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Analytical Solution for the Displacement Field in Composite
Single-Lap Shear Joints with Zero-Thickness Interfaces

A. Schiller∗ and S.G.P. Castro†

Delft University of Technology, Delft, 2629 HS, Netherlands

C. Bisagni‡
Politecnico di Milano, Milan, 20156, Italy

An analytical model for predicting the displacement field in composite single-lap shear
joints with zero-thickness interfaces is developed and verified with numerical simulations. This
two-dimensional model imposes no restrictions on the composite layup or the dimensions of the
adherends. It closely aligns with the displacement field predicted by numerical simulations,
provided that the assumptions of small deformations and plane strain are satisfied. Small
discrepancies are observed near the overlap region because the stress-free boundary condition at
the overlap ends is not satisfied exactly. Consequently, the joint stiffness is slightly overestimated
compared to the numerical simulations. Nonetheless, the analytical model can serve as a useful
tool for providing input for more detailed analyses of single-lap shear joints, for example for
determining the interlaminar stress field at the interface between the two adherends.

I. Nomenclature

𝐴𝑖 𝑗 , 𝐵𝑖 𝑗 , 𝐷𝑖 𝑗 = extensional, coupling, and bending laminate stiffness matrix elements
𝑨, 𝑩, 𝑫 = laminate stiffness matrices
𝑨off, 𝑩off, 𝑫off = laminate stiffness matrices offset to the reference plane
𝑐𝑖 𝑗 = undetermined coefficients in the polynomial solution to the eigenvalue problem
𝐶𝑖 = undetermined coefficients in the general solution for the displacement degrees of freedom
𝑪 = stiffness matrix
𝑑𝑖 = distance of region 𝑖 from the reference plane
𝐸 = Young’s modulus
𝐸𝑖 = Young’s modulus in 𝑖-direction
𝐺𝑖 𝑗 = shear modulus in 𝑖 𝑗-direction
𝑘 = shear correction factor
𝑙𝑖 = length of region 𝑖

𝑀𝑥𝑥 = bending stress resultant
𝑁𝑥𝑥 , 𝑁𝑥𝑦 = in-plane stress resultants
𝑄𝑥 = transverse shear stress resultant
𝑄𝑖 𝑗 = ply stiffness matrix elements
𝑹 = rotation matrix
𝑺 = compliance matrix
𝑺 = compliance matrix in local ply coordinate system
𝑡𝑖 = thickness of region 𝑖

𝑢𝑖𝑛𝑖𝑡 = prescribed displacement load
𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖 = displacements in region 𝑖 corresponding to the coordinates 𝑥𝑖 , 𝑦𝑖 , and 𝑧𝑖
𝑢0𝑖 , 𝑣0𝑖 , 𝑤0𝑖 = reference plane displacements in region 𝑖

𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 = Cartesian coordinates in region 𝑖

𝜀𝑖 𝑗 = strain tensor components
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†Associate Professor, Aerospace Structures & Materials, S.G.P.Castro@tudelft.nl.
‡Professor, Department of Aerospace Science and Technology, Chiara.Bisagni@polimi.it, AIAA Fellow.
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𝜀
(0)
𝑖 𝑗

= mid-plane contribution to the strain tensor components
𝜅𝑖 𝑗 = curvature contribution to the strain tensor components
𝜆 = eigenvalues, roots of the characteristic equation
𝜈 = Poisson’s ratio
𝜈𝑖 𝑗 = Poisson’s ratio in 𝑖 𝑗-direction
𝜏𝑖 𝑗 = stress tensor components
Ψ𝑖 = rotation of normal to the reference plane about the 𝑦-axis in region 𝑖

II. Introduction
Joints are usually weak points in any type of structure because they exhibit unfavorable loading conditions and

sudden changes in stiffness which give rise to stress fields that decrease the load-carrying efficiency of the surrounding
material. It is therefore highly relevant to be able to predict the resulting stress distributions, especially in sectors like
the aerospace industry where lightweight designs are required to operate safely. Consequently, many tools have been
developed to estimate the structural response of joints during preliminary design, in particular for riveted [1, 2] and
adhesively bonded [3–6] single-lap shear (SLS) joints.

In recent years, a new pathway has been opened by welded thermoplastic carbon fiber-reinforced polymers (CFRPs).
Thermoplastic CFRPs offer several advantages over their thermosetting counterparts, for example improved impact
and fracture toughness, ’infinite’ shelf life, as well as the potential for recycling [7]. Another benefit is the increased
structural efficiency made possible by thermoplastic welding [8]. Compared to adhesive bonding, thermoplastic welding
does not require extensive surface treatment which simplifies the manufacturing process. However, previously developed
tools and methods for the preliminary design of riveted and adhesively bonded joints are not applicable to thermoplastic
welded joints because the corresponding approaches assume the presence of either rivets or an adhesive in the bondline.

