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Using the Hess Adaptive Pilot Model for Modeling Human
Operator’s Control Adaptations in Pursuit Tracking

Nora Jakimovska∗, Daan M. Pool†, Marinus M. van Paassen‡ and Max Mulder§

Delft University of Technology, Delft, Zuid-Holland, The Netherlands

An improved understanding of pilot’s control behavior adaptations in response to sudden
changes in the vehicle dynamics is essential for realizing adaptive support systems that remain
effective when task characteristics suddenly change. In this paper, we replicate, extend, and
validate the ‘adaptive pilot model’ proposed by Hess to verify its effectiveness for predicting
human adaptive behavior in pursuit tracking tasks. The model relies on a Triggering function,
that compares the current tracking performance to a stored nominal (pre-transition) state,
and an Adaptation mechanism which determines new adapted human operator gain settings
proportional to the magnitude of the off-nominal error occurrences. For model validation data
from a previous experiment were used, where ten participants performed a pursuit tracking task
with transitions in controlled element dynamics from a single to a double integrator, and vice
versa. Overall, with an added human operator delay and participant-specific inner- and outer-
loop gain adjustments, the model was found to accurately describe the measured steady-state
tracking behavior for the participants in our data set. The results for the time-varying single
integrator to double integrator transitions showed that the model can capture the transient
control behavior of participants. However, the adaptive logic could only be tuned to activate
for participants that had a pre-transition crossover frequency above 0.9 rad/s. Furthermore,
the model was not able to capture the change in control behavior for transitions from a double
to a single integrator. Here, as no distinct degradation in tracking performance occurs for
such a transition to a more easily controlled system, the model’s proposed Triggering logic will
not activate. Further investigation and more experiment data are required for improving the
applicability of the model’s adaptive logic and to enable more accurate prediction of adaptive
human control behavior.

Nomenclature

𝐴𝑛 Amplitude of the 𝑛th forcing function sine, rad
𝐶 Target forcing function signal, rad
𝑒 Tracking error signal, rad
𝑓𝑡 Target forcing function signal, rad
𝐺 Maximum rate of change, s-1

𝐺𝑛𝑚 (𝑠) Neuromuscular dynamics transfer function
𝐻 (𝑠) Second-order low-pass filter on 𝑥 signal
𝐻𝑑𝑒𝑙 (𝑠) Human operator delay transfer function
𝐼 (𝑠) Second-order low-pass filter on 𝑋𝑛 signal
𝐽 (𝑠) Second-order low-pass filter on adaptive gains
𝐾 Number of samples
𝐾𝑎𝑝 Adaptation constant for 𝐾𝑝 gain
𝐾𝑎𝑟 Adaptation constant for 𝐾𝑟 gain, s

𝑘𝑐 (𝑡) Controlled element gain
𝐾𝑝 Outer-loop position gain
𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 Binary triggering variable
𝐾𝑟 Inner-loop rate gain, s
𝑀 Output of system, rad
𝑀 Sigmoid maximum rate of change, s
¤𝑀 Output rate of system, s-1

𝑁 Number of controlled axes
𝑛 Sinusoid index
𝑅 Input of outer-loop signal
𝑡 Time, s
𝑡𝑐 Time of change in controlled element, s
𝑇𝑚 Measurement time, s
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𝑇𝑟 Reaction time, s
𝑡𝑠 Simulation transient time window, s
𝑢 Human operator control output signal, rad
𝑢ℎ Measured control output, rad
𝑢𝑚 Model control output, rad
𝑥 Hess model triggering signal, rad2

𝑋𝑛 Hess model strength of adaptation signal
𝑌𝑐 (𝑠) Controlled dynamics transfer function
𝑌𝑝 (𝑠) Human operator transfer function
Δ𝐾𝑝 Outer-loop gain 𝐾𝑝 increment
Δ𝐾𝑟 Inner-loop gain 𝐾𝑟 increment, s
𝜁𝑙 𝑝 Low-pass filter damping ratio
𝜁𝑛𝑚 Neuromuscular damping ratio
Θ Parameter vector
𝜏𝑒 Human time-delay, s

𝜙𝑚 Phase margin, deg
𝜙𝑛 Phase of the 𝑛th forcing function sine , rad
𝜔𝑏 (𝑡) Time-varying pole of the controlled element, rad/s
𝜔𝑐 Crossover frequency, rad/s
𝜔𝑙 𝑝 Low-pass filter frequency, rad/s
𝜔𝑚 Fundamental measurement frequency, rad/s
𝜔𝑛 Frequency of the 𝑛th forcing function sine, rad/s
𝜔𝑛𝑚 Neuromuscular frequency, rad/s

Abbreviations

CE Controlled element
rms root mean square
VAF variance accounted for

I. Introduction
As controllers, humans have unique adaptive behavior capabilities, which allow them to lessen the effects of any

incidents [1–10]. Understanding how pilots adapt their control strategy to maintain stability has several advantages.
Technologies such as autopilots and automatic landing systems rely on the pilot’s adaptive capabilities to quickly adjust
their control strategies when detecting failures. Therefore, modeling human’s adaptive behaviour does not only improve
automation, but may improve training procedures and in turn increase safety in aviation.

While several researchers have investigated human controllers’ adaptive behavior, mostly in response to changes in
the controlled vehicle’s dynamics [1–3, 5–7, 10–16], a solid and practical theoretical modeling framework on what
triggers human adaptation is still lacking. Especially for pursuit tracking tasks, we miss a more thorough understanding of
which (off-nominal) characteristics of which control task signals observed by human controllers may trigger adaptation,
how human controllers determine an effective adaptation of their control dynamics, and how this should be captured in
an adaptive pilot model for pursuit tracking.

To address this gap, this paper will present the results of a study where the ‘adaptive pilot model’ framework
proposed by Hess [6] is matched to the time-varying pursuit tracking task data collected by Terenzi et al. [10] in a
recent human-in-the-loop experiment performed at TU Delft. Hess’ adaptive pilot includes a mathematical framework
that predicts when pilots may trigger an adaptation of their control behavior, as well as predicting a realistic adaptation
of pilot control gains.

In this paper, we will first replicate the adaptive pilot model simulation results reported by Hess [6] to verify our
model implementation. Then, we will implement a number of key adjustments to the model (e.g., add a human operator
delay) to ensure it can be fitted to the data from [10]. Finally, using parameter sensitivity analyses, we will show to
what extent key parameters of the models Triggering and/or Adaptation logic may need to be adapted to model the
behavior of different human operators in our experiment data set. Ultimately, the goal of this paper is bring us closer to
a complete model of time-varying human adaptive behavior to changes in control task variables and the environment.

The structure of this paper is as follows. Section II presents a detailed description of the adaptive pilot model
proposed by Hess and our proposed updates to the model’s structure. Additionally, we present the results from replicating
the original model and results presented in [6]. In Section III, the key details of the experiment data set from [10] are
provided, as well as an overview of the steps used to fit and analyse the adaptive pilot model are presented. The obtained
model fitting and validation results are presented in Section IV. Finally, the paper ends with a discussion (Section V)
and the main conclusions (Section VI).

II. Hess Adaptive Pilot Model

A. Model Structure
We study the “adaptive pilot model” proposed by Hess [6], see Fig. 1, for modeling human controller adaptation to

changes in the CE dynamics in pursuit tracking. The model’s block diagram in Fig. 1 has been adapted compared to [6]
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to explicitly separate the “Triggering” and “Adaptation” actions of the model’s adaptive logic. Furthermore, the original
model as described by Hess [6] does not include a human operator time delay, which is essential for matching the model
to the experiment data from Terenzi et al. [10]. Hence, in this paper we add a time delay to the adaptive pilot model, as
indicated with the 𝐻𝑑𝑒𝑙 block shown in red in Fig. 1. As in our experiments we always ensure no manipulator limits are
reached, in this paper the model’s input saturation block (shown with a dashed outline) is not considered in our analysis.

Fig. 1 Block diagram of the Hess adaptive pilot model, showing its three main parts as gray shaded boxes; the
Human operator dynamics, the Controlled system dynamics, and the Adaptive Logic. In the first step of the
Adaptive logic, Triggering, the signals ¤𝑀 and 𝑅 are used as inputs to obtain the 𝑥(𝑡) signal as well as the output of
the trigger function 𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 . These are then used in the second step, Adaptation, to update the Human operator
control gains(𝐾𝑝 , 𝐾𝑟 ) depending on if 𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 is activated.

In Fig. 1, the symbol 𝑌𝑐 indicates the controlled element (CE) dynamics. To implement an outer 𝑀 loop, as well as
an inner ¤𝑀 loop, 𝑌𝑐 is implemented with a separated integrator, as shown in the ‘Controlled System’ block in Fig. 1. The
remaining blocks in Fig. 1 together represent the adaptive human operator control dynamics. First, the ‘Human Operator’
block includes the human operator’s outer- (position) and inner-loop (rate) control gains, 𝐾𝑝 and 𝐾𝑟 , respectively. In the
model, 𝐾𝑝 controls the proportional control performed by the human operator, while 𝐾𝑟 defines the magnitude of the
rate feedback, i.e., human operator ‘lead’ [8, 17]. Additionally, human operator limitations are included in the form of
an added time delay 𝜏𝑒, i.e., 𝐻𝑑𝑒𝑙 = 𝑒−𝜏𝑒𝑠, and the human operator’s neuromuscular dynamics 𝐺𝑛𝑚, representing the
dynamics of the operator’s limb-manipulator interaction, modeled as a second-order mass-spring-damper system:

𝐺𝑛𝑚 (𝑠) =
𝜔2
𝑛𝑚

𝑠2 + 2𝜁𝑛𝑚𝜔𝑛𝑚𝑠 + 𝜔2
𝑛𝑚

, (1)

where [6] implements constant representative values for the neuromuscular system model’s parameters: 𝜔𝑛𝑚 = 10 rad/s
and 𝜁𝑛𝑚 = 0.707.

