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Abstract

In this paper, we discuss our novel approach to
support mixed-direction shunting in the planning
domain for tree-like shunting yards. We explain
how we used numeric fluents to improve an existing
PDDL domain to support such actions. We elab-
orate on the underlying conceptual model of our
domain and argue how does it accurately represent
shunting problems. Furthermore, we describe the
experiment that we performed with the MetricFF
planner to evaluate our domain and discuss the re-
sults of the experiment. Finally, we argue why the
MetricFF planning system is not suitable to effi-
ciently support our domain in real-life scenarios.

1 Introduction

The Nederlandse Spoorwagen (NS), the largest railway op-
erator in the Netherlands, manages hundreds of trains daily.
However, the demand for rapid transportation varies through-
out the day, thus rail operators have to adjust for this by stor-
ing the unused units for a shorter or longer period of time. To
store the trains, shunting yards exist. These are large fields
with multiple tracks, located in close proximity to a station.
The routing of the trains from the station to the right shunting
track, and matching the supply of the trains with the demand
is called the Train Unit Shunting Problem (TUSP), and it was
first formulated mathematically by Freling et al., 2005.

Since the TUSP is an NP-hard problem it is difficult to find
solutions to large-scale problems in reasonable time (Freling
etal., 2005). To speed up the computation in practice, railway
planners utilize algorithmic support to solve subproblems of
real-life instances (Van Den Broek et al., 2022). Such algo-
rithmic support can be provided by planning systems, which
are algorithms that use heuristics to determine the sequence
of actions that are necessary in order to reach a predefined
goal.

In their work, Freling et al. describes one of the main char-
acteristics of the TUSP as follows: Arrivals and departures
of train units might be mixed in time. This implies, within
the planning horizon, the first departure might take place be-
fore the last arrival has taken place.” This is a quite significant
feature since this is the case in most real-life situations.

In this research, we focus on mixed-direction traffic in the
routing subproblem of the TUSP. More precisely, we are in-
terested in the following question:

Can a planning system efficiently support mixed-directional
train shunting in the planning domain?

Our question consists of two parts. Therefore, to answer it,
first, we had to answer these two sub-questions:

1. Can the domain support mixed-direction planning?

2. If yes, then can a planning system find a solution for
problem instances efficiently?

In Section 3 we answer the first sub-question. For the sec-
ond sub-question, we explain the experiment that we used
evaluate the efficiency in Section 4, and discuss its results in
Section 5.

While answering the questions of this study we only
focused on free-like shunting yards, with last-in-first-out
(LIFO) tracks only (Freling et al., 2005). Another limitation
is we considered the routing only from the entrance of the
shunting yard and not from the station. Furthermore, we ab-
stracted away from the actual physical length of the trains and
assumed that shunting tracks can be split into equal-length
“track parts”, where each track part” has the capacity to hold
any type of train from the fleet.

2 Relevant Work

In this section, we introduce the relevant concepts to this
study. We start with a literature review on the TUSP. Then
we explain what planning systems we considered in this re-
search, and elaborate on some techniques that they imple-
ment. We focus a short discussion on the MetricFF planning
system since this planner is the most relevant for this study Fi-
nally, we present an example domain that models the basics
of the TUSP in PDDL for the planner algorithm.

2.1 TUSP

In their work, Freling et al., 2005 capture a real-life instance
of the shunting problem, and formulate it as a mathemati-
cal model that they call TUSP. They divide it into two sub-
problems, matching supply with demand and routing the train
units. They describe the four main characteristics of the prob-
lem as follows:

1. Mixed-direction traffic: The first departure might take
place before the last train arrived.

2. Train sub-types: Train units of the fleet can have differ-
ent properties. This might limit which tracks different
types can use.

3. Multi-way arrival Tracks in the yard might be ap-
proached from either end.

4. Flexible arrivals and departures Trains arrival to and
departure from the shunt tracks are not exact.

In their study, they use integer programming to solve the
problem, with metrics to minimize the cost of shunting. They
successfully applied their model to the station of Zwolle and
obtained promising computational results.