An intuitive starting point for creating models for thermoplastic welded joints is building on the ideas from the
analysis of adhesively bonded joints. Yet, this strategy fails once a zero-thickness bondline is considered: an infinitely
thin bondline leads to infinitely large stresses at the joint interface. Therefore, a useful model must also borrow from the
ideas for the analysis of interlaminar stresses in composite structures which can deal with zero-thickness interfaces.

The importance of interlaminar stresses close to free edges in composite structures was first highlighted by Pipes
and Pagano [9]. Summaries of other relevant publications on the subject are given in [10] and [11]. In principle, the
prediction of interlaminar stresses in composite structures requires solving the equilibrium equations for each ply in three
dimensions. However, approximations in two dimensions are often employed because of the mathematical complexity
of the problem. The general case of an anisotropic body in two dimensions was solved by Wang and Choi [12] based on
the work of Lekhnitskii [13], but is very involved. Ply-based solutions often become unwieldily as the thickness of the
laminate increases [14]. The interlaminar stress analysis at a skin-stringer interface by Kassapoglou and DiNicola [15]
is geometrically similar to the case of the welded thermoplastic SLS joint. Their model predicts the stress field at the
end of one skin-stringer run-out and is valid for cross-ply laminates. However, analytical models for the prediction of
the stress and displacement fields in thermoplastic welded SLS joints do not appear to be readily available.

This paper introduces an analytical solution for the displacement field in composite SLS joints with zero-thickness
interfaces. No special requirements regarding the dimensions of the adherends or their layups are made. The analysis
is verified with numerical simulations. The latter are also used for checking the influence of some of the modeling
assumptions on the predictions. Limitations and potential applications of the analytical solution are discussed.

III. Linear Elastic Single-lap Shear Joint Analysis
Consider the welded thermoplastic composite single-lap shear (SLS) joint sketched in Fig. 1.

Fig. 1 Welded thermoplastic composite single-lap shear joint subjected to an axial displacement load.
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The structure is split into three regions as illustrated in Fig. 2: the upper adherend (𝑈), the lower adherend (𝐿), and
the overlap region (𝑂). Each region features a distinct coordinate system at its center. The respective mid-planes are
visualized as orange dashed lines. Furthermore, a global reference plane with global coordinates is introduced (yellow
dashed line). No requirements regarding the geometry of the adherends are made. The adherend thicknesses 𝑡𝑈 and 𝑡𝐿
may be different, just like the lengths of each section 𝑙𝑈 , 𝑙𝑂, and 𝑙𝐿 .

Fig. 2 Geometry and coordinate systems for the global single-lap shear joint analysis.

A. Kinematics
Each region of the SLS joint in Fig. 2 is described with the same kinematics. It is assumed that the joint is

in cylindrical bending along the 𝑥-axis which implies that the structure is sufficiently wide and that its response is
independent of the 𝑦-coordinate. Note that cylindrical bending prohibits bending deformations through the 𝑥𝑧-plane.
The through-the-thickness response is linearized so that each region can be represented by its mid-plane. A suitable
displacement field is therefore given by Eq. (1) which is essentially first-order shear deformation theory for the
cylindrical bending of plates.

𝑢(𝑥, 𝑧) = 𝑢0 (𝑥) + 𝑧Ψ(𝑥)
𝑣(𝑥) = 𝑣0 (𝑥)
𝑤(𝑥) = 𝑤0 (𝑥)

(1)

The displacements 𝑢, 𝑣, and 𝑤 act along the coordinate axes 𝑥, 𝑦, and 𝑧. They consist of the mid-plane displacements
𝑢0, 𝑣0, and 𝑤0, as well as of the rotation of the mid-plane normal about the 𝑦-axis Ψ.

If small displacements and rotations are assumed, then the linear strain tensor components 𝜀𝑖 𝑗 are given by

𝜀𝑥𝑥 =
d𝑢0
d𝑥

+ 𝑧
dΨ
d𝑥

= 𝜀
(0)
𝑥𝑥 + 𝑧𝜅𝑥𝑥

𝜀𝑥𝑧 =
1
2

(
Ψ + d𝑤0

d𝑥

)
= 𝜀

(0)
𝑥𝑧

𝜀𝑥𝑦 =
1
2

d𝑣0
d𝑥

= 𝜀
(0)
𝑥𝑦

(2)

where 𝜀
(0)
𝑖 𝑗

are the mid-plane strains and 𝜅𝑖 𝑗 denotes the curvature term. All strain components other than 𝜀𝑥𝑧 , 𝜀𝑥𝑥 , and
𝜀𝑧𝑧 are zero. This implies a state of plane strain which is consistent with the assumption of cylindrical bending.