1. Adaptive Logic: Triggering
Fig. 1 shows that the adaptation of the human operator is represented through the ‘Adaptive Logic’ which is divided

into two sequential steps, namely: ‘Triggering’ and ‘Adaptation’. The first step, Triggering, models how a human
operator may detect a change in the controlled element dynamics. For this, Hess [6] proposes that the human operator
uses a signal proportional to the inner-loop tracking error. In mathematical terms this is denoted as the signal 𝑥, which
is a low-pass filtered signal based on the sign and magnitude of the error in the inner loop (𝑅 − ¤𝑀), and is calculated
using Eq. (2)-(4) [6]:

𝑥∗ (𝑡) = sgn{|𝑅(𝑡) | − | ¤𝑀 (𝑡) |} · [|𝑅(𝑡) | − | ¤𝑀 (𝑡) |]2 (2)

𝑋 (𝑠) = 𝑋∗ (𝑠) · 𝐻 (𝑠) (3)

𝐻 (𝑠) =
𝜔2
𝑙 𝑝

𝑠2 + 2𝜁𝑙 𝑝𝜔𝑙 𝑝𝑠 + 𝜔2
𝑙 𝑝

(4)
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It should be noted that the 𝑥∗ (𝑡) signal of Eq. (2) is not used in [6], but is introduced to represent the ‘unfiltered’ 𝑥
signal. As indicated in Eq. (3), this 𝑥∗ signal is filtered using a second-order low-pass filter 𝐻 (𝑠), which introduces
smoothing and lag in the Triggering process, to obtain the same 𝑥 signal defined by Hess. The second-order low-pass
filter 𝐻 (𝑠) is defined in Eq. (4). In [6], 𝜁𝑙 𝑝 = 1 and 𝜔𝑙 𝑝 = 1.5 rad/s are used as the settings for 𝐻 (𝑠).

When the 𝑥 signal becomes exceedingly large in magnitude, a different control gain setting is needed and hence the
model’s Triggering mechanism should be activated, which as proposed in [6] is implemented through the following
equation and the 𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 signal of Fig. 1:

𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 (𝑡) =
{

1 if the instantaneous value of
√︁
|𝑥 | ≥ 3 · rms[

√︁
|𝑥 |] and 𝑡 ≥ 𝑡𝑠

0 if the instantaneous value of
√︁
|𝑥 | < 3 · rms[

√︁
|𝑥 |] or 𝑡 < 𝑡𝑐

(5)

In Eq. (5), the square root of 𝑥, (
√︁
|𝑥 |), is used because the square of the error signal is used to obtain 𝑥, see Eq. (2).

Moreover, the expression 3 · rms[
√︁
|𝑥 |] represents the ‘Triggering limit’, where the factor of 3 defines the lower limit of

a deviating error pattern that would induce the human pilot to adapt.
In Eq. (5), the additional time-dependent terms were added to the Triggering logic in [6] to suppress potential

artifacts in the Triggering model. Both these terms are thus not directly representative for real human operators’ adaptive
behavior. For example, by only triggering for 𝑡 ≥ 𝑡𝑠 (with 𝑡𝑠 = 10 s [6]) potential effects of initial model simulation
transients were suppressed. Second, by not allowing the model to trigger for 𝑡 < 𝑡𝑐, where 𝑡𝑐 indicates the time at which
the CE dynamics transition, any false positive detections prior to the CE change are suppressed.

2. Adaptive Logic: Adaptation
When the model’s adaptive logic is triggered (i.e., 𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 = 1), then new appropriate gains 𝐾𝑝 and 𝐾𝑟 are

determined in the ‘Adaptation’ step of the adaptive pilot model, see Fig. 1. As proposed in [6], the primary adaptive
change of the inner-loop gain 𝐾𝑟 is determined using the following equation:

Δ𝐾𝑟 (𝑡) = 𝑋𝑛 (𝑡) · 𝐾𝑎𝑟 · 𝐾trigger (𝑡) (6)

Eq. (6) shows that changes to the 𝐾𝑟 gain only occur when the Triggering occurs, i.e., 𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 = 1. Furthermore,
the magnitude of the gain adjustment is directly controlled by the adaptation gain 𝐾𝑎𝑟 (set to unity in [6]) and the 𝑋𝑛 (𝑡)
signal, which is defined as follows [6]:

𝑋𝑛 (𝑡) =
𝑥(𝑡)

rms(𝑅2)
· 1
𝑁

(7)

Eq. (7) shows that 𝑋𝑛 is calculated from 𝑥 by normalizing with rms(𝑅2), which is done to ensure that the adaptation
is not dependent on the numerical magnitude of control-loop signals (e.g., invariant to changes in the magnitude of the
forcing function 𝑓𝑡 ). The root mean square (rms) value of 𝑅2 is chosen because it is also used in the calculation of the 𝑥
signal. In the model, the rms(𝑅2) term is considered a constant in time-varying cases, and its value is calculated from
the steady-state pre-transition system. The variable 𝑁 represents the number of axes that are controlled by the human
operator [6]. This variable results in a less aggressive control behavior in multi-axis tasks compared to controlling a
single axis. In this paper, only a single-axis is considered, so 𝑁 = 1.

Finally, in [6] both the 𝑋𝑛 signal of Eq. (7) and Δ𝐾𝑟 as defined in Eq. (6) were filtered using a second-order
low-pass filter equivalent to Eq. (4), with 𝜔𝑙 𝑝 = 1 rad/s and 𝜁𝑙 𝑝 = 1. Here, we refer to these two filters as 𝐼 (𝑠) and 𝐽 (𝑠),
respectively. As in our implementation of the model for describing the experiment data of [10] the use of two filters was
found to be superfluous, only the filter on Δ𝐾𝑟 was retained:

𝐽 (𝑠) =
𝜔2
𝑙 𝑝

𝑠2 + 2𝜁𝑙 𝑝𝜔𝑙 𝑝𝑠 + 𝜔2
𝑙 𝑝

(8)

An example of how this “Adaptation” process works is shown in Fig. 2, where the 𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 , 𝑋𝑛, and Δ𝐾𝑟 signals are
shown. For Δ𝐾𝑟 the direct result of Eq. (6) is shown, before the 𝐽 (𝑠) filter is applied and with 𝐾𝑎𝑟 = 1. Fig. 2 shows
that during the time that the Triggering is active, the gain adjustment is directly proportional to the 𝑋𝑛 signal. This
continues until the gain adjustment is successful in stabilizing the control loop, which will cause the Triggering to stop.
The value of Δ𝐾𝑟 is from that point on kept at the final adapted setting, until the next Triggering activation.
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Fig. 2 Example of how the adaptive pilot model’s “Triggering” signals drive human operator gain adaptation.

To complete the adaptation of the human operator model, the corresponding change in the outer-loop gain 𝐾𝑝 is
calculated using the following equation [6]:

Δ𝐾𝑝 (𝑡) =
{
Δ𝐾𝑟 (𝑡) · 𝐾𝑎𝑝 if Δ𝐾𝑟 (𝑡) > 0
0 if Δ𝐾𝑟 (𝑡) ≤ 0

(9)

where 𝐾𝑎𝑝 again is an adaptation gain that needs to be tuned for the outer-loop control adaptation. As shown by Eq. (9),
the adaptation of the outer-loop gain 𝐾𝑝 is directly linked to the change in the inner-loop gain 𝐾𝑟 . In [6], where both
gains were required to increase for the studied CE transitions, the scaling factor between both gain adjustments 𝐾𝑎𝑝 =
0.35. Furthermore, as indicated with the two cases in Eq. (9), in [6] the 𝐾𝑝 gain was restricted from changing in case
Δ𝐾𝑟 < 0. Based on the Δ𝐾𝑟 and Δ𝐾𝑝 signals, the adapted operator gain values at time 𝑡 are calculated as:

𝐾𝑟 (𝑡) = Δ𝐾𝑟 (𝑡) + 𝐾𝑟 (0)
𝐾𝑝 (𝑡) = Δ𝐾𝑝 (𝑡) + 𝐾𝑝 (0)

(10)

where 𝐾𝑟 (0) and 𝐾𝑝 (0) represent the initial pre-transition reference settings for both human operator gains. Finally, in
[6] additional constraints are included on the adapted values of the 𝐾𝑝 and 𝐾𝑟 gains, see Eq. (11). In this equation,
𝐾𝑟 (0) and 𝐾𝑟 (0) again represent the initial pre-transition values of 𝐾𝑝 and 𝐾𝑟 as also used in Eq. (10).��𝐾𝑝 ��max = 2

��𝐾𝑝 (0)��
|𝐾𝑟 |max = 10 |𝐾𝑟 (0) |

(11)

B. Model Implementation Verification
Based on [6] and personal communication with professor Hess, we implemented the adaptive pilot model in

Matlab/Simulink. To verify the implementation, we first replicated the simulation results presented in [6]. For this, a
single-axis pitch control task was simulated for a total of 120 s, with a change in the CE dynamics occurring at 50
s. Initially, the CE dynamics represented a nominal system 𝑌𝑐,1 (𝑠); at 50 s a more challenging dynamics 𝑌𝑐,2 (𝑠) was
introduced, representing a more difficult to control ‘failed’ system:

𝑌𝑐,1 (𝑠) =
1

𝑠(𝑠 + 10) 𝑌𝑐,2 (𝑠) =
𝑒−0.2𝑠

𝑠(𝑠 + 5) (𝑠 + 10) (12)

Fig. 3 and 4 show direct comparisons between results from [6] and our own implementation’s output, for tracking
task signals and adaptive operator gains, respectively. The published time trace of the 𝐾𝑟 adaptation shows an initial
drop in 𝐾𝑟 after the induced controlled element change that is not replicated in our model, and is attributed to Simulink
simulation setting differences (e.g., integration scheme). For the same reason, our replicated model shows slight
differences in the magnitude of the post-failure gain adaptation, which for both 𝐾𝑝 and 𝐾𝑟 are lower than the results
published in [6]. The difference in gain adaptation is relatively small (our final steady-state 𝐾𝑟 and 𝐾𝑝 differ by factors
1.2 and 0.7, respectively, from [6]), but still affects the post-failure tracking accuracy, as can be observed from Fig. 3.
Still, overall we conclude from these figures that a good replication of the results presented by Hess [6] was obtained.
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(a) Reference [6]
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Fig. 3 Tracking performance as reported in [6] (a) and for our replicated model (b).
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Fig. 4 Pilot model gain adaptation as reported in [6] (a) and for our replicated model (b).

