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Summary

Cracks, which could nucleate and propagate in engineering structures, could have
an adverse effect on mechanical performance and even lead to catastrophic fail-
ure. Thus, it is critical to investigate structural behavior under fracture, which re-
quires an appropriate modeling methodology for fracture analysis. Furthermore,
designing structures that are resilient to fracture is highly desired, where it is nec-
essary to find a computational design technique for improving the structural fracture
resistance. This thesis focuses on realizing these two goals.

As an alternative to experiments, numerical simulation has been widely used to
predict structural responses, since it is inexpensive and takes less time. Among nu-
merical techniques for solving fracture mechanics problems, enriched finite element
methods (EFEMs) have become increasingly popular over the last two decades. Un-
like the standard finite element method (FEM), which requires a mesh fitting the
crack geometry, EFEMs fundamentally change the modeling of discontinuous prob-
lems via decoupling cracks from the discretization. EFEMs add extra enrichment
terms to the standard FEM formulation for capturing the discontinuous solution
and/or gradient fields. The Discontinuity-Enriched Finite Element Method (DE-FEM)
was developed to handle both weak and strong discontinuities via a unified formu-
lation. As the method was shown to behave well in solving 2-D fracture mechanics
problems, here we extend it to 3-D problems including cracks and/or material in-
terfaces. Noteworthy, we demonstrate that DE-FEM is intrinsically endowed with
stability, where the condition number of the stiffness matrix grows with mesh size
ℎ as 𝒪 (ℎዅኼ). Although EFEMs provide great flexibility in solving discontinuous prob-
lems, the complexity of generating the fitted discretization in standard FEM is trans-
ferred to the construction of the enriched formulation, which requires an interaction
between a background mesh (usually structured) and discontinuities. Thus, an effi-
cient and general geometric engine is proposed to perform advanced computational
geometry operations that are necessary for a robust implementation.

For the computational design of structures with tailored fracture resistance, it
would be desired to consider all potential cracks with arbitrary orientations during
an optimization procedure, where DE-FEM could provide an elegant analysis tool
for predicting the structural response. However, too many finite element analyses
would be required, resulting in a computationally intractable approach. Moreover,
custom-made meshes and specific enrichment functions could be required to cap-
ture singularities at crack tips. In order to circumvent these difficulties, topological
derivatives based on the stress field from a single finite element analysis of the un-
cracked body are used to evaluate energy release rates. For simplicity, cracks are
assumed to nucleate only perpendicularly to the structural boundary at the loca-
tions of enriched nodes within the discretized model. A novel topology optimization
procedure is then proposed to design the material layout under linear elastic frac-

xi



xii

ture mechanics (LEFM) assumptions for brittle materials. A level set approach that
can provide a crisp and clear boundary description is used to represent the struc-
tural topology, and the structural analysis is performed with EFEM for resolving the
boundary (not the cracks). As this procedure highly depends on the stress field,
peak stresses, which could arise in elements with bad aspect ratios and/or rel-
atively tiny areas, could degenerate the optimized design. Therefore, a recovery
technique is proposed to improve the stress approximation, where peak stresses
can be eliminated completely. By introducing this technique to topology optimiza-
tion, the recovered stress field leads to a more accurate evaluation of objective
function at the expense of a more involved sensitivity analysis formulation. Results
show that the proposed topology optimization methodology cannot only improve
the structural fracture resistance, but can also introduce fracture anisotropy into
the final design if desired.



Samenvatting

Scheuren die ontstaan en zich uitbreiden in technische constructies kunnen een
negatief effect hebben op de mechanische prestaties van de constructie en zelfs
leiden tot het catastrofaal falen van de constructie. Daarom is het van cruciaal be-
lang om het gedrag van een constructie te onderzoeken wanneer er scheuren zijn
ontstaan. Dit vereist een geschikte modelleringsmethodologie voor de breukana-
lyse. Daarnaast zijn constructies die bestand zijn tegen scheuren zeer gewenst en is
het noodzakelijk om een numerieke ontwerptechniek te vinden om de breukweer-
stand van constructies te verbeteren. Dit proefschrift richt zich op het realiseren
van deze twee doelen.

Als alternatief voor experimenteel onderzoek wordt numerieke simulatie op grote
schaal toegepast om de respons van een constructie te voorspellen, omdat het
goedkoop en tijdbesparend is. Onder numerieke technieken voor het oplossen van
breukmechanische-problemen zijn de verrijkte eindige-elementenmethoden (EFEMs)
in de afgelopen twee decennia steeds populairder geworden. In tegenstelling tot de
klassieke eindige-elementenmethode (FEM), waar een mesh voor nodig is die past
bij de scheurgeometrie, verandert de EFEM fundamenteel de modellering van dis-
continue problemen door scheuren te ontkoppelen van de discretisatie. De EFEMs
voegen extra termen toe aan de klassieke FEM-formulering voor het vastleggen
van de discontinue oplossing en/of gradiëntvelden. De Discontinuity-Enriched Fi-
nite Element Method (DE-FEM) is ontwikkeld om met zowel zwakke als sterke dis-
continuïteiten om te gaan via een geünificeerde formulering. Omdat het is aan-
getoond dat de methode goed werkt  bij het oplossen van 2-D breukmechanische
problemen, breiden we deze in dit proefschrift uit tot 3-D problemen met scheuren
en/of materiaalinterfaces. We tonen aan dat de DE-FEM zeer stabiel is, waarbij het
conditienummer van de stijfheidsmatrix groeit met de grootte van de mesh. Hoe-
wel de EFEMs grote flexibiliteit biedt bij het oplossen van discontinue problemen,
wordt de complexiteit van het genereren van een gepaste discretisatie in de klas-
sieke FEM overgebracht naar de constructie van de verrijkte formulering. Dit vereist
een interactie tussen een achtergrondmesh (meestal gestructureerd) en disconti-
nuïteiten. Om deze reden wordt een efficiënte en algemene geometrische engine
voorgesteld om geavanceerde numerieke geometriebewerkingen uit te voeren die
nodig zijn voor een robuuste implementatie.

Voor het numerieke ontwerpproces van constructies met een op het ontwerp
aangepaste breukweerstand zou het wenselijk zijn om alle mogelijke scheuren met
willekeurige oriëntaties in overweging te nemen tijdens een optimalisatieproce-
dure. Hiervoor zou de DE-FEM een elegant analyse-instrument kunnen zijn voor
het voorspellen van de respons van de constructie. Om dit te doen zouden echter
te veel eindige-elementenanalyses nodig zijn, wat zou resulteren in een wat re-
kenprocedure betreft onhandelbare aanpak. Bovendien kunnen op maat gemaakte
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meshes en specifieke verrijkingsfuncties nodig zijn om singulariteiten bij scheurtip-
pen vast te leggen. Om deze problemen te omzeilen worden topologische afgelei-
den op basis van het spanningsveld van een enkele eindige-elementenanalyse van
het lichaam zonder scheuren gebruikt om de energieafgiftesnelheden te evalue-
ren. Voor de eenvoud wordt aangenomen dat scheuren alleen loodrecht op struc-
tuurgrenzen ontstaan op de locaties van verrijkte knooppunten binnen het gedis-
cretiseerde model. Vervolgens wordt een nieuwe topologie-optimalisatieprocedure
voorgesteld om de materiaalopbouw te ontwerpen onder aannames van lineaire
elastische breukmechanica voor brosse materialen. Om de structurele topologie
weer te geven, wordt een level-set aanpak ingesteld die een scherpe en duide-
lijke grensbeschrijving kan bieden. De analyse van de constructie wordt uitgevoerd
met EFEM voor het oplossen van de grens (niet de scheuren). Aangezien deze
procedure sterk afhankelijk is van het spanningsveld, kunnen piekspanningen, die
kunnen optreden in elementen met slechte geometrieverhoudingen en/of kleine
oppervlakken, het geoptimaliseerde ontwerp verslechteren. Daarom wordt een re-
constructietechniek voorgesteld om de spanningsbenadering te verbeteren, waar-
bij piekspanningen volledig kunnen worden geëlimineerd. Door deze techniek te
introduceren in topologie-optimalisatie, leidt het gereconstrueerde spanningsveld
tot een nauwkeurigere evaluatie van de objectieve functie ten koste van een com-
plexere formulering van de gevoeligheidsanalyse. De resultaten tonen aan dat de
voorgestelde topologie-optimalisatiemethodologie niet alleen de breukweerstand
van de constructie kan verbeteren, maar indien gewenst ook anisotropie in het
scheurgedrag in het uiteindelijke ontwerp kan introduceren.



1
Introduction

In this chapter, we first introduce the motivation of this PhD project, where
we give a brief introduction to fracture mechanics, enriched finite element
methods for modeling discontinuities, and the structural optimization. Then,
we list the outline as a guideline for readers.

1
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1.1. Motivation
Micro-cracks could materialize during manufacturing and/or service life of a struc-
ture, then grow and coalesce into major cracks that could deteriorate structural per-
formance and even result in catastrophic failures [1, 2]. For example, the Quebec
bridge collapsed in 1907 because of the fracture failure of the anchoring supporting
element [3]. A total of 2700 liberty ships were built in USA for transporting the
supplies needed to the war front during World War II; however, approximately 400
vessels suffered catastrophic brittle fracture [4]. On July 6, 1996, a Delta Airlines
aircraft (Flight 1288) experienced uncontained, catastrophic turbine engine failure
caused by the left engine’s compressor fan hub fracture [5]. These and other in-
cidents have raised awareness behind failure due to fracture and contributed to
improve our understanding and development of fracture mechanics.

The science of fracture mechanics developed and attained maturity gradually
during the 20th century. In the 1920s, Alan Arnold Griffith, who is regarded as “the
founding father of modern fracture theory”, put forward the theory behind brittle
fracture that led to the introduction of linear elastic fracture mechanics (LEFM) [6]. As
glass was chosen as the model material, his theory was not suitable for certain
engineering materials such as metals. In order to generalize Griffith’s theory, Ir-
win considered the energy dissipated by local plastic flow for the fracture of duc-
tile materials [7]. Later, Irwin developed the energy release rate (ERR) concept
based on Griffith’s model, which is more convenient for solving engineering prob-
lems [8], and proposed the stress intensity factor (SIF) to express the stress state
around a crack tip [9]. Since LEFM assumes small-scale yielding at a crack tip, it is
quite restrictive for materials that undergo significant plastic deformation. There-
fore, elastoplastic fracture mechanics arose from studying the fracture properties
of these materials, where the size of plastic zone near the crack tip is comparable
to the crack length [10]. The crack tip opening displacement (CTOD), as an im-
portant characteristic parameter, was proposed for the determination of fracture
toughness [11]. Later, the path-independent 𝐽-integral was proposed as another
fracture parameter to characterize the stress and strain fields at crack tips in non-
linear materials [12].