B. Constitutive Equations
Each composite ply is assumed to follow orthotropic material behavior. Since three strain tensor components are

zero (𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 𝜀𝑦𝑧 = 0), the size of the stiffness matrix 𝑪 must be reduced from 6x6 to 3x3. This is achieved by first
rotating the compliance matrix in the local ply coordinate system 𝑺 to the global mid-plane coordinate system using

𝑺 = 𝑹𝑺𝑹T (3)

where 𝑺 is the rotated compliance matrix, 𝑹 is the corresponding rotation matrix, and the superscript T denotes a
transpose.
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Next, the equations for 𝜀𝑦𝑦 , 𝜀𝑧𝑧 , and 𝜀𝑦𝑧 in the constitutive law for a single ply

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

2𝜀𝑦𝑧
2𝜀𝑥𝑧
2𝜀𝑥𝑦


=



𝑆11 𝑆12 𝑆13 0 0 𝑆16

𝑆12 𝑆22 𝑆23 0 0 𝑆26

𝑆13 𝑆23 𝑆33 0 0 𝑆36

0 0 0 𝑆44 𝑆45 0
0 0 0 𝑆45 𝑆55 0
𝑆16 𝑆26 𝑆36 0 0 𝑆66





𝜏𝑥𝑥

𝜏𝑦𝑦

𝜏𝑧𝑧

𝜏𝑦𝑧

𝜏𝑥𝑧

𝜏𝑥𝑦


(4)

are set equal to zero to obtain expressions for the stresses 𝜏𝑦𝑦 , 𝜏𝑧𝑧 , and 𝜏𝑦𝑧 . Then the corresponding terms in 𝜀𝑥𝑥 , 𝜀𝑥𝑧 ,
and 𝜀𝑥𝑦 are eliminated. Since Eq. (4) allows for any rotation about the 𝑧-axis, layups in the analysis are not restricted to
cross-ply laminates. Finally, the reduced compliance matrix is inverted to obtain

𝜏𝑥𝑥

𝜏𝑥𝑧

𝜏𝑥𝑦

 =


𝑄11 0 𝑄16

0 𝑄55 0
𝑄16 0 𝑄66



𝜀𝑥𝑥

2𝜀𝑥𝑧
2𝜀𝑥𝑦

 (5)

where the plane strain ply stiffness matrix entries 𝑄𝑖 𝑗 are not the same as in the classical laminated plate theory (CLPT).

C. Equilibrium Equations
The equilibrium equations are derived by setting the first variation of the total potential energy of each joint region

equal to zero. The mathematics of the procedure are not shown here, but can be found in, for example, [14].
If the stress resultants 𝑁𝑥𝑥 , 𝑁𝑥𝑦 , 𝑄𝑥 , and 𝑀𝑥𝑥 are defined as

𝑁𝑥𝑥 =

∫ 𝑡/2

−𝑡/2
𝜏𝑥𝑥 d𝑧

𝑁𝑥𝑦 =

∫ 𝑡/2

−𝑡/2
𝜏𝑥𝑦 d𝑧

𝑄𝑥 =

∫ 𝑡/2

−𝑡/2
𝜏𝑥𝑧 d𝑧

𝑀𝑥𝑥 =

∫ 𝑡/2

−𝑡/2
𝜏𝑥𝑥𝑧 d𝑧

(6)

then the equilibrium equations become

d𝑁𝑥𝑥

d𝑥
= 0

d𝑁𝑥𝑦

d𝑥
= 0

d𝑄𝑥

d𝑥
= 0

d𝑀𝑥𝑥

d𝑥
−𝑄𝑥 = 0

(7)

These are equal to the well-known plate equilibrium equations when 𝜕/𝜕𝑦 = 0. They are identical in each region
because all joint sections are idealized in the same way. This is possible because the overlap region is not cut along
the interface between the adherends which would give rise to tractions that would need to be accounted for in the
corresponding equilibrium equations. While cutting the overlap region theoretically allows for a more appropriate
enforcement of the free edge boundary condition later in the analysis, the displacement field in Eq. (1) constrains
potential solutions to the one presented on the following pages. Hence, the simplified treatment of the overlap region is
acceptable in the context of Eq. (1).
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The relations between the stress resultants and the strains are

𝑁𝑥𝑥 = 𝐴11𝜀
(0)
𝑥𝑥 + 𝐴16𝜀

(0)
𝑥𝑦 + 𝐵11𝜅𝑥𝑥

𝑁𝑥𝑦 = 𝐴16𝜀
(0)
𝑥𝑥 + 𝐴66𝜀

(0)
𝑥𝑦 + 𝐵16𝜅𝑥𝑥

𝑀𝑥𝑥 = 𝐵11𝜀
(0)
𝑥𝑥 + 𝐵16𝜀

(0)
𝑥𝑦 + 𝐷11𝜅𝑥𝑥

𝑄𝑥 = 𝑘𝐴55𝜀
(0)
𝑥𝑧

(8)

where 𝑘 is the shear correction factor. For simplicity, a value of 𝑘 = 5/6 is assumed during the analysis. The plate
stiffnesses 𝐴𝑖 𝑗 , 𝐵𝑖 𝑗 , and 𝐷𝑖 𝑗 are expressed as(

