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Abstract 

 

Understanding the dynamic behaviour of soil is crucial for the design of geotechnical 

structures, particularly for offshore wind turbine foundations. This study evaluates the 

performance of a nonlinear numerical model in accurately capturing soil response under 

dynamic shear loading, comparing its simulated response to experimental data obtained 

from Resonant Column Tests (RCT). The research systematically investigates the role of 

higher-order odd harmonics in the numerical solution, assesses the differences between 

linear and nonlinear models, and validates the nonlinear model against experimental results. 

The findings reveal that higher-order harmonics contribute negligibly to the numerical 

response, simplifying the model's implementation. Furthermore, the nonlinear model 

effectively captures the resonance shift observed in experimental data, outperforming the 

linear model, particularly at higher strain levels where soil softening effects become 

significant. While the model demonstrates a strong correlation with experimental results, 

discrepancies arise in high-strain scenarios, primarily due to limitations in damping 

representation. To address this, corrective approaches such as a damping correction factor 

and strain radius adjustments were explored, improving model accuracy but failing to 

eliminate errors entirely. The study highlights the necessity of incorporating a strain-

dependent damping formulation to enhance predictive capabilities for high-strain soil 

behaviour. 

The results confirm that nonlinear numerical modelling is a valuable tool for capturing 

essential soil dynamics, but further refinements in damping representation are required to 

improve alignment with experimental data. Future research should focus on advanced 

damping models to ensure greater accuracy in high-strain dynamic soil simulations. 
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Chapter 1 – Introduction 

 

1.1 Background 

With the rapid rise in global energy consumption, production is struggling to meet the 

demand. Therefore, major plans are being made worldwide in order to increase electrical 

power production for the future years. Simultaneously, global warming has sparked interest 

in sustainable and clean energy. The EU has formulated its policies such as The European 

Green Deal, to tackle this problem and reach net zero emissions by 2050 [1]. 

Due to this push for renewable energy, wind energy has seen exponential growth in recent 

years and is expected to follow this trend in the coming years. Despite both the onshore and 

offshore wind energy sectors experiencing considerable investment and development, 

offshore wind projects are of greater significance due to their better efficiency than onshore 

installations. A study by the International Energy Agency showed that alone the best close-

to-shore offshore wind sites globally could provide the global electricity demand projected 

for 2040. The shallow coastal water together with the favourable wind conditions and the 

limited land availability are all factors that make the North Sea an ideal location for the wind 

farm construction. 

Offshore wind turbines are installed through various foundation types, each differing in cost, 

depth, and functionality. Monopiles, gravity-base, jackets, semi-submersible and floating are 

the most common types of foundations found worldwide. Among these, monopile 

foundations are the most cost-effective and straightforward to install, though they are 

depth-limited. Where feasible, monopiles are therefore the preferred foundation choice. As 

for 2019, monopiles accounted for 81% of offshore wind turbine foundations and were also 

the most popular substructure type among all newly installed foundations [2]. 

The monopile is a hollow cylindrical structure, that driven into the underlying seabed, 

supports the wind turbine tower above. The monopile must withstand all forces generated 

by wind and waves transferred through the structure to the underlying seabed. Beyond 

ensuring this structural requirement, it is critical to maintain the structure's natural frequency 

distinct from the excitation frequencies of these external forces. If the natural frequency of 

the wind turbine aligns with that of external forces, resonance may occur, potentially leading 

to structural failure. 

The external forcing frequencies may resonate with two different frequencies characteristic 

of the wind turbine structure: 

• 1P: The primary excitation frequency of the wind turbine triggered by the rotational 

speed of the rotor. 
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• 3P: The second excitation frequency is caused when the single blade passes by the 

vertical tower, causing additional cyclic load on the structure. 

The 1P and 3P frequencies together with the wave and wind spectra may be visualised in 

Figure 1. 

 

Figure 1 – Excitation frequencies acting on a typical wind turbine system [3] 

The soil’s properties significantly influence the structure's natural frequency. Therefore, in 

designing offshore wind turbines, thoroughly understanding soil behaviour is key to limiting 

the interference of natural frequencies with excitation frequencies and avoiding over-

dimensioning. 

 

1.2 Problem Statement and Objectives 

Accurate soil modelling is crucial during the design phase of a monopile foundation. The 

behaviour of the soil can be studied with laboratory experiments, such as Resonance Column 

Tests, where it is possible to replicate the seabed loading conditions. However, these tests 

are often expensive and time-consuming. 

Consequently, simulating real-life behaviour through modelling is a more practical 

approach. Existing models, even if computationally efficient, often rely on simplifications that 

compromise the accuracy of the results. This thesis aims to develop a numerical model 

capable of accurately simulating nonlinear soil behaviour under dynamic forcing conditions 

and comparing it with experimental data obtained in Resonance Column Tests, without 

increasing the computational time excessively.  
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1.3 Objectives 

The objective of this study is to evaluate the performance of a nonlinear numerical model in 

accurately capturing soil behaviour under dynamic loading conditions. The goal is to 

compare the model’s simulated response with experimental data provided by the RCT. 

Specifically, this research aims to: 

1. Assess the Contribution of Super-Harmonics: Investigate the influence of higher-

order odd harmonics (third and fifth) on the numerical solution and determine their 

relevance in different strain states to simplify model implementation. 

2. Compare Linear and Nonlinear Models: Analyse the significance of incorporating 

nonlinear material behaviour in numerical simulations and its effect on capturing 

resonance shifts observed in experimental data. 

3. Validate the Nonlinear Model Against Experimental Data: Examine the accuracy 

of the nonlinear model in reproducing soil response across different strain levels, 

identifying strengths and limitations, particularly in high-strain scenarios. 

4. Evaluate Discrepancies and Model Limitations: Identify and analyse model 

inaccuracies, particularly in damping representation, and explore potential corrective 

measures. The adjustments proposed should either improve the results of the model 

or give a better understanding of the corrections to be made. 

 

1.4 Research Questions 

Therefore, the research questions to be answered in this thesis are: 

• How do super-harmonics harmonics influence the numerical solution of soil response 

under dynamic loading, and to what extent can they be disregarded in different strain 

states without compromising model accuracy? 

• How does the incorporation of nonlinear material behaviour affect the accuracy of 

numerical simulations in capturing resonance shifts, and how does it compare to a 

linear model in terms of computational efficiency? 

• To what extent does the nonlinear numerical model accurately reproduce 

experimental soil response across varying strain levels, and what are the key strengths 

and limitations in its predictive capability, particularly at high-strain states? 

 

1.5 Research outline 

This section provides an overview of the subsequent chapters of this thesis, outlining their 

content and purpose. 
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Chapter 2 presents a comprehensive review of the existing literature and previous research 

relevant to this study. The key theoretical concepts underlying the research are discussed to 

establish the necessary foundation before addressing the problem at hand. 

Chapter 3 details the formulation of the models, providing a rigorous exposition of their 

mathematical structure. This chapter systematically develops the theoretical framework of 

both the linear and nonlinear models, necessary for the subsequent analysis. 

Chapter 4 describes the experimental data employed to validate the simulated results of the 

model. Specifically, it outlines the nature and sources of the data, as well as the methodology 

used for data acquisition. Additionally, this chapter discusses the preprocessing steps 

required to ensure compatibility between the experimental data and the simulated results 

for meaningful comparison. 

Chapter 5 presents and analyses the results of the study. The discussion begins with an 

examination of the super-harmonic contributions to the total signal. Subsequently, a 

comparative analysis between linear and nonlinear models is conducted, followed by an 

evaluation of the experimental data concerning the nonlinear model. Finally, a parametric 

modification of the model is explored to assess its impact on improving the accuracy of the 

results. 

Chapter 6 provides the conclusions of the thesis, summarizing the key findings and their 

implications. 

Chapter 7 offers recommendations for potential future developments and extensions of this 

research. 
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Chapter 2 – Literature Study 

 

2.1 Constitutive Soil Models 

In the attempt to describe the stress-strain relationship in soil, several constitutive models 

can be considered, each able to capture different behaviours of the soil. The three main 

constitutive models, represented in Figure 2, used to represent soil behaviour can generally 

be classified into three categories: linear, nonlinear, and hysteretic models. These models 

attempt to describe how soil deforms and resists external forces, considering different 

factors such as elasticity, plasticity, strain rate, and cyclic loading effects. There is no “better” 

model to use, as selecting an appropriate constitutive soil model depends on the nature of 

the problem, loading conditions, and soil type. 