While researchers studied the principles of fracture mechanics, others turned
to improve structural fracture resistance by relying on materials with high fracture
toughness. A lot of research has thus been conducted for designing materials with
enhanced fracture toughness [13–18], where a popular approach is to get inspi-
ration from nature [19]. For instance, bone [20] and nacre [21] are renowned for
their high fracture toughness, which can exceed that of their individual components
by orders of magnitude. By studying their toughening mechanisms [20, 22], it was
found that the complex hierarchical structures that span multiple length scales and
heterogeneous compositions play a fundamental role. Thus, several artificial mate-
rials that mimic these characteristics were proposed [13, 23–25]. However, due to
the numerous levels of their hierarchical structure, experimental tests and measure-
ments are difficult to realize. Moreover, their counterintuitive nature and complex
structure even render ineffective state-of-the-art computational tools for their anal-
ysis.
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Instead of using materials with high fracture toughness, an alternative is to
simply adjust the structural layout to mitigate fracture. While the engineer can use
the trial-and-error empirical design approach to avoid structural failure, computa-
tional tools have come a long way in obtaining designs that mitigate fracture or
other mechanisms that compromise structural integrity. Instead of performing ex-
periments, computational design provides a viable alternative to study structural
fracture behavior, and also cut cost, save time, and provide guidance for experi-
mental validation.

In general, computational design is composed of two components: structural
analysis and an optimization strategy for improving the design. For the former,
finite element methods (FEMs) have been widely used to predict structural behav-
ior, evaluate stress intensity factors (SIFs) and energy release rates (ERRs) [26–
28]. The simulation of discontinuous models (for instance, structures with cracks
and/or material interfaces) could be performed by means of the standard FEM with
fitted or geometry-conforming meshes, ensuring that the sides of finite elements
align to discontinuities [29]. However, the generation of matching discretizations
can be quite demanding [30], especially for 3-D problems. In addition, more effort
should be put into controlling the mesh quality as elements with bad aspect ratios
could deteriorate the approximation accuracy [31]. Moreover, for modeling evolving
discontinuities with intricate configurations, it is necessary to update the mesh to
match discontinuities at each step throughout the analysis, which could drastically
increase computational cost and thus must be avoided.

Motivated by these obstacles, enriched FEMs have been proposed to decouple
the geometric representation of discontinuities from finite element meshes. The
eXtended/Generalized Finite Element Method (X/GFEM), which is based on the
partition of unity method [32], handles discontinuous models with a background
mesh (usually structured) that does not conform to discontinuities [33–35]. En-
riched degrees of freedom (DOFs) are added to background mesh nodes, and their
corresponding enrichment functions are constructed to capture the discontinuous
primal and/or gradient fields. Although X/GFEM provides great flexibility in mod-
eling discontinuities, it also faces several challenges, such as the need for special
formulations for enforcing non-zero essential (Dirichlet) boundary conditions [36],
and keeping accuracy in “blending elements” (non-cut elements sharing enriched
DOFs) by choosing appropriate enrichment functions [37]. Since several enrichment
functions could result in ill-conditioned system matrices, Stable GFEM (SGFEM) has
been proposed to recover stability [38, 39].

An enriched FEM is always desired for both retaining the mesh-geometry de-
coupling and avoiding the aforementioned issues. The Interface-enriched General-
ized Finite Element Method (IGFEM) provides an alternative way that is devised for
problems with weak discontinuities [40, 41], such as multi-phase materials with a
discontinuous gradient field at phase interfaces. Contrary to X/GFEM, this method-
ology creates enriched nodes at the intersections between material interfaces and
element edges. With IGFEM, it is straightforward to prescribe non-homogeneous
essential boundary conditions on discontinuities [42]. Moreover, as enrichment
functions are constructed with Lagrange shape functions of cut subdomains (or
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integration elements), there are no blending elements existing. More importantly,
IGFEM is intrinsically stable with regard to the condition number of stiffness matri-
ces [43]. IGFEM has been successfully explored in many applications, such as mod-
eling fiber-reinforced composites and actively-cooled microvascular materials [41],
studying the multiscale damage evolution of heterogeneous adhesives [44], and
solving problems with curved material interfaces [45, 46]. Furthermore, IGFEM has
been introduced to gradient-based shape [47, 48] and topology [49, 50] optimiza-
tion. The Hierarchical Interface-enriched Finite Element Method (HIFEM) was also
proposed as the successor of IGFEM to handle multiple material interfaces within a
single element by means of hierarchical enrichments [51, 52].

As IGFEM only focuses on solving problems with material interfaces, the Dis-
continuity Enriched Finite Element Method (DE-FEM) was later developed to deal
with both weak and strong discontinuities by means of a unified formulation, where
discontinuous enrichment functions are also proposed to resolve the displacement
jumps along cracks [53]. DE-FEM was shown to perform well to solve the fracture
mechanics problems in 2-D. Therefore, the first challenge is to “Extend DE-FEM to
3-D” because an accurate finite element analysis of fracture is necessary for design-
ing structures that are resilient for fracture. However, since it is more complicated
to take care of the interactions between the background mesh and discontinuities
in 3-D, the second challenge lies on “Robust and efficient computational ge-
ometry routines”.

The second component of computational design is structural optimization, which
is typically classified into three categories: size, shape and topology optimization [54].
Size optimization focuses on geometrical parameters of the components within a
structure [55], such as cross-sectional areas of the elements in a truss structure. In
shape optimization the design variables are parameters used to describe the ge-
ometric layout [56], such as the coordinates of the surface nodes. Topology op-
timization (TO) finds an optimal distribution of material within a specified design
domain, without making any a priori assumptions about the geometric configura-
tion of the final design [54]. As the design space is less restricted, the extra freedom
in design usually gives topology optimization the edge over size and shape optimiza-
tion. Therefore, topology optimization that is considered as a powerful design tool
has been widely used in many contexts, including additive manufacturing [57–59],
compliant mechanisms [60–62], heat transfer [63, 64], acoustic-structure inter-
action [65, 66], and photonic and phononic crystals [67–69]. More importantly,
topology optimization has also been explored to improve structural fracture resis-
tance [70–77].

Most of works incorporating fracture criteria into topology optimization prede-
fine the location of cracks in the computational domain at the beginning. The opti-
mization algorithm is then used to update the structural topology for mitigating the
crack’s effect [70, 71, 75]. Rather than optimizing the topology of the structure with
cracks, the alternative is to design an adhesively bonded patch, which is fixed to
the structure for improving the structural fracture resistance [72]. However, cracks
nucleate at locations with high energy release rates, which could evolve during the
optimization. Therefore, a better design approach would assume that cracks could
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appear anywhere in the design domain. Nevertheless, it is also not needed to con-
sider the entire domain since cracks most likely will nucleate at material interfaces
or at the boundaries. However, significant finite element analyses are required to
model all potential cracks, which results in the third task about “Designing struc-
tures with tailored fracture resistance via using minimal computational
resource”. Since the evaluation of characteristic fracture parameters, such as SIFs
and ERRs, is highly dependent on the stress field, it is critical to obtain an accu-
rate stress approximation. However, stress overestimation could arise while using
enriched FEMs, in integration elements with bad aspect ratios and/or relatively tiny
areas, which could mislead the optimizer at best and hinder finding an optimized
solution at worse. Therefore, this leads to the last target for “Improving the ac-
curacy of the stress approximation”. Addressing these challenges forms the
core of this thesis.

1.2. Outline
This dissertation, which pursues a fundamental advancement in both numerical
modeling and topology optimization, is composed of four self-contained articles.
Chapter 2 describes a novel enriched finite element methodology for solving 3-D
fracture mechanics problems built upon IGFEM, named the Discontinuity Enriched
Finite Element Method (DE-FEM). The chapter gives a detailed explanation on DE-
FEM’s formulation, which can solve problems with both weak and strong discontinu-
ities. Moreover, the evaluation of enrichment functions for capturing the discontin-
uous displacement field is illustrated thoroughly, and an ordered tree data structure
for hierarchical bookkeeping is described in detail. While extending DE-FEM to han-
dle 3-D discontinuous models, one of the main challenges lies in performing the
computational geometry operations to create the enriched model (enriched nodes
and integration elements).

Chapter 3 introduces an efficient and robust object-oriented geometric engine
especially designed for unfitted/immersed/enriched methods. A detailed description
of the geometric engine is given together with pseudo-code, focusing on finding
intersections between element edges and discontinuities, creating integration ele-
ments, assigning elements to physical groups, and modifying the background mesh
data structure. Both implicit and explicit methods are introduced to represent the
geometric configuration of discontinuities. For the former, a level set approach is
applied to describe the morphology of material interfaces. The latter adopts geo-
metric entities, such as line segments, triangles and polygons, or a combination
thereof in the form of a lower-dimensional finite element mesh. In order to en-
sure robustness, the use of tolerance-based predicates is mitigated wherever pos-
sible. Regarding efficiency, a 𝑘-d tree and a dual graph data structure are used
to reduce the computational complexity of the geometric operations; an ordered
tree data structure is used to store cut and children elements and to efficiently
iterate over elements for the assembly of local arrays. In addition, the new dis-
cretizations generated from the geometric engine are used with IGFEM/DE-FEM for
solving problems with material interfaces/cracks.
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Chapter 4 deals with the challenge on improving the accuracy of the stress
approximation; the chapter introduces a stress improvement procedure (SIP) to
recover the discontinuous stress fields obtained from IGFEM. As material interfaces
split the background mesh element into subcells to which different material proper-
ties are assigned, the calculation domain, which is used to improve the stress distri-
bution adjoining to the interface, is carefully constructed by only considering a patch
of (integration) elements with the same material properties. It is shown that the
recovered stresses are more accurate than the directly calculated stresses. More-
over, IGFEM with the recovery technique provides more accurate approximations
than directly calculated stresses in standard FEM on matching meshes. More im-
portantly, this stress recovery procedure is fundamental for the following chapter
since an accurate stress field is required for the evaluation of energy release rate.