Lentink et al., 2006 proposed an algorithmic approach to
solve the TUSP by dividing it into four sub-problems. Kroon
et al., 2008 introduces a new model for the TUSP. This al-
lows them to solve the matching and the parking subproblem
in an integrated manner. Haahr et al., 2017 compare multi-
ple methods of solving the TUSP and introduce three novel
approaches: a constraint programming formulation, a column
generation approach, and a randomized greedy heuristic.

Recently, Mulderij et al., 2020 introduced their approach,
which uses multi-agent path finding (MAPF), and it is capa-
ble to model a more advanced version of the TUSP: the TUSP
with servicing (TUSS). They model the tracks of the shunting
yard as a graph G = (L, F), where the nodes in L are the
locations a train can be at, and edges in £ connect these loca-
tions. A train unit is modeled as an agent” a,, € A, that can
be moved through the graph.



They define a TUSP instance as the graph G = (L, E),
the vector of the initial locations for each agent [li, € L]
for all @ € A, and the goal locations [lg, € L] for all agent
a € A. To solve the problem instance, they look for the set of
paths p, for each agent a € A, which takes the agents from
the initial location to their goal location conflict-free. This
means, two agents cannot be on the same node (I € L) or
edge (e € F) at the same time.

2.2 Planning systems

Since this is an open-source project, during the research we
only focused on freely available planning systems. Most of
such systems were developed for the International Planning
Competition (IPC) or formerly for the Artificial Intelligence
Planning and Scheduling competition (AIPS). These competi-
tions were organized by the International Conference on Au-
tomated Planning and Scheduling (ICAPS)' and they were
focused on the presently relevant topics in the planning com-
munity. Over these competitions, several successful planning
frameworks were developed.

One of the most significant among the early planner is the
Heuristic Search Planner (HSP), which was developed by
Bonet et al., 1997. As its name suggests, this planner uses
heuristics to solve problems, by estimating the distance from
the goal and guiding the traversal of the relaxed graph to-
wards states with more optimal values. To achieve relaxation
in the search space, they ignore the delete lists, which means
the negative effects of each applied action are omitted. New
relaxed states are generated until all goal conditions are sat-
isfied. To extract the final plan from the relaxation, HSP uses
greedy hill climbing algorithm.

A successful successor of the HSP, the Fast-Forward (FF)
system (Hoffmann, 2001) was the most successful planner
in the AIPS’00 competition. It uses the same structure and
basic principle, that is behind HSP. However, there are three
important differences between the systems.

1. The FF heuristic function uses relaxed plan extraction,
compared to HSP’s difficulty weighing function. In most
cases, this results in a better estimate.

2. HSP uses a common hill-climbing algorithm where the
successor is chosen randomly, meanwhile in FF, the en-
forced hill-climbing (EHC) algorithm performs a com-
plete breadth-first search, looking for a strictly better
evaluation

3. FF uses helpful action pruning Hoffmann, 2001, while
such techniques are not used in HSP.

It is also important to mention here, that if the EHC algorithm
with the pruning fails on a problem, FF performs a complete
A* search in order to find a solution.

Later, Helmert, 2006 came up with a different approach
to implement the heuristics. In their work, they use causal
graph heuristics for the search which is different from the FF
and HSP approach. Instead of extending the search space for-
ward by chaining actions and ignoring the side effects, the
FD system constructs a causal graph from the dependencies
of precondition and state transitions. This technique is more

"https://www.icaps-conference.org/

effective in general since it prevents the large-scale expan-
sion of the search space with the increase of objects, and it
depends more on the number of predicates.

2.3 MetricFF

The main challenge for the participants of the 37¢ TPC was
to handle numeric resources in the planning process. One of
the two best-performing systems in the competition was the
MetricFF planner. To develop the system, Hoffmann, 2003
extended his prior work on the FF framework (Hoffmann,
2001) such that it is capable of handling a restricted set of
numeric problems. Hoffmann extends the ignore delete lists
relaxation approach, such that it ignores the decreasing ef-
fects on numerical state variables.

This introduces some limitations on the solvable instances
since this approach can only support strongly monotonic
problems (Hoffmann, 2003). In short, this means numeric
conditions prefer higher values and effects should not de-
crease the value of the numeric variables.