C. Implemented Changes to Model
For matching the adaptive pilot model from [6] with our experimental scenarios from [10], it was found to be

necessary to make some modifications to the different parts of the model. The main changes we implemented are listed
below, with our motivation for why they were implemented:

1) Added human operator delay: As already shown in Fig. 1, a key addition we made to the model is a pure time
delay on the modeled human operator response. As it is well-known that human operators in a pursuit tracking
task will generally show a latency in their control response equivalent to that seen in compensatory tasks [8, 17],
this was found to be a required addition to match the data from the human participants in [10].

2) Removed saturation on CE input: As also shown in Fig. 1, the original model implementation included a
saturation block on the CE input (human operator control input), to account for potential manipulator constraints.
As in the experiment of [10] the manipulator workspace limits were never encountered (by design), the ‘limiter’
block in Fig. 1 was omitted for our analysis.

3) Recursive instead of a priori calculation of Triggering limit (rms(
√︁
|𝑥 |)): In [6] it is explained that the root

mean square of
√︁
|𝑥 |), which is essential for calculating the 𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 signal in Eq. (5) and defines the Triggering

limit, is calculated from “a trial simulation run with no system changes” and is thus considered a constant
model parameter. In our view, this limit represents the human operator’s ‘internal model’ of the steady-state
pre-transition control task [3, 8, 18], which should also be adjusted, long after a CE transition, to a new steady
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state. Therefore, we implemented a recursive calculation for
√︁
|𝑥 |): at any time 𝑡 the full past window from 0 to 𝑡

is used to calculate
√︁
|𝑥 |) to be used for the calculation of 𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 .

4) Omission of additional time-based constraints on Triggering calculation: In Eq. (5), additional time-based
constraints are implemented in the calculation of the 𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 signal. As this additional logic does not reflect a
mechanism that may also be present in real adapting human operators, and may potentially mask sub-optimal
functioning of the model’s Triggering and Adaptation logic, we have omitted both additional time-based
constraints in the model we fit to the data from [10].

5) Omission of different cases in Δ𝐾𝑝 calculation: As shown in Eq. (9), in [6] the update of the outer-loop 𝐾𝑝 gain
is linked to the current increment of the inner-loop gain Δ𝐾𝑟 , but with some additional constraints that have the
following consequences:

1) When Δ𝐾𝑟 > 0, Δ𝐾𝑝 must also increase
2) Δ𝐾𝑝 always increases by the same constant (0.35) relative to Δ𝐾𝑟
3) 𝐾𝑝 does not change when Δ𝐾𝑟 < 0, i.e., when 𝐾𝑟 is lowered

As will be shown in Sections IV.A and IV.B, this approach to calculating the updated value of 𝐾𝑝 does not match
with the expected change of gains for the CE change considered in this paper. For the time-varying scenarios
tested in [10], both the 𝐾𝑟 and 𝐾𝑝 gains are expected to always adapt, independent of whether 𝐾𝑟 increases or
decreases. Furthermore, with large differences in 𝐾𝑟 and 𝐾𝑝 between different participants (see Section IV.B),
also the relative scaling of the 𝐾𝑟 and 𝐾𝑝 adaptation would have to be individually set. For this reason, we
introduced the adaptation gains 𝐾𝑎𝑟 and 𝐾𝑎𝑝 in Eq. (6) and (9) to make the gain adjustments, and their relative
signs, tunable model parameters.

6) Addition of ‘adaptation gain’ parameters and omission of gain adaptation constraints: Eq. (6) and (9) show
that we propose to account for the magnitude of the adaptation of the 𝐾𝑟 and 𝐾𝑝 gains using additional ‘free’
model parameters, 𝐾𝑎𝑟 and 𝐾𝑎𝑝 . In our view, this is needed to facilitate tuning the model to different types of
CE transitions (for which more or less adaptation may be required), as well as different participants (due to
between-subject differences in 𝐾𝑟 and 𝐾𝑝). Furthermore, as defined in Eq. (11), in [6] constraints are imposed on
how much the final gain values can change with respect to their corresponding initial values. In our view, these
constraints do not necessarily represent true physical limitations of the human operator. Furthermore, imposing
them may mask the true output of the model’s adaptive mechanisms. Finally, also the specific multiplier values
used in the constraints (2 and 10 for 𝐾𝑝 and 𝐾𝑟 , respectively [6]) would also need to directly adapted to different
modeled task settings. Hence, in our fitting of the model to the experiment data of [10] these constraints on the
adapted gain values were removed.

III. Method

A. Experiment Data
The experiment data used in this paper were obtained from a previous human-in-the-loop experiment performed at

TU Delft, as reported in [10]. While the full details of the experiment can be found in the source publication, a selection
of important experiment details is repeated here for completeness.

1. Control Task
The control task performed in [10], and considered in this paper, is a pitch attitude pursuit task, as shown in Fig. 5.

This pursuit task was, except for the pursuit display, similar to time-varying compensatory control tasks performed in
earlier experimental research [7, 15, 18].

2. Experiment Conditions
The experiment of [10] collected human-in-the-loop data for a set of four different experiment conditions, with

varying controlled element (CE) dynamics settings, both time-varying and time-invariant. The generic structure of the
CE dynamics is defined with the following time-varying transfer function:

𝑌𝑐 (𝑠, 𝑡) =
𝐾𝑐 (𝑡)

𝑠 (𝑠 + 𝜔𝑏 (𝑡))
, (13)
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Fig. 5 Control Task Block Diagram.

where 𝐾𝑐 and 𝜔𝑏 represent the (potentially time-varying) CE gain and break frequency, respectively. These time-varying
parameters are implemented using the following sigmoid function [7]:

𝑃(𝑡) = 𝑃1 +
𝑃2 − 𝑃1

1 + 𝑒 (−𝐺 (𝑡−𝑀 ) ) , (14)

where 𝑃1 and 𝑃2 represent the initial and final values of the placeholder parameter 𝑃, i.e., for our CE dynamics 𝐾𝑐 or
𝜔𝑏. The value of 𝐺 controls the speed of adaptation (steepness of sigmoid), which is kept a constant value of 100 𝑠−1 to
induce a step-like (instantaneous) CE change [7]. Lastly, the parameter 𝑀 represents the moment of maximum rate of
change (centroid of sigmoid).

As listed in Table 1, Terenzi et al. [10] collected data for two steady-state (time-invariant) conditions, where
approximate single-integrator and approximate double-integrator CE dynamics were controlled: DYN1 and DYN2,
respectively. Furthermore, data was collected for time-varying transitions, going from single integrator to double
integrator and back (DYN121), or vice versa (DYN212). In the experiment of [10], the time-varying tracking runs
included two CE transitions at 𝑀1 =

𝑇𝑚
3 and 𝑀2 =

2𝑇𝑚
3 (see Eq. (14)), where 𝑇𝑚 = 90 s was the measurement time.

However, for the analysis in our current paper the second transition 𝑀2 =
2𝑇𝑚

3 is not considered, i.e., we focus on single
DYN12 and DYN21 transitions with a tracking run length of 60 s. For the four conditions considered here, the CE
parameters are shown in Table 1.

Table 1 Time-varying controlled dynamics.

DYN 𝑘𝑐1 [-] 𝑘𝑐2 [-] 𝜔𝑏1 [rad/s] 𝜔𝑏2 [rad/s] 𝐺 [𝑠−1] 𝑀 [s]
1 90 90 6.0 6.0 - -
2 30 30 0.2 0.2 - -
12 90 30 6.0 0.2 100 𝑀1
21 30 90 0.2 6.0 100 𝑀1

3. Forcing Functions
The pursuit tracking tasks performed in the experiment of [10] only used a (multisine) target forcing function signal

𝑓𝑡 , see Fig. 5; no additional (disturbance) forcing functions were present. The target signal 𝑓𝑡 was defined by:

𝑓𝑡 (𝑡) =
𝑁𝑡∑︁
𝑛=1

𝐴𝑡 [𝑛] sin (𝜔𝑡 [𝑛]𝑡 + 𝜙𝑡 [𝑛]) (15)

Here, 𝐴𝑡 [𝑛], 𝜔𝑡 [𝑛], and 𝜙𝑡 [𝑛] represent the amplitude, frequency, and phase shift of the 𝑛th sine wave. The total
number of sine waves in the multisine signal is indicated with 𝑁𝑡 , which in the experiment was equal to 10. The
frequencies 𝜔𝑡 were defined as integer multiples of the fundamental measurement frequency 𝜔𝑚 = 2𝜋/𝑇𝑚 to avoid
spectral leakage [8].

While the total measurement time in [10] was 𝑇𝑚 = 90 s, 𝑓𝑡 was chosen to have a fundamental period of 𝑇𝑚/3, as
this enabled direct comparison three phases in the measurements: a steady-state pre-transition phase, the transition
phase, and a steady-state post-transition phase. To ensure steady-state behavior in the first phase of the measurement,
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a long run-in time of 20 s was added before the 90-second measurement window. This also enabled participants to
achieve steady-state values of rms(

√︁
|𝑥 |), a key parameter in the model’s adaptive logic, as discussed in Section II.

All values needed to replicate the 𝑓𝑡 signal used in [10] are listed in Table 2. Note that two forcing function
realizations were used, each with a different set of sinusoid phase shifts 𝜙𝑡 . In [10], the first (Testing) forcing function
was used for model fitting, while the second (Validation) signal was used to verify potential overfitting.

Table 2 Target forcing function settings.