Chapter 5 proposes a novel topology optimization procedure to design structures
with tailored fracture resistance, where a level set function is used to represent the
structural topology and IGFEM that resolves the boundary is adopted to obtain the
structural response. Regarding practicality and computational costs, a formulation
derived from topological derivatives is used to evaluate the energy release rates of
all potential cracks, where only a single finite element analysis of the uncracked
domain is required. This procedure significantly reduces the computational cost
needed throughout the optimization. An aggregate function is used to group energy
release rates into a single objective, and the corresponding sensitivity associated
with design variables is derived analytically by using an adjoint formulation. Results
show the proposed approach performs well in minimizing the maximum energy
release rate and in introducing fracture resistance anisotropy to the final design.

Finally, the conclusions of this dissertation are presented in Chapter 6. Recom-
mendations for future work are also provided at the end of this dissertation.
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2
A Stable Discontinuity-Enriched Finite

Element Method for 3-D Problems
containing Weak and Strong

Discontinuities

An enriched finite element technique, named the Discontinuity-Enriched Fi-
nite Element Method (DE-FEM), was introduced for solving problems with
both weak and strong discontinuities in 2-D. In this mesh-independent pro-
cedure, enriched degrees of freedom are added to new nodes collocated at
the intersections between discontinuities and the sides of finite elements of
the background mesh. In this chapter we extend DE-FEM to 3-D and describe
in detail the implementation of a geometric engine capable of handling inter-
actions between discontinuities and the background mesh. Several numer-
ical examples in linear elastic fracture mechanics demonstrate the capabil-
ity and performance of DE-FEM in handling discontinuities in a fully mesh-
independent manner. We compare convergence properties and the ability to
extract stress intensity factors with standard FEM. Most importantly, we
show DE-FEM provides a stable formulation with regards to the condition
number of the resulting system stiffness matrix.

This chapter has been published in Computer Methods in Applied Mechanics and Engineering, 355,
1097-1123 (2019).
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2.1. Introduction
Enriched finite element methods have fundamentally changed the modeling of prob-
lems containing discontinuities. By means of enrichment functions that incorporate
the required field jumps, these methods are able to completely decouple the geo-
metrical description of discontinuities from the underlying finite element (FE) dis-
cretization, eliminating the need for creating matching or discontinuity-conforming
meshes. The Discontinuity-Enriched Finite Element Method (DE-FEM), proposed by
Aragón and Simone for 2-D problems [1], uses a single formulation to model prob-
lems containing both weak and strong discontinuities (the 𝐶ዅኻ−continuous field) by
placing enriched degrees of freedom (DOFs) only to nodes created along discon-
tinuities. This new versatile procedure, which has several advantages over other
commonly used enriched formulations, is demonstrated in this manuscript for 3-D
problems in elastostatics.

Standard FEM can be used to model problems with discontinuities, but it requires
a matching discretization where the sides of elements align to material interfaces
or cracks. When dealing with fracture problems, mesh adaptivity in the neighbor-
hood of crack tips is usually needed to improve the FE approximation properties at
the expense of a more complex mesh creation. Alternatively, the stress singularity
can be captured by using special elements arranged concentrically at the crack tip,
e.g., quadrilateral finite elements where two nodes in parametric space map to the
crack tip location in physical space [2], or quarter-point finite elements, where the
mid-size nodes of quadratic Lagrange finite elements are moved closer to the crack
tip [3]. Although these special meshes can capture the stress singularity, generat-
ing them is a time-consuming process. Creating matching meshes in general can be
quite challenging depending on the morphology of the problem, particularly because
of the strict conditions on mesh quality that are required—elements with bad aspect
ratios which could reduce the approximation accuracy are not allowed [4]; more-
over, robustness is still questionable, especially for 3-D FE meshes, as issues remain
in generating meshes that correctly match boundaries [5]. Numerical techniques
such as Universal Meshes [6] and the Conforming to Interface Structured Adaptive
Mesh Refinement (CISAMR) [7] have been proposed to modify meshes locally to
discontinuities. These methods can therefore guarantee adequate discretizations for
the analysis by ensuring elements with proper aspect ratios—which are crucial for
recovering accurate gradient fields—while avoiding the need for global remeshing.

The eXtended/Generalized Finite Element Method (X/GFEM) [8–10] solves the
aforementioned shortcomings in an elegant manner by enriching the approximation
space with functions that can reproduce the discontinuities [11, 12]. In X/GFEM, the
discretization is then decoupled from discontinuities by detecting cut elements, and
by adding enriched DOFs to the standard mesh nodes of cut elements so that dis-
continuities can be resolved by the formulation. Although X/GFEM provides great
flexibility in the choice of underlying FE discretizations, many properties that are
usually taken for granted in standard FEM are lost, including the physical meaning
of DOFs (unless shifting is used [13]), the straightforward imposition of essential
(Dirichlet) boundary conditions [14, 15], and most importantly, the stability—here
understood as the condition number of the resulting system matrix, which in stan-
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dard FEM scales with mesh size ℎ as 𝒪 (ℎዅኼ). Indeed, several enrichment functions
could result in an unstable formulation where the condition number of the sys-
tem matrix grows much faster than that of standard FEM. Pursuing Stable GFEM
(SGFEM) that is devoid of this issue has been the focus of recent research in the
field [16], with SGFEM proposed for weak discontinuities in [17, 18] and for strong
discontinuities in [19–21]. Moreover, depending on the type of enrichment functions
used, special techniques are needed in X/GFEM to prevent the loss of accuracy in
blending elements, i.e., non-cut elements that share enriched DOFs [22–24]. Fi-
nally, the computer implementation of X/GFEM is also more involved than that of
standard FEM [25] since a variable number of DOFs per mesh node is required, and
quadrature rules used depend on the type of enrichment functions—for fracture
problems, for instance, elements with singular enrichments require special integra-
tion techniques [26].

Within the realm of enriched formulations, the Discontinuity-Enriched Finite El-
ement Method presents a new paradigm for the mesh-independent analysis of
weak and strong discontinuities [1]. DE-FEM can be seen as a technique that com-
bines X/GFEM’s most salient mesh-independent property—by decoupling the FE
discretization from the problem’s complex geometric features—while keeping the
attractive properties of standard FEM. Indeed, in DE-FEM enrichment functions van-
ish at mesh nodes by construction, and as a consequence DOFs associated to the
latter keep their physical interpretation, e.g., displacement or temperature at the
node location. In addition, essential boundary conditions can be prescribed directly
as in standard FEM—both standard and enriched DOFs [27]. The computer imple-
mentation is also straightforward since the new enriched nodes are added to the
same data structure used to store the original mesh nodes, and their corresponding
enriched DOFs are retrieved from the solution vector in the same way as standard
DOFs. Because DE-FEM was designed for simplicity in the formulation (and thus
in the implementation), enrichment functions that capture the stress singularities
along crack fronts are not used (although they may also be added). As a result,
convergence rates for singular problems are not optimal.

In the absence of strong discontinuities, the method simplifies to the Interface-
enriched Generalized Finite Element Method (IGFEM) [28] or to the Hierarchical
Interface-enriched Finite Element Method (HIFEM) [29], which were devised for
weak discontinuities alone [30–36]. In fact, HIFEM builds on IGFEM to resolve mul-
tiple weak discontinuities within a single element—and even intersecting disconti-
nuities — by means of a hierarchical construction of enrichment functions. Given the
comprehensive literature on the study of weak discontinuities with IGFEM/HIFEM,
here we devote ourselves to problems containing strong discontinuities and to their
interactions with weak discontinuities.

DE-FEM was first proposed for analyzing 2-D problems in elastostatics. In this
chapter we extend DE-FEM to 3-D, and we discuss in detail its computer imple-
mentation in a displacement-based finite element code. In particular, we discuss
algorithmic considerations for a 3-D geometric engine that handles the interactions
between the background (original) mesh and material interfaces and/or cracks. By
means of a discontinuous patch test, we demonstrate DE-FEM can generate two
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independent kinematic fields as long as proper care is taken in the construction of a
conforming integration mesh. A convergence study then demonstrates the accuracy
and convergence rates of the method, which is then used to extract stress intensity
factors (SIFs). Most importantly, we show that DE-FEM is a stable formulation, i.e.,
the condition number of the stiffness matrix grows at roughly the same rate as that
of standard FEM. Finally, we showcase DE-FEM in the challenging problem of inter-
secting weak and strong discontinuities, which is handled effortlessly by means of
the hierarchical implementation   la HIFEM.

2.2. Formulation
Consider the elastostatics boundary value problem for a cracked body Ω ⊂ ℝኽ
with closure Ω and boundary 𝜕Ω ≡ Γ = Ω ⧵ Ω. The body is subjected to a non-
homogeneous essential boundary condition (BC) �̄� ∶ Γu and to a traction BC �̄� ∶ Γt,
the latter having a zero value along a crack Γc ⊂ Γt, as shown in Figure 2.1. The
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Figure 2.1: A 3-D body  containing a traction-free crack ጁc (left); Prescribed Dirichlet and Neumann
boundary conditions, �̄� on ጁu and �̄� on ጁt, respectively, are visualized on a plane  that slices the domain
with local coordinates {𝒆ᖣ።} (right).

abstract form of the weak (variational) formulation is: Given the displacement field
𝒖 = 𝒗 + �̃�, find 𝒗 ∈ 𝒱ኺ (Ω) such that

𝐵 (𝒗,𝒘) = 𝐿 (𝒘) − 𝐵 (�̃�, 𝒘) ∀𝒘 ∈ 𝒱ኺ, (2.1)

where 𝐿 (⋅) and 𝐵 (⋅) are the linear and bilinear forms, respectively, �̃� is a vector-
valued function that satisfies �̃�|ጁu

= �̄�, and 𝒱ኺ is the vector-valued function space
with components in ℋኻ

ኺ (Ω) (Sobolev space that satisfies homogeneous essential
boundary conditions on Γu). The linear and bilinear forms are given, respectively,
by

𝐿 (𝒘) = ∫

𝒃 ⋅ 𝒘 dΩ +∫

ጁt

�̄� ⋅ 𝒘 dΓ. (2.2)
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and

𝐵 (𝒗,𝒘) = ∫

𝝈(𝒗) ∶ 𝜺(𝒘) dΩ, (2.3)