𝐴𝑖 𝑗 , 𝐵𝑖 𝑗 , 𝐷𝑖 𝑗

)
=

∫ 𝑡/2

−𝑡/2
𝑄𝑖 𝑗

(
1, 𝑧, 𝑧2

)
d𝑧 (𝑖, 𝑗 = 1, 5, 6) (9)

which are again not equal to the plate stiffnesses from CLPT because the 𝑄𝑖 𝑗 are different. Since the plate stiffnesses
do not get updated during the analysis, the formulation in Eq. (7) implies a geometrically linear approach, i.e., the
equilibrium equations are satisfied on the undeformed structure.

D. General Solution
The general solution to the set of coupled ordinary differential equations (ODEs) is determined in each region by

substituting Eqs. (8) and (2) into Eq. (7). Solutions for the displacement degrees of freedom are assumed in the form of
exponential functions such that

(𝑢0, 𝑣0, 𝑤0,Ψ) = (𝐶1, 𝐶2, 𝐶3, 𝐶4) 𝑒𝜆𝑥 (10)

This leads to the eigenvalue problem
𝐴11𝜆

2 𝐴16𝜆
2 0 𝐵11𝜆

2

𝐴16𝜆
2 𝐴66𝜆

2 0 𝐵16𝜆
2

0 0 𝑘𝐴55𝜆
2 𝑘𝐴55𝜆

𝐵11𝜆
2 𝐵16𝜆

2 −𝑘𝐴55𝜆 𝐷11𝜆
2 − 𝑘𝐴55



𝐶1

𝐶2

𝐶3

𝐶4


= 0 (11)

where nontrivial solutions only exist when the determinant of the coefficient matrix is zero. The characteristic equation

𝑘𝐴55

[(
𝐴11𝐴66 − 𝐴2

16

)
𝐷11 − 𝐴11𝐵

2
16 + 2𝐴16𝐵11𝐵16 − 𝐴66𝐵

2
11

]
𝜆8 = 0 (12)

is easily solved for the eight eigenvalues 𝜆 which are all identically zero. Substitution into Eq. (10) immediately yields a
constant as one of the solutions to the set of ODEs. The remaining seven linearly independent solutions are constructed
as polynomials. Consequently, the displacement degrees of freedom may be written as

𝑢0, 𝑣0, 𝑤0,Ψ =

𝑛=7∑︁
𝑗=0

𝑐𝑖 𝑗𝑥
𝑗 (𝑖 = 1, 2, 3, 4) (13)

where 𝑐𝑖 𝑗 are yet undetermined coefficients.
When Eq. (13) is substituted back into Eq. (7), each equation must hold for any value of 𝑥. This yields additional

constraints which relate different 𝑐𝑖 𝑗 . Since not all additional equations are linearly independent, eight arbitrary 𝑐𝑖 𝑗
remain as unknowns. These must be determined from the boundary conditions. Finally, the general solution is given by
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𝑢0 = 𝑐10 + 𝑐11𝑥 −
3 (𝐴16𝐵16 − 𝐴66𝐵11)

𝐴11𝐴66 − 𝐴2
16

𝑐33𝑥
2

𝑣0 = 𝑐20 + 𝑐21𝑥 +
3 (𝐴11𝐵16 − 𝐴16𝐵11)

𝐴11𝐴66 − 𝐴2
16

𝑐33𝑥
2

𝑤0 = 𝑐30 +


6
[(
𝐵2

16 − 𝐴11𝐷11

)
𝐴11 + 𝐴2

16𝐷11 − 2𝐴16𝐵11𝐵16 + 𝐴66𝐵
2
11

]
𝑘𝐴55

(
𝐴11𝐴66 − 𝐴2

16

) 𝑐33 − 𝑐40

 𝑥 + 𝑐32𝑥
2 + 𝑐33𝑥

3

Ψ = 𝑐40 − 2𝑐32𝑥 − 3𝑐33𝑥
2

(14)

Eq. (14) is only valid as the solution to the set of ODEs in Eq. (7) when all coupling terms in Eq. (8) are present. If
a laminate is symmetric (𝐵𝑖 𝑗 = 0), then the out-of-plane response decouples from the in-plane response. If the same
laminate is furthermore balanced (𝐴16 = 0), then the solution in the 𝑦-direction also decouples from the solution in the
directions of 𝑥 and 𝑧.