 

Figure 2 – Stress-strain relationships in soil modelling [4] 

2.1.1 Linear Soil Models 

Linear soil models assume a proportional relationship between stress and strain, following 

Hooke’s Law. This simplification is typically applied to elastic materials, where deformations 

are small and fully recoverable upon unloading. The model presented by Wood [5] 

characterizes soil using two material parameters, Young’s modulus (𝐸) and Poisson’s ratio 

(𝜈). It is widely used in first-order approximations for stress analysis in soils with small strains. 

While linear models are useful for preliminary analysis, they fail to capture the inelastic 

behaviour of soils, crucial when analysing high-strain states. 

2.1.2 Nonlinear Soil Models 

Nonlinear models are necessary to describe the stress-strain relationship of soil beyond the 

elastic limit, where deformation is not proportional to applied stress. These models 

incorporate plasticity, stress history, and strain-dependent stiffness. The model described by 

Vardoulakis [6], accounts for progressive failure mechanisms in soils, particularly relevant for 

landslide analysis and post-peak behaviour. Another empirical model describes the 
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nonlinear relationship between stress and strain using a hyperbolic function, effectively 

representing soil stiffness degradation under increasing load [7]. 

2.1.3 Hysteretic Soil Models 

Hysteretic models are particularly important for describing soil behaviour under cyclic or 

dynamic loading, such as earthquakes, machine vibrations, and wave-soil interactions. Unlike 

linear or nonlinear models, hysteretic models explicitly capture energy dissipation and path-

dependent behaviour. Hysteretic models are crucial for earthquake engineering and 

dynamic soil-structure interaction problems, where cyclic degradation and energy 

dissipation play significant roles. 

 

2.2 Damping Models 

Damping is a critical aspect of soil modelling as it influences the dynamic response of soil-

structure systems under external loading conditions. Various damping models have been 

proposed to characterize energy dissipation in soil, primarily categorized into viscous 

damping, hysteretic damping, and radiation damping. Furthermore, hybrid models are being 

tested, where combinations of these models are combined. Each of these models has distinct 

theoretical foundations and applications in geotechnical engineering. 

2.2.1 Viscous Damping 

Viscous damping represents energy dissipation as a function of velocity-dependent forces, 

commonly applied in linear dynamic analyses. The Rayleigh Damping Model approach, used 

in finite element analysis (FEA), is defined as a linear combination of mass-proportional and 

stiffness-proportional damping. However, it has been criticized for its frequency-dependent 

nature, leading to potential inaccuracies when applied to multi-modal dynamic analyses. 

2.2.2 Hysteretic Damping  

Hysteretic damping models account for the energy dissipation due to inelastic deformation 

of soil particles. These models are widely used in seismic soil-structure interaction (SSI) 

studies and pile foundation dynamics. Many hysteretic damping models rely on the Masing 

rule, illustrated in Figure 3, which assumes that stress-strain curves during cyclic loading 

follow the same loading-unloading paths as the primary stress-strain relationship. Shirzoi et 

al. [8] have refined these models to better simulate nonlinear soil behaviour under cyclic 

loading. The Modified Davidenkov Model, described by Zhou et al. [9], introduces strain-

dependent damping ratios, improving its accuracy in predicting soil behaviour under large-

strain conditions. 
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Figure 3 – Definition of hysteretic damping at the soil element level [10] 

 

2.2.3 Radiation Damping Models 

Radiation damping accounts for energy loss due to the outward propagation of stress waves 

from a vibrating structure into the surrounding soil. This phenomenon is crucial in 

foundation dynamics and offshore geotechnical engineering. Wang et al. [11] proposed a 

soil models that incorporate frequency-dependent radiation damping functions to improve 

seismic response predictions of buried structures. 

 

2.3 Time-Frequency Domains 

In signal processing, two general approaches can be defined for solving systems of ordinary 

differential equations: Time domain analyses and Frequency-domain analyses. 

The time-domain analysis begins with known conditions (velocities and displacements) at a 

specific moment and iteratively computes the conditions at each subsequent time step. 

Current time-stepping algorithms ensure accuracy, allowing the method to handle complex 

nonlinear models. However, this precision in the solution is only obtained if small time steps 

are taken in the analysis, causing long computation times. During the early stage of design, 

the time-domain analysis is too computationally expensive. 

Instead, frequency-domain analyses are preferred in the initial design phase, offering faster 

calculations to accommodate frequent structural modifications. Obtained through 

transformations such as the Fourier Transform, the frequency domain doesn’t subdivide the 

time window into discrete time steps. This method assumed a finite length of 𝑇 and then 

uses the property that any forcing term that is periodic in 𝑇 can be split up into a summation 

of sinusoids.  
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2.4 Harmonic Balance Method 

The Harmonic Balance Method (HBM) is an analytical technique for combining frequency 

domain analysis and nonlinearities. The fundamental principle of HBM is to assume that the 

solution to a nonlinear system can be represented as a finite sum of harmonic terms, each 

with an unknown amplitude and phase. 

𝑥(𝑡) = 𝐴0 + ∑ 𝐴𝑛 cos(𝑛𝜔𝑡) + 𝐵𝑛 sin(𝑛𝜔𝑡)

𝑁

𝑛=1

 

Where 𝐴0 is the DC component, 𝐴𝑛, 𝐵𝑛 are the unknown Fourier coefficients for the 

harmonics and 𝜔 is the fundamental frequency. These unknowns are then determined by 

enforcing a balance of harmonics in the governing equations. The HBM is highly effective in 

analysing nonlinear vibrations [12], similar to the equations of motion of our system. Often, 

only the fundamental harmonic is retained, assuming it dominates system dynamics. This 

assumption breaks down in highly nonlinear cases [13]. 

An important assumption is made in this method that needs to be taken into consideration. 

The method is not suitable for transient dynamics since it assumes the system has already 

reached a periodic steady-state [14]. 

 

2.5 Resonant Column Test 

The Resonant Column Test (RCT) is a geotechnical laboratory test designed to evaluate the 

dynamic properties of soils, particularly their shear modulus (𝐺) and damping ratio (𝐷) under 

small-strain conditions. This test simulates low-strain seismic wave propagation in soils and 

is widely used to determine the dynamic properties of the soil samples. 

The test involves subjecting a cylindrical soil specimen to harmonic torsional, inducing 

resonance to determine the material’s dynamic response. The samples can be both hollow 

or full and usually have a height-to-width ratio of around two. The experiments with the 

hollow samples allow to record the radial strain too.  

The apparatus consists of an oscillating top plate and a fixed bottom plate, positioned at the 

two extremities of the soil sample. The top plate is called the active plate, due to the presence 

of a motor that applies a torque to the system. The rotational response of the system is then 

recorded by accelerometers, positioned on the top plate. This accelerometer records the 

linear accelerations of the active plate, recorded at a radial distance of 5cm from the centre 
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of the sample. This information will later be used to convert the accelerations from linear to 

angular, to match the simulated accelerations of the model. 

The cross-sectional diagram of the entire apparatus used to evaluate the experimental 

results used in this research is presented in Figure 4.  

 

Figure 4 – Internal arrangement of the Resonant Column apparatus [15] 
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Chapter 3 – Modelling 

This section outlines the models used to analyse the soil's response to dynamic forcing. The 

analysis begins with a linear model and subsequently incorporates the nonlinearities to 

develop the complete model. The models, previously presented in Van der Esch et al. [16], 

aim to replicate the Resonant Column Test, including its geometry, forcing, and boundary 

conditions, to enable comparison with experimental test data. 

 

3.1 Geometry  

Firstly, the geometry of the soil in the model and the reference system must be outlined. 

Since the soil samples examined in the RC test are saturated solid or hollow cylindrical 

specimens [17], the geometry in the model should be the same. In order to describe the 

entire 3D shape without the need for approximations, the geometry of the soil is defined 

with a cylindrical reference system. Each point is described through the three dimensions; 

• 𝑥 – The axial coordinate 

• 𝑟 – The radial distance from the centre of the specimen 

• ϑ – The angle of rotation of horizontal cross-sections 

To simplify the analysis, the specimen is modelled as a one-dimensional torsional beam. 