In Equation (2.2), 𝒃 ∶ Ω → ℝኽ is the body force, and in Equation (2.3) the stress
tensor 𝝈 ∶ Ω → ℝኽ × ℝኽ obeys Hooke’s law on the linearized strain, i.e., 𝝈 = C𝜺,
with 𝜺(𝒗) = ኻ

ኼ (∇𝒗 + ∇𝒗
⊺). In order to solve the finite-dimensional form of Equa-

tion (2.1), the domain is discretized into finite elements 𝑒። (simplexes in particular)

such that ∪።𝑒። = Ω
፡
≈ Ω. Following a Bubnov-Galerkin approach, both the trial

solution and the weight function are chosen from the DE-FEM space:

𝒮፡፞ = { 𝒗፡ (𝒙)| 𝒗፡ (𝒙) = ∑
።∈᎖፡

𝑁።(𝒙)𝑼።
⏝⎵⎵⎵⏟⎵⎵⎵⏝
standard FEM

+
weak

⏜⎴⎴⎴⏞⎴⎴⎴⏜∑
።∈᎖፰

𝜓።(𝒙)𝜶። +
strong

⏜⎴⎴⎴⏞⎴⎴⎴⏜∑
።∈᎖፬

𝜒።(𝒙)𝜷።
⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝

enrichments

, 𝑼። , 𝜶። , 𝜷። ∈ ℝኽ},

(2.4)
where the standard FE space (first term) is augmented by an enriched space with
special enrichment functions that can capture the jump in the gradient (weak term)
and the primal (strong term) fields. In the standard FEM term, 𝜄፡ is the index set
containing all original mesh nodes; 𝑁። denotes the 𝑖th Lagrange shape function
and 𝑼። the corresponding standard DOFs. In the enriched term, 𝜄፰ and 𝜄፬ are in-
dex sets of enriched nodes created along discontinuities. For weak discontinuities,
these nodes are associated with enrichment functions 𝜓። and corresponding en-
riched DOFs 𝜶።. In addition to these, strong discontinuities add a new set of nodes
associated with enrichment functions 𝜒። and enriched DOFs 𝜷።.

In order to have an arbitrary number of discontinuities interact with a single el-
ement, we follow the work of Soghrati [29]. The procedure is schematically shown
in Figure 2.2, where an element 𝑒። is split by two discontinuities. The first discon-

𝑒።

𝑒(ኻ)ኻ
𝑒(ኻ)ኼ

𝑒(ኻ)ኽ

𝑒(ኼ)ኻ
𝑒(ኼ)ኽ

𝑒(ኼ)ኼ

𝑒።
𝑒(ኻ)ኻ
𝑒(ኼ)ኻ
𝑒(ኼ)ኼ
𝑒(ኼ)ኽ

𝑒(ኻ)ኼ
𝑒(ኻ)ኽ

...

Figure 2.2: Schematic representation of the hierarchical creation of integration subdomains for an ele-
ment ።፞ split by two discontinuities (ፃ  ኼ). The hierarchical information is stored in an ordered tree
that is also used for constructing enrichment functions during the numerical quadrature of local element
arrays.



2

18

tinuity creates a first level of integration subdomains, and these in turn become
the parent elements for a second discontinuity. These relationships are stored in an
ordered tree data structure, which is used during numerical quadrature to build the
enrichment functions in a hierarchical manner. Therefore, for the 𝑒th cut element,
the approximation 𝒖፡ ∈ 𝒮፡፞ can be written as

𝒖፡(𝒙) = ∑
።∈᎖፡

𝑁። (𝒙)𝑼። +∑
፤∈፡

∑
።∈᎖፰

𝜓፤። (𝒙)𝜶፤። + ∑
፤∈፡፬

∑
።∈᎖፬

𝜒፤።(𝒙)𝜷፤። , (2.5)

where ℎ = {1,… , 𝐷} is the index set used to represent 𝐷 discontinuities (both weak
and strong) that interact with the element, and ℎ፬ ⊆ ℎ only includes the indices for
strong discontinuities. The formulation in uncut elements remains the same as in
standard FEM, i.e., only the first term in Equation (2.5) is used.

For the sake of simplicity, we denote by 𝝋 ≡ [𝑁ኻ… 𝜓ኻ… 𝜒ኻ…] = [𝑵 𝝍 𝝌]
a vector that stacks shape and enrichment functions that are non-zero on the 𝑒th
element and by 𝑩 ≡ 𝝏𝝋 = [𝝏𝑵 𝝏𝝍 𝝏𝝌] the strain-displacement matrix, which is
obtained by applying to 𝝋 the differential operator 𝝏:

𝝏 ≡
⎡
⎢
⎢
⎢
⎣

Ꭷ
Ꭷ፱ 0 0 Ꭷ

Ꭷ፲ 0 Ꭷ
Ꭷ፳

0 Ꭷ
Ꭷ፲ 0 Ꭷ

Ꭷ፱
Ꭷ
Ꭷ፳ 0

0 0 Ꭷ
Ꭷ፳ 0 Ꭷ

Ꭷ፲
Ꭷ
Ꭷ፱

⎤
⎥
⎥
⎥
⎦

⊺

. (2.6)

The element local stiffness matrix and the nodal load vector are given, respectively,
by

𝒌፞ = ∫
፞
𝑩⊺C𝑩 d𝑒 and 𝒇፞ = ∫

፞
𝝋⊺𝒃 d𝑒 + ∫

Ꭷ፞
𝝋⊺�̄� d𝜕𝑒, (2.7)

where C is the constitutive matrix given by

C = [𝜆𝟙 + 𝜇I 0
0 𝜇I

] , (2.8)

𝜆 and 𝜇 are the Lamé constants, and 𝟙 and I are the unity and identity matrices,
respectively. Details about the construction of 𝒌፞ and 𝒇፞, together with pseudo-
code for constructing the enrichment functions in a hierarchical manner, are given
later in Chapter 2.4.

The finite-dimensional form obtained by taking into account all finite elements

∑
፞∈፡

𝐵፞ (𝒗፡ , 𝒘፡) = ∑
፞∈፡

𝐿፞ (𝒘፡) − ∑
፞∈፡

𝐵፞ (�̃�፡ , 𝒘፡) ∀𝒘፡ ∈ 𝒮፡፞ , (2.9)

leads to an augmented system of linear equations

[
𝑲𝒖𝒖 𝑲𝒖𝜶 𝑲𝒖𝜷
𝑲⊺𝒖𝜶 𝑲𝜶𝜶 𝑲𝜶𝜷
𝑲⊺𝒖𝜷 𝑲⊺𝜶𝜷 𝑲𝜷𝜷

]
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

𝑲

[
𝑼
𝜶
𝜷
] = [

𝑭𝒖
𝑭𝜶
𝑭𝜷
]

⏝⏟⏝
𝑭

. (2.10)
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In Equation (2.10) we made explicit the partition of global arrays into standard and
enriched parts. Aragón and Simone [1] discuss the formulation in more detail for
2-D elastostatics, considering also the case of cohesive tractions acting on cracks.

2.3. Geometric engine
The complexity of mesh generation in standard FEM is transferred in DE-FEM to a
geometric engine that takes care of the interaction between a background mesh
(usually structured) and the discontinuities. The engine needs to be designed for
handling complex scenarios with multiple discontinuities, as shown for instance in
Figure 2.3, and to handle not only cracks (strong discontinuities) but also material
interfaces (weak discontinuities).

(a) (b) (c) (d)

Figure 2.3: Configurations considered when designing the geometric engine include (a) partially cut, (b)
internal, (c) irregular, and (d) multiple discontinuities.

The operations of the geometric engine are summarized in the flow chart of
Figure 2.4. The engine takes as input the background mesh and the set of discon-
tinuities. In this work, FE models are discretized using linear tetrahedra, cracks are
described explicitly through planar regions (analogous to line segments in 2-D), and
material interfaces are described implicitly through level set functions.

The engine first loops over discontinuities and then loops over mesh elements
for each discontinuity. Tetrahedral elements cut by the first discontinuity are de-
tected. The spatial locations of new enriched nodes is then determined by per-
forming intersection tests between the discontinuity and element sides. At these
locations we create the corresponding number of enriched nodes depending on the
type of discontinuity; one enriched node per intersection (associated with weak
DOFs) is generated if the discontinuity is weak. If the discontinuity is strong, two
enriched nodes are created per intersection (each associated with either weak or
strong DOFs) unless the node is at the crack front (associated with weak enriched
DOFs only). These enriched nodes, together with those of the original mesh, are
later used to create tetrahedral integration elements.

It is worth noting that the engine described here would not be efficient when
dealing with a great number of discontinuities. Conducting intersection tests for
every element-discontinuity pair leads to the so called all-pairs weakness, which
results in an algorithm of complexity 𝒪 (𝐷𝐸) for 𝐸 mesh elements and 𝐷 discontinu-
ities. The efficiency of the interaction can be greatly improved by performing heuris-
tics on bounding boxes. Furthermore, space partitioning techniques can speedup
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Mesh and discontinuities

Loop over discontinuities

Loop over elements

Intersected?

Create enriched nodes
and children elements

Store new data

Last element?

Last discontinuity?

Update the mesh

𝑦𝑒𝑠

𝑦𝑒𝑠

𝑦𝑒𝑠

𝑛𝑜

𝑛𝑜

𝑛𝑜

Figure 2.4: Geometric engine’s procedure for handling models with multiple discontinuities hierarchically.

finding elements intersected by discontinuities. Among these one could use octrees,
𝑘-d trees, R∗-trees, and grids [37]. Finally, these techniques could be supplemented
with fast marching methods and graph traversal algorithms to look only for neigh-
boring elements of already cut elements.

A crucial task of the geometric engine is to determine the location of crack fronts.
Figure 2.5 shows that a planar region, which represents a 3-D crack, intersects with
a tetrahedral element partially. In order to determine the location of nodes along

crack front

Figure 2.5: The enriched nodes along the crack front are generated when a linear tetrahedral element
is split by a crack partially.
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the crack front, intersections tests are performed between the crack and all faces of
the tetrahedron. Numerical precision is of major concern when dealing with floating
point arithmetic, especially for determining whether a point lies on an edge or on a
face. In this work we adopt a tolerance that depends on the mesh size ℎ for finding
intersections. Other operations performed by the geometric engine include creating
groups of nodes and elements that are associated with discontinuities (these are
used for assigning the correct material properties), generating integration elements,
and updating the original mesh data structure.