Testing Validation
𝑛 [-] 𝜔𝑡 [rad/s] 𝐴𝑡 [rad] 𝜙𝑡 [rad] 𝜙𝑡 [rad]

1 0.419 2.905 · 10−2 2.841 3.006
2 1.047 1.961 · 10−2 3.319 6.037
3 1.885 1.020 · 10−2 0.718 4.544
4 2.722 6.032 · 10−3 0.768 2.811
5 3.979 3.356 · 10−3 2.925 5.917
6 5.655 1.983 · 10−3 5.145 1.842
7 8.188 1.230 · 10−3 2.085 3.401
8 10.681 9.331 · 10−4 0.383 2.998
9 14.032 7.541 · 10−4 0.763 4.614
10 17.383 6.674 · 10−4 3.247 2.888

4. Participants and Procedures
Ten participants, who all had no prior experience with tracking tasks, performed the experiment of [10]. Each

participant completed an extended training phase before collecting the data during the experiment phase. Details on
how the participants were trained can be found in [10]. All data used in the current paper originate from the experiment
phase; the data from the training phase were not used.

In the experiment phase, each participant completed three runs for the steady-state conditions (DYN1 and DYN2) to
collect the Testing data-set. Then, for the time-varying conditions (DYN121 and DYN212), for each participant five runs
were collected for the Testing data-set and three runs for the Validation data-set. These tracking runs were averaged over
for both steady-state (testing data-sets) and time-varying (testing and validating data-sets) conditions. Additionally, as
previously mentioned, the experiment data for the time-varying runs consisted of two changes in CE dynamics (DYN121
and DYN212), while in this paper only the first change in the CE dynamics is considered (DYN12 and DYN21).

B. Data Analysis
This section provides an outline of the steps used to match the adaptive pilot model introduced in Section II to the

experiment data of [10], and verify the effects of our proposed model updates (see Section II.C). For this, we follow the
four-step analysis as visualized in Fig. 6 and detailed below.

Step 1: Steady-State Modeling: The purpose of this step is to obtain a better understanding of the human pursuit
tracking model in steady-state conditions, as a starting point for matching it with data from the time-varying conditions
from [10]. Due to the different controlled system dynamics than considered in [6], the focus was investigating the
variation in model outputs as a function of the 𝐾𝑝 and 𝐾𝑟 gains, while keeping the neuromuscular system parameters
constant, as proposed in [6], 𝜔𝑛𝑚 = 10 rad/s and 𝜁𝑛𝑚 = 0.707. Furthermore, this analysis was performed for different
human pilot time delay (𝜏𝑒) settings, varying from 0 to 0.3 s with steps of 0.1 s. This resulted in insights into realistic
gain settings for the pursuit tracking task from [10] and how they affect the attained level of tracking performance. Note
that in this step the human-in-the-loop experiment data from [10] were not used.

Step 2: Parameter Estimation: This step uses the mean steady-state data sets for conditions DYN1 and DYN2. The
purpose of this step is to parameterize the modified Hess model for all participants who performed the experiment
of [10]. This is accomplished by estimating the human operator gains (𝐾𝑝 and 𝐾𝑟 ) for each participant using a cost
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Fig. 6 Overview of the different steps of analysis followed in this paper.

function 𝐽 that fits the model’s controller output signal 𝑢𝑚 to the measured output signal 𝑢ℎ:

arg min
𝜃
𝐽 (𝜃) = 1

𝐾

𝐾∑︁
𝑘=1

(𝑢ℎ [𝑘] − 𝑢𝑚 [𝑘])2 (16)

Here, 𝐾 is the number of samples in a tracking run and the parameter vector 𝜃 = [𝐾𝑟 𝐾𝑝]. The optimization was
implemented in Matlab using the nonlinear solver fmincon. To avoid local minima, the optimization was run ten times
with different initial conditions on each data set. Overall, the results were consistent across the different optimization
runs, suggesting that the real optimum was found. Finally, when suitable gains are found the rms[𝑅2 (𝑡)] value, a key
tuning parameter of the model’s adaptive logic in Eq. (7), is calculated for each participant and both DYN1 and DYN2.

Step 3: Sensitivity Analysis: To investigate the variability in the adaptive pilot model’s outputs under changes in
its key parameter settings, in this step a sensitivity analysis of the model is performed. This sensitivity analysis was
performed with the model tuning for one of the experiment participants from [10] as the baseline. First, the consequences
of the added human time delay parameter 𝜏𝑒 and how with delay some other parts of the model need to be re-tuned was
investigated in steady-state (DYN1) and time-varying (DYN12) conditions. Second, the model sensitivity to key model
parameters in the Triggering and Adaptation logic – the break frequency of the low-pass filter 𝐻 (𝑠)on the 𝑥-signal, the
adaptation constants 𝐾𝑎𝑟 and 𝐾𝑎𝑝 , and the break frequency of the low-pass filter 𝐽 (𝑠) on the gain adaptation – was
investigated, also focusing on condition DYN12. The quality-of-fit for the adaptive pilot model was quantified using the
Variance Accounted For (VAF), a well-known fitting metric [7] that can vary between 1 (perfect model fit) and −∞ (bad
model fit), for the region after the CE transition, referred to as the post-transition region. VAF values are calculated for
both the pilot control output signal (𝑢) and the CE output (𝑀) – referred to as VAF𝑢 and VAF𝑀 , respectively, and were
calculated using the following equation (shown only for VAF𝑢):

VAF𝑢 = 1 − 𝜎2 (𝑢h − 𝑢m )
𝜎2 (𝑢h )

(17)

Step 4: Model Validation: In this final analysis step, we validate the adaptive pilot model for the time-varying
conditions DYN12 and DYN21 for all participants in the data set from [10]. For this, the estimated parameters for
steady-state pre-transition behavior (DYN1 and DYN2, respectively) are used and the quality of the model for predicting
the post-transition behavior adaptation is evaluated using VAF𝑢 and VAF𝑀 (see Eq. (17)). Additionally, the testing and
validation data sets from [10] are considered separately for evaluating the model’s quality-of-fit, to verify the sensitivity
of the model response to the (errors induced by) the forcing function signal. Based on previous studies [7, 10], it is
expected that transitions from the single to double integrator (DYN12) are better predicted (higher VAF𝑢 and VAF𝑀 )
than transitions from double to single integrator (DYN21).
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IV. Results

A. Step 1: Steady-State Modeling
As explained in Section III.B, the aim of this first analysis is to verify how different combinations of the human

operator gain values 𝐾𝑝 and 𝐾𝑟 affect the output of the pursuit tracking model. As shown in Fig. 7, for both steady-state
conditions DYN1 and DYN2 the variation in the root mean square of the error signal (rms(𝑒)) was used to quantify the
level of tracking performance achieved. For both conditions, 𝐾𝑝 ranged between 0 and 15 with a step size of 0.01,
while 𝐾𝑟 ranged between 0 and 0.15 with a step size of 0.01. For the 𝐾𝑝 and 𝐾𝑟 combinations that result in an unstable
closed-loop system no data is shown in Fig. 7, while the ‘optimal’ gain combination that results in the lowest possible
rms(𝑒) is indicated with a red circle marker. For brevity, only the results for 𝜏𝑒 = 0.2 s are presented here; equivalent
results for all other human time delay settings can be found in [19].
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Fig. 7 Contour plots showing how different combinations of 𝐾𝑝 and 𝐾𝑟 values lead to differences in rms(𝑒) for
(a) condition DYN1 (single integrator) and (b) condition DYN2 (double integrator).

As expected for a closed-loop manual control system [8, 17], Fig. 7 shows that higher gain values lead to better
performance until the system becomes unstable. For the DYN1 condition the results of the 𝐾𝑝 gain value range from 0
to 15, while 𝐾𝑟 gain ranges from 0 to 0.1. The gain values that result in the minimum rms(𝑒) of 0.013 rad are 𝐾𝑝 =
4.82 and 𝐾𝑟 = 0.06, which corresponds to a crossover frequency 𝜔𝑐 = 2.8 rad/s and phase margin 𝜙𝑚 of 44 deg. For
DYN2, feasible 𝐾𝑝 and 𝐾𝑟 values range from 0 to 15 and 0 to 0.15, respectively. The gain values that result in optimal
performance (rms(𝑒) = 0.016 rad) are 𝐾𝑝 = 1.52 and 𝐾𝑟 = 0.11, which result in 𝜔𝑐 = 3.5 rad/s and 𝜙𝑚 = 5 deg. Fig. 7
thus shows that for a transition from single to double integrator dynamics (DYN12), 𝐾𝑝 is expected to decreases while
𝐾𝑟 increases after the transition. The opposite is expected for the reverse transition in condition DYN21.

B. Step 2: Parameter Estimation
Table 3 shows the estimated human operator gain values for DYN1 and DYN2 for all participants in the data set

from [10]. Additionally, the table shows the corresponding open-loop stability characteristics and the VAF𝑢 and VAF𝑀
quality-of-fit metrics. Overall, the estimated human operator gain values in Table 3 are consistent with the findings of
Section IV.A. While the estimated values for the inner-loop gain 𝐾𝑟 are quite close to the predicted optimal settings
based on Fig. 7 – 0.06 and 0.11 for DYN1 and DYN2, respectively – all participants show much-reduced 𝐾𝑝 values.
As expected for real human operators, who have to weigh tracking performance against stability and effort [8, 17],
this results in less aggressive control behavior characterized by lower 𝜔𝑐 and increased 𝜙𝑚. Overall, with crossover
frequencies around 1 rad/s for DYN1 and 1.8 for DYN2, the experiment’s participants all used a relatively low-gain
control strategy, also compared to the 𝜔𝑐 = 1.50 rad/s Hess [6] tuned his model for. Furthermore, the DYN2 data
collected from Subjects 02, 05, and 07 were found to be insufficiently consistent for fitting the model; hence no fitting
results are shown for these cases in Table 3.
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Overall, the VAF𝑢 and VAF𝑀 data in Table 3 also show that not all participant’s data could be modeled at high
accuracy. The attained quality-of-fit seems to be dependent on the participants’ crossover frequencies: for example,
for DYN1 Subject 06 has the highest crossover frequency of 1.58 rad/s and also the highest VAF𝑢 (0.75) value, while
Subject 01 has the lowest 𝜔𝑐 = 0.75 rad/s and by far the worst VAF𝑢 of only 0.38. In our view, this is not necessarily a
drawback of the model, but also caused by the (in hindsight) insufficient instruction and too low level of aggressiveness
in the experiment of [10]. Given that overall good VAF values were obtained for Subject 06, who also had crossover
frequency that matches well with the adaptive model tuning from [6], this participant was selected as the baseline for the
sensitivity analysis in Step 3. Furthermore, based on the results of Table 3 the data from Subject 01 were not used for
the analysis of the time-varying condition DYN21.