Given the axisymmetry of the specimen and of the forcing, the response is uniform in the 

azimuthal direction. This reduces the two-dimensional problem to a 1D model, with the 

response resulting dependent only on the axial coordinate and no radial variation. 

Reducing the radial variable to a constant reduces complexity in subsequent derivations, as 

strain depends on 𝑟, as shown in the schematisation in Figure 5.  

 

Figure 5 – Strain radius-dependency schematisation [18] 
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The small angle approximation is also used in the model to describe the displacement.  

Δ ≈ 𝑟 ∙ 𝜃 (1) 

Therefore, the strain (γ) will be expressed as follows: 

γ =
𝜕

𝜕𝑥
Δ ≈ r

𝜕𝜃

𝜕𝑥
 (2) 

In order to obtain a representative measure of strain valid for the entire cross-section, it is 

necessary to select an appropriate radius. According to Drnevich et al. [19], an accepted 

range for this radius lies between 0.66 and 0.8 times the total radius of the soil sample. 

Another research performed by Chen and Stokoe [20] shows that the representative radius 

ranges from 0.76 to 0.82 for hyperbolic soil models. In this research, this representative 

radius will taken equal to 0.6 times the radius of the soil sample and for ease will be named 

the observation radius 𝑟𝑜𝑏𝑠. 

If the observation radius were to be set to zero, the resulting strain would also be zero. 

Consequently, selecting this radius as the representative value would yield a linear model, 

which is not desirable in this context. On the other hand, selecting the maximum radius could 

lead to an overestimation of nonlinearity. Therefore, an intermediate value is chosen, 

allowing for calibration as needed (a consideration that is further elaborated in Section 5.3). 

 

3.2 Linear Model 

3.2.1 Model Formulation 

The mathematical derivation begins with a wave equation applied to a Kelvin-Voigt 

viscoelastic material [21]. This equation expresses the displacement, more specifically the 

horizontal rotation of the specimen 𝜃, as a function of both space and time. 

The Kelvin-Voigt viscoelastic relation models the material with a parallel configuration of a 

spring and dashpot. The spring and dashpot components account for the elastic and viscous 

responses, respectively. Their viscoelastic behaviour is characterized by two coefficients: 𝜂, 

representing viscosity, and 𝐺, representing the elastic modulus. By definition, the Kelvin-

Voigt viscoelastic model expresses the total stress as the algebraic sum of the stress in each 

of the 2 components. 

𝜌 ∙
𝜕2

𝜕𝑡2
(𝜃(𝑥, 𝑡)) =

𝜕3

𝜕𝑡𝜕𝑥2
(𝜂 ∙ 𝜃(𝑥, 𝑡)) +

𝜕2

𝜕𝑥2
(𝐺 ∙ 𝜃(𝑥, 𝑡)) (3) 

Where 𝜌 is the cross-sectional soil density. 

In the linear model, the shear modulus (𝐺) is assumed to be constant and is assigned the 

value corresponding to the maximum strain, which reflects the conditions at the apex of the 

amplitude-frequency curve. This selection of 𝐺, rather than applying 𝐺0, was implemented 
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to more accurately replicate the conditions at the peaks, focusing on the central behaviour 

of the curve rather than the extremes. 

The model incorporates hysteretic damping, ensuring that the damping term remains 

independent of the excitation frequency Ω. The damping coefficient 𝜂 is defined as a function 

of the damping ratio 𝜁 and the shear modulus through the following equation: 

𝜂 =
2 ∙ 𝜁 ∙ 𝐺

Ω
 (4) 

Since in the linear model both the shear modulus and the damping are assumed to be 

constant in time and space, the equation is simplified to: 

𝜌 ∙
𝜕2

𝜕𝑡2
(𝜃(𝑥, 𝑡)) = 𝐺 ∙

𝜕2

𝜕𝑥2
(𝜃(𝑥, 𝑡)) + 𝜂 ∙

𝜕3

𝜕𝑡𝜕𝑥2
(𝜃(𝑥, 𝑡)) (5) 

In the steady-state solution, the frequency of response of the soil sample will match the 

forcing frequency. Since the system is stimulated by harmonic excitation at Ω frequency, the 

steady-state solution is expressed in the following form.  

𝜃(𝑥, 𝑡) = Re(θ̂(𝑥) ∙ 𝑒𝑖Ω𝑡) (6) 

The steady-state solution is introduced into the equation of motion. After the necessary 

simplifications, the equation describing the behaviour of the soil specimen is reduced to a 

second-order ordinary differential equation. 

−𝜌Ω2θ̂(𝑥)𝑒𝑖Ω𝑡 = 𝐺
𝜕2

𝜕𝑥2
θ̂(𝑥)𝑒𝑖Ω𝑡 + 𝑖Ω𝜂

𝜕2

𝜕𝑥2
θ̂(𝑥)𝑒𝑖Ω𝑡 (7) 

𝜕2

𝜕𝑥2
 θ̂(𝑥) +

𝜌Ω2

{𝐺 + 𝑖Ω𝜂}
θ̂(𝑥) = 0 (8) 

In this simplified form, the variable θ̂ is a function solely dependent on spatial coordinates. 

This transformation allows the differential equation to be solved analytically by assuming 

the solution as a harmonic wave with wavenumber λ, as follows: 

θ̂(𝑥) = 𝐶 ∙ 𝑒−𝑖λx (9) 

𝜕2

𝜕𝑥2
 𝐶 ∙ 𝑒−𝑖λx +

𝜌Ω2

{𝐺 + 𝑖Ω𝜂}
𝐶 ∙ 𝑒−𝑖λx = 0 (10) 

−λ2 +
𝜌Ω2

{𝐺 + 𝑖Ω𝜂}
= 0 (11) 

λ1,2 = ±√
𝜌Ω2

{𝐺 + 𝑖Ω𝜂}
(12) 

 

θ̂(𝑥) = 𝐶1 ∙ 𝑒−𝑖λ1x + 𝐶2 ∙ 𝑒−𝑖λ2x (13) 
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3.2.2 Boundary Conditions 

The equation contains two unknown coefficients, 𝐶1 and 𝐶2, requiring two equations to solve 

the system. These equations are determined using the boundary conditions at the 

specimen's two extremities. The specimen's boundary conditions are modelled to replicate 

those imposed by the Resonant Column Test’s apparatus. The fixed-base and the free-top 

are labelled respectively the passive and the active ends. The schematisation of the two 

boundary conditions is represented in Figure 6. 

 

Figure 6 – Schematization of the boundary conditions 

 

The two equations describing the boundary conditions are found through the equilibrium 

of forces at the two respective points of interest. 

1. At 𝑥 = 0, the passive end is a fixed plate, where all displacements and velocities are 

always zero. 

𝜃(0, 𝑡) = 0 (14) 

2. At 𝑥 = 𝐿, the active end is influenced by the dynamic forcing of the motor. The motor 

directly applies the driving rotational force to the upper side of the plate of the RCT 

apparatus, with the soil specimen in contact on the lower side. The motor applies a 

sinusoidal torque of amplitude 𝑇0 to the system, with a maximum drive of 1 𝑁𝑚. 

𝑇𝑀 = 𝑇0 cos(Ω𝑡) (15) 

This apparatus configuration allows the plate to rotate freely, with its inertia 

contributing to the equilibrium equation.  
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𝐼𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑇𝑠 = 𝑇𝑀 (16) 

The active plate’s inertial contribution 𝐼𝑎𝑐𝑡𝑖𝑣𝑒 is calculated as follows: 

𝐼𝑎𝑐𝑡𝑖𝑣𝑒 = −Ω2 ∙ 𝐽𝑎 ∙ 𝜃 (17) 

Where 𝐽𝑎 is the active plate’s polar mass moment of inertia.  