To extract the plan from the relaxed search space, the sys-
tem implements six search algorithms:

BFS: Applies Best-First search only. Best-First search
is an A* strategy with all weights wy = 0.

BFS + H: Applies Best-First search with FF’s helpful
action pruning.

EHC + BFS: Tries Enforced Hill-Climbing with prun-
ing, if fails, restart with Best-First search.

weighted A*: Applies the A* search strategy with
weight function f(s) = wy - g(s) + wp, - h(s).

A* epsilon: Applies the A* search algorithm but also
allows the selection of sub-optimal nodes.

EHC + A* epsilon: Tries Enforced Hill-Climbing with
pruning, if fails, restart with A* epsilon search.

2.4 PDDL domain for TUSP

For defining the planning domain planners use the Planning
Domain Definition Language (PDDL). The language was de-
veloped by McDermott and the AIPS-98 Planning Competi-
tion Committee, 1998 for the AIPS-98 planning competition
to use it for domain and problem specification.

PDDL uses objects, actions, and predicates to define the
domain. Objects express the real-life entities the planning
problem working with, while predicates are used to describe
a temporary state S of the system. Actions operate on objects
and predicates, and they describe the transformation of the
system from state S, to S, 1. An action is viable if all of its
preconditions hold in state S;,, where the action is considered.
Once an action is executed in .S,,, it affects the value of the
predicates, changing them for state .S;, 1. The new values are
defined as the effects of the action.

Sn + Ap,e — Sn-i—l

Besides specifying the domain, PDDL is also used to de-
fine the problem itself. The initial state of the system and the
achievable goal is defined in the problem file. The aim of
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the planning systems is to find the sequence of k actions that
transforms the initial state to the goal state:

k
So+ > Ape, =Sy

In order to successfully execute the previously mentioned
planning on a problem instance, both the domain and problem
files are needed. Therefore, in the following, we refer to both
of them as "domain”.

O: "trackpart” I:I: "entrance"
Q: "switch" —

: "arriving train"
: "departing train”

"next to"

(a) Schedule on the example domain. The initial order of the trains
on the “arrival path” (el, e2, e3) determines their arrival sequence.
Here Train 1 will arrive first, while Train 3 last.

(b) Illustration of the limiting factor in the example domain. If a
train departs before all the other trains are in the yard, it blocks all
future arrivals since arriving trains cannot “jump over” it.

Figure 1: Models of states in the example domain. (a) shows a
general overview of the domain, while (b) highlights the constraint
that limits the traffic into one direction.

For this study, we considered an existing PDDL domain
that models the TUSP and is compatible with tree-like
shunting yard layouts. In order to solve the TUSP in this
domain, the planning system has to find the sequence of
domain actions that moves all the trains in the yard, parks
them at any track, and moves them out from the yard, all of
this in the correct order. This domain was provided by the
supervisors of this research and the complete file is presented
in Appendix A. Throughout the study, we will refer to this as
the “example domain”.

This domain uses the following objects:
Object: trackpart, track, trainunit
Trainunit: icm, virm, sng, slt

The trackpart and track objects are used to define the phys-
ical layout of the shunting problem. The domain defines the
nextTo predicate to indicate links between tracparts and the

switch predicate to distinguish trackparts where two track
converges. Figure 1a illustrates how these predicates are used
to model a shunting yard on this domain.

It also shows three trains in an example initial state. It
is important to note here, that the schedule for the trains is
defined by the order of the trainunits on the arrival path (el,
e2, e3). Arrivals are defined by the initial state of the units.
Meanwhile, in the goal, the final location for each train type2
is set to define their departure order. This means, both the
arrivals and the departures are defined over the same ordered
list, the arrival path.

The physics of the domain forbids trains to pass by each
other on any single track (here “track” refers to any segment
of consecutive tracparts). Trains can only pass by each other
when they are on different tracks. From this, it is easy to see
that when the first train departs, it blocks any further arrivals
since no trainunit on the arrival path will be able to ”jump
over” it and get into the shunting yard. Figure 1b illustrates
this issue.