Table 3 Steady-state fitting results for DYN1 and DYN2.

DYN1 DYN2

Subject 𝐾𝑝 𝐾𝑟 𝜔𝑐 𝜙𝑚 VAF𝑢 VAF𝑀 𝐾𝑝 𝐾𝑟 𝜔𝑐 𝜙𝑚 VAF𝑢 VAF𝑀

− s rad/s deg − − − s rad/s deg − −
00 2.38 0.06 1.14 72.08 0.68 0.86 1.45 0.08 1.80 38.04 0.74 0.79
01 1.27 0.09 0.75 80.92 0.38 0.70 0.47 0.14 1.30 62.84 0.25 0.43
02 1.80 0.06 0.84 76.68 0.64 0.87 n/a
03 1.33 0.09 0.75 80.34 0.57 0.91 0.85 0.10 1.38 61.59 0.25 0.79
04 1.77 0.08 0.96 76.80 0.67 0.96 1.09 0.09 1.95 35.64 0.50 0.85
05 1.77 0.07 0.91 76.77 0.61 0.84 n/a
06 3.18 0.06 1.58 65.14 0.75 0.91 1.10 0.07 1.33 51.55 0.75 0.92
07 1.52 0.08 0.83 78.79 0.48 0.90 n/a
08 1.64 0.09 0.97 78.02 0.66 0.84 0.98 0.08 1.99 43.00 0.51 0.54
09 1.64 0.09 0.97 78.02 0.59 0.89 1.55 0.09 1.93 44.97 0.25 0.80

Due to the fact that a number of the equations in the Triggering and Adaptation blocks of the adaptive pilot
model contain scaling terms that depend on the baseline pre-transition level of performance, see Section II, the
between-participant differences in task performance and crossover frequency observed from Table 3 will also affect the
adaptive part of the model. To investigate this, Fig. 8 plots two of those parameters, rms(𝑥) and rms(𝑅2), as a function
of each other, while the marker color map shows the corresponding tracking error magnitude rms(𝑒). Each marker is
labeled with the corresponding participant number. Fig. 8 shows that indeed the participants with the lowest crossover
frequency (Subjects 01 and 03, 0.75 rad/s) show the highest rms(𝑒) of 0.0192 and 0.0193 rad, respectively. Subject 06,
with the highest crossover frequency of 1.58 rad/s, also shows the lowest error value of rms(𝑒) = 0.0154 rad. Fig. 8
further shows that for our experiment data rms(𝑥), rms(𝑅2), and rms(𝑒) are all correlated. For example, we see that
the magnitude of the 𝑥 signal varies across the participants and that rms(𝑥) is around six times smaller for Subject
01 than for Subject 06. Consequently, the 𝑋𝑛 signal as defined in Eq. (7) also varies considerably in magnitude per
subject. As the magnitude of 𝑋𝑛 directly scales the update of the adaptive pilot model gains 𝐾𝑝 and 𝐾𝑟 , the values of
the adaptation constants 𝐾𝑎𝑟 and 𝐾𝑎𝑝 will need to be participant-based to avoid under- or overreacting of the models
parameter adjustments.

C. Step 3: Sensitivity Analysis

1. Effects of human operator time delay
A sensitivity analysis was performed to analyse the effects of the introduced human time delay 𝜏𝑒 on the adaptive

model’s response, for both a steady-state (DYN1) and time-varying (DYN12) condition. Please note that for this analysis
the 𝐾𝑝 and 𝐾𝑟 settings for Subject 06 (see Table 3) are used. Furthermore, the settings of the low-pass filter 𝐻 (𝑠) on the
𝑥 signal were kept constant and equivalent to those used by Hess [6], i.e., 𝜔𝑙 𝑝 = 1.5 rad/s and 𝜁 = 1. Finally, the delay 𝜏𝑒
was varied over four settings: 0, 0.1, 0.2, and 0.3 s. It should be noted that while in reality a change in human delay
would generally be accompanied by a change in human operator gains (see, e.g., [8, 17, 20], here the 𝐾𝑝 and 𝐾𝑟 gains
were kept constant for all compared 𝜏𝑒 values. While this is a limitation of the analysis, it is the best method to show the
influence of the time delay in the model.

The results of the analysis on the steady-state DYN1 data are shown in Fig. 9. As the CE dynamics do not change in
this condition, the models Triggering should not be activated. Fig. 9a shows the influence of the human pilot delay 𝜏𝑒 on
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Fig. 8 Correlation plot of rms(𝑥), rms(𝑅2), and rms(𝑒) for all experiment participants. Please note that the
data for Subjects 08 and 09 overlap.

the 𝑥 signal. The top graph shows the 𝑥 signal before it is filtered by 𝐻 (𝑠), while the bottom graph shows the filtered 𝑥
signal. For 𝑥 it can be observed that increased delay results in an increase of the magnitude in the 𝑥 signal, as expected:
a larger delay introduces larger tracking errors, see also Fig. 9b. Thus, a larger 𝜏𝑒 means that the Adaptation would
induce stronger changes in 𝐾𝑟 and 𝐾𝑝 due to the larger magnitude of 𝑥 and 𝑋𝑛. Therefore, the introduced adaptation
constants, 𝐾𝑎𝑟 and 𝐾𝑎𝑝 (see Section IV.C.3), are needed to counter this potential overreaction.

To analyze the effect on the Triggering logic, Fig. 9c explicitly shows the model’s triggering criterion as defined in
Eq. (5) in normalized form, i.e.,

√︁
|𝑥 |/rms

√︁
|𝑥 | > 3. This means that any signal peaks that exceed the trigger threshold

of 3, indicated with a horizontal green line in Fig. 9c, will result in Triggering activation. Any Triggering activation is
shown in Fig. 9d, which plots the 𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 signal. Matching Fig. 9a, the top graphs show the results when the 𝑥 signal is
not filtered by 𝐻 (𝑠), while the bottom graphs show results obtained with the filtered 𝑥 signal. From Fig. 9c and 9d it
can be observed that the effect of 𝜏𝑒 on the Triggering mechanism is found to be small. However, this is at least partly
due to the applied filter 𝐻 (𝑠), as the filter smooths out instantaneous peaks in 𝑥(𝑡), which would otherwise cause false
positives as seen in Fig. 9d (top).

Due to the time delay effects shown in Fig. 9, having a time delay in the model will also affect the model’s Triggering
and Adaptation mechanisms. Here, we show this for condition DYN12, for which the CE dynamics transition from an
effective single-integrator dynamics to an approximate double-integrator dynamics at 𝑡 = 30 s, see Fig. 10. From this
figure, it can be observed that an increase in 𝜏𝑒 results in an increase in magnitude of the post-transition error peak in
the model, see Fig. 10a. The tested delay values of 0, 0.1, 0.2, and 0.3 result in peaks in 𝑥(𝑡) that are 8%, 16%, 22%,
and 27% higher than the triggering limit, respectively, and longer duration of the 𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 = 1 spike shown in Fig. 10b.
As discussed in Section IV.B, increased magnitude of 𝑥(𝑡) results in a larger gain adjustments through the Adaptation
mechanism that may need to be corrected for with 𝐾𝑎𝑝 and 𝐾𝑎𝑟 .

Finally, for the experiment data of [10] that we consider in this paper, the human operator delay values for all
participants were measured to be approximately 0.2 s for all participants and test conditions. While a limitation, as
in reality time delays are known to vary between different operators, a 𝜏𝑒 of 0.2 s was implemented in the model for
all participants and is used in the remainder of the paper. Please note that this constant delay across participants is
consistent with the ‘universal’ neuromuscular dynamics setting also proposed in [6].

2. Effects of Triggering logic filter 𝐻 (𝑠)
The second focus point for our sensitivity analysis is the low-pass filter 𝐻 (𝑠) that is applied to the 𝑥 signal to smooth

out brief and instantaneous peaks (extreme values) that would otherwise cause many false positives in the Triggering
and Adaptation mechanisms when not in fact required [6], see also Fig. 9. As explained by Hess [6], human operators
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Fig. 9 The effect of increasing the time-delay 𝜏𝑒 in a DYN1 steady-state system on (a) the 𝑥-signal, where the top
graph shows the unfiltered signal and the bottom graph the filtered signal, (b) the tracking error signal 𝑒, (c) the
Triggering logic, and (d) the time during which the Triggering logic is activated (𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 signal), for both the
unfiltered (top), and filtered (bottom) 𝑥-signals.

will not directly change their control strategy for any brief off-nominal control error that occurs. As defined in Eq. (4), a
second-order low-pass filter with 𝜔𝑙 𝑝 = 1.5 rad/s and 𝜁 = 1 is applied on the 𝑥 signal to model this effect. Here, we
investigate the influence of the choice of 𝜔𝑙 𝑝 by varying the bandwidth of 𝐻 (𝑠) across four different settings: 1, 2, 3,
and 4 rad/s. The results of this analysis, again performed with the gain settings for Subject 06 and the time-varying
condition DYN12, are shown in Fig. 11.