The torque along the specimen, 𝑇𝑠, is given by the expression: 

𝑇𝑠(𝑥, 𝑡) =
𝐼𝑝

𝑟
∙ 𝜎(𝑥, 𝑡) (18) 

Where 𝜎 is the stress, estimated with the Kelvin-Voigt viscoelastic relation model as 

described in Section 3.2.1. The polar area moment of inertia (𝐼𝑝) is calculated through 

Equation 19, as a function of the specimen polar mass moment of inertia 𝐽𝑠. 

𝐼𝑝 =
𝐽𝑠

𝜌𝐿
(19) 

𝑇𝑠(𝑥, 𝑡) =
𝐽𝑠

𝜌𝐿
(

𝜕

𝜕𝑥
𝜃(𝑥, 𝑡)) (𝐺 + 𝑖Ω𝜂) (20) 

Combing all the abovementioned equations, the active end boundary condition is 

expressed through: 

−Ω2 ∙ 𝐽𝑎 ∙ 𝜃(𝐿, 𝑡) +
𝐽𝑠

𝜌𝐿
(

𝜕

𝜕𝑥
𝜃(𝐿, 𝑡)) (𝐺 + 𝑖Ω𝜂) = 𝑇0 cos(Ω𝑡) (21) 

 

3.3 Non-linear model 

3.3.1 Model Formulation 

Similarly to the linear model, the mathematical derivation begins with the wave equation, 

where 𝜃, a function of both space and time, represents the rotation of the specimen. The 

difference with the linear model lies in the strain-dependent shear modulus. In the nonlinear 

model, the constitutive relation is no longer a constant but varies as the strain increases. This 

gives rise to an extra term inside the equation of motion compared to the linear model. 

𝜌
𝜕2

𝜕𝑡2
(𝜃) =

𝜕

𝜕𝑥
(𝐺) ∙

𝜕

𝜕x
(𝜃) + 𝐺 ∙

𝜕2

𝜕x2
(𝜃) + 𝜂 ∙

𝜕3

𝜕𝑡𝜕x2
(𝜃) (22) 

The hyperbolic soil model is a nonlinear constitutive model, employed to describe this 

behaviour mathematically. The model assumes that the soil stiffness decreases with 

increasing strain but at a decreasing rate. The hyperbolic model is often used to represent 

the nonlinear behaviour of soils under small to moderate strains, where the soil behaviour is 

not highly nonlinear, resulting in slight inaccuracies at larger strain levels. The hyperbolic 

model is defined by the following equation [22]: 
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𝐺 =
𝐺0

1 + (
𝛾

𝛾𝑟𝑒𝑓
)
β

(23)
 

where 𝐺 is the soil shear stiffness, 𝛾 is the strain, 𝐺0 is the initial soil stiffness, 𝛾𝑟𝑒𝑓 is the 

reference strain, and β is a decay constant that controls the rate of stiffness reduction with 

increasing strain. 

𝜌
𝜕2

𝜕𝑡2
(𝜃) =

𝜕

𝜕𝑥

(

 
 
 
 

𝐺0

1 + (
𝑟
𝜕𝜃
𝜕𝑥

𝛾
𝑟𝑒𝑓

)

β

)

 
 
 
 

∙
𝜕

𝜕x
(𝜃) +

𝐺0

1 + (
𝑟
𝜕𝜃
𝜕𝑥

𝛾
𝑟𝑒𝑓

)

β
∙

𝜕2

𝜕x2
(𝜃) + 𝜂 ∙

𝜕3

𝜕𝑡𝜕x2
(𝜃) (24) 

The harmonic balance method is an effective tool for analysing and solving nonlinear 

differential equations, especially if one is interested in the steady-state response. The 

periodic functions are expressed as a Fourier series, a sum of sine and cosine terms with 

varying frequencies. The contribution of higher-order harmonics to the overall solution 

diminishes progressively, making their inclusion less impactful. Throughout this study, the 

adopted solution contains the first three odd harmonics, as they provide sufficient accuracy, 

rendering higher-order terms unnecessary. 

𝜃(𝑥, 𝑡) =

U𝐶1(𝑥) cos(1Ω𝑡) + U𝑆1(𝑥) sin(1Ω𝑡) +

U𝐶3(𝑥) cos(3Ω𝑡) + U𝑆3(𝑥) sin(3Ω𝑡) +

U𝐶5(𝑥) cos(5Ω𝑡) + U𝑆5(𝑥) sin(5Ω𝑡)…

(25) 

In Equation 25, the cosine and sine components are scaled by their respective amplitude 

coefficients. The subscripts of these coefficients indicate the harmonic number and the 

corresponding sinusoidal component. These coefficients are functions of the spatial 

coordinate 𝑥. 

The solution of the differential equation (Eq. 25) is substituted back into Equation 24, 

resulting in a complicated expression that is difficult to solve directly. This equation contains 

too many variables, given rise by the partial derivations of the multiple harmonic 

components to be solved analytically. However, this expression can be decomposed into a 

system of six equations, each corresponding to a specific harmonic. This decomposition is 

performed through the orthogonality property of sinusoidal functions in integration. By 

definition, the integral of the product of two orthogonal functions over a specific range is 

zero. If 𝑓(𝑥) and 𝑔(𝑥) are orthogonal over the interval [𝑎, 𝑏], then: 

∫ 𝑓(𝑥)
𝑏

𝑎

∙ 𝑔(𝑥) 𝑑𝑥 = 0 (26) 
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In our application, the interval is equal to the period, represented by the following 

expression: 

𝑇 =
2𝜋

Ω
(27) 

The solution is hence projected onto each harmonic by integrating the equation with the 

associated sinusoidal term. This mathematical procedure is repeated for all 6 sinusoids, 

giving rise to a system of 6 equations. 

−𝜌Ω2

𝐺0

𝜕2

𝜕𝑡2
(U𝐶1(𝑥)) = 𝛼 ∙

𝜕2

𝜕x2
(U𝐶1(𝑥)) + 2 ∙ 𝜁 ∙

𝜕3

𝜕𝑡𝜕x2
(U𝑆1(𝑥)) (28) 

−𝜌Ω2

𝐺0

𝜕2

𝜕𝑡2
(U𝑆1(𝑥)) = 𝛼 ∙

𝜕2

𝜕x2
(U𝑆1(𝑥)) − 2 ∙ 𝜁 ∙

𝜕3

𝜕𝑡𝜕x2
(U𝐶1(𝑥)) (29) 

−9𝜌Ω2

𝐺0

𝜕2

𝜕𝑡2
(U𝐶3(𝑥)) = 𝛼 ∙

𝜕2

𝜕x2
(U𝐶3(𝑥)) + 6 ∙ 𝜁 ∙

𝜕3

𝜕𝑡𝜕x2
(U𝑆3(𝑥)) (30) 

−9𝜌Ω2

𝐺0

𝜕2

𝜕𝑡2
(U𝑆3(𝑥)) = 𝛼 ∙

𝜕2

𝜕x2
(U𝑆3(𝑥)) − 6 ∙ 𝜁 ∙

𝜕3

𝜕𝑡𝜕x2
(U𝐶3(𝑥)) (31) 

−25𝜌Ω2

𝐺0

𝜕2

𝜕𝑡2
(U𝐶5(𝑥)) = 𝛼 ∙

𝜕2

𝜕x2
(U𝐶5(𝑥)) + 10 ∙ 𝜁 ∙

𝜕3

𝜕𝑡𝜕x2
(U𝑆5(𝑥)) (32) 

−25𝜌Ω2

𝐺0

𝜕2

𝜕𝑡2
(U𝑆5(𝑥)) = 𝛼 ∙

𝜕2

𝜕x2
(U𝑆5(𝑥)) − 10 ∙ 𝜁 ∙

𝜕3

𝜕𝑡𝜕x2
(U𝐶5(𝑥)) (33) 

 

The system of 6 equations can be expressed in matrix form for easier visualisation. 

�̿� ∙ �̅� = �̿� ∙ 𝑈′′̅̅ ̅̅ (34) 

The matrix �̿� is calculated through the summation of matrixes 𝑀1
̿̿ ̿̿  and 𝑀2

̿̿ ̿̿ . 

�̿� = 𝑀1
̿̿ ̿̿ + 𝑀2

̿̿ ̿̿ (35) 

𝑀1
̿̿ ̿̿  is obtained by the multiplication of the 6x6 identity matrix and the term 𝛼. 