2.3.1. Creation of integration elements
Although it is not strictly necessary, creating an integration tetrahedral mesh is con-
venient for four reasons: i) Lagrange shape functions in integration tetrahedra are
used to construct the enrichment functions. Storing integration elements in an or-
dered tree data structure further facilitates the construction of enrichment functions
at each level of hierarchy—the resulting recursive quadrature algorithm is general
and its computer implementation is straightforward; ii) By creating integration ele-
ments at either side of the discontinuities we ensure the enrichment functions are
smooth, and thus they can be integrated with the minimum number of integration
points (parent shape and enrichment functions are linear, and thus their corre-
sponding derivatives are constant); iii) Tetrahedral elements are the simplest 3-D
elements to split, so they ease the handling of multiple discontinuities within a sin-
gle parent mesh element; and iv) Integration elements help in the post-processing
stage so that results can be visualized correctly. It is worth noting that the creation
of this integration mesh is a procedure bound locally to discontinuities, and as such
it is completely different than performing remeshing.

Efficient algorithms for splitting a tetrahedron is one of our main concerns. There
are four distinct configurations that result from completely splitting a tetrahedron
with a planar region [34], as shown in Figures 2.6(a)-(d): (𝑎) two tetrahedra;
(𝑏) a tetrahedron and a pyramid; (𝑐) a tetrahedron and a prism; and (𝑑) two
prisms. A pyramid can be considered to be composed by two tetrahedra (Fig-
ure 2.6(e)). Therefore, we can get three new tetrahedral elements in case (𝑏). Nor-
mally, tetrahedralizing a prism (Figure 2.6(f)) can produce three tetrahedra under
the premise that any two diagonals of three quadrilateral sides share the same ver-
tex. However, in the case that the diagonals of the body are already prescribed (for
example by the fact that neighboring elements have been tetrahedralized), it might
be impossible to create new tetrahedra directly. This situation is alleviated by adding
an extra vertex (called Steiner point) inside the prism (see Figure 2.6(g)). Then, this
prism can be split into eight tetrahedra that share this vertex.

While fully splitting a tetrahedron into several tetrahedra can be accomplished by
using basic splitting rules [38], the complexity of the geometric operations increases
rapidly when dealing with partial splits (see Figure 2.7) or when a crack resides
completely inside a tetrahedron. The latter situation could be alleviated by refining
the mesh, but this in turn increases the computational cost. Hence, in this work
we use constrained Delaunay tetrahedralization for creating new tetrahedral sub-
domains [39].
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(a) (b) (c) (d)

(e) (f)

(g)

Figure 2.6: Configurations that result from splitting completely a tetrahedron: (a) two tetrahedra; (b)
one tetrahedron and one pyramid; (c) one tetrahedron and one prism; and (d) two prisms. One of
possible situations of splitting (e) a pyramid into two tetrahedra and (f) a prism into three tetrahedra.
(g) An untetrahedralizable case for subdividing a prism, which requires an extra vertex (called Steiner
point) to create eight tetrahedra.

Figure 2.7: Example of a partially split tetrahedron, where six new tetrahedra are created.

Since each background element intersected by discontinuities is tetrahedralized
in sequence, the constrained Delaunay algorithm is needed to avoid the creation of
a non-conforming integration mesh, which as explained later has important conse-
quences. Figure 2.8 shows such a case, where two contiguous tetrahedral elements
split by a discontinuity could have sub-tetrahedra with non-matching faces. In other
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words, there exists the possibility of creating integration tetrahedra in element 𝑒፦
with triangular faces (1, 2, 4) and (2, 3, 4), whereas those tetrahedra in element 𝑒፧
could have faces (1, 2, 3) and (1, 3, 4). In order to avoid this situation, the con-
strained Delaunay function sets the faces of already created integration elements
as the constraints for new elements sharing the same face. It should be emphasized
that we are not conducting remeshing since the partition of unity of the background
mesh is kept intact, and constrained Delaunay is only used to locally generate inte-
gration elements; because these are just used for the numerical quadrature, their
requirements in terms of aspect ratios are less strict than those needed for Delaunay
meshes.

𝑒፦
𝑒፧

1

2

3

4

Γc

Figure 2.8: Two contiguous elements ፞፦ and ፞፧ are split by a discontinuity ጁc. By not taking proper
care, it is possible that a non-conforming integration mesh below the discontinuity is created, whereby
integration tetrahedra at one side of surface (1,2,3,4) have faces (1,2,4) and (2,3,4), and at the other
side (1,2,3) and (1,3,4).

The discussion above deals only with volumetric elements. It should be noted,
however, that lower-dimensional elements (3-node triangles and 2-node lines) are
also needed at times, e.g., to apply boundary conditions—consider a distributed
pressure applied to triangular faces of tetrahedra split by a crack. Therefore, lower-
dimensional elements are also extracted from the created volumetric integration
elements.

2.3.2. Hierarchical bookkeeping
An ordered tree data structure is used to store the relationships between original
(parent) and new (children) elements. This hierarchical structure later facilitates the
calculation of weak and strong enrichment functions during the numerical quadra-
ture of local element arrays. Children integration elements can in turn become par-
ents of new children elements deeper in the hierarchy created by subsequent dis-
continuities.

The procedure is illustrated in Figure 2.9 for a tetrahedral element 𝑒። cut by
two discontinuities Γc1 and Γc2. This mesh element becomes the parent element
for integration elements generated at the first hierarchical level by the first discon-
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tinuity Γc1. These children elements in turn become the parents for newly created
integration elements at the second hierarchical level by a second discontinuity Γc2.
The final hierarchical structure is also illustrated in Figure 2.9.

𝐿𝑒𝑣𝑒𝑙 0 𝐿𝑒𝑣𝑒𝑙 1 𝐿𝑒𝑣𝑒𝑙 2

𝑒።

Γc1
Γc2

𝑒(ኻ)ኻ

𝑒(ኻ)ኼ

𝑒(ኻ)ኽ
𝑒(ኻ)ኾ

𝑒(ኼ)ኻ
𝑒(ኼ)ኼ

𝑒(ኼ)ኽ
𝑒(ኼ)ኾ

𝑒(ኼ)

𝑒(ኼ)ዀ 𝑒(ኼ)

𝑒(ኼ)ዂ
𝑒(ኼ)ዃ

𝑒(ኼ)ኻኺ

𝑒።
𝑒(ኻ)ኻ
𝑒(ኻ)ኼ
𝑒(ኻ)ኽ
𝑒(ኼ)ኻ
𝑒(ኼ)ኼ
𝑒(ኼ)ኽ
𝑒(ኼ)ኾ

𝑒(ኻ)ኾ
𝑒(ኼ)
𝑒(ኼ)ዀ
𝑒(ኼ)
𝑒(ኼ)ዂ
𝑒(ኼ)ዃ
𝑒(ኼ)ኻኺ

...

Figure 2.9: Mesh tetrahedral element ።፞ intersected first by ጁc1 (which creates the first level of integration
elements) and then by ጁc2 (which creates the second level). The generated children elements are stored
in an ordered tree hierarchical data structure (right).

This procedure can be used to create integration elements for mesh elements
split by an arbitrary number of discontinuities. An element split by 𝑛 discontinuities
has 𝑛 + 1 hierarchical levels in the tree, and this tree has the depth of the element
split with the most number of discontinuities.

2.4. Enrichment functions
In order to calculate the element stiffness matrix 𝒌፞ and force vector 𝒇፞ in Equa-
tion (2.7), we need to evaluate shape and enrichment functions, together with their
derivatives. Lagrange shape functions 𝑵 are obtained as in standard FEM, follow-
ing an iso-parametric formulation. Here we focus on the evaluation of enrichment
functions 𝝍 and 𝝌.

2.4.1. Single discontinuity
Consider a tetrahedral element 𝑒። intersected by a single crack Γc, as shown in Fig-
ure 2.10. Because the element is split by a single discontinuity, all children elements



2.4. Enrichment functions

2

25

created will be leaves (integration elements) in the ordered tree. The orientation
of the crack Γc, given by its normal 𝒏, is used to define positive and negative
regions. Three intersection points, labeled 𝒙። , 𝒙፣, and 𝒙፤, are determined by the
geometric engine. Enriched nodes are then created at these locations and denoted
with the same symbols henceforth for simplicity1. A positive (negative) sign super-
script is used if the node is referred in the positive (negative) side of the crack. In
addition, Γc subdivides 𝑒። into four children (integration) elements such that 𝑒(ኻ)ኻ
lays on at the positive side, and 𝑒(ኻ)ኼ , 𝑒(ኻ)ኽ , and 𝑒(ኻ)ኾ on the negative side. Enrichment
functions will be constructed with the aid of standard Lagrange shape functions in
these integration elements.

𝑒።

𝒙።

𝒏

𝒙፣
𝒙፤Γ

𝐿𝑒𝑣𝑒𝑙 0 𝐿𝑒𝑣𝑒𝑙 1

𝒙ኾ

𝒙ኻ

𝒙ኼ

𝒙ኽ

𝑒(ኻ)ኻ

𝒙ኾ

𝒙።ዄ
𝒙፣ዄ

𝒙፤ዄ

𝑒(ኻ)ኼ

𝒙ኻ

𝒙።ዅ

𝒙፣ዅ
𝒙፤ዅ

𝑒(ኻ)ኽ 𝑒(ኻ)ኾ

𝑎።

𝑏።

Figure 2.10: Three enriched nodes 𝒙። , 𝒙፣ and 𝒙፤ are created when a tetrahedral element ።፞ is subdivided
into four children element ፞(ኻ)ኻ , ፞(ኻ)ኼ , ፞(ኻ)ኽ and ፞(ኻ)ኾ by one discontinuity ጁ.