Fig. 11 shows that reducing the low-pass filter bandwidth induces lag in the 𝑥 signal and hence also the model’s
Triggering. Fig. 11b shows that trigger activation at 3.8, 2.2, 2 and 1.9 s after the CE transition for 𝜔𝑙 𝑝 = 1, 2, 3, 4 rad/s,
respectively. A higher 𝜔𝑙 𝑝 reduces lag and also attenuates the magnitude of 𝑥(𝑡) to a lesser degree, see Fig. 11a, which
allows for more of the peaks to pass 𝐻 (𝑠), thus causing the triggering to take place earlier. A too low 𝜔𝑙 𝑝 in 𝐻 (𝑠) can
thus result in the adaptive logic being activated later than real human operators would do, or even cause Triggering
to not be activated at all. The results in Fig. 11 show that for the specific participant considered here (Subject 06),
who has a similar crossover frequency 𝜔𝑐 as used for the original Hess model’s tuning, the 𝜔𝑙 𝑝 = 1.5 rad/s proposed
in [6] would be a suitable value to use. However, as for participants with a higher or lower 𝜔𝑐 the frequency content
of 𝑥(𝑡) will be different, using the same 𝜔𝑙 𝑝 will likely result in a Triggering mechanism that is too sensitive or too
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Fig. 10 The effect of increasing the time delay 𝜏𝑒 for the time-varying DYN12 scenario on (a) the Triggering
logic, and (b) the moments at which the Trigger logic is activated (𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 signal), where 𝐻 (𝑠) is active.

conservative, respectively. This means that to retain the same sensitivity, either the value of 𝜔𝑙 𝑝 or the lower Triggering
limit (horizontal green line in Fig. 11b) would need to be adjusted.

3. Effects of Adaptation constants 𝐾𝑎𝑟 and 𝐾𝑎𝑝
The adaptation constants, 𝐾𝑎𝑟 and 𝐾𝑎𝑝 , scale the change of 𝐾𝑟 and 𝐾𝑝 as described in Eq. (6) and (9), respectively.

While not explicitly included in the original model definition in [6], the adaptive model presented by Hess used 𝐾𝑎𝑟 = 1
and 𝐾𝑎𝑝 = 0.35 for the modeled CE transition also shown in Fig. 3 and 4. As the specific 𝐾𝑟 and 𝐾𝑝 gain values that
will be used by human operators can vary widely for different CE dynamics, displays, and forcing function settings, also
𝐾𝑎𝑟 and 𝐾𝑎𝑝 will need to be adjusted between different modeled tasks. For example, as can be verified from Table 3, for
Subject 06 𝐾𝑝 = 3.18 and 𝐾𝑟 = 0.06 for the pre-transition DYN1 dynamics, while for DYN2 𝐾𝑝 = 1.10, 𝐾𝑟 = 0.07. This
shows that for the DYN12 CE transition investigated here (and in [10]), we expect 𝐾𝑟 to increase while 𝐾𝑝 decreases.
Also, as the difference in magnitude between both gains is much larger for our current case than considered in [6], also
𝐾𝑎𝑟 and 𝐾𝑎𝑝 will need to differ much more in magnitude for the DYN12 CE transition than for Hess’s CE transition [6].
Table 4 shows the VAF values for the model output 𝑀 and control output 𝑢 across a feasible range of 𝐾𝑎𝑟 and 𝐾𝑎𝑝
values for our considered data set. As 𝐾𝑎𝑟 = 0.0055 and 𝐾𝑎𝑝 = -150 lead to the highest VAF𝑢 and VAF𝑀 , these values
were chosen to be used in the adaptive model. In order to show the influence of 𝐾𝑎𝑟 and 𝐾𝑎𝑝 on the adaptation of 𝐾𝑟

Table 4 VAF results for varying the adaptation constants 𝐾𝑎𝑟 and 𝐾𝑎𝑝 .

𝐾𝑎𝑟

𝐾𝑎𝑝 = -150 𝐾𝑎𝑝 = -200 𝐾𝑎𝑝 = -250
VAF𝑀 VAF𝑢 VAF𝑀 VAF𝑢 VAF𝑀 VAF𝑢

0.0035 0.39 -3.25 0.87 0.64 0.85 0.67
0.0040 0.65 -1.02 0.90 0.79 0.73 0.46
0.0045 0.83 0.31 0.89 0.76 0.41 0.21
0.0050 0.89 0.73 0.72 0.47 0.12 0.09
0.0055 0.91 0.81 0.52 0.28 0.00 0.00
0.0060 0.89 0.78 0.19 0.11 0.00 0.00

and 𝐾𝑝, two combinations of the adaptation gains were selected from Table 4 as an example, see values highlighted
in bold. Fig. 12 shows how the 𝐾𝑟 (top graph) and 𝐾𝑝 (bottom graph) gains adapt for these two cases. Both graphs
show that with appropriate 𝐾𝑎𝑟 and 𝐾𝑎𝑝 the model is able to induce the required increase in 𝐾𝑟 and decrease in 𝐾𝑝
that is needed for the DYN12 CE transition. Furthermore, Fig. 12 shows that the magnitude of the post-transition gain
values is directly controlled with 𝐾𝑎𝑟 and 𝐾𝑎𝑝 : the increase in 𝐾𝑟 with respect to its pre-transition value scales directly
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Fig. 11 The effect of varying the 𝐻 (𝑠) filter’s break frequency 𝜔𝑙 𝑝 in condition DYN12 on (a) the Triggering
logic, and (b) the triggering signal 𝐾𝑡𝑟𝑖𝑔𝑔𝑒𝑟 (𝑡).

with 𝐾𝑎𝑟 , while the difference in the 𝐾𝑝 reduction between both cases is smaller than reflected by 𝐾𝑎𝑝 only, as Δ𝐾𝑝 is
proportional to 𝐾𝑎𝑟𝐾𝑎𝑝 , see Eq. (9). This makes the adaptation gains crucial (and very sensitive) parameters to adapt
for making the model proposed by [6] match with different CE transitions and experimental data sets.

Finally, Fig. 12 shows clear spikes in the gain values that occur due to the scaling with 𝑋𝑛 (𝑡) (see Eq. (6) and Fig. 2).
The prominence of such spikes on the 𝐾𝑟 and 𝐾𝑝 traces are also strongly affected by the settings of the low-pass filter
𝐽 (𝑠) that is applied to the change in gains, see also Section IV.C.4.
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Fig. 12 Gain adaptations with varying adaptive constants: Case 1 has 𝐾𝑎𝑟 = 0.0055, 𝐾𝑎𝑝 = −150, while Case 2
has 𝐾𝑎𝑟 = 0.0045, 𝐾𝑎𝑝 = −200.

4. Effects of Adaptation gain filter 𝐽 (𝑠)
As human operators are unlikely to show instantaneous gain adjustments after a CE transition, Hess [6] included a

second-order low-pass filter 𝐽 (𝑠) with 𝜔𝑙 𝑝 = 1 rad/s and 𝜁𝑙 𝑝 = 1 on the parameter adaptation, see Eq. (8). With these
settings, a step-like gain transition is smoothed to take over 5 s. To verify how the 𝐽 (𝑠) filter settings affect the fit
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to experimental data, we performed a sensitivity analysis to investigate the effects of 𝜔𝑙 𝑝 on the model’s Adaptation.
Settings for 𝜔𝑙 𝑝 ranging from 1 to 10 rad/s, and including 𝜔𝑙 𝑝 = ∞ rad/s (no filtering, NF), were tested. The 𝐽 (𝑠)
filter affects the model’s output directly after triggering occurs, as indicated with the shaded gray ‘transition region’ in
Fig. 13. In the transition region, the model’s tracking output 𝑀 for low values of 𝜔𝑙 𝑝 shows larger oscillations and
slower stabilization than for higher 𝜔𝑙 𝑝 , as expected.

Fig. 14 shows the corresponding effects of 𝐽 (𝑠) on the model’s 𝐾𝑝 and 𝐾𝑟 gain adaptation. For the case without
filter (NF), Fig. 14 shows that, as expected, the change in gains is instantaneous, whereas for the case with the lowest
filter bandwidth (𝜔𝑙 𝑝 = 1 rad/s) the gain adjustment takes more than 5 s. This difference directly explains the variation
in tracking performance with 𝜔𝑙 𝑝 seen in Fig. 13a. Additionally, for 𝜔𝑙 𝑝 > 5 rad/s Fig. 14 shows a clear dip directly
when the 𝐾𝑝 gain transitions. This dip results from the transient of the 𝑋𝑛 signal during the time the Triggering is
activated, see Fig. 2. When 𝜔𝑙 𝑝 < 5 rad/s, this key behavior of the model’s Adaptation mechanism is filtered out by
𝐽 (𝑠), resulting in a fully smooth gain transition. An optimal value for 𝜔𝑙 𝑝 was selected based on the best quality-of-fit
compared to our measured data for Subject 06 in the transition region. As is also clear from Fig. 13a, the quality of
model fit in the transition region was found to be relatively poor, as the measured human adaptation occurred quicker
than that of the model’s adaptive scheme. Still, VAF values for the control output (𝑢) and model output (𝑀) improved
with increasing 𝜔𝑙 𝑝 and were best for the case without a filter (NF): VAF𝑢 = −21.2 and VAF𝑀 = −2.8, compared to
VAF𝑢 = −71.8 and VAF𝑀 = −11.0 for the 𝜔𝑙 𝑝 = 1 rad/s proposed in [6]. Thus, the best fit to our data is obtained for a
step-like adaptation of the human operator gains, which is consistent with a previous study by Zaal [7], who also found
near-instantaneous changes in human operator control behavior.

D. Step 4: Model Validation Results
In Section IV.C a model sensitivity analysis was performed based on the experiment data from a single participant

(Subject 06). This section adds model validation for all participants in the experiment data set from [10], focusing on the
time-varying conditions DYN12 and DYN21. It should be noted that model fitting results for the steady-state conditions
(DYN1 and DYN2), which are used as individual participants’ reference parameters in this analysis, can be found in
Section IV.B.