E. Single-Lap Shear Joint Solution
The general solution in Eq. (14) is applicable to every region in Figure 2. Hence, the individual solutions must be

related to each other such that they represent the entire SLS joint. This is achieved by considering various boundary and
continuity conditions. Before these conditions are formulated, it is important to specify the same reference plane for all
variables and quantities. Therefore, the plate stiffnesses computed in Eq. (9) are adjusted to the location of the reference
plane in Figure 2. The new, offset values are given by

𝑨off = 𝑨

𝑩off = 𝑩 + 𝑑𝑖𝑨

𝑫off = 𝑫 + 2𝑑𝑖𝑩 + 𝑑2
𝑖 𝑨

(15)

where 𝑑𝑖 are the distances from each region’s mid-plane to the reference plane, i.e.,

𝑑𝑈 =
𝑡𝑈

2
𝑑𝐿 = − 𝑡𝐿

2
𝑑𝑂 =

𝑡𝑈 − 𝑡𝐿

2
(16)

Because of the shift, all section coordinate systems move onto the reference plane. Consequently, the final results for
the displacement degrees of freedom are expressed with respect to this plane. The ranges for the through-the-thickness
coordinates become

𝑈 : −𝑡𝑈 ≤ 𝑧1 ≤ 0 𝑂 : −𝑡𝑈 ≤ 𝑧2 ≤ 𝑡𝐿 𝐿 : 0 ≤ 𝑧3 ≤ 𝑡𝐿 (17)

Four boundary conditions must be prescribed at the end of each region. Considering the load case in Fig. 1, a
displacement load 𝑢𝑖𝑛𝑖𝑡 is applied on the left side of the joint. Assuming that all other displacement degrees of freedom
are restricted, the first four boundary conditions for the upper adherend are

𝑢0𝑈 (𝑥1 = −𝑙𝑈/2) = −𝑢𝑖𝑛𝑖𝑡 (18a)
𝑣0𝑈 (𝑥1 = −𝑙𝑈/2) = 0 (18b)
𝑤0𝑈 (𝑥1 = −𝑙𝑈/2) = 0 (18c)
Ψ𝑈 (𝑥1 = −𝑙𝑈/2) = 0 (18d)

where the subscript 𝑈 is introduced to denote the upper adherend. Similarly, the subscripts 𝑂 and 𝐿 are used for the
overlap region and the lower adherend, respectively.

6

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

6,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

5-
23

38
 



The lower adherend is clamped at its right end. Therefore,

𝑢0𝐿 (𝑥3 = 𝑙𝐿/2) = 0 (19a)
𝑣0𝐿 (𝑥3 = 𝑙𝐿/2) = 0 (19b)
𝑤0𝐿 (𝑥3 = 𝑙𝐿/2) = 0 (19c)
Ψ𝐿 (𝑥3 = 𝑙𝐿/2) = 0 (19d)

The remaining 16 boundary conditions prescribe the displacement and stress resultant continuity at the junctions
between the two adherends and the overlap region. At the connection between the upper adherend and the overlap
region, they are

𝑢0𝑈 (𝑥1 = 𝑙𝑈/2) = 𝑢0𝑂 (𝑥2 = −𝑙𝑂/2) (20a)
𝑣0𝑈 (𝑥1 = 𝑙𝑈/2) = 𝑣0𝑂 (𝑥2 = −𝑙𝑂/2) (20b)
𝑤0𝑈 (𝑥1 = 𝑙𝑈/2) = 𝑤0𝑂 (𝑥2 = −𝑙𝑂/2) (20c)
Ψ𝑈 (𝑥1 = 𝑙𝑈/2) = Ψ𝑂 (𝑥2 = −𝑙𝑂/2) (20d)

𝑁𝑥𝑥𝑈 (𝑥1 = 𝑙𝑈/2) = 𝑁𝑥𝑥𝑂 (𝑥2 = −𝑙𝑂/2) (20e)
𝑁𝑥𝑦𝑈 (𝑥1 = 𝑙𝑈/2) = 𝑁𝑥𝑦𝑂 (𝑥2 = −𝑙𝑂/2) (20f)
𝑀𝑥𝑥𝑈 (𝑥1 = 𝑙𝑈/2) = 𝑀𝑥𝑥𝑂 (𝑥2 = −𝑙𝑂/2) (20g)
𝑄𝑥𝑈 (𝑥1 = 𝑙𝑈/2) = 𝑄𝑥𝑂 (𝑥2 = −𝑙𝑂/2) (20h)

and at the connection between the overlap region and the lower adherend the relations

𝑢0𝑂 (𝑥2 = 𝑙𝑂/2) = 𝑢0𝐿 (𝑥3 = −𝑙𝐿/2) (21a)
𝑣0𝑂 (𝑥2 = 𝑙𝑂/2) = 𝑣0𝐿 (𝑥3 = −𝑙𝐿/2) (21b)
𝑤0𝑂 (𝑥2 = 𝑙𝑂/2) = 𝑤0𝐿 (𝑥3 = −𝑙𝐿/2) (21c)
Ψ𝑂 (𝑥2 = 𝑙𝑂/2) = Ψ𝐿 (𝑥3 = −𝑙𝐿/2) (21d)