3 Domain extensions: Domain for
mixed-directional shunting

Once we analyzed the example domain, we concluded it can-
not support mixed arrivals and departures, since trains can-
not pass each other on the arrival path. We realized that this
part of the domain does not model reality accurately. In this
section, we explain our novel approach to model the TUSP
for tree-like shunting yards, with support for mixed arrival
and departure times. First, we explain the concept behind our
model, then we discuss how we managed to implement it in
PDDL with the use of numeric fluents. We present our do-
main in complete form in Appendix B.

3.1 Abstract model

The main goal of our new model was to overcome the limi-
tation presented by the unidirectional track that is used in the
example domain to define the schedule. Our approach was
to keep the core idea for the scheduling while defining the
arrival path as set instead of an ordered list. In Figure 2 we
illustrate the step-by-step abstraction of the physical domain.

The arrival path in the example domain is a convenient way
to define the schedule, however, it fails to accurately model
reality. In real life, the shunting yard is connected to the main
railway network, where trains can mix freely. Therefore, we
decided to model this behavior, by allowing a selected track-
part to hold multiple train units. As shown in Figure 2a, we
named this node “entrance”. In our model, all trains are ini-
tialized to be at this frackpart, and at the end of the plan, all
trains should be back here.

Furthermore, we realized that explicit switch nodes are ir-
relevant to our question. Since we only focus on tree-like
shunting yards, all switches are located after the entrance and
before the start of the shunt tracks, thus they can be visual-
ized as one “n-way-switch” (Figure 2b). Here, it can easily
be seen that an n-way-switch adds no additional flexibility or

’In general practice, train units of the same types can be used
interchangeably.



constraints to the domain. Omitting the switch only implies
that moving units between tracks can be done in one step in-
stead of two or more. Therefore, in our final model (Figure
2c¢), we discarded it.

In our approach, we kept the main principle of the sched-
ule definition, by defining the arrival and departure sequence
based on the order of the trains. However, instead of using the
order of the trains on the “arrival path” (since it was omitted),
we define the order using integer numbers. The used num-
bers range between 0 and n — 1, where n is equal to double
the number of trains defined in the domain. This allows us to
define mixed arrivals and departures since the numbers used
to define both are selected from the same set.

Table 1 shows how the newly introduced numeric approach
defines a mixed-direction schedule. This way Train 1 should
depart before Train 3 arrives.

Unit | Type | Arrive | Depart
Train 1 slt 0 2%
Train 2 slt 1 4%
Train 3 | sng 3 5

Table 1: Example definition of schedule in the new domain. *: since
the units with the same type can be used interchangeably, these two
departures can be switched freely.

3.2 Implementation with PDDL 2.1

To model the tracks inside the yard we adhered to the example
domain. We used the nextTo predicate to chain trackparts. To
avoid collisions on the tracks, each trackpart is labeled with
a free predicate only if no train is located over it. Trains can
only be moved to free trackparts. To achieve a set-like behav-
ior on the entrance, we omitted the use of the free predicate
when moving trains to and from the entrance. This way there
is no limit on how many trains can be on the entrance node.
To implement the ordering we used numeric fluents. This
feature of PDDL was introduced by Fox and Long, 2003 for
the 3" IPC, to model non-binary resources. To keep track of
the order of the trains, we introduce a global counter function,
the timestep. The value of this function gets incremented ev-
ery time a train arrives at or departs from the yard. The actual
enforcement of the schedule happens in two distinct ways:

1. Each train is assigned an arrival number as its arrive
function. The preconditions for the arrival action in the
domain require the timestep to be equal with the arrive
function of the given train when the action takes place.

2. To define the departures another technique is used.
Trains only get their departed value assigned when they
moved out from the yard with the corresponding action.
However, when defining the goal for the problem, we
specify the desired value for each departed function.
This way the planning system aims to find the correct
sequence of actions which results in the assignment of
the correct value. It is important to note here, that since
trainunits of the same type can be used interchangeably,
we only specify the train type for the departures.