1. Condition DYN12
In condition DYN12 the CE transitions from approximate single-integrator to dynamics that approximate a double

integrator. With the estimated value for the 𝐻 (𝑠) filter’s break frequency (𝜔𝑙 𝑝 = 1.5 rad/s) based on the data from
Subject 06 (see Section IV.C.2), it was found that the Triggering mechanism was only activated for Subject 06’s data.
To increase the Triggering mechanism’s sensitivity to ensure activation for more of the participants, the bandwidth
of the filter 𝐻 (𝑠) was increased to 𝜔𝑙 𝑝 = 3 rad/s for all participants. As can be seen from Fig. 15, which shows the
normalized

√︁
|𝑥 | signal for Subject 00 as an example, increasing the bandwidth of 𝐻 (𝑠) results in a larger magnitude of

the 𝑥-signal and successful Triggering activation (see blue data).
As a result of increasing the bandwidth of 𝐻 (𝑠), as also discussed in Section IV.C.2, the magnitude of the gain

adaptation will also increase, due the increased magnitude of the 𝑥 and 𝑋𝑛 signals. To ensure that the model’s
post-transition 𝐾𝑟 and 𝐾𝑝 values still match with the steady-state values expected for DYN2, the gain adaptation
constants 𝐾𝑎𝑟 and 𝐾𝑎𝑝 also need to be adjusted (and decreased) for all participants. Even with such parameter
adjustments, with the pre-transition gain values identified for Subject 01 and 03 it was found impossible to activate
the Triggering mechanism for these participants. Hence, no data are shown for these participants in Table 5, which
summarizes the model’s parameters for all participants as used for the validation tests. Table 5 lists the initial 𝐾𝑝 and
𝐾𝑟 gain values of the pre-transition phase (determined in Section IV.B) and their corresponding open-loop stability
characteristics.

Table 6 further shows the final adapted gains of the post-transition phase results for both the testing and validation
data sets from [10]. Both data sets were used to verify if time-varying modeling artefacts occur due to specific forcing
function patterns in the transition region and to detect potential overfitting of the testing data. When no adapted gain
values are listed in Table 6, the Triggering mechanism did not activate and thus no adaptation of the modeled human
operator’s gains occurred. Additionally, the open-loop stability characteristics are provided, which still vary due to the
CE transition even if the adaptive operator model is not Triggered.

Comparing Table 5 and Table 6 shows that when the adaptation is triggered for Subjects 00, 04, and 06, the inner-loop
gain 𝐾𝑟 increases as expected, as the CE change requires the generation of added lead in the feedback control [8, 10].
For Subjects 08 and 09, on the other hand, only very slight adjustments to 𝐾𝑟 and 𝐾𝑝 were found compared to the
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(a) Tracking signals

(b) Trigger signal

Fig. 13 Effects of the 𝐽 (𝑠) filter break frequency on the adaptive model’s output: (a) tracking performance and
(b) Triggering activation.
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Fig. 14 Gain adaptations with varying the parameter 𝜔𝑙 𝑝 of the filter 𝐽 (𝑠).
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Fig. 15 Effect of increasing 𝜔𝑙 𝑝 of the 𝐻 (𝑠) filter from 1.5 rad/s to 3 rad/s on the Triggering mechanism for
Subject 00.

pre-transition DYN1 settings from Table 5. This can be explained by the fact that these participants already had a high
𝐾𝑟 gain in the pre-transition phase (0.016 points above average). Hence, their control strategy was already effective for
DYN2, which resulted in only momentary Triggering activation and negligible Adaptation.

As can be seen from Table 6, the Triggering mechanism did not activate for the validation data for Subjects 04, 08,
and 09, while the model was triggered for the testing data. As the only difference between the testing and validation data
are the used phases for the forcing function (see Table 2), this suggests a potentially strong interaction of the model’s
Triggering and Adaptation logic with specific temporal features of the forcing function signal around the moment of the
CE change. To analyze this effect, a Monte Carlo analysis was conducted where the time at which the CE dynamics
transitioned, here referred to as 𝑀1, was varied for both the testing and validation forcing functions from 10 to 50
seconds, for a total of 1,000 different 𝑀1 settings, see the green shaded area in Fig. 16. The bottom graphs show the
time of first Triggering activation plotted on the same time axis as the forcing function signals, with Fig. 16a showing
the results for the testing forcing function and Fig. 16b showing the same results for the validation forcing function. The
patterns in the histograms show that Triggering mostly occurred when the gradient of the forcing function was relatively
large. This is particularly evident for the validation data in Fig. 16b, as the validation forcing function signal also has
more standout instances of large gradients. Overall, these results thus confirm the crucial sensitivity of the model’s
adaptive mechanism to specific features in, and hence the design of, the forcing function signal.

Overall, the Triggering mechanism was activated for 53% and 74% of the tested 𝑀1 settings for the testing and
validation cases, respectively. When the CE dynamics transition at a moment when the forcing function is constant or
has a shallow gradient, the tracking error (and hence the 𝑥 signal) may not directly increase in magnitude to activate the
Trigger. As the Triggering is activated based on the trigger limit (3rms(

√︁
|𝑥 |)), a reference value of that also slowly

increases after a CE transition, this can result in a missed trigger. An example of such a case is shown in Fig. 17,
where Fig. 17a shows the tracking performance of the model and Fig. 17b shows the

√︁
|𝑥 | signal and the trigger limit

3rms
√︁
|𝑥 |. In this example, the CE dynamics transitioned at 30 s and the

√︁
|𝑥 | signal does show a clear spike as a result,

see Fig. 17b, however, the spike does not exceed the trigger limit. At around 50 s, a second large spike is evident in√︁
|𝑥 |, but by then the recursively calculated trigger limit value has increased and again the Triggering is not activated.

Overall, this indicates that the Triggering mechanism implemented in the adaptive model from [6] is prone to the strong
interaction between the implemented Triggering mechanism and the occurrence of large peaks and gradients in the
forcing function signal.
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Table 5 Model parameter settings for model validation for time-varying condition DYN12.

Subject
DYN1

Initial gain values
DYN1

Open-loop characteristics
Key Model Parameters

𝐾𝑝 [-] 𝐾𝑟 [-] 𝜔𝑐 [rad/s] Φ𝑚 [deg]
𝐻 (𝑠)

𝜔𝑙𝑝 [rad/s]
𝐽 (𝑠)

𝜔𝑙𝑝 [rad/s]
𝐾𝑎𝑝 [-] 𝐾𝑎𝑟 [-]

00 2.379 0.058 1.138 72.076 3 ∞ -40 0.17
01 1.266 0.095 0.753 80.921 - - - -
03 1.325 0.085 0.753 80.338 - - - -
04 1.773 0.067 0.906 76.768 3 ∞ -150 0.038
06 3.175 0.058 1.577 65.137 3 ∞ -150 0.0055
08 1.642 0.091 0.972 78.024 3 ∞ -10 0.05
09 1.642 0.091 0.972 78.024 3 ∞ -5 0.03

Table 6 Gain adaptation validation results for condition DYN12 for both testing and validation data.

Testing data-sets Validation data-sets

Subject
DYN2

Adapted gain values
DYN2

Open-loop characteristics
DYN2

Adapted gain values
DYN2

Open-loop characteristics
𝐾𝑝 [-] 𝐾𝑟 [-] 𝜔𝑐 [rad/s] Φ𝑚 [deg] 𝐾𝑝 [-] 𝐾𝑟 [-] 𝜔𝑐 [rad/s] Φ𝑚 [deg]

00 1.465 0.080 1.529 51.949 1.472 0.080 1.537 51.585
01 - - 1.300 62.839 - - 1.300 62.840
03 - - 1.358 58.380 - - 1.358 58.380
04 1.263 0.070 1.235 55.794 - - 1.840 34.086
06 1.244 0.071 1.218 56.796 1.275 0.071 1.252 55.681
08 1.660 0.088 1.881 45.558 - - 1.991 43.000
09 1.653 0.089 1.877 46.392 - - 1.933 44.974

2. Condition DYN21
For the time-varying condition DYN21 the opposite CE dynamics transition occurs compared to DYN12, i.e., from

an approximate double integrator to an approximate single integrator, see Table 1. For DYN21, it was found that the
adaptive logic was not triggered by the CE change for any of the participants. This is consistent with earlier results from
[10] and indicates that while the CE dynamics do change the pre-transition human operator gain settings still provide a
satisfactory level of tracking performance, as post-transition CE dynamics in fact are more easily controlled and require
less compensation. Without loss of tracking performance after the CE transition, also the model’s 𝑥-signal will not
increase in magnitude, as shown in Fig. 18 for an example single participant. Equivalent results were obtained for all
other participants in the validation data set. In Fig. 18 the CE dynamics transition at 30 s to the single integrator and the
magnitude of the

√︁
|𝑥 | signal is even seen to decrease even without human operator gain adjustments after the transition.

Fig. 19 shows VAF𝑢 and VAF𝑀 quality-of-fit results for both the pre- and post-transition phases in condition DYN21,
i.e., the 0-30 and 40-60 s intervals of the 60-second tracking runs. As no Triggering and Adaptation was activated for
any of the participants, Fig. 19 shows the results for a non-adaptive model, for which the 𝐾𝑟 and 𝐾𝑝 gains are the same
before and after the CE transition. The VAF𝑢 data show that the quality-of-fit for the control activity 𝑢 decreases only
slightly (by 0.04 points) in the post-transition range for both the testing and validation data sets, while VAF𝑀 values are
consistently higher. The increase in VAF𝑀 is consistent with the steady-state fits for DYN1 and DYN2, see Section IV.B,
where DYN1 VAF values were also consistently higher than those for DYN2. These high post-transition VAF values
indicate that, even without adapting 𝐾𝑟 and 𝐾𝑝 to the CE change, the model still fits the post-transition single-integrator
CE data at high accuracy. Overall, the results presented here for DYN21 indicate that the adaptive logic of the model
proposed by Hess [6] – also having been designed to investigate transitions from CE dynamics that are easier to control
to more challenging CE dynamics – can not predict the behavioral adaptation that real human operators for transitions
that do not directly result in degraded tracking performance.
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(a) Testing data (b) Validation data

Fig. 16 Analysis of Triggering activation for varying CE transition time 𝑀1 for (a) the testing forcing function
and (b) the validation forcing function.

