

Delft University of Technology

Gradually typing strategies

Smits, J.; Visser, Eelco

DOI
10.1145/3426425.3426928
Publication date
2020
Document Version
Final published version
Published in
SLE 2020: Proceedings of the 13th ACM SIGPLAN International Conference on Software Language
Engineering

Citation (APA)
Smits, J., & Visser, E. (2020). Gradually typing strategies. In SLE 2020: Proceedings of the 13th ACM
SIGPLAN International Conference on Software Language Engineering (pp. 1-15). Association for
Computing Machinery (ACM). https://doi.org/10.1145/3426425.3426928

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3426425.3426928
https://doi.org/10.1145/3426425.3426928

Gradually Typing Strategies

Jeff Smits
Delft University of Technology

The Netherlands
j.smits-1@tudelft.nl

Eelco Visser
Delft University of Technology

The Netherlands
e.visser@tudelft.nl

Abstract

The Stratego language supports program transformation
by means of term rewriting with programmable rewriting
strategies. Stratego’s traversal primitives support concise
definition of generic tree traversals. Stratego is a dynamically
typed language because its features cannot be captured fully
by a static type system. While dynamic typing makes for
a flexible programming model, it also leads to unintended
type errors, code that is harder to maintain, and missed
opportunities for optimization.
In this paper, we introduce a gradual type system for

Stratego that combines the flexibility of dynamically typed
generic programming, where needed, with the safety of stat-
ically declared and enforced types, where possible. To make
sure that statically typed code cannot go wrong, all access
to statically typed code from dynamically typed code is pro-
tected by dynamic type checks (casts). The type system is
backwards compatible such that types can be introduced
incrementally to existing Stratego programs. We formally
define a type system for Core Gradual Stratego, discuss its
implementation in a new type checker for Stratego, and
present an evaluation of its impact on Stratego programs.

CCS Concepts: · Software and its engineering → Seman-

tics; Polymorphism; Extensible languages.

Keywords: gradual types, strategy, generic programming,
type preserving
ACM Reference Format:

Jeff Smits and Eelco Visser. 2020. Gradually Typing Strategies. In
Proceedings of the 13th ACM SIGPLAN International Conference on
Software Language Engineering (SLE ’20), November 16ś17, 2020,
Virtual, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3426425.3426928

1 Introduction

The Stratego language supports program transformation
by means of term rewriting with programmable rewriting

SLE ’20, November 16ś17, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8176-5/20/11.
https://doi.org/10.1145/3426425.3426928

strategies [30]. Stratego’s traversal primitives support con-
cise definition of generic tree traversals. For example, the
definition of bottomup(s) in Figure 4 defines in one line a
generic bottom-up traversal that can be instantiated with a
selection of rewrite rules to be applied in a particular trans-
formation, without needing to define a traversal for each
constructor in the abstract syntax. Stratego is used in the
Stratego/XT program transformation tool suite [2] and the
Spoofax language workbench [11] and used in production
in research, education, and industry [6, 12].

Stratego is a dynamically typed language, because its lan-
guage features cannot be captured fully by a static type
system. While dynamic typing makes for a flexible program-
ming model, it also exposes Stratego programmers to un-
intended type errors. Static typing of strategies has been
considered before by Lämmel and Visser [16], Lämmel [14],
and others. Lämmel and Jones [15] adopted Stratego’s strate-
gic programming in the SYB Haskell design pattern. These
efforts focus on the statically typable fragment of strategies,
making them unsuitable, as is, as a type system for Stratego.
Furthermore, there is a considerable base of existing Stratego
code, and having to convert that, at once, to statically typed
code would preclude adoption of a type system.
In this paper, we introduce a gradual type system for

Stratego that combines the flexibility of dynamically typed
generic programming, where needed, with the safety of stat-
ically declared and enforced types, where possible. We inte-
grate ideas for statically typing strategies by Lämmel [14]
with ideas from the gradual typing literature [24, 25]. In
particular, we extend conventional static types with the spe-
cial type for type preserving transformations [14]. And we
introduce a dynamic type in the tradition of gradual type
systems to account for, as yet, untyped code. At the interface
of statically and dynamically typed code, the type checker
inserts dynamic type checks (through casts and proxies) to
guarantee the assumptions of static code. This ensures that
the type system is backwards compatible such that existing
code can pass the type checker as is, and such that types
can be introduced incrementally to existing code. At the in-
tersection of typed strategies and gradual types, we find an
interesting dynamic types for strategies. For example, the
type unifying strategies of Lämmel [14] do not need a special
type, but can be modeled with a dynamic input type and a
specific result type.

1

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3426425.3426928
https://doi.org/10.1145/3426425.3426928
https://doi.org/10.1145/3426425.3426928
https://creativecommons.org/licenses/by/4.0/

SLE ’20, November 16ś17, 2020, Virtual, USA Jeff Smits and Eelco Visser

The contributions of this paper are:

• We motivate and validate the gradual type system for
Stratego with idiomatic examples (Sections 2 and 3).

• We formally define a type system for Core Gradual
Stratego, which combines static types for generic tra-
versals with gradual types for partially typed programs
(Section 4). The combination supports the (partially)
dynamic typing of strategic programming patterns
that are inherently not (completely) statically typable.
This constitutes the first static type system for the
Stratego language.

• We have implemented a type checker based on the
type system, which reports violations in the IDE and
which generates code with casts and proxies for type
checking at run time at the interface of statically and
dynamically checked code (Section 4).

• We evaluate the application of the type checker on an
existing Stratego codebase to which we added type
annotations (Section 5).

2 Rewriting Strategies and Types

Stratego is a language for the definition of program trans-
formations with rewrite rules and programmable rewriting
strategies [30]. In this section we give a (non-exhaustive)
introduction to Stratego by means of examples as motivation
for a type system. We give two encodings of the same trans-
formation. The first encoding is completely statically typable.
The second encoding requires dynamic typing. Furthermore,
we analyze typical type errors.

2.1 Program Transformation with Stratego

The main ingredients of Stratego programs are algebraic
signatures, rewrite rules, and strategies.

Algebraic Signatures. A Stratego program defines trans-
formations on abstract syntax trees represented using first-
order terms. The structure of terms is defined by means
of an algebraic signature, which introduces sorts (types)
and constructors on those sorts. A constructor declaration
c : t1 ∗ ... ∗ tn → t0, defines a constructor c with the sorts of
its arguments and result. A constructor declaration : t1 → t0
is an injection of t1 into t0. This means a value of t1 can be
used directly as a value of t0 without a constructor. Figure 2
defines the signature of a small imperative language with
expressions and statements. An example of a well-formed
term of sort Stat would be:

Seq(Assign("x", Add(Var("x"), Int("1"))),

Lt(Var("x"), Int("3")))

Note that sorts and constructors are separate namespaces.
In Spoofax, signatures are generated from a syntax definition
in SDF3 [5], directly describing the structure of abstract
syntax trees produced by parsers.

rules

desugar : // Exp to Exp

Min(e) → Sub(Int("0"), e)

desugar : // Stat to Stat

For(x, e1, e2, s) →

Seq(Assign(x, e1),

While(Lt(x, e2),

Seq(s, Assign(x, Add(x, Int("1"))))))

desugar : // Exp to Exp

Inc(x) → Stat(Assign(x, Add(x, Int("1"))), x)

desugar : // Stat to Stat; lift Stat from Exp

stat@<is-simple-stat> → Seq(s1, s2)

where <oncetd-hd((Stat(s1, e) → e))> stat ⇒ s2

Figure 1. Rewrite rules

signature

sorts Var Exp constructors

Var : string → Var

: Var → Exp

Int : string → Exp

Add : Exp * Exp → Exp

Sub : Exp * Exp → Exp

Lt : Exp * Exp → Exp

Min : Exp → Exp

Inc : Var → Exp

Stat : Stat * Exp → Exp

sorts Stat constructors

Exp : Exp → Stat

Skip : Stat

Assign : Var * Exp → Stat

Seq : Stat * Stat → Stat

While : Exp * Stat → Stat

For : Var * Exp * Exp * Stat → Stat

Figure 2. Signature

Rewrite Rules. Basic transformations are defined using
term rewrite rules. A rewrite rule has the form l : t1 →

t2 with label l , left-hand side term t1 and right-hand side
term t2. Applying a rewrite rule with label l to a term t

means matching the term against the left-hand side term
t1, binding the variables in that term to sub-terms of t , and
then replacing term t with the instantiation of the right-
hand side t2. If the match fails, the rule fails to apply. If the
specification has multiple rules with the same name, they
are tried in order.

A rule l : t_1 → t_2 where s is a conditional rule, where
s is a strategy expression. When applying a conditional rule,
the condition s is applied to the subject term, using variables

2

Gradually Typing Strategies SLE ’20, November 16ś17, 2020, Virtual, USA

bound in the match of the left-hand side, and possibly bind-
ing variables that are used in the right-hand side. When the
condition fails, applying the rule fails.