O:“rrackparr” I:‘: "entrance” Q: "switch" ——: nextto"

¢
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(a) Since the “arrival path” is connected to the main railway net-
work where trains can mix freely, it can be represented as a set:
“entrance”.

el

13

(b) Since we only consider free-like shunting yards, all switches are
between the entrance and the start of the tracks. Therefore, the effect
of switches can be combined to an n-way switch.

el

O=€
ONO.
(®)

(c) Trains cannot be parked (or even stored) on switches, their only
role was to connect the distinct tracks. Tracks are now connected
directly.

Figure 2: The three layers of abstraction in the new domain. In the
final model, we use the model represented in (c)

This concludes a positive answer to the first sub-question
of this study. Yes, it is possible to support mixed-direction
shunting in the planning domain. However, to determine its
efficiency we had to perform further experimentation.

3.3 Plan Optimization

Thanks to the new, numeric nation of the domain, we could
introduce a new plan optimization metric, the cost function.
In practice, moving trains between tracks is a more time-
consuming and costly operation than moving trains along a
single track. Our domain reflects this property by increasing
the cost more for such actions.

To minimize track changes in the final plan as much as
possible, we try to minimize the value of cost for the optimal



plans. Therefore, the planner algorithm prefers plans with
fewer movements between tracks. However, this metric can
only be used with planning systems that support optimization
metrics.

4 Evaluation of planning efficiency

In order to successfully answer the other half of our main re-
search question we had to determine if a planning system can
efficiently support our domain. In this section, we discuss the
limitation that the new domain introduced on which planner
is suitable and how it affected our decisions in choosing the
planner for the experiment. Then, we explain the metrics that
we used during the experiment to define the efficiency of a
search and how they influenced the setup of the experiment.
We also elaborate on the problem files that we used for the
experiment and discuss how we estimated their difficulties.
Finally, we discuss what methodology we used for the execu-
tion and present the results.

4.1 Numerical planning with MetricFF

As we discussed in Section 3.2, we had to introduce nu-
meric fluents to our new domain to enforce the schedule in
our model. This limited the number of planning systems that
are suitable to solve problem instances of the new domain.
Therefore, it was necessary to use a numerical planner for
the experiments.

For reproducibility reasons, we had to use a planner that is
freely available. Since there was no numerical track on the
IPCs since 2003, there are a limited number of open-source
numerical planners. Since MetricFF was one of the two best-
performing planning systems in the IPC’03, we decided to
use it for our experiments.

4.2 Metrics on Efficiency

To determine the efficiency of the planners we decided to use
two metrics: the execution speed of the planning algorithm
and the cost of the resulting plan. We derived our metrics
from practical applications, where it is crucial to get the least
expensive (shortest) plan as fast as possible. To record both
values, we stored the output of the planners as a text file.
From this file we could extract both the fotal plan cost and
the total elapsed time.

Since we were interested in the efficiency of the planners,
we decided to introduce a 30-minute timeout on the planner.
In practice, the TUSP is usually solved for a 24-hour period,
station by station (Lentink et al., 2006). Compared to that, our
examples were reasonably simpler. Therefore, we decided, if
an algorithm cannot find a plan for a problem at this time we
do not consider it efficient.

4.3 Difficulty of the problems

To get a wider range of evaluation samples, we decided to run
the search algorithms on several problem files. Each problem
file (except the one with three trains) has the same yard lay-
out: three tracks, each with three trackparts. The only differ-
ence between them is the number of trains and their schedule.

The difficulty of a TUSP increases as the shunting yard ap-
proaches its maximal capacity (Mulderij et al., 2020). There-
fore, we chose to use the ratio between the number of train-
units and the number of trackparts to define the difficulty of a
problem. However, since all problems have the same amount
of trackparts, we omitted it, and only used the number of
trainunits to estimate the difficulty. Based on this, we divided
the problems into three categories:

EASY
— Problem3: Only 6 trackparts, 3 trainunits, maxi-
mum 2 trains are in the yard concurrently.
— Problem5: 5 trainunits, maximum 4 trains are in
the yard concurrently.
MEDIUM
— Problem7 (a-c): 7 trainunits, maximum 5 trains are
in the yard concurrently.
— ProblemS8 (a-d): 8 trainunits, maximum 6 trains are
in the yard concurrently.
HARD

— Problem9 (a-c): 9 frainunits, maximum 7 trains are
in the yard concurrently.