𝑀1
̿̿ ̿̿ = 𝐼 × 𝛼 =

[
 
 
 
 
 
1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1]

 
 
 
 
 

×
1

1 + (
𝑟
𝜕𝜃
𝜕𝑥

𝛾𝑟𝑒𝑓
)

β
∙

(

 
 
 
 
 

1 −

𝛽 ∙ 𝐺0 ∙ (
𝑟
𝜕𝜃
𝜕𝑥

𝛾𝑟𝑒𝑓
)

β

1 + (
𝑟
𝜕𝜃
𝜕𝑥

𝛾𝑟𝑒𝑓
)

β

)

 
 
 
 
 

(36) 

All the other vectors and matrixes named in Equation 34 are reported below. 
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�̿� =

[
 
 
 
 
 
 
−𝜌Ω2

𝐺0

0
0
0
0
0

0
−𝜌Ω2

𝐺0

0
0
0
0

0
0

−9𝜌Ω2

𝐺0

0
0
0

0
0
0

−9𝜌Ω2

𝐺0

0
0

0
0
0
0

−25𝜌Ω2

𝐺0

0

0
0
0
0
0

−25𝜌Ω2

𝐺0 ]
 
 
 
 
 
 

 

�̅� =

[
 
 
 
 
 
U𝐶1

U𝑆1

U𝐶3

U𝑆3

U𝐶5

U𝑆5]
 
 
 
 
 

         𝑈′′̅̅ ̅̅ =

[
 
 
 
 
 
 
U′′𝐶1

U′′𝑆1

U′′𝐶3

U′′𝑆3

U′′𝐶5

U′′𝑆5]
 
 
 
 
 
 

        𝑀2
̿̿ ̿̿ =

[
 
 
 
 
 

0 2𝜁
−2𝜁 0

0       0
0       0

0       0
0       0

0       0
0       0

0 6𝜁
−6𝜁 0

0       0
0       0

0       0
0       0

0       0
0       0

0 10𝜁
−10𝜁 0 ]

 
 
 
 
 

 

 

The equations have no analytical solution and must be solved numerically. For this purpose, 

the Boundary Value Problem Fourth-order Method (Bvp4c) solver is used in MATLAB. This 

solver integrates a system of differential equations subject to boundary conditions with the 

help of an initial solution guess. 

The solver discretises the spatial variable into numbers, independently varying the number 

of elements using an adaptive mesh refinement, to improve the solution accuracy. The solver 

obtains numerical solutions, with the demanded tolerances, for the required unknowns at 

each of the nodes. The absolute and relative tolerances of the solver are set equal to 10−9 

and 10−6 respectively. 

Nonlinear systems can have multiple equilibrium states, as shown graphically in Section 2.1. 

Consequently, we adopt two directions of frequency sweeping.  The frequencies must be 

varied firstly from the minimum frequency to the maximum frequency and then repeated in 

the opposite direction. These solutions will be labelled as upwind and downwind respectively 

in the result sections 5.2. 

 

3.3.2 Boundary Conditions  

The boundary conditions are identical to the ones employed in the linear model described 

in Section 3.2.2. The solver can handle the dynamic boundary condition, enabling us to 

compare the two different models with each other. 
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Chapter 4 - Experimental Data 
 

Experimental data is essential to validate the proposed models, aiming to demonstrate that 

the simulated response closely replicates real-life conditions observed in laboratory 

experiments. 

 

4.1 Database description 

In order to validate the models, the dataset described in Ciancimino et al. [23] is utilized. The 

database includes 252 soil samples collected from various locations across Italy over the past 

30 years. These samples exhibit diverse granulometric characteristics and have been 

analysed through different laboratory tests performed in Politecnico di Torino and in 

Sapienza Università di Roma. For uniformity, only the samples analysed in Politecnico di 

Torino with RC test were taken into consideration. The RC tests were carried out using the 

free-fixed device of the geotechnical laboratory of PoliTo  [17] [15]. The apparatus can 

perform both resonant column or cyclic torsional shear tests. 

For each soil sample the following categories of information are provided: 

• General information – contains the initial shear modulus (𝐺0) 

• Physical properties – contains the soil density (𝜌) 

• RC Testing data – contains all the recordings of the RC apparatus, such as frequencies, 

torques, accelerations, etc. 

Three different methods were used in the experiments to estimate the damping ratio: Half-

power Bandwidth, Free Vibration Decay and Resonance Factor. As the other two methods 

have been proven inaccurate when the resonance curve bends (softening), the free vibration 

decay method has always been chosen for all samples for uniformity. 

The free-vibration decay method is applied considering the 10 cycles of free-damped 

vibrations at the end of the loading cycles. By knowing two successive peak amplitudes 𝑧𝑛 

and 𝑧𝑛+1, the logarithmic decrement 𝛿𝑛+1 is computed as:  

𝛿𝑛+1 = ln (
𝑧𝑛

𝑧𝑛+1
) (37) 

The average value is used to compute the damping ratio as: 

𝐷 =
𝛿

2𝜋
(38) 

This value is used in our model as the input for the damping ratio 𝜁 in the models. 
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After all the considerations listed above, three samples were selected and their data 

was used to verify the model. The soil samples selected with the abovementioned criteria 

are PoliTo052, PoliTo024 and PoliTo020, respectively named Soil Sample 1, Soil Sample 2 and 

Soil Sample 3. The material properties and granulometry are reported in Table 1 to Table 3. 

Soil Sample 1 PoliTo052   

Material properties 

Initial shear modulus 𝐺0 50,73 𝑀𝑃𝑎 

Soil density 𝜌 2008,84 𝑘𝑔/𝑚3 

Mean effective stress 𝑝′ 57,7 𝑘𝑃𝑎 

    

Granulometry 

Gravel [%] 3,6   

Sand [%] 36,2   

Silt [%] 39,6   

Clay [%] 20,5   

Table 1 – Soil Sample 1 granulometry and properties 

Soil Sample 2 PoliTo024   

Material properties 

Initial shear modulus 𝐺0 124,04 𝑀𝑃𝑎 

Soil density 𝜌 2103,67 𝑘𝑔/𝑚3 

Mean effective stress 𝑝′ 168,1 𝑘𝑃𝑎 

    

Granulometry 

Gravel [%] 0,1   

Sand [%] 16,5   

Silt [%] 67,4   

Clay [%] 16,0   

Table 2 – Soil Sample 2 granulometry and properties 

Soil Sample 3 PoliTo020   

Material properties 

Initial shear modulus 𝐺0 225,07 𝑀𝑃𝑎 

Soil density 𝜌 2103,67 𝑘𝑔/𝑚3 

Mean effective stress 𝑝′ 250,9 𝑘𝑃𝑎 

    

Granulometry 

Gravel [%] 1,0   

Sand [%] 56,4   

Silt [%] 30,9   

Clay [%] 11,7   

Table 3 – Soil Sample 3 granulometry and properties 
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The magnitude of acceleration of the experimental data is plotted versus the frequency of 

excitation in Figure 7 to Figure 9. 

 

Figure 7 – Soil sample 1 experimental acceleration-frequency graph 

 

Figure 8 – Soil sample 2 experimental acceleration-frequency graph 
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Figure 9 – Soil sample 3 experimental acceleration-frequency graph 

 

4.2 Hyperbolic Soil Model Fitting 

As previously mentioned in Section 3.3, the nonlinear model uses the hyperbolic soil model 

to numerically represent the shear modulus of the soil. This soil model must be calibrated 

by tunning the parameters 𝛾𝑟𝑒𝑓 and 𝛽 to match experimental data. The reference strain is 

defined as the value corresponding to 50% of the normalized shear modulus (
𝐺

𝐺0
) from the 

experimental curve, with β adjusted to match the stiffness reduction rate. 

The hyperbolic soil models of the 3 different soil samples were calibrated with the 

parameters listed in Table 4 and their plots visualised in Figure 10 to Figure 12 respectively. 