Figure 1 shows examples of rewrite rules for a desugaring
transformation on expressions and statements of the lan-
guage of Figure 2. The first two rules define Min and For in
terms of other constructs. The third rule defines increment
(think C-style post increment x++) in terms of assignment to
the variable incremented. Since Inc(_) is an expression and
Assign is a statement, replacing one by the other would not
be well-formed. The Stat constructor defines an expresssion
form that allows embedding a statement within an expres-
sion. The fourth rule defines lifting of statements embedded
in expressions to the statement level. The match pattern
uses a guard that checks that the term is a simple statement
(defined in Figure 3), and the condition of the rule applies a
left-most depth-first (‘once-top-down’) traversal that finds
an embedded occurrence of a term Stat(s1, e), replacing
that occurrence with the expression, and binding the state-
ment to variable s1. The syntax for the match is n @ t to
bind variable n to the term t and < s > to apply strategy s

as a guard to the term, i.e. it only matches if the strategy
succeeds on the given term. The argument of oncetd is an
anonymous rewrite rule (Stat(s1, e) → e) that does not
scope its variables. Thus, bindings are available in the context
of the traversal. (Such contextual binders were introduced
by Visser et al. [30] and later generalized to dynamic rewrite

rules by [3].) For example, the rules give rise to a sequence
of transformations such as the following:

Assign(Var("x"), Min(Inc(Var("x"))))

--> Assign(Var("x"), Min(Stat(Assign(Var("x"),

Add(Var("x"), Int("1"))),

Var("x"))))

--> Assign(Var("x"), Sub(Int("0"),

Stat(Assign(Var("x"),

Add(Var("x"), Int("1"))),

Var("x"))))

--> Seq(Assign(Var("x"), Add(Var("x"), Int("1"))),

Assign(Var("x"), Sub(Int("0"), Var("x"))))

Rules are not applied automatically, but their application
(order) is determined by a strategy.

Strategies. Rewrite rules transform a term into another
term. Traditional rewrite systems apply such rules exhaus-
tively throughout a term. Stratego provides programmable

strategies for ordering the application of rewrite rules to a
term. For example, Figure 3 defines the transform strategy to
apply the desugar rules of Figure 1 using a bottom-up strat-
egy that tries to apply the rules at each node. Strategies such
as bottomup and try are not built-in, but generic, parametric
strategies defined in terms of basic strategy combinators.
Stratego’s built-in strategy combinators include identity

id, failure fail, sequential composition s1; s2, and ordered
choice s1 <+ s2. Matching (and returning) a term pattern

strategies

transform = bottomup(try(desugar))

is-simple-stat = ?Assign(_,_) <+ ?Exp(_)

<+ ?While(_,_) <+ ?For(_,_,_,_)

oncetd-hd(s) =

While(oncetd(s),id) <+ For(id,oncetd(s),id,id)

<+ For(id,id,oncetd(s),id) <+ Exp(oncetd(s))

<+ Assign(id, oncetd(s))

Figure 3. Strategies

strategies

try(s) = s <+ id

topdown(s) = s; all(topdown(s))

bottomup(s) = all(bottomup(s)); s

oncetd(s) = s <+ one(oncetd(s))

alltd(s) = s <+ all(alltd(s))

Figure 4. Generic strategies

(?t) and instantiating (aka building) a term pattern (!t) are
first-class citizens. The expression <s>t applies strategy s

to term t and the expression s ⇒ t matches the result of s
against term t. The generic traversal combinators all(s) and
one(s) apply a transformation to all, respectively, one, of the
sub-terms of a term. Given a constructor c : t1 ∗ ... ∗ tn → t0,
a corresponding congruence traversal strategy c(s1, ..., sn)

transforms c-terms, applying the corresponding strategies
to the sub-terms.
Figures 3 and 4 use these combinators to define strate-

gies1. Strategy is-simple-stat determines whether a term
is a simple statement through pattern matching. The traver-
sal strategy oncetd-hd uses congruence traversal to apply a
oncetd(s) traversal to selected arguments of constructors
(the ‘heads’). Figure 4 defines several generic strategies. The
strategy try(s) applies s and when that fails succeeds with
the original term. The strategy bottomup(s) first visits the
direct sub-terms of the subject term with a recursive call and
then applies s to the result. Strategy oncetd(s) transforms
the first term for which s succeeds in left-most depth-first
traversal. Strategy alltd(s) applies s to all outermost terms
for which s succeeds.

Non-Well-Formed IR. The rules defined in Figure 1 take
care to only replace terms with terms of the same sort. The
Stat constructor is used to embed a statement within an
expression. While this is good practice, it is not required. Fig-
ure 5 shows an alternative approach to the transformation.
The transformation is defined in two stages. In the first stage,
the desugar-inc rule replaces Inc terms with assignments,
creating non-well-formed intermediate terms. In the second

1Note that there is no strict syntactic separation between rules and strategies.

The section headers are used to indicate intention.

3

SLE ’20, November 16ś17, 2020, Virtual, USA Jeff Smits and Eelco Visser

rules

desugar-inc : // Exp to Stat

Inc(x) → Assign(x, Add(x, Int("1")))

lift-assign : // lift Stat from Exp

s1@<is-simple-stat> → Seq(Assign(x, e), s2)

where <oncetd-hd((Assign(x, e) → x))> s1 ⇒ s2

strategies

transform = desugar-all; lift-all

desugar-all = bottomup(try(desugar-inc))

lift-all = alltd(lift-assign; lift-all)

Figure 5. Alternative rules and strategies

rules // errors caught by current compiler

desugar :

Inc(Vaz(x)) → // unknown constructor

Stat(Assign(y, // unbound variable

Add(Var(x), Int("1"))))

// constructor Stat used with wrong arity

desugar-some =

top-down(desugar) // unknown strategy

rules // errors not caught by current compiler

desugar : // expression replaced with statement

Stat(stat, e) → stat

desugar : // lifting also applied to expressions

stat → Seq(s1, s2)

where <oncetd((Stat(s1, e) → e))> s ⇒ s2

desugar :

Inc(x) → Stat(

Assign(Var(x), // Var instead of string

Add(x,Int(1))), // int instead of string

x)

Figure 6. Rules and strategies with errors

stage, the lift-assign rule lifts assignments embedded in ex-
pressions to assignment level. While intermediate terms are
not well-formed with respect to the signature, after applying
transform, terms are well-formed again.

2.2 Type Errors

Stratego is a memory-safe, dynamically typed language. The
Stratego runtime, in collaboration with the code generator
or interpreter, ensures that a program that passes the static
checks, does not crash. A program may terminate with a
transformed term, with a (pattern match) failure, or with
an exception. (An alternative version of conditional rules
requires that the condition succeeds and raises an exception
if it does not.)

The front-end of the compiler applies some static checks.
Constructors need to be declared and used with the arity

corresponding to the declaration. Rules and strategies need
to be defined when called. Variables should be bound when
used in a build pattern. Otherwise, the compiler is fairly
permissive, allowing programs such as in Figure 5. In Figure 6
we give examples of errors that are caught by the Stratego
compiler and errors that are not caught by the compiler nor
by the runtime.
A typical consequence of the lack of static typing is that

a transformation is applied successfully, but constructs a
non-well-formed term. Subsequently, a pretty-printer (e.g.,
generated from a syntax definition [5]) transforming terms
to Box expressions, fails because the term does not match
the expected abstract syntax schema. This leads to expensive
debugging sessions to track down the origin of the non-well-
formedness. A type system for Stratego that identifies such
errors statically will make Stratego programmingmuchmore
productive at micro scale. At macro scale, having types for
interfaces will make code more maintainable. Furthermore,
the compiler could benefit from the guarantees of static types
in optimizations. At the same time, such a type system should
not prevent the usage of existing code.

3 Gradually Typing Strategies

We introduce a type system for Stratego that addresses the
lack of static type checking discussed in the previous section.
In this section, we first discuss the requirements for a type
system, and then we give a high-level overview of the type
system building on the examples of the previous section. In
the next section, we formalize the type system.

3.1 Requirements

The design and implementation of a type system for Stratego
should satisfy the following requirements. It should be back-
ward compatible such that existing programs are accepted as
is, with the same run time semantics. It should impose mini-
mal type annotation requirements on programs to preserve
the concise style of Stratego programs. It should support
generic traversal primitives, providing static typing where
possible, but also support dynamic usage. It should support a
simple migration path from untyped to typed code. It should
be modularly checkable for integration into the incremental
compiler of Smits et al. [26]. It should have limited negative
impact on performance. In the rest of this paper, we describe
a type system that mostly meets these criteria; we have not
evaluated performance yet.

3.2 Types for Stratego

We first discuss complete static checking. We will write strat-
egy to indicate both rules and strategies.

Top-Level Type Annotations. To force checking the type
of a strategy, one explicitly declares its type using a type an-
notation. For example, we can declare the types of transform
and desugar-inc from the previous section as:

4

Gradually Typing Strategies SLE ’20, November 16ś17, 2020, Virtual, USA

transform :: Stat → Stat

desugar-inc :: Exp → Stat

The caller of a strategy with a type annotation needs to
ensure that the term that it is applied to has the right type.
The type checker checks that given the assumption on the
input term, the strategy definition guarantees that the output
term has the specified type, or that the strategy fails. The
type system does not infer types for top-level declarations
of strategies. If a type is omitted type dynamic is assumed,
as we will discuss below.
Note that the addition of a top-level type can invalidate

code that is acceptable when dynamically typed.