V. Discussion
The work described in this paper aimed at improving our understanding of adaptive human manual control behavior,

with an analysis of the adaptive pilot model proposed by Hess [6, 12, 13] and by matching it with previously collected
experiment data for a pursuit tracking task with induced time-varying changes in the CE [10]. To investigate the key
characteristics of Hess’ proposed modeling framework and verify the need for adjustments, we found it necessary to
accurately describe our experiment data, and performed an analysis in four steps, as described in Section III, from which
the main findings and implications will be discussed in this section.

In Step 1 of our analysis, we investigated the model’s inner- and outer-loop gains setting that would be needed when
controlling our pre-transition (DYN1, an approximate single integrator) and our post-transition (DYN2, an approximate
double integrator) CE dynamics in steady-state. Based on an analysis of the model’s tracking performance as a function
of its gain settings, we found that for a transition from DYN1 to DYN2 human operators would need to decrease 𝐾𝑝 and
increase 𝐾𝑟 . This is consistent with what would be expected when comparing human control dynamics with single-
and double integrator CE dynamics: the latter requires more lead (increased 𝐾𝑟 ) and reduced low-frequency response
magnitude (reduced 𝐾𝑝) [8, 17]. Due to the choice for solely failed systems with reduced responsiveness (lower CE
gain), the published adaptive model logic as described in [6] can only model increases in the human operator control
gains. Hence, this analysis showed that for matching the experiment data of [10], and all other time-varying scenarios
where not only post-transition human operator gain increases would be expected, the adaptive logic of the model needs
to be adapted.

In Step 2, we fitted the adaptive pilot model to the (steady-state) experiment data collected from 10 participants
in [10]. Overall, the data for condition DYN1 could be modeled at high accuracy for all participants, while it proved
impossible to achieve a sufficient fit for the DYN2 data for three participants (Subject 02, 05, and 07). Furthermore,
the VAF𝑢 values we used for assessing the model’s quality-of-fit were 0.63 and 0.5 on average for conditions DYN1
and DYN2, respectively. In [10], the same experiment data could be modelled with a different human control model
at VAF𝑢 = 0.64 and 0.75 for DYN1 and DYN2, respectively. Also in earlier experiments it was generally found that
higher VAF values were obtained for DYN2 data than for DYN1 [7, 15]. These different outcomes for our current
work may be explained by the fact that for the model from [6], key human operator’s limitation parameters – i.e., the
neuromuscular dynamics, which we also extended to the human time delay 𝜏𝑒 – fixed at ‘one-size-fits-all’ values. While
previous research suggests that these parameters may be considered invariable for the CE transitions (between DYN1
and DYN2) considered in this paper [7, 21], an essential step to improve the model’s quality-of-fit in future work would
be to consider the limitation parameters 𝜏𝑒, 𝜔𝑛𝑚 and 𝜁𝑛𝑚 as truly free, and participant-specific, parameters, as we did
for only the human operator gains 𝐾𝑝 and 𝐾𝑟 in this paper.

In Step 3, we analyzed the model’s sensitivity to some of its key parameter settings. To match the experiment data
of [10], one of the key additions we propose for Hess’ model from [6] is to include a human time delay 𝜏𝑒. Indeed, for
matching our experiment data, we found that a delay of 0.2 s provided the best results, on average. Furthermore, we
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(a) Tracking performance
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(b) Triggering logic

Fig. 17 Example of missed Triggering for condition DYN12 and a CE dynamics transition at 30 s: (a) tracking
performance showing the forcing function 𝑓𝑡 , modeled CE output 𝑀, and measured CE output from [10], (b)
Triggering logic showing

√︁
|𝑥 | and the Triggering limit (3rms

√︁
|𝑥 |).

performed an analysis to investigate the effects of this added time delay on the adaptive Triggering and Adaptation
mechanisms of the model. While the effect of the added delay was found to be small on the triggering, the fact that a
delay directly results in larger (steady-state) tracking errors (and hence larger 𝑥 and 𝑋𝑛 signals) was found to strongly
affect the strength of modeled gain adaptations. For this reason, we propose to include the ‘adaptation constants’ 𝐾𝑎𝑟
and 𝐾𝑎𝑝 as additional model parameters (proposed as constants of 1 and 0.35, respectively, in [6]), to enable tuning of
the strength of the gain updates, and avoid over- and under-reaction of the model. We found that the values of these
constants needed to be selected per participant, as for 𝐾𝑟 and 𝐾𝑝, to match the changes in both gains between each
participants DYN1 and DYN2 data. In future work, it should be investigated if rather than adding these two additional
independent tunable model parameters, the values of 𝐾𝑎𝑟 and 𝐾𝑎𝑝 may be determined based on (offline) analysis of
reasonable post-transition tracking performance and open-loop stability.

Furthermore, in Step 3 we analyzed the required tuning of the different low-pass filters that are included in the
model’s adaptive logic to account for lags in human detection and parameter adjustments. In [7], three different
second-order low-pass filters are applied: on the 𝑥-signal (𝐻 (𝑠)), on the 𝑋𝑛 signal, and on the Δ𝐾𝑟 signal (𝐽 (𝑠)). For
𝐻 (𝑠), we found that the proposed break frequency of 1.5 rad/s [6] was too low to ensure Triggering of the model for our
DYN12 condition, especially for participants who controlled with a low crossover frequency 𝜔𝑐. Hence, the 𝐻 (𝑠) break
frequency is a crucial tuning parameter for the model’s adaptive logic, that likely will need to be adjusted for different
CE-transition scenarios. In our analysis, we omitted the second low-pass filter on the 𝑋𝑛 signal, as it was found to be
superfluous with the (same) filter also being applied again on the Δ𝐾𝑟 that is proportional to 𝑋𝑛, see Eq. (6). Finally,
our analysis of how the break frequency of the 𝐽 (𝑠) filter affected the model’s tracking performance directly after the
DYN12 CE transition showed that an unfiltered step-like adjustment in human operator gains is, in fact, optimal. While
previous work also suggested near-instantaneous adjustment of human operator gains [7], the fact that the model’s
post-transition tracking performance was still found to be much worse than the real human operator data, indicates that
further research is required to model this transient phase of a CE transition.

Finally, in Step 4 we performed validation of the adaptive pilot model for the data from all participants of [10]
for the time-varying conditions DYN12 and DYN21. For DYN12, it was found that the model is able to capture the
adaptive human behavior for the participants, if the Triggering mechanism of the model was activated. Furthermore, it
was found that Triggering activation directly depends on the level of tracking performance and crossover frequency
adopted in the pre-transition phase. For participants with a low-gain strategy (and comparatively large tracking errors)
the Triggering mechanism was found to often not be activated. Overall, we conclude that the success of using the model
depends directly on participants’ (pre-transition) crossover frequencies, which should preferably be 𝜔𝑐 > 0.9 rad/s.
Furthermore, this analysis has shown that the experiment data from [10] included a number of participants with what can
be considered a very low-gain strategy. Hence, to further aid our development of time-varying human control models
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Fig. 18 Example normalized
√︁
|𝑥 | signal compared to the model’s Triggering limit for DYN21, where the

Triggering is not activated for the CE dynamics transition at 30 s.
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Fig. 19 Comparison of pre- and post-transition quality-of-fit for condition DYN21 for (a) VAF𝑢 and (b) VAF𝑀 .

for pursuit tracking tasks, in future work we aim to collect a second set of experiment data, for the same steady-state and
time-varying scenarios, with better trained and more high-gain participants.

For condition DYN21, our Step 4 analysis showed the adaptive pilot model struggles to model the (for human
operators less problematic) transition from controlling a double integrator (DYN2) to a single integrator (DYN1). This
was anticipated, as other models, with similar adaptive mechanisms based on the detection of uncharacteristic larger
tracking errors, have also shown difficulties in capturing such a transition [10]. As explained in [6], Hess’ model was
also not originally designed to model transitions that result in more easily controlled CE dynamics. Despite the fact that
we see that VAF𝑢 values decrease by 8% on average for the post-transition phase in condition DYN21, the retained
pre-transition control gain settings do not result in large post-transition tracking errors, and hence no Triggering and
Adaptation by the model. This implies that a structural extension of the model’s adaptive logic – e.g., not only triggering
based on tracking errors, but also, for example, on changes in control activity or phase margin – is needed to also achieve
its activation for CE transitions as considered here in condition DYN21.

VI. Conclusion
In this paper, we present an analysis and validation effort for the ‘adaptive pilot model’ proposed by Hess [6] for

modeling human operator time-varying dynamics in a pursuit tracking task. We used a set of recent human-in-the-loop
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experiment data, with controlled element dynamics transitions from a single integrator to a double integrator and vice
versa, to parameterize the model for 10 different participants and verify the effectiveness, and required tuning, of the
model’s adaptive Triggering and Adaptation mechanisms. For the considered controlled element dynamics transitions,
it was found that a number of modifications and simplifications to the original model were required to achieve an
accurate fit to the steady-state tracking data (e.g., adding a human operator delay) and to achieve realistic triggering of
the adaptive logic in the time-varying conditions (e.g., removing/re-tuning the adaptive logic’s different low-pass filters).
Overall, the model was found to accurately predict human operator adaptation for controlled element transitions from
a single to a double integrator, as the sudden degradation in tracking performance caused by this transition induces
the model’s Triggering logic to activate. The predicted gain adaptations were also found to be realistic, and improve
the model’s post-transition quality-of-fit by 30% compared to a non-adaptive model. However, the sensitivity of the
model’s Triggering logic was found to depend strongly on participants’ pre-transition crossover frequency: the model’s
trigger activation was most reliable for the participants with the highest crossover frequencies (up to 1.5 rad/s) in our
data set, but would not activate (even with model parameter updates) for participants with crossover frequencies below
0.9 rad/s. Finally, it was found that the model’s adaptive logic could not predict the measured behavior adaptation for
transitions from double to single integrator dynamics, for which the adaptive logic was not triggered, as this transition
to more stable dynamics does not (negatively) impact tracking performance. Overall, we conclude that the modeling
framework’s adaptive logic is a promising, but somewhat limited, representation of how human operators may adapt to
changes in controlled system dynamics, and that more experiments are required to successfully include all relevant
mechanisms of humans’ adaptive manual control behavior.
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