6 5.0388E-05 1.4113E+00 3.7201E-02 1.8724E-01 3.2337E-01 
TF7 0.0000E+00 1.2362E-01 4.6557E-02 5.7009E-02 3.3812E-02 
TF8 4.8330E-02 1.1068E+00 4.6603E-01 4.5112E-01 2.5333E-01 

Composition 
function 

TF9 1.0011E+02 1.0021E+02 1.0017E+02 1.0017E+02 2.5078E-02 
TF10 2.1657E+02 2.1936E+02 2.1686E+02 2.1700E+02 4.4007E-01 
TF11 2.3533E+00 1.2002E+01 4.0322E+00 4.4207E+00 1.8370E+00 
TF12 1.0038E+02 1.0085E+02 1.0057E+02 1.0060E+02 1.0229E-01 
TF13 3.0424E-02 3.0530E-02 3.0530E-02 3.0499E-02 4.8427E-05 
TF14 1.6507E-01 1.0001E+02 1.0000E+02 8.4545E+01 3.6202E+01 
TF15 1.0000E+02 1.0000E+02 1.0000E+02 1.0000E+02 6.7424E-09 

 
TABLE VII.  RESULTS FOR 30D - LEARNING-BASED PROBLEMS 

Type Function Best Worst Median Mean Std. 

Unimodal 
function 

TF1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
TF2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Simple 
Multimodal 
functions 

TF3 2.0000E+01 2.0000E+01 2.0000E+01 2.0000E+01 9.2423E-06 
TF4 5.0743E+01 7.6612E+01 6.4672E+01 6.4731E+01 4.9645E+00 
TF5 3.9109E+02 1.5479E+03 9.2756E+02 9.2639E+02 2.8564E+02 

Hybrid function 
TF6 2.2559E+01 5.8824E+02 1.6542E+02 2.0603E+02 1.4476E+02 
TF7 1.6538E+00 4.6952E+00 2.9792E+00 2.9787E+00 6.2297E-01 
TF8 3.4020E+00 1.8667E+02 3.7396E+01 5.3847E+01 4.8097E+01 

Composition 
function 

TF9 1.0225E+02 1.0269E+02 1.0249E+02 1.0248E+02 1.0243E-01 
TF10 1.5067E+02 7.3032E+02 4.0158E+02 4.0462E+02 1.5044E+02 
TF11 3.0075E+02 3.0225E+02 3.0120E+02 3.0126E+02 3.2430E-01 
TF12 1.0284E+02 1.0369E+02 1.0329E+02 1.0329E+02 2.0163E-01 
TF13 2.5733E-02 2.6533E-02 2.6102E-02 2.6012E-02 2.4567E-04 
TF14 1.0004E+02 1.0682E+02 1.0073E+02 1.0113E+02 1.2044E+00 
TF15 1.0000E+02 1.0000E+02 1.0000E+02 1.0000E+02 2.4776E-09 

 
TABLE VIII.  RESULTS FOR 50D - LEARNING-BASED PROBLEMS 

Type Function Best Worst Median Mean Std. 

Unimodal 
function 

TF1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
TF2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Simple 
Multimodal 
functions 

TF3 2.0000E+01 2.0000E+01 2.0000E+01 2.0000E+01 1.0641E-06 
TF4 7.2350E+00 1.7909E+01 1.1940E+01 1.1919E+01 2.5241E+00 
TF5 1.6763E+03 3.5109E+03 2.5017E+03 2.5701E+03 4.8603E+02 

Hybrid function 
TF6 1.5431E+02 1.5200E+03 8.7363E+02 8.9832E+02 2.8725E+02 
TF7 6.1937E+00 7.8602E+01 9.9262E+00 2.2399E+01 1.9434E+01 
TF8 1.7823E+01 7.6933E+02 2.5984E+02 2.9790E+02 1.9116E+02 

Composition 
function 

TF9 1.0364E+02 1.0432E+02 1.0392E+02 1.0393E+02 1.3631E-01 
TF10 8.2123E+02 1.7482E+03 1.1439E+03 1.1732E+03 1.9946E+02 
TF11 3.0339E+02 3.1458E+02 3.0624E+02 3.0652E+02 2.1144E+00 
TF12 1.0541E+02 1.0671E+02 1.0592E+02 1.0599E+02 3.0089E-01 
TF13 7.0535E-02 8.2876E-02 7.6515E-02 7.6399E-02 3.9205E-03 
TF14 1.0044E+02 1.8948E+02 1.1618E+02 1.2211E+02 1.8517E+01 
TF15 1.0000E+02 1.0000E+02 1.0000E+02 1.0000E+02 1.9510E-09 



 
TABLE IX.  RESULTS FOR 100D - LEARNING-BASED PROBLEMS  

Type Function Best Worst Median Mean Std. 
Unimodal 
function 

TF1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
TF2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Simple 
Multimodal 
functions 

TF3 2.0000E+01 2.0000E+01 2.0000E+01 2.0000E+01 3.8817E-06 
TF4 3.3829E+01 5.7708E+01 4.8753E+01 4.8857E+01 5.1027E+00 
TF5 6.8683E+03 9.9922E+03 8.1923E+03 8.2841E+03 7.5778E+02 

Hybrid function 
TF6 2.0366E+03 4.8072E+03 3.3964E+03 3.4239E+03 5.7921E+02 
TF7 2.5342E+01 1.6832E+02 1.2026E+02 1.2097E+02 4.4926E+01 
TF8 8.7651E+02 2.7128E+03 1.6358E+03 1.6830E+03 4.4559E+02 

Composition 
function 

TF9 1.0632E+02 1.0760E+02 1.0694E+02 1.0699E+02 2.5313E-01 
TF10 2.3402E+03 4.0964E+03 3.1021E+03 3.1876E+03 4.6233E+02 
TF11 7.8725E+02 1.3156E+03 9.9640E+02 1.0035E+03 1.0788E+02 
TF12 1.1230E+02 2.0041E+02 1.1318E+02 1.1655E+02 1.7113E+01 
TF13 6.0247E-02 6.4212E-02 6.2115E-02 6.2232E-02 1.0243E-03 
TF14 1.0051E+02 4.3353E+03 2.0763E+03 1.9911E+03 1.1167E+03 
TF15 1.0000E+02 1.0000E+02 1.0000E+02 1.0000E+02 2.8000E-09 

 
 

TABLE X.  COMPUTATIONAL COMPLEXITY - LEARNING-BASED PROBLEMS  

Dimension 0T  1T   2̂T   ( )2 1 0
ˆ T /TT −   

D=10 1.0920070e-01    5.5043393e+02    6.8640440e-02   -5.0399429e+03 
D=30 1.0920070e-01    1.9822735e+03    2.7456176e-01   -1.8150057e+04 
D=50 1.0920070e-01    2.3468790e+02    2.3306549e+00   -2.1278000e+03 

D=100 1.0920070e-01    5.7030846e+02    1.4445693e+00   -5.2093429e+03 
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