Type Checking Term Patterns. Given an expected input
or output type, the type checker checks that a pattern is
well-formed with respect to that type and the constructors
in the signature. Figure 7 shows examples of errors caught
in pattern matching and instantiation. These would not be
errors if the type annotation was not present to restrict the
strategies to a specific type. Thus, the errors in Figure 6 in
the desugaring rule for Inc are all caught.

Inferring Types of Variables. While we opted to not in-
fer types for top-level declarations, we do infer types for
local variables. Variables in Stratego rules are declared im-
plicitly by using them in a match position. To avoid clutter,
we do not require explicit declaration of type annotations
for local variables, but rather infer their type from context,
where we take the types of the left- and right-hand sides
of a rule as leading. For example, consider the ssa rules in
Figure 8. The types of the local variables in the condition
of the rule follow from the type of the strategy, and then
from the types inferred in previous steps in the condition.
Consider the errors that are found when the variables in the
Stat(_,_) pattern match are swapped:

ssa : Min(e) → s2

where <ssa> e ⇒ Stat(e', s1)

; !Var(<new>) ⇒ x

; !Stat(Seq(s1, // warn: not Stat

Assign(x, Min(e'))),// warn: not Exp

x) ⇒ s2 // error: not Stat

Type PreservingTransformations. Generic term traver-
sals, such as bottomup, apply an arbitrary transformation
to the sub-terms of a term. As we illustrated in Figure 5,
such generic traversals may construct (temporarily) non-
well-formed terms. However, a particular class of traversals
is more well-behaved and transforms each term to a term of
the same type (or fails), possibly operating heterogeneously
on multiple types. In other words, such strategies are type
preserving. Following the work of Lämmel [14] we introduce
the TP type to characterize type preserving strategies.
Type preserving transformations can be heterogeneous

rewrite rules such as desugar in Figure 1, which operate on
terms of different types, but ensure to always transform each

strategies

is-stat :: Stat → Stat

is-stat = ?Assign(_,_) // ok

is-stat = ?Var(_) // error: not a Stat

is-stat = ?Seq(Var(_),_) // error: arg not Stat

mk-stat :: () → Stat

mk-stat = !Exp(Var("x")) // ok

mk-stat = !Var("x") // error: not a Stat

mk-stat = !Exp(Exp(Var("x")))// error: arg not Exp

Figure 7. Checking (nested) patterns

rules

new :: () → string

ssa :: Exp → Exp

ssa : Var(x) → Stat(Skip(), Var(x))

ssa : Min(e) → s2

where <ssa> e ⇒ Stat(s1, e')

; !Var(<new>) ⇒ x

; !Stat(Seq(s1, Assign(x, Min(e'))), x) ⇒ s2

Figure 8. Inferring types of variables

rules

transform :: Stat → Stat

desugar :: TP

try(TP) :: TP

bottomup(TP) :: TP

oncetd(TP) :: TP

alltd(TP) :: TP

Figure 9. Type annotations

term to a term of the same type2. For example, desugar trans-
forms Exp terms to Exp terms, and Stat terms to Stat terms.
Generic strategies can construct type preserving strategies
from type preserving strategies. For example, if s is of type
TP, then try(s) is also of type TP. Similarly, all(s) is TP if s is,
and s1; s2 is TP if s1 and s2 are. Given these ingredients and
the annotation bottomup(TP) :: TP, we can conclude that
the definition bottomup(s) = all(bottomup(s)); s is well-
typed, and that bottomup is a type preserving strategy.

Given the type annotations in Figure 9, the rules in Figure 1
and the strategies in Figures 3 and 4 are completely statically
typable, except for one detail, which we discuss next.

Type Match. The rule min : e → Min(e) takes any term
and applies Min to it. That is, its applicability is not guarded by
a pattern with a constructor. For example, in untyped Strat-
ego we can write <min>Skip() ⇒ Min(Skip()), producing a
non-well-formed term. When we give it the type annotation
min :: Exp → Exp we express that when applied to an Exp it

will return an Exp. The caller should guarantee to only apply

2The difference between TP and polymorphic strategy a → a is discussed

at the end of Section 4.

5

SLE ’20, November 16ś17, 2020, Virtual, USA Jeff Smits and Eelco Visser

it to Exp terms. In order to qualify for a type annotation min

:: TP, stronger requirements apply. A TP strategy should be
applicable to a term of any type and produce a well-formed
term of the same type as output (or fail). Thus, a TP strat-
egy should check its own input type requirements. Given
that the new type checker relies on dynamic type checks for
casts (see below), we also make this functionality available
as a type match. For any declared sort t , the strategy is(t)

dynamically checks that the subject term is of type t and stat-
ically guarantees that that is the case when it succeeds. Thus,
we can define the min rule as min : e@<is(Exp)> → Min(e)

and give it the TP annotation.
In Figure 3 we defined is-simple-stat to identify sim-

ple statements. Such strategies are often used to define fine
grained recognizers of subsets of types [27]. Unfortunately,
its use in the desugar rule in Figure 1 is not sufficient to
convince the type checker that the rule is TP. Using the type
match is(Stat) we can convey that it is:

desugar :

s@<is(Stat); is-simple-stat> → Seq(s1, s2)

where <oncetd-hd((Stat(s1, e) → e))> s ⇒ s2

With that edit, the rules in Figure 1 and the strategies in
Figures 3 and 4 are completely statically typable against the
type annotations in Figure 9.

Polymorphic Strategies. Our type checker supports para-
metric polymorphic types for rules and strategies. We use
prenex polymorphism with lowercase names as type vari-
ables, which was already used informally (i.e. without type
checker support) in signatures. In Figure 10 we define several
polymorphic strategies on lists from the standard library
(edited for space) and provide type annotations for them.
Note that type match and imperative update make that we
can not support parametricity [22, 31].

3.3 Gradual Types for Stratego

Not all Stratego programs can be statically type checked
using the techniques discussed above. For example, the al-
ternative transformation approach of Figure 5 constructs
intermediate terms that are not well-formed with respect to
the signature. Furthermore, there exists a significant amount
of Stratego code without type annotations. Imposing the
requirement that all strategies should be annotated, before
the new type checker can be used would be prohibitive. This
is one of the classical motivations for the introduction of
gradual types [24].
We have extended the type system sketched above with

dynamic types such that any existing Stratego program (that
passes the static checks of the legacy compiler), will pass
the type checker and will have the same runtime semantics.
(Note that Stratego’s syntax already enforces a distinction
between strategies (functions) and terms.)

rules

filter(a → b) :: List(a) → List(b)

filter(s) : [] → []

filter(s) : [x | xs] → <conc>(<opt(s)>x,

<filter(s)>xs)

opt(a → b) :: a → List(b)

opt(s) = ![<s>] <+ ![]

conc :: List(a) * List(a) → List(a)

conc : ([], xs) → xs

conc : ([x | xs], ys) → [x | <conc>(xs, ys)]

mapconc(a → List(b)) :: List(a) → List(b)

mapconc(s) : [] → []

mapconc(s) : [x|xs] → <conc>(<s>x, <mapconc(s)>xs)

Figure 10. Polymorphic strategies

Type Dynamic and Type Casts. We extend the set of
types with the type dynamic ?, which represents a dynami-
cally checked type (not to be confused with the match op-
erator). When a typed strategy is invoked on a dynamically
typed term, the term needs to be checked in order to guar-
antee the input requirements. This check is done by a type
cast, an assertion that verifies that the subject term has the
expected type. Failing the assertion is a programming error
and leads to an exception. The type checker (silently) inserts
casts where needed, in the style of gradual typing [24]. When
a top-level strategy does not have a type declaration, it is
considered to have a dynamic type. The dynamic type can
also be used explicitly in type annotations.

Gradually TypingTermPatterns. Termpatterns in Strat-
ego appear in either matching or building position. When we
match against a dynamically typed term, we can not assume
that it is a well-formed term. Therefore, we only check that
the constructors that are used in the pattern are defined and
have the right arity, compatible with the legacy Stratego
compiler. When we build a term that is expected to be dy-
namically typed, we also check that the used constructors
are defined and have the right arity. However, we can some-
times infer the type of a well-formed term in a build pattern
(Section 4). This extra type information is propagated, and
can prevent some unnecessary casts from being inserted.