𝑁𝑥𝑥𝑂 (𝑥2 = 𝑙𝑂/2) = 𝑁𝑥𝑥𝐿 (𝑥3 = −𝑙𝐿/2) (21e)
𝑁𝑥𝑦𝑂 (𝑥2 = 𝑙𝑂/2) = 𝑁𝑥𝑦𝐿 (𝑥3 = −𝑙𝐿/2) (21f)
𝑀𝑥𝑥𝑂 (𝑥2 = 𝑙𝑂/2) = 𝑀𝑥𝑥𝐿 (𝑥3 = −𝑙𝐿/2) (21g)
𝑄𝑥𝑂 (𝑥2 = 𝑙𝑂/2) = 𝑄𝑥𝐿 (𝑥3 = −𝑙𝐿/2) (21h)

are imposed.
The stress resultant continuity conditions in Eqs. (20e) to (20h) and Eqs. (21e) to (21h) introduce an error because

they neglect the free edge boundary conditions at the two overlap ends. The equations immediately smear the stress
resultants from each adherend over the entire thickness of the overlap region instead of only over the corresponding
cross-sections of the upper and lower adherend. Anyhow, the above constraints lead to a linear system of 24 equations
for 24 unknown 𝑐𝑖 𝑗 . While a closed-form solution is possible, it is considerably more convenient to substitute values for
all geometric and stiffness parameters to determine numerical values of 𝑐𝑖 𝑗 . Once the 𝑐𝑖 𝑗 are known, substituting them
into Eq. (14) yields the final solution from which all other quantities can be calculated using Eqs. (1), (2), and (8).

IV. Finite Element Models
2D and 3D finite element (FE) models are created in Abaqus 2023 for the verification of the analytical solution. The

analyses are static and linear like the solution developed in Section III. The only deviation is made when additional
simulations are run to check the effect of accounting for large deformations on the predictions. The composite
material considered is unidirectional Toray Cetex® TC1225 LMPAEK™ [16] which consists of T700 fibers embedded
in a low-melt polyaryletherketone matrix (T700/LM-PAEK). Each ply is assumed to be transversely isotropic. The
corresponding material properties are listed in Table 1.
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Table 1 Elastic properties of T700/LM-PAEK [17, 18].

Young’s modulus in 1-direction 𝐸1 130.5 GPa
Young’s modulus in 2-direction 𝐸2 9.087 GPa
Shear modulus in 12-direction 𝐺12 4.646 GPa
Poisson’s ratio in 12-direction 𝜈12 0.3371
Poisson’s ratio in 23-direction 𝜈23 0.48

To showcase the applicability of the analytical solution to welded thermoplastic composite SLS joints with arbitrary
layups and laminate thicknesses, different layups for each adherend are modeled (Table 2). These layups are chosen
because they feature all coupling terms that are part of Eq. (8).

Table 2 Composite layups in the adherends.

Upper adherend [45,0,45,90,0,45,90,-45,-45,90,45,0]
Lower adherend [0,45,90,-45,90,45,-45,0,45,0,45,90,90,45,0,-45]

All simulations are repeated for aluminum 2024-T3 with the elastic properties reported in Table 3 which allows
benchmarking the composite predictions in 2D and 3D with the isotropic case.

Table 3 Elastic properties of aluminum 2024-T3.

Young’s modulus 𝐸 73.1 GPa
Poisson’s ratio 𝜈 0.33

The dimensions of the SLS joint are summarized in Table 4. They follow the specimen geometry described in the
test standard ASTM D5868 [19]. The laminate thicknesses are the result of a constant ply thickness of 0.1325 mm. For
the 3D case, each joint is considered to be 25.4 mm wide in accordance with ASTM D5868.

Table 4 Dimensions of the single-lap shear joint.

𝑡𝑈 𝑡𝐿 𝑙𝑈 𝑙𝑂 𝑙𝐿

1.65 mm 2.2 mm 76.2 mm 25.4 mm 76.2 mm

A. 2D Model
The 2D model is shown in Fig. 3. It uses 14224 CPE4I elements that are connected at 15270 nodes with a mesh size

of approximately 0.2 mm. CEP4I is a plane strain element with incompatible modes for an improved bending response.
The boundary conditions match those sketched in Fig. 1, i.e., a uniform axial displacement load of 0.4 mm is applied on
the left joint end and the right end is clamped.

Fig. 3 Overview of the 2D single-lap shear joint model.
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Each ply in the joint is modeled separately. Since Abaqus only permits composite layup rotations about the normal
to the modeling plane, it is not possible to use the built-in modules to generate ply rotations other than 0° or 90°. Hence,
the ply stiffnesses are computed externally by inverting the result of Eq. (3) and then assigning them to an anisotropic
homogeneous solid section. Consequently, one material must be defined per ply orientation which is subsequently
applied to the individual plies according to the laminate layup.