Soil Sample 𝜸𝒓𝒆𝒇 [%] 𝜷 [−] 

1 0,000374 1,02 

2 0,000278 0,98 

3 0,000302 1,03 

Table 4 – Hyperbolic Soil Model Parametric Calibration 
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Figure 10 – Fitting of Hyperbolic Soil Model for Soil Sample 1 

 

Figure 11 – Fitting of Hyperbolic Soil Model for Soil Sample 2 
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Figure 12 – Fitting of Hyperbolic Soil Model for Soil Sample 3 

 

4.3 Experimental torque values 

The database provided by Ciancimino et al. [23], containing the experimental torque values, 

provides the necessary input for our model. The data of the torque applied by the motor is 

presented in the form of a torque sequence recorded over time. The motor can apply, under 

loading control, sinusoidal loading torques with a maximum amplitude of 1 Nm.  

Each loading sequence is divided into three steps: an initial null force, followed by the 

sinusoidal forcing and terminated with another null force period to allow the free decay of 

the vibrations. An example of a loading sequence is presented in Figure 13. The maximum 

amplitude of the torque is taken as the value of 𝑇0. 

 

Figure 13 – RCT Torque excitation for Test 9 
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4.4 Experimental steady-state accelerations 

The accelerometer is positioned at the height of the top plate, at a horizontal distance of 5 

cm from the soil sample's centre. It records the linear accelerations performed by the 

rotating top plate.  

The experimental accelerometer readings are recorded and plotted against time. Following 

the torque loading steps described earlier, the acceleration data exhibits three distinct 

phases: transient response, steady-state response, and free decay. The analysis focuses on 

extracting the steady-state solution to compare with numerical results, as the model 

emphasizes this phase. 

To achieve this for all torque loadings and all frequency steps, a custom code was developed. 

The code calculates the average of all positive and negative peaks within the middle section 

of the graph, thereby excluding the transient and free decay phases. Averaging both peaks 

minimizes errors caused by non-zero-centred accelerations. This may arise due to certain 

soil mechanics phenomena, such as ratcheting. The positive and negative peak averages are 

illustrated by the dotted red line in Figure 14. 

 

Figure 14 – Acceleration time history and positive/negative average acceleration values at 

steady state 

The steady-state solution, in Figure 15, is obtained by the mean of the absolute values of 

the positive and negative peak averages. 
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Figure 15 - Steady-state solution of test 7 frequency 101 

The procedure must be adaptable to extract the steady-state solution across all frequency 

steps for each torque loading, regardless of variations in amplitude, shape, or time span of 

the acceleration recordings. Two additional examples are shown in Figure 16 and Figure 17. 

  

Figure 16 – Steady-state solution of test 7 

frequency 201 

Figure 17 – Steady-state solution of test 14 

frequency 401 

 

4.5 Model Performance metrics 

Since the experimental soil conditions at the resonance peak are reported for each loading 

step, it is possible to compare these values with the simulated conditions generated by the 

different models. To perform this verification, the values of strain (𝛾) and shear modulus (G) 

obtained from the experiments are compared with those predicted by the model. A 

percentage difference between the experimental and modelled values is then calculated to 

assess the accuracy of the assumed torque and ensure the validity of the model. 

The two parameters mentioned are calculated with the following equations, where γmodel is 

the strain simulated by the model at the top boundary condition and 𝛾𝑑𝑎𝑡𝑎 is the resonance 

strain value presented in the database. 
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𝛾𝑒𝑟𝑟𝑜𝑟 =
max(γmodel) − 𝛾𝑑𝑎𝑡𝑎

𝛾𝑑𝑎𝑡𝑎
 (39) 

𝐺𝑒𝑟𝑟𝑜𝑟 =
min(Gmodel) − 𝐺𝑑𝑎𝑡𝑎

𝐺𝑑𝑎𝑡𝑎
 (40) 
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Chapter 5 – Results 
 

The results of the model will be presented in this section. After discussing the contribution 

of the super-harmonics, we examine the amplitude of accelerations of the models’ solutions 

and compare them with the experimental data obtained through the RC lab tests. 

 

5.1 Contribution of super-harmonics  

As outlined in Equation 32, the Harmonic Balance Method solves the equation of motion for 

the nonlinear model by decomposing the solution into individual harmonics. In contrast, the 

experimental solution represents the total signal, containing all harmonics. Therefore, when 

comparing the model’s numerical solution to the experimental data, it is crucial to evaluate 

the contribution of the higher-order harmonics. If their contribution is negligible compared 

to the first harmonic, they can be disregarded, allowing the amplitude of the first harmonic 

to be compared directly to the experimental total signal. 

In Figure 18, the amplitudes of acceleration of the first three odd harmonics are plotted 

against the excitation frequency for a low-strain simulation. In this plot, the nonlinear upwind 

and downwind solutions are overlapped to outline any possible differences. 

 

Figure 18 – The acceleration amplitude vs excitation frequency obtained using the 

nonlinear model for which a low external torque is applied corresponding to a low-strain 

state 

 

As expected, the amplitude of the accelerations decreases with an increasing harmonic 

number. From this plot, it is evident that the contribution of the 3rd and 5th harmonics are 
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four orders of magnitude lower than the 1st harmonic, concluding that the super-harmonics 

may be neglected. Secondly, a slight difference between the upwind and downwind 

solutions can be observed. At such low-strain levels, this discrepancy is not expected, as the 

nonlinearities are insufficient to cause significant differences. Nonlinear effects become 

more pronounced at higher strain levels, where the amplitude curve exhibits a characteristic 

leftward bend, and the solutions diverge. Thus, these inaccuracies are likely due to numerical 

errors in the solver. 

The same study is repeated for a medium-strain test and illustrated in Figure 19. In this latter 

test, the contribution of the super-harmonics is still negligible, however, now the amplitudes 

are two orders of magnitude lower. As expected, at these strain levels, the solutions of the 

upwind and downwind start to diverge from each other in correspondence with the curve’s 

peak. 

 

Figure 19 – The acceleration amplitude vs excitation frequency obtained using the 

nonlinear model for which a medium external torque is applied corresponding to a 

medium-strain state 

 

After comparing the high-strain test’s results, illustrated in Figure 20, it is possible to observe 

the same trend. The higher the strain in the simulation, the higher the contribution of the 3rd 

and 5th harmonics. These findings are attributed to the nonlinearities of the model, which 

are captured by the higher-order harmonics. Consequently, their contribution increases as 

the strain grows, becoming influential in high-strain tests. 
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Figure 20 – The acceleration amplitude vs excitation frequency obtained using the 

nonlinear model for which a high external torque is applied corresponding to a high-strain 

state 

 

From this analysis, it can be concluded that the amplitudes of the super-harmonics are 

orders of magnitude smaller than those of the first harmonic, rendering them negligible. To 

further validate this for high-strain levels, the numerical total signal is constructed and 

compared with the amplitude of the first harmonic, illustrated in Figure 21. The acceleration 

magnitude of the total signal closely overlaps with the first harmonic’s response, confirming 

that super-harmonics can be neglected for simplification. 

 

Figure 21 – Comparison of the amplitude of acceleration of the 1st harmonic vs the 

magnitude of acceleration of the total signal obtained using the nonlinear model 



Riccardo Mei Master’s Thesis 

 

30 | P a g e  
 

 

For future comparative analyses between the nonlinear numerical solution and the 

experimental total signal, it is acceptable to disregard the third and fifth harmonics. 

 

5.2 Linear vs Nonlinear Models Comparison 

The divergence between the linear and nonlinear numerical models was examined to 

evaluate the importance and correct implementation of material nonlinearity. 

First, to verify the correct application of the hyperbolic soil model, the reference strain 𝛾𝑟𝑒𝑓 

is significantly increased. As 𝛾𝑟𝑒𝑓 approaches infinity, the two models should converge, 

confirming the model's consistency. 

After simulating the response of Soil Sample 1 with the aid of both linear and nonlinear 

models, the amplitude of acceleration was plotted against the frequency of excitation. All 11  

loading steps conducted on this sample were assessed, with Test 1 corresponding to the 

lowest applied torque and Test 11 to the highest. For comparison purposes, only three of 

the eleven tests are presented in this report: one at low strain, one at medium strain, and 

one at high strain, labelled Figure 22 to Figure 24. 

 

Figure 22 – Soil Sample 1 Linear vs nonlinear model comparison corresponding to the low-

strain state 
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At low-strain levels, the nonlinear model’s solution closely resembles the linear one. This is 

because the shear modulus remains near 𝐺0, leading to minimal contributions from 

nonlinearities in the solution. 