Proxies. The type checker must also type check strategy
arguments to other strategies. We do not support higher-
order casts, i.e. type assertions on strategies, directly. Instead
we do this dynamic type check lazily, at the time the strategy
is called. We do so by creating a new closure for a strategy
argument that includes a type cast. But if a strategy argument
is passed through a couple of statically and dynamically
typed strategies, this can lead to an accumulation of closures
in closures, as noted by Herman et al. [9]. Figure 11 shows
an example. When <intToNat; if-even(!Z(), !S(Z())> 10

6

Gradually Typing Strategies SLE ’20, November 16ś17, 2020, Virtual, USA

strategies

if-odd(Nat → Nat, Nat → Nat) :: Nat → Nat

if-odd(s1, s2): Z() → <s2>

if-odd(s1, s2): S(t) → <if-even(s2, s1)> t

if-even(s1, s2): Z() → <s1>

if-even(s1, s2): S(t) →

<if-odd(cast(Nat); s2; cast(Nat),

cast(Nat); s1; cast(Nat))> t

// proxy version:

if-even(s1, s2): S(t) →

<if-odd(proxy(|Nat,Nat|s2),

proxy(|Nat,Nat|s1))> t

Figure 11. Explicit casts surrounding strategy arguments
can accumulate into closures inside closures, a space and
time leak we should avoid.

is executed, the first argument is wrapped in a type cast
closure five times before it is executed. Therefore, the type
checker inserts type proxies instead of normal casts. These
are closures that contain a type assertion for the input and
output of a strategy, and the strategy (closure) itself, as a
special value that the runtime can inspect.When a new proxy
is constructed around a proxy value, these are collapsed into
one proxy value to avoid the accumulation of closures in
closures:

proxy(|Nat,Nat|proxy(|Nat,Nat|s1))

--> proxy(|Nat;Nat,Nat;Nat|s1)

--> proxy(|Nat,Nat|s1)

Locally required type casts can be merged with the type
casts of the proxy value. This makes dynamic type checks
less lazy, as incompatible type assertions can be found while
adding them to an existing proxy, similar to the work of Siek
et al. [23].

Type Preserving and Dynamically Typed Traversals.

While the TP type allows static typing of many transforma-
tions, the type restricts the legitimate use of useful standard
library strategies. To prevent duplication of type preserving
and dynamically typed versions of the same strategies, the
type checker allows a dynamically typed fall back type an-
notation for a strategy. For example, the bottomup strategy
can also be typed with the more permissive type annotation
bottomup(? → ?) :: ? → ?. This strategy can be called on
any term, well-formed or not, since the strategy argument
is given no guarantees on what kinds of terms it is called
upon. Perhaps a more interesting case is the try strategy,
which still has some typing even when not type preserving:
try(a → b) :: a → ?. A strategy wrapped in a try must
still be called with the right input type for the strategy.

Type Unifying Strategies. Lämmel [14] coined the term
type unifying strategies (and the special type TU(b)) for Strat-
ego strategies that take any input and return a single, typed

rules

collect(? → b) :: ? → List(b)

collect(s) = // all sub-terms for which s succeeds

<conc>(<opt(s)>, <kids; mapconc(collect(s))>)

kids :: ? → List(?) // list of children, using

kids : _#(xs) → xs // generic term deconstruction

strategies

vars :: ? → List(Var) // all variables

vars = collect(?Var(_)) // in a program

Figure 12. Type unifying strategies

output. We use ? for the input to allow any input and a type
parameter for the output. Figure 12 shows an example of a
type unifying generic traversal.

Polymorphism Revisited. The prenex polymorphism in
our type system has a limitation. The current runtime of
Stratego does not support strategies with explicit type ar-
guments. Therefore, type arguments must be completely
abstract, and cannot be used in dynamic type assertions. Our
type system gives a type error when a cast with a type vari-
able must be inserted. This means that polymorphic strate-
gies and rules are less gradual than the rest of gradually
typed Stratego.

4 A Type System for Core Gradual Stratego

In this section, we present an algorithmic type system for
Core Gradual Stratego, which formalizes the ideas of the pre-
vious section. Previous work on formalizations of Stratego
were based on System S, the calculus of strategy combina-
tors [14, 29]. We consider a larger core language, including
signatures and definitions of rules and strategies, as these
matter for the type system.

4.1 Core Gradual Stratego

Figure 13 defines the grammar of Core Gradual Stratego,
which is Core Stratego extended with (dynamic) types, top-
level type annotations, casts, and proxies. We use vector
notation instead of a Kleene star for lists, to mirror the type
rules. These are all zero-or-more, except for the second al-
ternative of ot, which is one-or-more.

Signatures o, ot consist of constructor definitions with zero
or more arguments, and injection definitions (an example
is back in Figure 2). Types t, or sorts, include built-in types
(string, int) and (parameterized) types. We extend types with
the dynamic type ?, and the ill-formed type. We also add
strategy types st to describe strategy arguments.

Definitions d include strategy definitions and rule defini-
tions. Including rewrite rule in the core is not necessary for
dynamic expressivity; usually they are presented as sugar, by
translation to a strategy sequence of a match, side-condition,
and a build [29]. However, we give type annotated rules a
more intuitive typing.

7

SLE ’20, November 16ś17, 2020, Virtual, USA Jeff Smits and Eelco Visser

sl ::= string literals

f , x ::= names

o ::= f : ot : ot signatures

ot ::= t t → t sig types

t ::= f (t) string ? ill-formed types

st ::= (st) t → t ? strategy types

d ::= f (f) = s definitions

f (f) : e → e where s

s ::= f (s) fail id ?e !e strategies

{ x : s } s ; s s < s + s

cast(c) proxy(sc|c,c|s)

e ::= x _ sl f (e) e :: t terms

c ::= id t coercions

sc ::= id st strategy coercions

Figure 13. The Stratego core grammar. Any Stratego pro-
gram can be desugared to these core constructs.

Strategy expressions s consist of calls to strategies or
rules, the explicit match failure strategy, the identity strat-
egy, match, build, scoping a variable, sequences, guarded
choice, and finally the additions, cast and proxy (note that
the two vertical bars that are part of the syntax of proxy).
Term expressions e consist of variables, wildcards, string
literals, constructor applications, and additionally type as-
cription. Casts and proxies apply coercions, which can be a
coercion c to a type or the identity coercion.

4.2 Algorithmic Type System

We present an algorithmic type system, written as a transfor-
mation on the program that inserts casts while type checking.
The type system follows an abstract interpretation approach.

Meta-properties. We currently do not have a formal dy-
namic semantics for Core Gradual Stratego, but assuming
a reasonable dynamic semantics as sketched in previous
sections, we postulate that the type system presented here
is sound for the typed subset of the core language, i.e. all
programs accepted by the type system execute without type-
errors. Furthermore, if a program after cast insertion exe-
cutes without type-errors, we postulate that the same pro-
gram without type annotations (but preserving type tests)
will also execute and give the same result. In other words,
type annotations do not affect the behaviour or results of
type-correct programs. Finally, we believe that the presented
transformation rules are deterministic if alternatives are tried
in order, and that their execution terminates for all inputs.

Environments. The type system is meant to be modular,
therefore we assume that environment Γ contains all avail-
able definitions and their types, so we can resolve calls. The
environment also contains the types of defined constructors
and the precomputed transitive relation of defined injec-
tions, i.e. every mapping from one type into another without

Type coercion rules Γ ⊢ t ❀ t : c

Γ ⊢ t1 <: t2

Γ ⊢ t1 ❀ t2 : id
[csub]

Γ ⊢ ? ❀ t : t
[ccheck]

Subtype rules Γ ⊢ t <: t

Γ ⊢ t1 <: ?
[dyntop]

Γ, t1 <: t2 ⊢ t1 <: t2
[subinj]

Γ ⊢ t1 <: t2

Γ ⊢ f (t1) <: f (t2)
[subcovar]

Γ ⊢ t <: t
[subrefl]

Figure 14. Algorithmic coercion and subtype rules. Alterna-
tive rules are tried in order.

constructor becomes a subtype fact, to be available for the
[subinj] rule of Figure 14. Most of the information in the en-
vironment flows through the type system like a store. Local
variables can be bound to different types at different points
in the program, e.g. inside and after a guarded choice. The
arity of dynamically typed strategy arguments is discovered
during type checking.

Coercion, Subtyping and Bounds. Figure 14 defines the
computation of coercions from one type to another. The
[csub] rule defers to subtyping. The coercion from a subtype
to its supertype is the identity coercion. The [ccheck] rule
defines that it is also possible to go from the ? type to any
specific type by coercing to that type.
The subtyping rules in Figure 14 define that ? is a super-

type of any other type ([dyntop]). The [subinj] rule looks up
an injection in the environment. The [subcovar] rule defines
that parameterised sorts are co-variant in their parameters.
Subtyping is reflexive ([subrefl]), but not transitive. Instead
we took the transitive closure of the injections before the
start of the program.

With this definition we can define the least-upper-bound
and greatest-lower-bound on types. The representative type
is used for any two types from an injection cycle. In all
other cases it is the expected bound wherever injections
form a lattice. Note that injections do not guarantee a lattice
structure, so there may not be unique bounds. In those cases
where we do not find a unique bound, we use the ? type.

Definitions. Figure 15 defines the typing judgements for
rule and strategy definitions. Rules for definitions look up
their type in the environment, and register their arguments
and type variables. For strategy definitions [sdef], we then
check the body, and insert a cast after the body with a coer-
cion from the result type to the output type of the definition.
We slightly abuse the syntax of vectors here for pairing the

strategy arguments with their types (f : st). These strategy
names are paired with their arity and those together with

8

Gradually Typing Strategies SLE ’20, November 16ś17, 2020, Virtual, USA

Definition type rules Γ ⊢ d ⇒ d ⊣ Γ

len(f) = j Γ1 = Γ
′
1
, ⟨f , j⟩ : (st) t1 → t2

Γ1, f : st ; t1 ⊢ s1 ⇒ s2 ⊣ Γ2; t3 Γ2 ⊢ t3 ❀ t2 : c

Γ1 ⊢ f (f) = s1 ⇒ f (f) = s2; cast(c) ⊣ Γ2

[sdef]

len(f) = j Γ1 = Γ
′
1
, ⟨f , j⟩ : (st) t1 → t2

Γ1, f : st ; t1 ⊢m e1 ⇒ e3; s2 ⊣ Γ2; t3 Γ2; t2 ⊢b e2 ⇒ e4 ⊣ Γ3; t
′
2

Γ3; t3 ⊢ s1 ⇒ s3 ⊣ Γ4; t
′
3

Γ1 ⊢ f (f) : e1 → e2 where s1 ⇒ f (f) : e3 → e4 where s2; s3 ⊣ Γ4

[rdef]

Figure 15. Algorithmic typing rules for adding definitions to the environment. Alternative rules are tried in order.