Now consider the leaf integration element 𝑒(ኻ)ኻ on the positive side, which has
three enriched nodes 𝒙።ዄ , 𝒙፣ዄ , and 𝒙፤ዄ . The Lagrange shape functions in this ele-
ment, i.e., 𝑁(ኻ)᎖ዄ (𝒙), 𝜄 = {𝑖, 𝑗, 𝑘}, are used to create the weak and strong enrichment
functions acting on this element. These functions can be expressed as

𝜓።ዄ = 𝑤።ዄ𝑁(ኻ)።ዄ (𝒙), 𝜓፣ዄ = 𝑤፣ዄ𝑁(ኻ)፣ዄ (𝒙), 𝜓፤ዄ = 𝑤፤ዄ𝑁(ኻ)፤ዄ (𝒙), (2.11)

and

𝜒።ዄ = 𝑠።ዄ𝑁(ኻ)።ዄ (𝒙), 𝜒፣ዄ = 𝑠፣ዄ𝑁(ኻ)፣ዄ (𝒙), 𝜒፤ዄ = 𝑠፤ዄ𝑁(ኻ)፤ዄ (𝒙), (2.12)

where 𝑤᎖ዄ and 𝑠᎖ዄ are weak and strong scaling (weight) factors, respectively, yet
to be determined.
1As mentioned earlier, in the computer implementation it is convenient to create double nodes at each
location when dealing with strong discontinuities; weak DOFs are associated to one of the nodes and
strong DOFs to the other.
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Similarly, for a children element on the negative side, such as 𝑒(ኻ)ኼ , weak and
strong enrichment functions acting on the element are given by

𝜓።ዅ = 𝑤።ዅ𝑁(ኻ)።ዅ (𝒙), 𝜓፣ዅ = 𝑤፣ዅ𝑁(ኻ)፣ዅ (𝒙), 𝜓፤ዅ = 𝑤፤ዅ𝑁(ኻ)፤ዅ (𝒙), (2.13)

and

𝜒።ዅ = 𝑠።ዅ𝑁(ኻ)።ዅ (𝒙), 𝜒፣ዅ = 𝑠፣ዅ𝑁(ኻ)፣ዅ (𝒙), 𝜒፤ዅ = 𝑠፤ዅ𝑁(ኻ)፤ዅ (𝒙), (2.14)

where 𝑤᎖ዅ and 𝑠᎖ዅ are the 𝜄ዅth enriched node’s scaling factors for the negative side,
and 𝑁(ኻ)᎖ዅ (𝒙) are the Lagrange shape functions of this integration element. In order
to enforce continuity of the weak enrichment function, the weak scaling factors
in both sides are given by the same expression (i.e., 𝑤᎖ዄ = 𝑤᎖ዅ = 𝑤᎖). For the
weak scaling, we use a theoretically derived optimal function in order to preserve
stability in the formulation [40]: 𝑤᎖ = √2𝜁᎖(1 − 𝜁᎖), where 0 ≤ 𝜁᎖ ≤ 1 is the relative
length between the enriched and original nodes measured along the corresponding
element edge. For enriched node 𝒙።, for instance, 𝜁። is either 𝑎።/(𝑎።+𝑏።) or 𝑏።/(𝑎።+
𝑏።) (since 𝑤᎖ is symmetric), where 𝑎። , 𝑏። are the Euclidean distances between 𝒙። and
𝒙ኾ, 𝒙ኻ measured along the edge of the parent tetrahedron (see Figure 2.10). The
strong scaling factors are responsible for the field jump. Similarly to DE-FEM in
2-D [1], we choose the strong scaling factors so that the field jump has a unit
magnitude, i.e., J𝜒᎖K = 𝜒|𝒙᎖ዄ − 𝜒|𝒙᎖ዅ = 1. As a result, the associated strong DOFs 𝜷᎖
physically represent the displacement jump at 𝒙᎖. For example, the strong scalings
corresponding to the enriched node 𝒙። are accomplished by setting 𝑠።ዄ = −𝜁። and
𝑠።ዅ = 1− 𝜁።. The weak and strong scaling factors for enriched nodes 𝒙፣ and 𝒙፤ are
obtained analogously.

For enriched node 𝒙።, which is connected to integration elements 𝑒(ኻ)ኻ and 𝑒(ኻ)ኼ ,
the enrichment functions 𝜓። and 𝜒። are:

𝜓። = {
𝑤።𝑁(ኻ)።ዄ (𝒙) for𝒙 ∈ 𝑒(ኻ)ኻ
𝑤።𝑁(ኻ)።ዅ (𝒙) for𝒙 ∈ 𝑒(ኻ)ኼ

, (2.15)

and

𝜒። = {
𝑠።ዄ𝑁(ኻ)።ዄ (𝒙) for𝒙 ∈ 𝑒(ኻ)ኻ
𝑠።ዅ𝑁(ኻ)።ዅ (𝒙) for𝒙 ∈ 𝑒(ኻ)ኼ

, (2.16)

respectively. Figure 2.11 shows a schematic representation of weak and strong
enrichment functions neglecting scaling factors. For modeling a discontinuous field
gradient, the value of weak enrichment function 𝜓። arrives maximum at 𝒙።, and
decreases linearly to 0 at other element nodes (both standard and enriched nodes).

It is worth mentioning that in DE-FEM the condition J𝜒᎖K = 𝜒|𝒙᎖ዄ − 𝜒|𝒙᎖ዅ =
1, 𝜄 = {𝑖, 𝑗, 𝑘} is fulfilled by using the partition of unity property of the background
mesh element [1]. Specifically, for enriched node 𝒙።, Equation (2.16) is equivalent
to using one parent nodal shape function on one side of the discontinuity and the
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negative of another parent nodal shape function on the other side. To wit,

𝜒። = {
𝑁(ኺ)ኻ (𝒙) for𝒙 ∈ 𝑒(ኻ)ኻ

−𝑁(ኺ)ኾ (𝒙) for𝒙 ∈ 𝑒(ኻ)ኼ
, (2.17)

where the superscript (0) is used to indicate that the function belongs to the parent
mesh element.

𝜓።

𝒙። Γ 𝒙።

𝜒።

Figure 2.11: Weak and strong enrichment functions Ꭵ። and Ꭴ። of enriched node 𝒙። acting on a triangular
surface of a split tetrahedron.

2.4.2. Multiple discontinuities
We now consider the more general situation where a mesh element is cut by more
than one discontinuity. For constructing enrichment functions in a hierarchical way,
we traverse the tree starting from leaf elements. Consider the case shown in Fig-
ure 2.12, which shows a mesh element crossed by two non-intersected disconti-
nuities. The figure shows the hierarchical relationship between 𝑒። (mesh element),

𝑒።

𝒙። 𝒙፣
𝒙፤

𝒙ኻ
𝒙ኼ

𝒙ኽ

𝒙ኾ
𝑒(ኻ)ኾ

𝒙ኻ
𝒙ኼ

𝒙ኽ

𝒙፤
𝒙፥

𝒙፦

𝒙፪
𝒙፩

𝑒(ኼ)

𝒙፤

𝒙ኻ
𝒙፪ዄ

𝒙፩ዄ

𝑒(ኼ)ዀ

𝒙፤

𝒙፪ዄ
𝒙፥ዄ
𝒙፩ዄ

𝑒(ኼ)

𝒙ኼ𝒙፪ዅ
𝒙፩ዅ

𝒙፥ዅ

𝐿𝑒𝑣𝑒𝑙 0 𝐿𝑒𝑣𝑒𝑙 1 𝐿𝑒𝑣𝑒𝑙 2

Figure 2.12: The hierarchical relationship between the original parent element ።፞, the element ፞(ኻ)ኾ
generated by the first discontinuity, the integration elements ፞(ኼ) , ፞(ኼ)ዀ , and ፞(ኼ) in the last level. The
enriched nodes 𝒙።, 𝒙፣, and 𝒙፤ are created by the first discontinuity, and 𝒙፥, 𝒙፦, 𝒙፩, and 𝒙፪ are generated
when handling the second one.

𝑒(ኻ)ኾ (at hierarchical level 1), and 𝑒(ኼ) , 𝑒(ኼ)ዀ , and 𝑒(ኼ) (at hierarchical level 2). We take
enriched node 𝒙፪ created after splitting children element 𝑒(ኻ)ኾ by a second disconti-
nuity. This enriched node is associated with leaf integration elements 𝑒(ኼ) , 𝑒(ኼ)ዀ and
𝑒(ኼ) at the second hierarchical level. We follow the same strategy as that used for
handling one discontinuity to construct the enrichment functions associated with
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𝒙፪. To wit,

𝜓፪ =
⎧

⎨
⎩

𝑤፪𝑁(ኼ)፪ዄ (𝒙) for𝒙 ∈ 𝑒(ኼ)
𝑤፪𝑁(ኼ)፪ዄ (𝒙) for𝒙 ∈ 𝑒(ኼ)ዀ
𝑤፪𝑁(ኼ)፪ዅ (𝒙) for𝒙 ∈ 𝑒(ኼ)

, (2.18)

and

𝜒፪ =
⎧

⎨
⎩

𝑠፪ዄ𝑁(ኼ)፪ዄ (𝒙) for𝒙 ∈ 𝑒(ኼ)
𝑠፪ዄ𝑁(ኼ)፪ዄ (𝒙) for𝒙 ∈ 𝑒(ኼ)ዀ
𝑠፪ዅ𝑁(ኼ)፪ዅ (𝒙) for𝒙 ∈ 𝑒(ኼ)

. (2.19)

where 𝑤፪, 𝑠፪± are, as before, the weight factors, and 𝑁(ኼ)᎖ (𝒙), 𝜄 = {𝑞ዄ, 𝑞ዅ} the
Lagrange shape functions. It should be mentioned that an enrichment function
at the second level of hierarchy—deepest level in this example—is non-zero only
in elements connected to its corresponding enriched node (the enriched node’s
support). The function is exactly zero in integration elements created at shallower
hierarchical levels outside the enriched node’s support.