Originally we intended to introduce problems with more
trains, however, since none of the algorithms finished on
problems with more than 9 trains, we decided not to include
them in our results.

Problem3 Problem5 Problem7 Problem8 Problem9
Time | Cost Time Cost Time Cost Time Cost || Time | Cost

EHC+BFS 0.005s 4 n/a n/a n/a n/a n/a n/a n/a n/a
BFS 0.006s 0 n/a n/a n/a n/a n/a n/a n/a n/a
BFS+H 0.007s 0 n/a n/a n/a n/a n/a n/a n/a n/a
weighted A* || 0.006s 0 0.076s 6 1.881s 4 n/a n/a n/a n/a
A* epsilon 0.005s 0 55.44s 6.438s 6.389s 16 n/a n/a
EHC+A*eps || 0.006s 4 57.628s* 6.856s* 9.354s* 16 n/a n/a

Table 2: Results of the first round of the experiment. N/a shows where the 30-minute timeout was reached before the algorithm could finish.
* shows where the EHC failed and the alternative search method was applied.



Problem7b Problem7¢ Problem8b Problem8c Problem8d Problem9b Problem9c

Time | Cost Time | Cost Time Cost Time Cost Time | Cost || Time | Cost || Time | Cost

weighted A* || 0.563s 4 0.102s 16 85.757s 10 23.990s 12 1581s 6 n/a n/a n/a n/a
A* epsilon 1.994s 19 0.818s 16 19.489s 17 11.629s 15 7.151s 14 n/a n/a n/a n/a

Table 3: The results of the second round of the experiment. N/a shows where the 30-minute timeout was reached before the algorithm could

finish.

4.4 Setup

We performed our experiment in two rounds. In the first turn,
we executed all search algorithms of MetricFF on five prob-
lem files, with increasing difficulty. We did this in order to
survey the performance of the different search methods. The
results of this round are shown in Table 2.

In the second round, we only used the two algorithms that
performed the best in the first round, the weighted and the
epsilon A* search. Our goal in this round was to determine
whether these searches perform similarly on other problems
with MEDIUM and HARD difficulty. The outcomes of the
second experiment are shown in Table 3.

5 Discussion

As visible from the results, the EHC algorithm did not per-
form well on the problems. Arriving and departing action has
the same cost (increase timestep by one, do not change cost),
but arrivals accomplish more goals since they park a train by
setting the hasBeenParked predicate true for the given train.
Therefore, the heuristic function prefers them over depar-
tures. This way the EHC runs into local maximums where
all trains are parked with the least moves, then fails to return
to a previous state to continue climbing toward the goal.

The BFS search suffers from a different problem. Even
though it is an A* strategy (Hoffmann, 2003), it uses zero
node weights and only considers the depth of a node when
choosing the next, thus possibly selecting non-optimal nodes.
This way it can consider nodes that do not lead toward the
goal and therefore while traversing the relaxation graph, it
runs into more dead-end states.

On the contrary, A* searches with weights perform signifi-
cantly better. Since the A* epsilon also considers sub-optimal
nodes while advancing the goal, for more complex problems,
it can find a plan faster than the weighted version of the A*,
which only considered optimal nodes. However, the cost of
the solutions produced by the epsilon variant is higher. This
is also due to the consideration of sub-optimal nodes since
they can increase the overall cost unnecessarily.

5.1 Limitations

Since the relaxation technique of the MetricFF system only
supports strongly monotonic tasks, in a problem where a nu-
meric resource both grows and shrinks throughout time, a real
plan might not appear among the relaxed plans (Hoffmann,
2003). In this case, the search can result in a failure even
though there exists a valid plan. This did not have a particular
impact on our research since all new functions that we intro-
duced are strongly monotonic. However, we realized that this

constraint of the MetricFF system highly limits the future ex-
tension of our domain. We realized, for example, the capacity
restraints of a frack cannot be modeled due to this limitation,
since the available space on the tracks both increases and de-
creases over time.