Strategy typing Γ; t ⊢ s ⇒ s ⊣ Γ; t

Γ1; t1 ⊢m e1 ⇒ e2; s ⊣ Γ2; t2

Γ1; t1 ⊢ ?e1 ⇒ ?x@e2; s; !x ⊣ Γ2; t2
[match]

Γ1; t1 ⊢b e1 ⇒ e2 ⊣ Γ2; t2

Γ1; t1 ⊢ !e1 ⇒ !e2 ⊣ Γ2; t2
[build]

len(s1) = j Γ1 = Γ
′
1
, ⟨f , j⟩ : (st) t1 → t2

Γ1; st
−−→
⊢sa s1 ⇒ s2 ⊣ Γ2 Γ2 ⊢ t0 ❀ t1 : c

Γ1; t0 ⊢ f (s1) ⇒ cast(c);f (s2) ⊣ Γ2; t2
[call1]

len(s1) = j Γ1 = Γ2, ⟨f , 0⟩ : ?

Γ2, ⟨f , j⟩ : (?) ? → ?; ?
−−→
⊢sa s1 ⇒ s2 ⊣ Γ3

Γ1; t1 ⊢ f (s1) ⇒ f (s2) ⊣ Γ3; ?
[call2]

Figure 16. Excerpt of the algorithmic typing rules for the core Stratego strategy expressions. Alternative rules are tried in
order.

their type are put into the environment. Dynamically typed
strategy arguments are put into the environment with arity
0, which is relevant later in Figure 18.

For rule definitions [rdef] we check their input and output
term expressions against the type definition first, before we
check the side-condition. This entails that wemay check vari-
ables in the output term that are bound in the side-condition.
The rules for terms in build position take this into account.
Since rules and strategies can be overloaded in the number
of strategy arguments, and these remain separate definitions
at runtime, the types of these definitions are associated to a
pair of name and number of arguments.

strategies // [sdef] example

assert-Stat :: ? → Stat

assert-Stat = id

// ⇒ assert-Stat = id; cast(Stat)

Strategies. We present an excerpt of the rules for strategy
expressions in Figure 16. The typing judgement is Γ; t ⊢

s ⇒ s ⊣ Γ; t . These are the input context, type of the current
term, and a strategy expression, which are transformed to a
strategy expression with inserted casts, an output context,
and the type of the current term after the strategy expression.

The [match] rule defers to the type rules for term expres-
sions. Term expressions have a set of rules for match position
and for build position. During a match of a term expression,
there can be parts that need to be tested with a cast. Such
casts are collected as a strategy expression, which is executed

after the match. We use syntactic sugar to bind the current
term to fresh variable x , and restore the current term value
after the casts. The [build] rule defers to the build position
term expression type rules, where casts can be inserted inline
with some syntactic sugar.

For the strategy call we have two alternatives for typing.
The [call1] and [call2] rules are attempted in order, the first to
succeed is used. The [call1] rule looks up the strategy in the
environment based on its name and arity. Then it type-checks
the strategy arguments, and finally it computes the coercion
required for the current type to match the input type of the
found strategy. A cast is inserted before the call with that
coercion. Of course an implementation of these rules may
leave out the cast if the computed coercion is the identity
coercion. The [call2] rule attempts to find the strategy under
the arity 0 with the type ? in the environment. This is how
strategy arguments are registered in the environment, for
an untyped strategy with strategy arguments. If found, the
environment is updated to reflect the discovered arity of the
strategy argument.
The rules for calls work on vectors of arguments, and

therefore need a form of iteration over these vectors. We put
an arrow over the turnstile of a rule to denote that we map
that particular rule over the vector arguments, and thread
the other parts (typically the environment). For example:

Γ1; ?, ?
−−→
⊢sa s1, s2 ⇒ s3, s4 ⊣ Γ3 ≡

Γ1; ? ⊢sa s1 ⇒ s3 ⊣ Γ2 ∧ Γ2; ?
−−→
⊢sa s2 ⇒ s4 ⊣ Γ3

9

SLE ’20, November 16ś17, 2020, Virtual, USA Jeff Smits and Eelco Visser

Build term typing Γ; t ⊢b e ⇒ e ⊣ Γ; t

Γ1 ⊢ t1 <: string

Γ1; t1 ⊢b sl ⇒ sl ⊣ Γ1; t1
[bstring]

Γ1 ⊢ t2 <: t1 Γ1; t2 ⊢b e1 ⇒ e2 ⊣ Γ2; t
′
2

Γ1; t1 ⊢b e1 :: t2 ⇒ e2 ⊣ Γ2; t2
[bascr]

Γ1 ⊢ t2 ❀ t1 : c t3 = t1 ⊓ t2

Γ1, x : t2; t1 ⊢b x ⇒ <cast(c)> x ⊣ Γ1, x : t3; t3
[bvar1]

Γ1; t1 ⊢b x ⇒ x ⊣ Γ1, x : t1; t1
[bvar2]

len(e1) = j Γ1 = Γ
′
1
, ⟨⟨f , j⟩⟩ : t1 → t1 Γ1; ?

−→
⊢b e1 ⇒ e2 ⊣ Γ2; t2 Γ2 ⊢ t2 <: t1

Γ1; ? ⊢b f (e1) ⇒ f (e2) ⊣ Γ2; t1
[bconstr1a]

len(e1) = j Γ1 = Γ
′
1
, ⟨⟨f , j⟩⟩ : t1 → t1 Γ1; ?

−→
⊢b e1 ⇒ e2 ⊣ Γ2; t2

Γ1; ? ⊢b f (e1) ⇒ f (e2) ⊣ Γ2; ill-formed
[bconstr1b]

len(e1) = j Γ1 = Γ
′
1
, ⟨⟨f , j⟩⟩ : t1 → t1 Γ1; ?

−→
⊢b e1 ⇒ e2 ⊣ Γ2; t2 Γ2 ⊢ t1 <: t0 Γ2 ⊢ t2 <: t1

Γ1; t0 ⊢b f (e1) ⇒ f (e2) ⊣ Γ2; t1
[bconstr2]

Figure 17. Algorithmic typing rules for the core Stratego terms in build position. Alternative rules are tried in order.

Build Terms. Terms in build position are checked against
the expected result type of the term (Figure 17). The resulting
type is the type of the term that was actually built, while the
environment can contain new bindings for local variables
discovered in the term.
The rule for building string literals [bstring] defines that

we can only have string literal where the expected type
is a subtype of strings. The only subtypes of the built-in
string type are aliases of the string type. The rule for type
ascription [bascr] checks that the ascribed type is a subtype
of the expected type, and propagates it to the subterm.
The rules for variables are again based on whether the

variable was already bound to a type in the environment. If
so, in [bvar1] we compute a coercion from the type of the
variable to the expected type. We update the binding of the
variable and the resulting type to the greatest-lower-bound
of the two types. This can be done since the coercion to a
subtype is only allowed if the supertype is ?. In that we have
discovered that after this build the variable must be the more
specific type or the cast failed that we insert. The inserted
cast uses syntactic sugar from the full Stratego language to
be able to apply a strategy during the build of a term and
put the result of that application there. If the variable that
is built is not in the environment, rule [bvar2] is in effect,
which will record the discovered type information. This will
typically occur when we type-check the output term of a
rule before the side-condition of the rule binds the variable.

Constructors can be built in contexts where a dynamically
or a statically typed term is expected. The [bconstr1a] and
[bconstr1b] rules handle the first case. With a dynamically
typed term expected we look up a constructor of the right

arity3, and in [bconstr1a] we handle the case where despite
the dynamically typed context, the child terms build the
correct types for the constructor. In that case we can return
the static type of the constructor. When the child terms do
not build the correct types for the constructor, [bconstr1b]
returns the ill-formed type, which is only a subtype of ?.
The [bconstr2] rule is the statically typed term construction,
where we find a constructor of the right (sub)type for the
expected output and require the child terms to have the
correct child types. These constructor rules show another
judgement with an adapted turnstile. In this case, with a bar
over the turnstile, we have nothing to thread, but we lift the
judgement point-wise over the vectors.

strategies // [rdef,bconstr2,bvar1] example

exp-to-stat :: ? → Stat

exp-to-Stat: maybe-exp → Exp(maybe-exp)

// ⇒ exp-to-Stat:

// maybe-exp → Exp(<cast(Stat)> maybe-exp)

MatchTerms. Terms inmatch position are checked against
the type of the term they are matched against. The rules
are mostly analogous to those of build terms, and therefore
elided.