 

Figure 23 – Soil Sample 1 Linear vs nonlinear model comparison corresponding to the 

medium-strain state 

As the strain in the soil sample increases, the linear and nonlinear solutions begin to diverge. 

With higher applied torque, the amplitude of the linear response increases, but the 

resonance peak remains fixed at the same frequency. Conversely, the nonlinear solution 

exhibits a resonance shift. 

 

Figure 24 – Soil Sample 1 Linear vs nonlinear model comparison corresponding to the 

high-strain state 

The same behaviour described in the medium-strain state can be observed in the high-strain 

state, but with greater emphasis. The discrepancy between the two models increases with 
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higher torque levels, as greater torque induces higher strain and amplifies soil nonlinearities, 

which are captured only by the nonlinear model. 

From this comparison analysis, it is possible to conclude that the linear fails to account for 

the apparent soil softening observed experimentally, while the nonlinear model successfully 

tracks the shift in peak frequency. This enables us to verify the implementation of the 

hyperbolic soil model. 

 

5.3 Nonlinear Model Simulations vs Experimental Results 

In this subsection, the solution of the nonlinear numerical model will be compared to the 

experimental signal found through the Resonant Column Tests. A plot for each of the three 

strain states (low, medium and high), presented in Figure 25 to Figure 27, is examined. 

The analysis of the presented graphs indicates that the proposed nonlinear model effectively 

reproduces the experimental results obtained from the RCT. The solutions derived from the 

numerical simulations exhibit a good agreement with the laboratory data across most 

frequencies and strain states. 

Furthermore, by employing both upwind and downwind solutions, the model accurately 

captures the shift in resonance towards lower frequencies as the amplitude increases. This is 

evidenced by the fact that the experimental response remains bounded within the two 

frequency sweep curves.  

The overall shape of the response is well replicated for small and medium strain levels. The 

inflection points of the curves and the peaks are observed at comparable frequencies, 

yielding similar overall shapes. However, this is not valid for higher strain states, where 

discrepancies emerge.  The shape of the response curve in the high-strain case demonstrates 

deviations from the experimental one. In particular, the simulated response appears 

excessively damped, particularly on the right side of the resonance peak. 

Despite these promising results, certain inaccuracies persist in the model, highlighting areas 

for further refinement. The model consistently overestimates the acceleration amplitude 

near resonance, with the simulated responses exhibiting higher magnitudes than those 

recorded in the experimental tests across all strain states. However, the extent of this 

overestimation diminishes as strain increases, leading to a reduction in the relative error. In 

other words, the discrepancy between experimental and numerical results decreases when 

considered in relation to the overall signal amplitude as strain levels increase. 
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Figure 25 – Soil Sample 1 Experimental vs numerical nonlinear model comparison 

corresponding to the low-strain state 

 

Figure 26 – Soil Sample 1 Medium-strain experimental vs numerical linear and nonlinear 

models comparison 
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Figure 27 – Soil Sample 1 High-strain experimental vs numerical linear and nonlinear 

models comparison 

 

5.3.1 Nonlinear model damping correction 

While the hyperbolic soil model does capture the underlying characteristics of the nonlinear 

soil behaviour, as aforementioned, the simulated response still exhibits some discrepancies.  

With the intent to correct the proposed model, some modifications will be implemented to 

it. Both the amplitude of the peaks and the shape of the curve, the two main differences 

between the experimental and the simulated response, are influenced by the damping term 

selected in the nonlinear model. As previously stated in Section 3.3, the damping term in the 

model is, for simplicity, chosen to be strain-independent. Theoretically, similarly to the shear 

modulus, the damping term should also be nonlinear.  

Therefore, a second simulation analysis is repeated introducing a damping correction factor 

with the scope of eliminating these errors. The damping factor aims to multiply the linear 

model’s damping coefficient ζ, described in Section 4.1, such that the frequency-response 

curves match in correspondence to their maximum point. The damping correction factor 

(DCF) adopted for each test performed on Soil Sample 1 is reported in Table 5. 

 

 

 

 



Riccardo Mei Master’s Thesis 

 

35 | P a g e  
 

Test No. DCF 

1 1,45 

2 1,50 

3 1,35 

4 1,30 

5 1,25 

6 1,20 

7 1,20 

8 1,20 

9 1,20 

10 1,20 

11 1,20 

Table 5 – Damping Correction Factor 

The amplitude-frequency graphs of the simulated solution using the DCF implementation 

are presented in Figure 28 to Figure 30. With the applied modification, the low-strain test 

demonstrates a high degree of accuracy, while the medium-strain case, although not 

perfectly aligned with the experimental data, exhibits noticeable improvement. However, for 

the high-strain simulation, the modification does not yield similar enhancements. In this 

case, the adjustments fail to improve the accuracy of the solution. 

Although the linear multiplication of the existing damping term led to a better match of the 

curves’ amplitudes, the error in the shape of the curves grew as strain levels increased. This 

suggests that the damping nonlinearities in the model were incorrectly represented and that 

a simple correction factor doesn’t bring a noticeable improvement. Specifically, the 

resonance shift was overestimated in low-strain tests and underestimated in high-strain 

tests. This discrepancy is less apparent in low-strain tests because the contribution of 

nonlinearities is smaller, making the errors less visually noticeable.  
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Figure 28 – Soil Sample 1 Low-strain experimental vs numerical linear and nonlinear 

models comparison with corrective damping 

 

Figure 29 – Soil Sample 1 Medium-strain experimental vs numerical linear and nonlinear 

models comparison with corrective damping 
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Figure 30 – Soil Sample 1 High-strain experimental vs numerical linear and nonlinear 

models comparison with corrective damping 

An additional tool for evaluating the results is through the parameters 𝛾𝑒𝑟𝑟𝑜𝑟 and 𝐺𝑒𝑟𝑟𝑜𝑟, as 

described in Section 4.5. With the current DCF modification, these parameters show 

significant deviations, with errors (shown in Table 6) reaching up to 30%.  

Test No. 𝜸𝒆𝒓𝒓𝒐𝒓 𝑮𝒆𝒓𝒓𝒐𝒓 

1 -18,1% <1% 

2 -14,5% <1% 

3 -14,7% <1% 

4 -15,4% <1% 

5 -12,4% <1% 

6 -13,8% 3,3% 

7 -16,9% 6,4% 

8 -19,4% 10,1% 

9 -22,6% 14,1% 

10 -24,6% 19,6% 

11 -29,6% 26,6% 

Table 6 – Values of 𝛾𝑒𝑟𝑟𝑜𝑟 and 𝐺𝑒𝑟𝑟𝑜𝑟 for results using the nonlinear model with DCF 

implementation 

In conclusion, the correction of the damping term using the DCF implementation 

demonstrates that the discrepancies between the simulated and the experimental solutions 

can be only partially improved. The simple multiplication of the linear damping coefficient 

may not be sufficient to correct both the amplitude and shape of the graph. 
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5.3.2 Nonlinear model radius correction 

Having just concluded that a simple multiplication of the damping term doesn’t bring 

significant improvements to the results, a second corrective approach was introduced. This 

correction involves adjusting the radius at which we consider the representative strain state 

for the whole specimen cross-section. In other words, the strain is directly proportional to 

the radius (see Eq.2) and one must select only one radius value at which the strain state is 

representative of the whole cross-section. The larger the 𝑟𝑜𝑏𝑠, the larger the nonlinearity. 

Although 𝑟𝑜𝑏𝑠 should remain constant throughout the tests, previously set to 0.6 times the 

soil sample radius (in Section 3.1), it is modified here to demonstrate the influence of this 

parameter on the obtained results. 

Both the DCF and 𝑟𝑜𝑏𝑠 are adjusted to ensure that the 𝛾𝑒𝑟𝑟𝑜𝑟 and 𝐺𝑒𝑟𝑟𝑜𝑟 parameters, described 

in Section 4.5, do not exceed 1% and the numerical solution’s peak aligns with the 

experimental curve. The adopted 𝑟𝑜𝑏𝑠 and DCF values for each test on Soil Sample 1 are 

presented in Table 7. 