Furthermore, due to the flexibility of the numerical val-
ues, the relaxation might accomplish all goals, even if in a
real plan it is impossible. This way the decision on feasi-
bility is not polynomial (Hoffmann, 2003). The worst case
complexity of the A* is bounded by O(b?), where b is the
average number of successor nodes in the graph, and d is
the depth (length) of the solution path (Russell J & Norvig,
2003). However, if there is no solution exists (thus the length
of the solution is d = inf), the algorithm will have to traverse
the entire relaxed graph to conclude the absence of a solution.

Furthermore, since the length of the solution is correlated
with the number of trainunits in the problem, the execution
time of the search expands exponentially with the increase of
trainunits. This significantly reduces the effectiveness of the
planning system for problems with many trains.

5.2 Interpretation of results

Even though the difficulty of a TUSP instance is related to
the capacity of the yard, when it is solved by a planning sys-
tem, the complexity of the search algorithm is more relevant
to its performance. Since the A* strategies use heuristics,
their execution time varies for each problem, and it depends
on the merit of these heuristics. In the worst case, the com-
plexity of the algorithm grows exponentially with respect to
the solution length. Furthermore, if there is no solution exists
for a problem, the algorithm has to traverse the entire relaxed
graph to prove the absence of any solution. This makes the
efficiency unreliable since the length of the shortest solution
is not known in advance. Therefore, we concluded it is not ef-
ficient to use the MetricFF system with our shunting domain
to solve real-life instances of the TUSP.

6 Responsible Research

We had to create the problems for the evaluation with great
care. Since we wanted to test the general performance of the
MetricFF system on our domain, we had to implement solv-
able, but arbitrary problems. It was necessary to make them
arbitrary, to avoid confirmation bias, since it would have been
misleading to only feed well-performing problems into the
system to gain promising results. To avoid this, we run the
algorithm on multiple problem files with the same amount of
trains. This revealed that the performance of the search can
vary significantly between different problems, and avoided us
to derive false conclusions.



6.1 Reproducibility

In order for one to reproduce our experiments we provide all
of our source code in our online repository®. This reposi-
tory contains the full PDDL file of our domain, all prob-
lem files that were used for the experiments, and the out-
puts. To execute the MetricFF planning system we used
the mapfw.ewi.tudelft.nl server, which uses an AMD
EPYC 7702P 64-Core Processor, from which one 2GHz core
was dedicated to run an instance of the MetricFF system. If
someone runs the MetricFF planner on the mapfw server (or
any computer with equivalent computational power) with the
same problems as we did, one should get very similar results
for their experiments.

7 Conclusions and Future Work

In this paper, we presented our novel approach to support
mixed-direction train shunting in the planning domain. We
extended an example domain, that was provided to us by the
supervisory team of this research. To achieve mixed-direction
traffic we introduced a new, more abstract model, that uses a
set to express the main railway network instead of an ordered
list. Furthermore, to enforce the schedule, we used the nu-
meric fluents from PDDL 2.1. From this, we concluded that
it is possible to support mixed-direction traffic in the domain.

To evaluate the efficiency of our domain we performed an
experiment with the MetricFF planning system. We evaluated
the performance of the planner on several problem files, that
were defined on our new domain. The results showed that the
A* search strategies perform reasonably well on small-scale
problem instances. However, due to the exponential worst-
case time complexity of the algorithms, their efficiency gets
significantly worse on problems with more trains. From this,
we concluded that the MetricFF system cannot support effi-
ciently our domain for large-scale instances of the TUSP, thus
it is not practical to use it in real-life applications.