The interface between the upper and lower adherend is idealized as a cohesive surface without damage. The stiffness
of the corresponding traction-separation curve is determined by the solver.

B. 3D Model
SC8R reduced integration continuum shell elements are used to discretize the 3D model. They only feature

translational degrees of freedom, so it is sufficient to prescribe these quantities on the joint ends as shown in Fig. 4 to
simulate the boundary conditions from Fig. 1. To evaluate the effect of plane strain in a 3D model, two different cases
are studied: one where the lateral edges of the joint are allowed to freely deform, and one where the boundary condition
U2 = 0 is applied to simulate plane strain in 3D.

Fig. 4 Mesh and boundary conditions of the 3D single-lap shear joint model. Lateral constraints (U2 = 0) are
only active when simulating plane strain in 3D.

A mesh with one element through the thickness is used in the outer regions. In the center, two plies are represented
by one continuum shell element. This results in around 454000 elements and 525000 nodes. The outer sections are
connected to the overlap region via tie constraints. Rotations of individual plies are specified in the composite layup
module. Again, the interface between the two adherends is modeled as a cohesive surface without damage where the
stiffness of the traction-separation law is determined by the solver.

V. Results

A. Comparison of Finite Element Models
Evaluating the results of the various FE simulations aids in determining which assumptions in the analytical model

have a relevant influence on the predictions. Two outputs are tracked for this purpose. The first one is the maximum
out-of-plane displacement U3 of the joint which relates to the amount of bending in the structure. The second one is the
sum of the axial reaction forces RF1 at the clamped joint end. Since a known displacement load is applied, RF1 varies
with the axial stiffness of the joint.

First, the influence of the different modeling choices on the numerical predictions is determined. Table 5 summarizes
the two tracked outputs for the isotropic case which precludes potential errors originating from assigning the rotated ply
stiffnesses differently in 2D and 3D. Looking at the first set of values for the geometrically linear case, it can be seen
that switching from 2D to 3D considerably affects the joint stiffness. This is caused by the relatively small width of
the structure which suggests that the assumption of plane strain is not necessarily justified. As a consequence, RF1 is
overpredicted by approximately 10% in 2D compared to 3D. Restricting the lateral deflection on the sides of the joint as
shown in Fig. 4 to simulate plane strain in the 3D model compensates for this effect almost entirely.

While the same trends are also observed for the geometrically nonlinear simulations, the absolute values of the
predictions differ significantly, e.g., the maximum out-of-plane displacement U3 in 3D is 2.583 mm in the linear analysis
compared to 0.583 mm for the nonlinear case. SLS joints exhibit secondary bending due to their geometry even when
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only in-plane loads are applied. The bending leads to the rotation of the overlap region into the load path which increases
its apparent axial stiffness and reduces the out-of-plane deformation because a larger portion of the structure is loaded in
a membrane state of stress. Considering that the prescribed displacement load of 0.4 mm causes an average axial strain
of 0.225%, it becomes clear that satisfying the equilibrium equations on the deformed structure in the geometrically
nonlinear analysis is the main source of the deviation.

Table 5 FE benchmark results for aluminum 2024-T3.

geometrically linear geometrically nonlinear
2D 3D Change 3D* Change 2D 3D Change 3D* Change

Max U3 [mm] 2.601 2.583 -0.7% 2.613 0.5% 0.576 0.583 1.2% 0.579 0.5%
RF1 [kN] 6.38 5.8 -9.1% 6.39 0.2% 8.54 7.68 -10.1% 8.56 0.3%

* Model that simulates the plane strain condition in 3D by restricting the lateral deformation on the sides of the joint.

The benchmark results for the composite laminate are listed in Table 6 and include the effects of assigning the
rotated ply stiffnesses in 2D as an anisotropic homogeneous solid section. It is evident that even though simulating the
plane strain condition in 3D reduces the difference between the predictions of the 2D and 3D models, they do not reach
the same level of agreement as for the isotropic reference case. Nevertheless, they are reasonably close. The remaining
discrepancy is caused by the anisotropy of the composite layup. Stresses and strains vary significantly along the width
of each ply and trying to capture this behavior at a single point along the cross-section, as implicitly assumed by the 2D
model, necessarily introduces an error. Hence, the 2D model is considered to be sufficiently accurate if the assumption
of plane strain is satisfied.

Table 6 FE benchmark results for T700/LM-PAEK.

geometrically linear geometrically nonlinear
2D 3D Change 3D* Change 2D 3D Change 3D* Change

Max U3 [mm] 2.15 2.307 7.5% 2.241 4.2% 0.542 0.651 20.2% 0.561 3.6%
RF1 [kN] 4.52 3.99 -11.9% 4.35 -3.9% 5.78 5.12 -11.5% 5.61 -3.1%

* Model that simulates the plane strain condition in 3D by restricting the lateral deformation on the sides of the joint.