Test No. DCF 𝒓𝒐𝒃𝒔 

1 0,49 0,25 

2 0,64 0,30 

3 0,71 0,37 

4 0,82 0,45 

5 0,91 0,50 

6 1,00 0,58 

7 1,06 0,64 

8 1,09 0,68 

9 1,09 0,70 

10 1,11 0,74 

11 1,13 0,80 

Table 7 – Damping Correction Factor and 𝑟𝑜𝑏𝑠 
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The amplitude-frequency graphs of the solution with the DCF and the 𝑟𝑜𝑏𝑠 implementation 

are shown in Figure 31 to Figure 33. 

 

Figure 31 – Soil Sample 1 Low-strain experimental vs numerical linear and nonlinear 

models comparison with corrective radius and damping 

 

Figure 32 – Soil Sample 1 Low-strain experimental vs numerical linear and nonlinear 

models comparison with corrective radius and damping 
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Figure 33 – Soil Sample 1 High-strain experimental vs numerical linear and nonlinear 

models comparison with corrective radius and damping 

 

The analysis of these three plots provides a key insight into improving the nonlinear model. 

Although the model’s solutions remain far from perfectly matching the experimental results, 

it becomes evident that the primary issue likely lies in the damping term. A simple linear 

modification of the current set-up was insufficient to obtain the sought-after results. Unlike 

the shear modulus, the current damping term should most likely be modelled as strain-

dependent, and not assumed constant as done in the current study. To achieve closer 

agreement with the experimental results, particularly near the peak, a strain-dependent 

damping term must be introduced. 
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Chapter 6 – Conclusions 

This study aimed to evaluate the performance of a nonlinear numerical model in capturing 

soil behaviour under dynamic loading conditions. Through a systematic analysis of super-

harmonics, comparisons between linear and nonlinear models, and the validation of the 

nonlinear model against experimental results, key insights were obtained regarding the 

model’s accuracy and limitations. 

Firstly, the contribution of super-harmonics to the numerical solution was assessed. The 

results demonstrated that for low- and medium-strain states, the third and fifth harmonics 

were orders of magnitude smaller than the first harmonic, making their contribution 

negligible. Even in high-strain tests, where nonlinear effects became more pronounced, the 

impact of higher-order harmonics remained limited. Consequently, it was concluded that 

super-harmonics can be disregarded in future comparative analyses between the numerical 

and experimental responses, simplifying the model implementation. 

Secondly, the comparison between linear and nonlinear models highlighted the significance 

of incorporating nonlinear material behaviour, without increasing the execution time 

significantly. The simulations took a maximum of 5 minutes each to be executed on a 

portable computer with 16GB RAM, and therefore are easily made faster if executed on a 

more powerful device. At low strain levels, the nonlinear model closely resembled the linear 

solution, as expected due to minimal nonlinearity. However, as the strain increased, the 

nonlinear model successfully captured the resonance shift observed in experimental data, 

while the linear model failed to do so. This confirmed that the nonlinear model more 

accurately represents the soil response by accounting for apparent softening effects. 

Furthermore, the comparison between the nonlinear model’s response and experimental 

results demonstrated a strong correlation across most strain states. The model accurately 

replicated the shift in resonance frequency and the general shape of the response curve at 

low and medium strain levels. However, discrepancies emerged at higher strain levels, where 

the model overestimated acceleration amplitudes near resonance and produced a more 

damped response than observed experimentally. This indicated a misrepresentation of 

damping within the model. 

To address this issue, two corrective approaches were explored: the implementation of a 

damping correction factor (DCF) and an adjustment to the representative strain radius (𝑟𝑜𝑏𝑠). 

The DCF improved the amplitude-frequency response at low and medium strain levels but 

failed to resolve discrepancies at high strain states. Additionally, the implementation of an 

adjusted 𝑟𝑜𝑏𝑠 value yielded better results by reducing the overall error. However, neither 

correction was sufficient to achieve a perfect match with experimental data. 

The primary limitation identified in the model is the assumption of a strain-independent 

damping term. The results suggest that, like the shear modulus, damping should be 

modelled as a strain-dependent parameter. Implementing a more advanced damping 
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formulation that evolves with strain could enhance the model’s accuracy, particularly at high-

strain levels where current discrepancies remain significant. 

In conclusion, this study confirmed the effectiveness of the nonlinear numerical model in 

capturing the essential characteristics of soil behaviour under dynamic loading. While the 

model accurately reproduces key nonlinear effects, further refinement, particularly in the 

damping representation, is necessary to improve its agreement with experimental data. 

Future research should focus on developing a strain-dependent damping function to 

enhance model accuracy and ensure more precise predictive capabilities for high-strain 

dynamic soil behaviour. 
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Chapter 7 – Recommendations and Discussions 
 

In this section, further discussions regarding the abovementioned results are presented. It 

also gives meaningful leads on how to continue with this research, and which aspects of it 

could be improved. 

 

7.1 Numerical solver issues 

The nonlinear model was solved with the aid of the numerical solver BVP4C. Despite this 

solver being especially useful in modelling the dynamic boundary conditions, it also revealed 

some issues. 

A problem emerged when solving for high-strain tests, where the solver identified incorrect 

solutions satisfying the equations of motion. These inaccuracies appeared in the post-

resonance region of the upwind solution, highlighted by the orange circle in Figure 34. At 

these frequencies, the solver exhibited an initial error, which progressively increased with 

subsequent frequencies due to divergence, and subsequently influenced the downwind 

solution too. 

 

Figure 34 – BVP4C solver numerical error 

The BVP4C solver has a built-in function that allows the user to determine the solution’s 

required accuracy. However, this was not sufficient to eliminate the numerical error, leading 

to the search for other methods to solve the problem. 



Riccardo Mei Master’s Thesis 

 

44 | P a g e  
 

The equation of motion could also be solved using numerical methods such as the Finite 

Element Method (FEM), which is well-suited for solving partial differential equations in two 

or three spatial dimensions. 

 

7.2 Bottom boundary condition implementation 

The linear and nonlinear models used in this project to analyse the response of the soil to 

the dynamic loading adopted a theoretical approach when describing the boundary 

conditions. This approach was limited in mathematically depicting the functioning of the 

RCT apparatus; a fixed base and free top with the inertial contribution of the active plate. 

However, an important assumption was made in this method, hypothesising that the 

contacts between the soil sample and the top and bottom plates were perfectly fixed. In 

reality, at high strain levels, the accelerations may be significant to the point that a slight slip 

may occur on the contact surface.  

To address this issue, a potential solution is to incorporate a high-stiffness rotational spring 

to model the interfaces more accurately. A more refined approach could involve modifying 

the spring stiffness from linear to bilinear, accounting for slip only beyond a specific strain 

threshold. This configuration is schematised in Figure 35. 

 

Figure 35 - Modified boundary conditions' configuration 

 

This new configuration will shift the peak of the amplitude-frequency graph to the left, 

simulating a slight change in the natural frequency of the soil sample.  
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7.3 Soil granulometry dependence 

The different soil samples tested in this research were all sandy lean clays, with similar 

granulometry. This influenced the responses of the soil samples, which consequently, 

behaved similarly under the same forcing. For a more extensive analysis, the model could be 

tested using clean sands in the future. 

Under cyclic forcing, saturated non-cohesive and cohesive soils exhibit distinct responses 

due to differences in their structure, permeability, and drainage characteristics.  

In saturated non-cohesive soils, such as sands, cyclic loading can lead to progressive 

densification or liquefaction, depending on the soil's density and drainage conditions. Pore 

water pressure tends to increase with repeated loading, reducing effective stress and 

potentially leading to a loss of shear strength.  

The permeability of non-cohesive soils allows for relatively high water velocity within the 

pore spaces, facilitating drainage and dissipation of excess pore pressures if the loading 

frequency permits. In contrast, saturated cohesive soils, like clays, have low permeability, 

causing a much slower response to cyclic loading. The restricted water movement within the 

fine-grained matrix results in a buildup of excess pore pressure with limited immediate 

drainage, potentially leading to cyclic softening or progressive accumulation of strain over 

time.  
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Annex A 

All frequency-acceleration graphs of Soil Sample 2 and Soil Sample 3 are shown in Annex A.  
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