This year, the IPC has a numeric track again. Hopefully,
the competition will result in the introduction of new, more
efficient numerical planning systems. In the future, our exper-
iment can be repeated with the latest most efficient numerical
planner, to possibly, obtain better results.
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A The example domain

(define (domain example)
(:requirements :adl)
(:types
trackpart track trainunit - object
icm virm sng slt - trainunit

(:predicates
(parkedOn ?x - trainunit ?y - track)
(onTrack ?x - trackPart ?y - track)
(at ?x - trainunit ?y - trackpart)
(hasBeenParked ?x - trainunit)
(nextTo ?x ?y - trackpart)
(free ?x - trackpart)
(onPath ?x)
(switch ?x)

(:action move-to-track
:parameters (?train - trainunit ?from ?to - trackpart ?t - track)
:precondition (and (at ?train ?from) (free ?to)
(nextTo ?from ?to) (onTrack ?to ?t)
(switch ?from))
:effect (and (at ?train ?to) (not (at ?train ?from))
(free ?from) (not (free ?to))
(hasBeenParked ?train) (parkedOn ?train ?t))

(:action move-from-track
:parameters (?train - trainunit ?from ?to - trackpart ?t - track)
:precondition (and (at ?train ?from) (free ?to)
(nextTo ?from ?to) (onTrack ?from ?t)
(switch ?to))
:effect (and (at ?train ?to) (not (at ?train ?from))
(free ?from) (not (free ?to))
(not (parkedOn ?train ?t)))

(:action move-along-track
:parameters (?train - trainunit ?from ?to - trackpart ?t - track)
:precondition (and (at ?train ?from) (free ?to)
(nextTo ?from ?to) (onTrack ?from ?t)
(onTrack ?to ?t))
:effect (and (at ?train ?to) (not (at ?train ?from))
(free ?from) (not (free ?to)))

(:action move-to-departure
:parameters (?train - trainunit ?from ?to - trackpart)
:precondition (and (at ?train ?from) (free ?to)
(nextTo ?from ?to) (onPath ?to)
(forall (?unit - trainunit) (hasBeenParked ?unit)))
:effect (and (at ?train ?to) (not (at ?train ?from))
(free ?from) (not (free ?to)))

(:action move-on-arrival
:parameters (?train - trainunit ?from ?to - trackpart)
:precondition (and (at ?train ?from) (free ?to)
(nextTo ?from ?to) (not (hasBeenParked ?train))
(onPath ?from))
:effect (and (at ?train ?to) (not (at ?train ?from))
(free ?from) (not (free ?to)))



B Our domain

(define (domain tusd)
(:requirements :equality :strips :typing :quantified-preconditions
:conditional-effects :fluents)
(:types
trackpart track trainunit - object
icm virm sng slt - trainunit

(:predicates
(onTrack ?x - trackPart ?y - track)
(at ?x - trainunit ?y - trackpart)
(nextTo ?x ?y - trackpart)
(entrance ?x - trackpart)
(free ?x - trackpart)
(hasBeenParked ?x)

)
(:functions

(cost)

(timestep)

(arrive ?x - trainunit)
)

(:action move
:parameters (?train - trainunit ?from ?to - trackpart ?t - track)
:precondition (and (at ?train ?from) (free ?to) (nextTo ?from ?to)
(onTrack ?from ?t)(onTrack ?to ?t))
reffect (and (at ?train ?to) (not (at ?train ?from))
(free ?from) (not (free ?to))
(increase (cost) 1))

(:action move-between-tracks
:parameters (?train - trainunit ?from ?to - trackpart ?t1 ?t2 - track)
:precondition (and (at ?train ?from) (free ?to) (nextTo ?from ?to)
(onTrack ?from ?t1)(onTrack ?to ?t2))
:effect (and (at ?train ?to) (not (at ?train ?from))
(free ?from) (not (free ?to))
(increase (cost) 2))

(:action move-to-departure

:parameters (?train - trainunit ?from ?to - trackpart)

:precondition (and (at ?train ?from) (entrance ?to)
(nextTo ?from ?to))

reffect (and (at ?train ?to)
(not (at ?train ?from))
(free ?from)
(increase (departed ?train) (timestep))
(increase (timestep) 1))

(:action move-on-arrival
:parameters (?train - trainunit ?from ?to - trackpart)
:precondition (and
(= (timestep) (arrive ?train))
(at ?train ?from) (free ?to)
(nextTo ?from ?to) (entrance ?from)

:effect (and (at ?train ?to) (not (at ?train ?from))
(not (free ?to)) (hasBeenParked ?train)
(increase (timestep) 1))
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