The same strategy is used to obtain enrichment functions for any enriched node
at any hierarchical level. Integration element 𝑒(ኻ)ኾ , that is created by the first dis-
continuity, is connected to mesh nodes 𝒙ኻ, 𝒙ኼ, 𝒙ኽ and to enriched node 𝒙፤. For the
latter, the weak and strong enrichment functions 𝜓፤ and 𝜒፤ are obtained, respec-
tively, by

𝜓፤ =

⎧
⎪

⎨
⎪
⎩

𝑤፤𝑁(ኻ)፤ዄ (𝒙) for𝒙 ∈ 𝑒(ኻ)ኻ
𝑤፤𝑁(ኻ)፤ዅ (𝒙) for𝒙 ∈ 𝑒(ኻ)ኼ
𝑤፤𝑁(ኻ)፤ዅ (𝒙) for𝒙 ∈ 𝑒(ኻ)ኽ
𝑤፤𝑁(ኻ)፤ዅ (𝒙) for𝒙 ∈ 𝑒(ኻ)ኾ

, (2.20)

and

𝜒፤ =

⎧
⎪

⎨
⎪
⎩

𝑠፤ዄ𝑁(ኻ)፤ዄ (𝒙) for𝒙 ∈ 𝑒(ኻ)ኻ
𝑠፤ዅ𝑁(ኻ)፤ዅ (𝒙) for𝒙 ∈ 𝑒(ኻ)ኼ
𝑠፤ዅ𝑁(ኻ)፤ዅ (𝒙) for𝒙 ∈ 𝑒(ኻ)ኽ
𝑠፤ዅ𝑁(ኻ)፤ዅ (𝒙) for𝒙 ∈ 𝑒(ኻ)ኾ

. (2.21)

After evaluating enrichment functions (and their derivatives), we append them
to the Lagrange shape functions of parent elements to calculate the vector 𝝋 (and
the derivatives are appended to those of parent shape functions to get the strain-
displacement matrix 𝑩). For instance, for one of the integration elements in the
second level of hierarchy, such as 𝑒(ኼ) , the arrays 𝝋 and 𝑩 are given by

𝝋 = [𝑁(ኺ)ኻ ...𝑁(ኺ)ኾ 𝑤፤𝑁(ኻ)፤ዅ 𝑤፪𝑁(ኼ)፪ዄ 𝑤፩𝑁(ኼ)፩ዄ 𝑠፤ዅ𝑁(ኻ)፤ዅ 𝑠፪ዄ𝑁(ኼ)፪ዄ 𝑠፩ዄ𝑁(ኼ)፩ዄ ] , (2.22)

𝑩 = 𝝏𝝋, (2.23)

where 𝑁(ኺ)᎖ (𝒙), 𝜄 = {1, 2, 3, 4} are the Lagrange shape functions from the parent
mesh element 𝑒።.
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Elements not intersected by discontinuities are handled as in the standard FEM.
On cut elements, the hierarchical structure adopted for handling an arbitrary num-
ber of intersections eases the computer implementation for conducting numerical
quadrature. As an alternative to recursion, Algorithms 2.1 and 2.2 outline pseudo-
code using an iterative loop for obtaining local arrays by Gauss integration. The
algorithm shown is the same irrespective of the number of discontinuities.

Algorithm 2.1 Local stiffness matrix and force vector for an integration element
Input: Modified mesh ℳ = {𝒩 ∪𝒩 , ℰ ∪ℋ}, ordered tree ℋ, scaling fac-

tor map 𝒲, leaf integration element 𝑒(፤) at hierarchical level 𝑘,
quadrature point weights 𝜸 and coordinates 𝝃, constitutive matrix
C and body force 𝒃;

1: function getLocalArrays(ℳ,ℋ,𝒲, 𝑒(፤), 𝜸, 𝝃,C, 𝒃)
2: {𝒌, 𝒇} ← {0, 0} – initialize local arrays

3: for 𝑖 ← 1,… , |𝝃| do – loop over integration points

4: {𝑗, 𝑵, 𝑩} ← functions(ℳ,ℋ,𝒲, 𝑒(፤), 𝝃።)
5: – get shape/enrichment functions (and their derivatives) and Jacobian
6: 𝒌 ← 𝒌+𝛾። 𝑗 𝑩⊺ C𝑩 – update stiffness matrix

7: 𝒇 ← 𝒇+𝛾። 𝑗 𝑵⊺𝒃 – update nodal force vector

8: return 𝒌, 𝒇
9: end function

Output: Local stiffness matrix 𝒌 and local force vector 𝒇.

In order to construct the local arrays for a (leaf) integration element 𝑒(፤) at hier-
archical level 𝑘, we input the modified mesh ℳ consisting of nodes and elements.
The node set is composed by the original mesh nodes 𝒩 and the newly created
enriched nodes 𝒩 . Similarly, the element set ℰ is composed by the original uncut
mesh elements and the hierarchical tree data structure ℋ, which contain not only
all children elements but also cut mesh elements. The function getLocalArrays
proceeds as in standard FEM, where the stiffness matrix 𝒌 and the force vector 𝒇 are
obtained by performing Gauss quadrature. Specifically, at each quadrature point 𝝃።,
the contributions to the local arrays are obtained by evaluating arrays of shape and
enrichment functions 𝑵 (and their derivatives 𝑩), weighted by the product between
the quadrature weight 𝛾። and the jacobian 𝑗.

The differences with respect to standard FEM are accounted for in functions.
For the given quadrature point, the idea is to traverse the hierarchy from the leaf
element 𝑒(፤) towards its root parent mesh element 𝑒(ኺ), so that all enrichment
functions (together with their derivatives) are calculated and stacked in their cor-
responding arrays along the way. Only then the partition of unity shape functions
(and their derivatives) of the parent mesh element are accounted for.

Enrichment functions and their derivatives are obtained by first iterating over
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Algorithm 2.2 Shape and enrichment functions, together with their derivatives
Input: Modified mesh ℳ ∶= {𝒩 ∪𝒩 , ℰ ∪ℋ}, ordered tree ℋ, scaling

factor map 𝒲, leaf integration element 𝑒(፤) at hierarchical level
𝑘, quadrature point at this level labeled 𝝃(፤)። ;

1: function functions(ℳ,ℋ,𝒲, 𝑒(፤), 𝝃(፤)። )

2: 𝑿 ← (𝒩 ∪𝒩 )∩𝑒(፤) – get element coordinates

3: for 𝑛፣ ← 𝒩 ∩𝑒(፤) do – loop over element’s enriched nodes

4: {𝑤፣ , 𝑠፣} ← 𝒲(𝑛፣) – get scaling factors for weak/strong enrichments at level 𝑘
5: do

6: {𝑵(፤), 𝑵(፤),𝝃 } ← Lagrange(𝑒(፤), 𝝃(፤)። ) – shape functions and their derivatives

7: 𝒙 ← 𝑿⊺𝑵(፤) – obtain global coordinate

8: 𝑱(፤) ← 𝑿⊺𝑵(፤),𝝃 – obtain Jacobian matrix

9: if not 𝑗 then – check if leaf Jacobian is set
10: 𝑗 ← det (𝑱(፤)) – save leaf Jacobian
11: 𝑵(፤),𝒙 ← 𝑵(፤),𝝃 [𝑱(፤)]ዅኻ – compute derivatives with respect to 𝒙
12: {𝜓(፤), 𝝍(፤),𝒙 } , {𝜒(፤), 𝝌(፤),𝒙 } ← enrich(𝑤፣ , 𝑠፣ , 𝑵(፤), 𝑵(፤),𝒙 )
13: – compute enrichments/derivatives at level 𝑘
14: {𝑭, 𝑭,𝒙} ← {[𝑭 𝜓(፤) 𝜒(፤)] , [𝑭,𝒙 𝝍(፤),𝒙 𝝌(፤),𝒙 ]}
15: – stack functions and derivatives
16: 𝑘 ← 𝑘−1 – decrease level of hierarchy

17: 𝑒(፤) ← ℋ(𝑘, 𝑒(፤)) – get parent element in the hierarchy

18: 𝝃(፤)። ← invert(𝒙, 𝑒(፤)) – obtain local master coordinate (invert map)

19: while 𝑘 ≠ 0 – if 𝑘 ← 0 then parent mesh element reached

20: {𝑵(ኺ), 𝑵(ኺ),𝝃 } ← Lagrange(𝑒(ኺ), 𝝃(ኺ)። ) – shape functions and their derivatives

21: {𝑭, 𝑭,𝒙} ← {[𝑵(ኺ) 𝑭] , [𝑵(ኺ),𝒙 , 𝑭,𝒙]} – stack parent shape functions and their derivatives

22: {𝑵,𝑩} ← {expand (𝑭) ,expand (𝑭,𝒙)} – expand to multiple DOFs per node

23: return 𝑗, 𝑵, 𝑩
24: end function

Output: Jacobian determinant 𝑗, and arrays of shape and enrichment
functions 𝑵 together with their derivatives 𝑩.

the enriched nodes belonging to the leaf element 𝑒(፤). Depending on the type of
discontinuity, contributions will be made for the weak term and possibly to the
strong term when dealing with a strong discontinuity. Lagrange shape functions
𝑵(፤) and their derivatives 𝑵(፤),𝝃 are evaluated at 𝝃(፤)። . Shape functions are used to
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calculate the global coordinates 𝒙 and their derivatives to compute the Jacobian
matrix 𝑱(፤) (which is used throughout to compute derivatives with respect to global
coordinate 𝒙). Notice that we save the determinant 𝑗 of Jacobian matrix of the leaf
integration element only. In the function enrich, 𝑵(፤) and 𝑵(፤),𝝃 , together with
the scaling factors 𝑤፣ and 𝑠፣ obtained from the map 𝒲, are used to construct
the enrichment functions 𝜓(፤), 𝜒(፤) and their derivatives 𝝍(፤),𝒙 , 𝝌(፤),𝒙 ; these are then
stacked to 𝑭 and 𝑭,𝒙 arrays, respectively. Then, we obtain the parent element (either
mesh element or another integration element) from the ordered tree ℋ and the
master coordinate at that element is obtained by an inverse mapping. The iteration
continues until we reach the original mesh element (condition fulfilled by 𝑘 = 0 in
the algorithm).

Once all enrichment functions and their derivatives are computed, we add the
contribution of the parent element through 𝑵(ኺ) and their derivatives 𝑵(ኺ),𝝃 , which
are also stacked in their corresponding arrays. To account for multiple DOFs per
node in elasticity, the arrays are expanded and stored in 𝑵 and 𝑩; in the end these
are returned together with the saved jacobian 𝑗.

2.5. Numerical examples
In this section several numerical examples are provided to illustrate the perfor-
mance of DE-FEM in 3-D. Unless explicitly stated, geometrical parameters, Young’s
moduli, and magnitudes of applied tractions are understood under any consistent
unit system.

2.5.1. Discontinuous patch test
Following the reference [1], we first verify the DE-FEM formulation through a dis-
continuous patch test. Figure 2.13(a) shows a schematic, where a cube is split by
a horizontal crack Γc (the red plane) and tractions �̄� = 𝑡𝒆ኻ and 2�̄� are applied to the
front surface above and below the crack, respectively. The back surface is fixed and
the top and bottom ones are constrained along the 𝒆ኽ direction as shown. An elas-
tic modulus 𝐸 = 10 and Poisson’s ratio 𝜈 = 0 are used. The original finite element
discretization comprises 16 nodes and 42 linear tetrahedra (see Figure 2.13(b));
the new discretization after introducing the crack is also shown in Figure 2.13(c).