Strategy Arguments. Strategy arguments require special
care (Figure 18). These arguments become closures, and if
we add casts before we close over them, these casts will be-
come invisible to the strategy that receives the arguments. A
strategy argument that is passed around a few times can accu-
mulate a number of casts, creating new closures for the cast
and call sequence every time. This problem was identified

3We use slightly different ⟨⟨brackets⟩⟩ for this pair to visually distinguish it

from the ⟨strategy⟩ pair.

10

Gradually Typing Strategies SLE ’20, November 16ś17, 2020, Virtual, USA

Strategy argument typing Γ; st ⊢sa s ⇒ s ⊣ Γ

Γ1 = Γ
′
1
, ⟨f , 0⟩ : ? Γ1 ⊢ ? ❀ t2 : c

Γ1; (st1) t1 → t2 ⊢sa f () ⇒ proxy(id|id, c|f ()) ⊣ Γ1

[saref1]

Γ1 = Γ
′
1
, ⟨f , 0⟩ : (st2) t3 → t4 Γ1 ⊢ st1 ❀ st2 : sc1
Γ1 ⊢ t1 ❀ t3 : c1 Γ1 ⊢ t4 ❀ t2 : c2

Γ1; (st1) t1 → t2 ⊢sa f () ⇒ proxy(sc1|c1, c2|f ()) ⊣ Γ1

[saref2]
Γ1; t1 ⊢ s1 ⇒ s2 ⊣ Γ2; t3 Γ2 ⊢ t3 ❀ t2 : c

Γ1; () t1 → t2 ⊢sa s1 ⇒ proxy(|id, c|s2) ⊣ Γ2
[sa]

Figure 18. Algorithmic typing rules for strategy arguments in a call. Alternative rules are tried in order.

and solved by Herman et al. [9], by constructing special val-
ues containing the casts and the passed function. The values
are called proxies, and they can be introspected at runtime.
When creating a proxy directly around another proxy, no
new proxy needs to be allocated. Instead the coercions are
merged into the existing proxy. This saves memory, and also
means that some of the dynamic type checks happen at that
time, instead of when the proxy is executed.
In this core language, strategies have two kinds of argu-

ments, the default term argument, and strategy arguments.
So proxies save the coercions for the extra arguments, a
coercion for input and output, and the strategy argument
itself. The [saref1] rule handles strategy arguments that are a
references to dynamically typed strategies, [saref2] handles
references to statically typed strategies (note the contra-
variance on the return type coercion), and [sa] handles other
strategy expressions. Arbitrary strategy expressions need to
become closures regardless of proxy objects. We can require
the strategy expression to handle the exact type that it will
receive as a strategy argument, but we still save the coercion
on the return value in a proxy, so it is accessible at runtime.

Refer back to Figure 11 for an example of proxy insertion.

4.3 Polymorphism, Parametricity, and TP

We have purposefully not discussed support for polymor-
phism in the type system so far. The language features of
this core subset of Stratego have enough moving parts al-
ready. In this subsection we list the modifications to the type
system that handle polymorphism. The environment now
additionally holds pairs of type variables α and their type.
Top-level definitions now have type schemes so the type
variables can be made fresh at lookup time. Definitions regis-
ter strategy arguments as definitions without type schemes.
The subtyping relation binds unbound type variables to the
sub- or supertype they are compared to. Casts can only be
inserted for types without type variables. No coercions can
be used to a type that has an unbound type variable or a type
variable from the type scheme of the definition. The latter
restriction is due to type erasure in the runtime of Stratego.

Parametricity. Typical Stratego code can inspect any
term with a match strategy or a rewrite rule. This means that,

if allowed, Stratego code could inspect terms that are poly-
morphic in the strategy type. This would violate parametric-
ity, the guarantee that terms of polymorphic type cannot
be deconstructed, but it fits the style of Stratego programs
rather well. Therefore we chose not to guarantee parametric-
ity in the type system. Type variables from the type scheme
of the definition receive special treatment, where they be-
have as ? throughout the definition, since the definition can
be instantiated with dynamic types for the type variables.

Type Preserving. The special type preserving type is an
important piece of the puzzle to type generic traversals and
reduce the number of casts inserted around generic traver-
sals. TP may seem to be simply a → a, but there are three
key differences. The first is that TP provides a limited form of
higher-rank types. The second is that while parametrically
polymorphic strategies may be called with terms that are
dynamically typed and possibly ill-formed, a type preserv-
ing strategy must be called with a statically typed term. The
third is that a type preserving strategy must either return the
given term, call a type preserving strategy on it, or inspect
the term with a pattern match or type test. In other words,
we cannot call a typed strategy with the input term unless
the type of the term has been inspected. We do not insert
casts to assert its type as we do for polymorphic strategies,
as a type preserving, heterogenous strategy should be use-
able in a generic traversal that tries to apply the strategy
everywhere in a tree. When the strategy is not applicable, it
should produce a match failure, not a cast error, otherwise
the generic traversal mechanism does not work.

5 Evaluation

By design of the type system, the following requirements
from Section 3.1 were met: existing programs are accepted
without annotations, generic traversals are supported in both
statically and dynamically typed code, we only needed to add
minimal (top-level) type annotations which preserves Strat-
ego’s concise style, and the types can be modularly checked
for integration with the incremental Stratego compiler.
In this section we evaluate the requirement that we can

migrate code from untyped to typed. To do so, we have im-
plemented a stand-alone prototype type checker for Stratego,

11

SLE ’20, November 16ś17, 2020, Virtual, USA Jeff Smits and Eelco Visser

rules

step(|state): IADD() →

<pop(|2); push(|r); next> state

where

<top(|2)> state ⇒ [Int(v1), Int(v2)];

<addS> (v2, v1) ⇒ r

Figure 19. An example of a step rule in the Jasmin inter-
preter.

top(|n) = ?JBCState(

[JBCFrame(_, _, _, JBCStack(<take(|n)>), _)|_], _)

top = top(|1)

Typed and corrected to:

top(|int) :: State → List(Value)

top(|n) = ?JBCState(

[JBCFrame(_, _, _, JBCStack(<take(|n)>), _)|_], _)

top :: State → Value

top = top(|1); \[head] → head\

Figure 20. A bug found by adding types and inspecting er-
rors. The top strategy with term argument gives the first n
values on the stack, whereas the top strategy without argu-
ment should give the top value (given how it was consistently
used) but instead gave a singleton list with the top value.

and used it to type-annotate the pre-existing Stratego code
of a Spoofax programming language project. This project is
Jasmin, a Java Byte Code assembler language [18]. In par-
ticular, the project implements the JasminXT version of the
language as defined by Reynaud [21]. The Jasmin language
project is used in a compiler construction course, where stu-
dents transform MiniJava to Jasmin, and then use the Jasmin
definition to compile to bytecode files. As a result, the part
of the codebase that does compilation is well-exercised. An-
other part of the codebase, a Jasmin interpreter written in
Stratego, is not used in the course. The interpreter defines
signatures for a state of the JVM and a step rewrite rule that
rewrites the state based on a Jasmin instruction. A program
is then a list of instructions, which can be executed over the
empty state. Figure 19 shows a simple step rule that does
integer addition by manipulation of the JVM operand stack
and addition provided by Stratego.

The Jasmin codebase contains 3253 lines of manually writ-
ten Stratego code divided over 36 files. We do not count blank
lines and comments, nor generated constructor signatures
from the grammar. There are 49 manual definitions of con-
structor signatures for intermediate representations, and 146
named strategies/rules (counted by unique name).

Changes and Bugs. During our evaluation we added 74
type signatures of standard library strategies that are used in
the code, and 117 type signatures to the code of the project.
In general, we find that the compilation of Jasmin (the well-
exercised part) is free of type errors and is mostly written

with a static typing discipline. Most type-annotated strate-
gies (85 out of 117) can be given a static type without use of
the dynamic type. Some of the manually defined constructors
do not have correct types which was not checked before.
The interpreter clearly has not seen testing. We found

numerous type-related bugs, such as inconsistent use of in-
tegers and strings containing integers, a pattern match one
constructor too shallow for the case that was handled, and
the use of the wrong strategy which gives back a list instead
of an element from the list. Another example is given in
Figure 20. Most strategies and rules were written with static
type discipline in mind. This part did have some overloading
(which could be split for static typing) as well as a messy com-
bination of constructors from the Jasmin AST and a newly
introduced intermediate representation without a combining
supertype. The interpreter ‘step’ rewrite rule also takes ex-
plicitly ill-formed terms, variants of the defined terms where
all strings with numbers are replaced by integers.

Interpretation and Conclusion. We conducted a small
experiment that shows that using the gradual type system is
useful to guide the transition to a system with a better type
discipline. In a codebase which was written with some type
discipline in mind, this was an exercise in understanding the
existing code and adding type annotations. In some cases a
small refactoring was easy enough to do and resulted in well-
typed strategies. In the process we found that previously
added type annotations helped us find the right annotations
for the next strategy, and the type system helped us find some
mistakes made when originally guessing the type annotation
for a strategy. This reassured us that we were indeed adding
a consistent set of type annotations to the code.
A noteworthy exception to the smooth experience was

the interpreter ‘step’ rewrite rules. This part of the code was
written on an intermediate representation that looked very
close to the defined constructors, but with some amount of
desugaring and preprocessing. This intermediate representa-
tion was close to the original representation, but with small
changes consistently applied on a larger number of construc-
tors. Writing the signatures for this would be tedious, and we
did not do this as part of the case study. We are not yet sure
if this situation is a good argument for our gradual types, a
programming style we should discourage in future Stratego
code, or if we should add language support for defining these
types of intermediate representations more easily.