B. Verification of Analytical Model
The predictions of the analytical model are verified with geometrically linear FE simulations. Material properties,

composite layup, and joint dimensions are taken from Tables 1, 2, and 4. The applied displacement load is equal to
the displacement prescribed in the numerical models, i.e., 𝑢𝑖𝑛𝑖𝑡 = 0.4 mm. Since the analytical model makes some
simplifying assumptions at the overlap ends, the axial and out-of-plane reference plane deformations along the joint
length are compared to the numerical predictions. These quantities are relative to the reference plane shown in Fig. 2.
The corresponding numerical values are sampled at the equivalent position in the FE models. For the 3D case, the
mid-span across the joint width is considered.

Figure 5 plots the analytical prediction for the axial reference plane displacement 𝑢0 against the numerical results.
While the overall agreement is excellent, small deviations are observed close to the ends of the overlap region which
extends from 𝑥𝑔 = 76.2 mm to 𝑥𝑔 = 101.6 mm.

Similarly, the out-of-plane deformation 𝑤0 is shown in Figure 6 as a function of the global 𝑥-coordinate. Again, the
analytical prediction is very close to the numerical results. Here, variations are visible further away from the overlap
region compared to Fig. 5. The maximum out-of-plane deformation values do not necessarily occur at the same location.

The discrepancy between the analytical prediction and the numerical simulations is the result of not exactly
accounting for the free edge boundary conditions at the overlap ends. While the stress resultant continuity is prescribed
in Eqs. (20e) to (20h) and Eqs. (21e) to (21h), the local stress distribution that is the result of these constraints is
sketched in Fig. 7a. On average, i.e., when integrating the stresses over the entire thickness of the overlap region, the
conditions imposed in the aforementioned equations are equivalent to the correct free edge boundary condition depicted
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Fig. 5 Axial reference plane deformation along the joint length. * denotes plane strain simulated in a 3D model.

Fig. 6 Out-of-plane deformation along the joint length. * denotes plane strain simulated in a 3D model.

in Fig. 7b. However, the free edge boundary conditions are not correct locally and therefore the corresponding stress
distribution is oversimplified. This is the inconsistency that Hart-Smith [4] alleges to have determined in the adhesively
bonded SLS joint analysis of Goland and Reissner [3]. The stress resultants from each adherend are immediately
smeared over the entire thickness of the overlap region instead of only being transferred to the relevant adherend
cross-section. Consequently, the present analysis overestimates the stiffness of the overlap region compared to the
numerical models. The discrepancies outside of the joint region are a mathematical consequence of this effect.

Since the entire displacement field is known from the analysis, it is also possible to compare the stress resultants
with the reaction forces from the FE simulations. All analytical stress resultants except for the bending moment, which
varies linearly, are constant because of the simplicity of the model. The analytical values are converted to the forces in
Table 7 by multiplying them by the 3D joint width of 25.4 mm. The reaction forces at the clamped end in the analytical
model are 8% (RF1) and 7% (RF2) higher than the predictions in the 2D FE models due to the overestimation of the
stiffness in the overlap region.
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(a) (b)

Fig. 7 Sketch of the stress distribution at one overlap end (a) as assumed in the present analysis and (b) when
correctly accounting for the stress-free condition at the free edge.

Table 7 Stress resultants at the clamped end.

Analytical 2D 3D 3D*

RF1 [kN] 4.87 4.52 3.99 4.35
RF2 [N] -75.0 -69.9 -62.3 -67.6

* Plane strain simulated in 3D.

Even though the accuracy of the stress resultants is not as good as the estimation of the displacement degrees of
freedom, the verification of the analytical model with the FE simulations shows that the global structural response is
captured well when the underlying assumptions are satisfied. Hence, the analytical model is suitable for providing input
for more detailed analyses, e.g., for determining the interlaminar stress distribution at the welded interface between the
two adherends.

VI. Conclusion
A simple analytical model for predicting the structural response of composite single-lap shear joints is developed

and verified with numerical simulations of welded thermoplastic composite specimens. The two-dimensional model
does not place any restrictions on the composite layup or on the dimensions of the adherends and closely matches the
displacement field of the numerical simulations if the underlying assumptions of small deformations and plane strain are
fulfilled. Small deviations in the displacement field predictions are observed close to the overlap region because the
stress-free boundary condition at the overlap ends is only satisfied in an average sense. As a result, the joint stiffness
is overestimated which leads to an overprediction of the forces in the joint compared to the numerical simulations.
Nevertheless, the analytical model is a suitable tool to provide input for more detailed single-lap shear joint analyses, for
example for the determination of the interlaminar stresses at the interface between the two adherends.
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