6 Related Work

Dynamically Typed Strategies. The ELAN language in-
troduced rewrite systems with labeled rules that could be
invoked from strategies [1]. Luttik and Visser [13] extended
these strategies with modal operators (all, one) for generic
traversal. Visser et al. [30] used this as the basis for the de-
sign of Stratego. Visser and Benaissa [29] define System S,
a core language with operational semantics for rewriting,

12

Gradually Typing Strategies SLE ’20, November 16ś17, 2020, Virtual, USA

with matching and building as primitive operations. Visser
[27] demonstrates the use of strategies for strategic pattern
matching to dynamically check the (type) structure of terms,
e.g. to recognize subsets of a type schema.

Stratego is applied in the Stratego/XT [2] transformation
tool suite and the Spoofax language workbench [11] for the
definition of program normalization [4], type checkers [8],
program analyses [3], code generators [10], and more. Smits
et al. [26] introduced an incremental compiler for Stratego.

Erdweg et al. [7] introduce typesmart constructors, smart
constructors that dynamically check type-correctness of con-
structed terms. They integrate support for typesmart con-
structors in the Stratego runtime. Their approach is all-or-
nothing, requiring all intermediate values to be well-typed,
which precludes the dynamic typing scenarios of Section 2.

Statically Typed Strategies. Typing strategies was pur-
sued by Lämmel and Visser [16] in the context of the Stra-
funski Haskell library for generic programming inspired by
Stratego [17]. They identified the concepts of type preserving
and type unifying strategies. Lämmel [14] formalizes these
with the TP and TU(b) types in a type system for System S [29].
We have adopted the TP type, but have opted to model type
unying strategies with type dynamic as ? → b. SYB is a
design pattern encoding the statically typed fragment of
Stratego’s strategies in Haskell [15], using type classes and
higher-rank polymorphic functions to provide type trans-
formations (type-preserving) and queries (type-unifying) on
arbitrary data, made usable by deriving instances of the type
classes automatically.

Gradual Types. The term gradual types was introduced
by Siek and Taha [24] in a paper that adds optional type an-
notations to simply-typed lambda calculus, by an orthogonal
extension with a consistency relation. This work kicked off
an new line of research in adding gradual types to many
different type systems and languages, entirely too many to
enumerate here. As noted earlier in the paper, we took the
work of Herman et al. [9] to heart and applied it in our type
system. This work introduces proxies as special closures that
can be introspected at runtime to add more coercions to the
input and output. This solves a space leak from adding nor-
mal closures with casts around a function when it is passed
back and forth between statically and dynamically typed
higher-order functions.

Xie et al. [32] describe a gradual, higher-kinded polymor-
phic type system that guarantees parametericity, and man-
ages to keep gradual types orthonogal from subtyping in-
duced by polymorphic functions. This work gave us con-
fidence that our type system with limited higher-kinded
polymorphism without parametricity (TP) would be possible
too. We took inspiration from their notation for algorithmic
typing rules. We differ from the research into gradual types
in functional type systems, which typically have a separate
consistency relation for gradual types which is orthogonal

to the rest of the type system. Our approach to subtyping
and cast computation is very close to the pessimistic and
optimistic subtyping of Muehlboeck and Tate [19].

Dynamic Rewrite Rules. In this paper we have not con-
sidered the extension of Stratego with scoped dynamic rewrite

rules [3], which are used to define context-sensitive trans-
formations such as type checking [8], function inlining [28],
and transformation based on data-flow analysis [20]. Such
rules are dynamic in the sense that new rule instances are
added at run time. With respect to static typing, such dy-
namic rules can be type checked with the type system from
this paper. When dynamic rules have type dynamic their out-
puts may be checked at run time. When dynamic rules have
a static type annotation their definitions and applications
are checked like regular rewrite rule definitions. So, while
the behaviour of dynamic rules is dynamic their typing is
static.

7 Conclusion

We have introduced the design of a gradual type system for
Stratego with a series of idiomatic examples, and presented a
formal definition of the type system for Core Gradual Strat-
ego. This type system can statically type many stratego pro-
grams, including type preserving and type unifying generic
traversals. The gradual types support partially dynamically
typed Stratego programs and provide a migration path for
existing dynamically typed Stratego code.
To evaluate the implementation of our type checker, we

demonstrated this migration path on an existing Stratego
codebase, and find it works rather well. What is left to fu-
ture work is investigating whether we need more language
support for easily defining the types of intermediate repre-
sentations, and to experimentally evaluate the overhead of
the casts that our type checker inserts. We also hope to track
more properties statically, such as partiality of strategies and
boundedness of variables, and use all this static information
for optimisations in the back-end of the compiler.

A final word of warning for those who wish to implement
a type checker for gradual types: The silent insertion of casts
can easily hide bugs in your type system when you write
small programs for exploratory testing. So test profusely,
including the results after cast insertion.

Acknowledgments

We would like to thank Michael Greenberg and the anony-
mous reviewers for their valuable comments and sugges-
tions.
This research was supported by a gift from the Oracle

Corporation.

References
[1] Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne

Moreau, and Christophe Ringeissen. 1998. An overview of ELAN.

13

SLE ’20, November 16ś17, 2020, Virtual, USA Jeff Smits and Eelco Visser

Electronic Notes in Theoretical Computer Science 15 (1998), 55ś

70. http://www.elsevier.com/gej-ng/31/29/23/39/23/show/Products/

notes/index.htt#022

[2] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco

Visser. 2008. Stratego/XT 0.17. A language and toolset for program

transformation. Science of Computer Programming 72, 1-2 (2008), 52ś70.

https://doi.org/10.1016/j.scico.2007.11.003

[3] Martin Bravenboer, Arthur van Dam, Karina Olmos, and Eelco Visser.

2006. Program Transformation with Scoped Dynamic Rewrite Rules.

Fundamenta Informaticae 69, 1-2 (2006), 123ś178. https://content.

iospress.com/articles/fundamenta-informaticae/fi69-1-2-06

[4] Martin Bravenboer and Eelco Visser. 2004. Concrete syntax for objects:

domain-specific language embedding and assimilation without restric-

tions. In Proceedings of the 19th Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2004, John M. Vlissides and Douglas C. Schmidt (Eds.). ACM,

Vancouver, BC, Canada, 365ś383. https://doi.org/10.1145/1028976.

1029007

[5] Luís Eduardo Amorim de Souza and Eelco Visser. 2020. Multi-Purpose

Syntax Definition with SDF3. In Software Engineering and Formal

Methods - 18th International Conference, SEFM 2020 (Lecture Notes in

Computer Science). Springer.

[6] Jasper Denkers, Louis van Gool, and Eelco Visser. 2018. Migrating

custom DSL implementations to a language workbench (tool demo). In

Proceedings of the 11th ACM SIGPLAN International Conference on Soft-

ware Language Engineering, SLE 2018, Boston, MA, USA, November 05-06,

2018, David Pearce 0005, Tanja Mayerhofer, and Friedrich Steimann

(Eds.). ACM, 205ś209. https://doi.org/10.1145/3276604.3276608

[7] Sebastian Erdweg, Vlad A. Vergu, Mira Mezini, and Eelco Visser. 2014.

Modular specification and dynamic enforcement of syntactic language

constraints when generating code. In 13th International Conference on

Modularity, MODULARITY ’14, Lugano, Switzerland, April 22-26, 2014,

Walter Binder, Erik Ernst, Achille Peternier, and Robert Hirschfeld

(Eds.). ACM, 241ś252. https://doi.org/10.1145/2577080.2577089

[8] Zef Hemel, Danny M. Groenewegen, Lennart C. L. Kats, and Eelco

Visser. 2011. Static consistency checking of web applications with

WebDSL. Journal of Symbolic Computation 46, 2 (2011), 150ś182. https:

//doi.org/10.1016/j.jsc.2010.08.006

[9] David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-

efficient gradual typing. Higher-Order and Symbolic Computation 23, 2

(2010), 167ś189. https://doi.org/10.1007/s10990-011-9066-z

[10] Lennart C. L. Kats, Martin Bravenboer, and Eelco Visser. 2008. Mix-

ing source and bytecode: a case for compilation by normalization. In

Proceedings of the 23rd Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA

2008, October 19-23, 2008, Nashville, TN, USA, Gail E. Harris (Ed.). ACM,

91ś108. https://doi.org/10.1145/1449764.1449772

[11] Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax language

workbench: rules for declarative specification of languages and IDEs.

In Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA

2010, William R. Cook, Siobhán Clarke, and Martin C. Rinard (Eds.).

ACM, Reno/Tahoe, Nevada, 444ś463. https://doi.org/10.1145/1869459.

1869497

[12] Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco

Visser. 2018. PIE: A Domain-Specific Language for Interactive Software

Development Pipelines. Programming Journal 2, 3 (2018), 9. https:

//doi.org/10.22152/programming-journal

[13] Bas Luttik and Eelco Visser. 1997. Specification of Rewriting Strategies.

In 2nd International Workshop on the Theory and Practice of Algebraic

Specifications (ASF+SDF 1997) (Electronic Workshops in Computing),

M. P. A. Sellink (Ed.). Springer-Verlag, Berlin.

[14] Ralf Lämmel. 2003. Typed generic traversal with term rewriting strate-

gies. Journal of Logic and Algebraic Programming 54, 1-2 (2003), 1ś64.

https://doi.org/10.1016/S1567-8326(02)00028-0

[15] Ralf Lämmel and Simon L. Peyton Jones. 2003. Scrap your boilerplate:

a practical design pattern for generic programming. In Proceedings

of TLDI 03: 2003 ACM SIGPLAN International Workshop on Types in

Languages Design and Implementation, New Orleans, Louisiana, USA,

January 18, 2003, Zhong Shao and Peter Lee (Eds.). ACM, 26ś37. https:

//doi.org/10.1145/604174.604179

[16] Ralf Lämmel and Joost Visser. 2002. Typed Combinators for Generic

Traversal. In Practical Aspects of Declarative Languages, 4th Interna-

tional Symposium, PADL 2002, Portland, OR, USA, January 19-20, 2002,

Proceedings (Lecture Notes in Computer Science, Vol. 2257), Shriram Kr-

ishnamurthi and C. R. Ramakrishnan (Eds.). Springer, 137ś154. http:

//link.springer.de/link/service/series/0558/bibs/2257/22570137.htm

[17] Ralf Lämmel and Joost Visser. 2003. A Strafunski Application Letter. In

Practical Aspects of Declarative Languages, 5th International Symposium,

PADL 2003, New Orleans, LA, USA, January 13-14, 2003, Proceedings

(Lecture Notes in Computer Science, Vol. 2562), Verónica Dahl and Philip

Wadler (Eds.). Springer, 357ś375. http://link.springer.de/link/service/

series/0558/bibs/2562/25620357.htm

[18] Jon Meyer and Troy Downing. 1997. Java Virtual Machine. O Reilly.

[19] Fabian Muehlboeck and Ross Tate. 2017. Sound gradual typing is

nominally alive and well. Proceedings of the ACM on Programming

Languages 1, OOPSLA (2017). https://doi.org/10.1145/3133880

[20] Karina Olmos and Eelco Visser. 2005. Composing Source-to-Source

Data-Flow Transformations with Rewriting Strategies and Dependent

Dynamic Rewrite Rules. In Compiler Construction, 14th International

Conference, CC 2005, Held as Part of the Joint European Conferences

on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April

4-8, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3443),

Rastislav Bodík (Ed.). Springer, 204ś220. https://doi.org/10.1007/978-

3-540-31985-6_14

[21] Daniel Reynaud. 2006. JasminXT Syntax. Available at http://jasmin.

sourceforge.net/xt.html.

[22] John C. Reynolds. 1983. Types, Abstraction and Parametric Polymor-

phism. In IFIP Congress. 513ś523.

[23] Jeremy G. Siek, Ronald Garcia, and Walid Taha. 2009. Exploring the

Design Space of Higher-Order Casts. In Programming Languages and

Systems, 18th European Symposium on Programming, ESOP 2009, Held

as Part of the Joint European Conferences on Theory and Practice of

Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings (Lecture

Notes in Computer Science, Vol. 5502), Giuseppe Castagna (Ed.). Springer,

17ś31. https://doi.org/10.1007/978-3-642-00590-9_2

[24] Jeremy G. Siek and Walid Taha. 2006. Gradual typing for functional

languages. In Scheme and Functional Programming Workshop, Vol. 6.

81ś92.

[25] Jeremy G. Siek and Walid Taha. 2007. Gradual Typing for Objects. In

ECOOP 2007 - Object-Oriented Programming, 21st European Conference,

Berlin, Germany, July 30 - August 3, 2007, Proceedings (Lecture Notes in

Computer Science, Vol. 4609), Erik Ernst (Ed.). Springer, 2ś27. https:

//doi.org/10.1007/978-3-540-73589-2_2

[26] Jeff Smits, Gabriël D. P. Konat, and Eelco Visser. 2020. Constructing

Hybrid Incremental Compilers for Cross-Module Extensibility with

an Internal Build System. Programming Journal 4, 3 (2020), 16. https:

//doi.org/10.22152/programming-journal

[27] Eelco Visser. 1999. Strategic Pattern Matching. In Rewriting Techniques

and Applications, 10th International Conference, RTA-99, Trento, Italy,

July 2-4, 1999, Proceedings (Lecture Notes in Computer Science, Vol. 1631),

Paliath Narendran and Michaël Rusinowitch (Eds.). Springer, 30ś44.

https://doi.org/10.1007/3-540-48685-2_3

[28] Eelco Visser. 2001. Scoped Dynamic Rewrite Rules. Electronic Notes in

Theoretical Computer Science 59, 4 (2001), 375ś396. https://doi.org/10.

1016/S1571-0661(04)00298-1

[29] Eelco Visser and Zine-El-Abidine Benaissa. 1998. A core language for

rewriting. Electronic Notes in Theoretical Computer Science 15 (1998),

14

http://www.elsevier.com/gej-ng/31/29/23/39/23/show/Products/notes/index.htt#022
http://www.elsevier.com/gej-ng/31/29/23/39/23/show/Products/notes/index.htt#022
https://doi.org/10.1016/j.scico.2007.11.003
https://content.iospress.com/articles/fundamenta-informaticae/fi69-1-2-06
https://content.iospress.com/articles/fundamenta-informaticae/fi69-1-2-06
https://doi.org/10.1145/1028976.1029007
https://doi.org/10.1145/1028976.1029007
https://doi.org/10.1145/3276604.3276608
https://doi.org/10.1145/2577080.2577089
https://doi.org/10.1016/j.jsc.2010.08.006
https://doi.org/10.1016/j.jsc.2010.08.006
https://doi.org/10.1007/s10990-011-9066-z
https://doi.org/10.1145/1449764.1449772
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.22152/programming-journal
https://doi.org/10.22152/programming-journal
https://doi.org/10.1016/S1567-8326(02)00028-0
https://doi.org/10.1145/604174.604179
https://doi.org/10.1145/604174.604179
http://link.springer.de/link/service/series/0558/bibs/2257/22570137.htm
http://link.springer.de/link/service/series/0558/bibs/2257/22570137.htm
http://link.springer.de/link/service/series/0558/bibs/2562/25620357.htm
http://link.springer.de/link/service/series/0558/bibs/2562/25620357.htm
https://doi.org/10.1145/3133880
https://doi.org/10.1007/978-3-540-31985-6_14
https://doi.org/10.1007/978-3-540-31985-6_14
http://jasmin.sourceforge.net/xt.html
http://jasmin.sourceforge.net/xt.html
https://doi.org/10.1007/978-3-642-00590-9_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.22152/programming-journal
https://doi.org/10.22152/programming-journal
https://doi.org/10.1007/3-540-48685-2_3
https://doi.org/10.1016/S1571-0661(04)00298-1
https://doi.org/10.1016/S1571-0661(04)00298-1

Gradually Typing Strategies SLE ’20, November 16ś17, 2020, Virtual, USA

422ś441. https://doi.org/10.1016/S1571-0661(05)80027-1

[30] Eelco Visser, Zine-El-Abidine Benaissa, and Andrew P. Tolmach. 1998.

Building Program Optimizers with Rewriting Strategies. In Proceed-

ings of the third ACM SIGPLAN international conference on Func-

tional programming, Matthias Felleisen, Paul Hudak, and Christian

Queinnec (Eds.). ACM, Baltimore, Maryland, United States, 13ś26.

https://doi.org/10.1145/289423.289425

[31] Philip Wadler. 1989. Theorems for Free!. In FPCA. 347ś359. https:

//doi.org/10.1145/99370.99404

[32] Ningning Xie, Xuan Bi, and Bruno C. D. S. Oliveira. 2018. Consistent

Subtyping for All. In Programming Languages and Systems - 27th Eu-

ropean Symposium on Programming, ESOP 2018, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS

2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes

in Computer Science, Vol. 10801), Amal Ahmed (Ed.). Springer, 3ś30.

https://doi.org/10.1007/978-3-319-89884-1_1

15

https://doi.org/10.1016/S1571-0661(05)80027-1
https://doi.org/10.1145/289423.289425
https://doi.org/10.1145/99370.99404
https://doi.org/10.1145/99370.99404
https://doi.org/10.1007/978-3-319-89884-1_1

	Abstract
	1 Introduction
	2 Rewriting Strategies and Types
	2.1 Program Transformation with Stratego
	2.2 Type Errors

	3 Gradually Typing Strategies
	3.1 Requirements
	3.2 Types for Stratego
	3.3 Gradual Types for Stratego

	4 A Type System for Core Gradual Stratego
	4.1 Core Gradual Stratego
	4.2 Algorithmic Type System
	4.3 Polymorphism, Parametricity, and TP

	5 Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