The resulting stress field is shown in Figure 2.13(d) on the deformed configura-
tion. As apparent from the figure, DE-FEM passes this discontinuous patch test since
there are two different constant stress states at either side of the crack. This means
that DE-FEM is capable of generating two independent kinematic configurations in
3-D.

Since a non-conforming enriched mesh may be generated by the Delaunay al-
gorithm during the creation of children integration elements. In order to display the
effect of using a non-conforming mesh, consider two contiguous mesh elements,
shown in Figure 2.14(a) in different colors. We modified the connectivity of their
corresponding children elements below the crack by hand. Figure 2.14(b) shows
that, although the stress distribution above the crack is still uniform, for the lower
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part the stress is no longer constant. In this work we have chosen to use constrained
Delaunay to avoid these situations altogether.

�̄�

Γc2�̄�

𝒆ኻ 𝒆ኼ

𝒆ኽ

(a) (b)

(c)

2

1

𝜎11/|�̄�|

(d)

Figure 2.13: (a) The schematic of the discontinuous patch test where tractions �̄� and ኼ�̄� are applied
to the front surface above and below a crack ጁc, respectively; (b) The original mesh composed by 42
linear tetrahedral elements; (c) New discretization after introducing the horizontal crack; (d) The normal-
ized stress field on the deformed configuration, showing DE-FEM’s capability of recovering independent
kinematic fields.

𝒆ኻ
𝒆ኼ

𝒆ኽ

Γ

(a)

2.8

1

𝜎11/|�̄�|

(b)

Figure 2.14: (a) For the two contiguous mesh elements shown in color, we force a non-conforming
integration mesh by manually changing the connectivity of integration elements below the crack (see
mismatch of triangles below ጁc); (b) Uniform and non-uniform stress fields, above and below the crack,
respectively. The latter is caused by the non-conforming mesh.
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2.5.2. Convergence study
The convergence behavior of DE-FEM is investigated by comparing the convergence
rates with those obtained by standard FEM on matching meshes for problems under
modes I, II, and III. The computational domain used in this example consists of
a cube discretized by linear tetrahedral elements. An elastic modulus 𝐸 = 10 and
Poisson’s ratio 𝜈 = 0.3 are used. The matching FE meshes used in standard FEM
have 24, 384, 3072, 24 576, and 196 608 tetrahedra, as shown in Figures 2.15(a)-
(e). Five different non-matching FE meshes, containing 6, 162, 2058, 20 250, and
178 746 elements as shown in Figures 2.15(f)-(j), are used in DE-FEM. The exact
displacement field, given in Appendix A.1 for reference, is prescribed on the cube
surface.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.15: Matching meshes with (a) 24, (b) 384, (c) 3072, (d) 24 576, and (e) 196 608 linear tetra-
hedral elements used for standard FEM, and the non-matching meshes for DE-FEM with (f) 6, (g) 162,
(h) 2058, (i) 20 250, and (j) 178 746 elements.

The error with respect to the exact solution is then measured in the energy
norm, i.e.,

‖𝒖 − 𝒖፡‖ፄ(፡)
‖𝒖‖ፄ(፡)

= √
∑፞∈፡ ∫፞ (𝜺 − 𝜺፡)⊺C(𝜺 − 𝜺፡) dΩ

∑፞∈፡ ∫፞ 𝜺⊺C𝜺 dΩ
, (2.24)

where 𝒖 is the analytical solution, 𝒖፡ is the FE approximation by either DE-FEM
or standard FEM, 𝜺 and 𝜺፡ are their corresponding strains, and C is the elasticity
tensor. Figure 2.16 shows deformed configurations for modes I, II, and III, obtained
by standard FEM (a)-(c) and DE-FEM (d)-(f). For the latter, the deformation field is
accurately visualized after post-processing [1].

Convergence results are summarized in Figure 2.17, where we see that con-
vergence rates of DE-FEM are the same as those of standard FEM with the use of
matching meshes. It is worth noting that convergence rates are not optimal for ei-
ther method due to the lack of special techniques for handling the singularity along
the crack front.
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(a) (b) (c)

(d) (e) (f)

Figure 2.16: Deformed configurations for modes I, II, and III for Standard FEM (a)-(c) and DE-FEM
(d)-(f). The latter are obtained after post-processing.
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Figure 2.17: Error in energy norm given by Equation (2.24) as a function of the total number of DOFs
for modes I (right), II (middle), and III (left). The figures show that both methods have the same
convergence rates, although these are not optimal.

To investigate the influence of integration elements’ aspect ratios, the element-
wise error in the energy norm, given by

‖𝒖 − 𝒖፡‖ፄ(፞) = √∫፞
(𝜺 − 𝜺፡)⊺ C (𝜺 − 𝜺፡)d𝑒, (2.25)

is evaluated for different locations of the crack on the non-matching mesh shown in
Figure 2.15(h). The crack, which moves from the middle of the background element
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to the position close to background mesh nodes, cuts original hexahedral units
(composed of six tetrahedra) and creates integration elements (see Figures 2.18(a)
and (b)). The darkest integration elements shown in the figure are then considered
for investigating the influence of aspect ratio Υ, which we define following [41] as

Υ =
𝑙ኽavg/𝑉
8.48 , (2.26)

where 𝑙avg is the average edge length, and 𝑉 is the tetrahedron volume. The aspect
ratios considered range from 1.35 to 894.76. It should be mentioned that the aspect
ratio of integration element is not always minimum when the crack cuts through
the middle of the background mesh.

𝑒ii

𝑒i

(a)

𝑒ii
𝑒i

(b)

Figure 2.18: Integration elements created when crack cuts a hexahedral unit composed by six tetrahe-
dra: (a) crack through the center; and (b) crack cutting close to background mesh nodes. The darkest
integration elements are considered for investigating the influence of aspect ratio ጒ in the local error.

Figure 2.19 shows the squared local error in the energy norm defined by Equa-
tion (2.25) for the two integration elements 𝑒i and 𝑒ii shown in Figures 2.18(a)
and (b). The figure also shows the error measure normalized by the integration
elements’ volume. Because the local error involves integrating over element’s vol-
ume, we normalize to single out the effect of aspect ratio. Indeed the solid curves
show that increasing Υ also increases the local error, although the effect is more
pronounced at low values of aspect ratio. The dashed curves show the combined
volume/aspect ratio effect. The increase in local error caused by increasingly bad
aspect ratios is counterbalanced by the element’s volume, which decreases as the
crack approaches the background mesh nodes (Figure 2.18(b)). For the element in
the corner, which has the constant aspect ratio Υ = 1.24, the local error without
normalization shows the same tendency as the above two integration elements due
to the decreasing element volume, and the normalized error ranges from 1 × 10ዅ5

to 1 × 10ዅ4. Consequently, bad aspect ratios in integration elements have not much
influence in the global measure defined in Equation (2.24), and reducing the mesh
size even further makes the contribution of the local error in integration elements
even less significant.
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Figure 2.19: Squared local error in the energy norm defined by Equation (2.25) with and without nor-
malizing by its volume, shown by solid and dashed curves, respectively. While the former curve shows
the local error increases with increasing values of aspect ratio, the latter shows that the effect of high
aspect ratios is counterbalanced by smaller volumes.

2.5.3. Stress intensity factors
We now study DE-FEM’s capability to extract stress intensity factors (SIFs) for the
single edge-crack tension problem of Figure 2.20(a), where for a crack width 𝑎 = 2,
we set 𝑎/𝑤 = 0.5, 𝑙/𝑤 = 1.5, and ℎ/𝑤 = 1.75. Tractions �̄� = ±𝜎ኺ𝒆ኽ are applied at

𝜎ኺ

𝜎ኺ
𝑤

𝑎

𝑙

ℎ

Γ

𝒆ᖣኻ 𝒆ᖣኼ𝒆ᖣኽ

𝒆ኻ
𝒆ኼ

𝒆ኽ

(a)

𝒆ኼ𝒆ኻ

𝒆ኽ

(b)

Figure 2.20: Single edge-crack tension example for extracting SIFs: (a) Problem schematic, where a
cracked block is loaded by tractions �̄�  ±ኺ𝒆ኽ acting on top and bottom faces; (b) DE-FEM’s deformed
configuration.
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top and bottom surfaces. A local Cartesian coordinate system (𝒆ᖣኻ, 𝒆ᖣኼ, 𝒆ᖣኽ) is located
at the center of the block, where 𝑥ᖣኼ is measured along the crack front. The material
properties are 𝐸 = 10, and 𝜈 = 0.3. The non-matching mesh used, shown in
Figure 2.20(b), is defined over a 39 × 39 × 39 Cartesian grid, resulting in 355 914
linear tetrahedra.

𝑠
𝑠 + 𝜂

𝑠 − 𝜂

crack front

crack surface

𝑉(𝑠)
𝑟 𝜇፤(𝑠)

Figure 2.21: The integration domain ፕ(፬) enclosing the crack front segment between ፬ ዅ ᎔ and ፬ ዄ ᎔
for calculating the interaction energy release rate ̄ፈ(፬).

We use the domain integral method to calculate the energy release rate and
the 𝑀ኻ integral method to extract SIFs [42, 43]. For a point along the crack front,
which is parameterized by the coordinate 𝑠 (see Figure 2.21), the local interaction
energy release rate is given by

𝐼(𝑠) = 1 − 𝜈ኼ
𝐸 (2𝐾(ኻ)I 𝐾(ኼ)I + 2𝐾(ኻ)II 𝐾

(ኼ)
II ) +

1 + 𝜈
𝐸 (2𝐾(ኻ)III 𝐾

(ኼ)
III ) , (2.27)

where superscripts (1) and (2) indicate the actual and auxiliary fields, respectively,
and 𝐾(ኻ,ኼ)። , 𝑖 ∈ {I, II, III} denote their corresponding SIFs. 𝐼(𝑠) can be extracted
from the total interaction energy release rate ̄𝐼(𝑠) under the assumption that it is
constant within the integration domain 𝑉(𝑠) of length 2𝜂 that encloses a crack front
segment. 𝐼(𝑠) and ̄𝐼(𝑠) can be formulated, respectively, as

𝐼(𝑠) =
̄𝐼(𝑠)

∫፬ዄ᎔፬ዅ᎔ 𝑞፤(𝑠ᖣ)𝜇፤(𝑠ᖣ) d𝑠ᖣ
, (2.28)

and

̄𝐼(𝑠) = ∫
ፕ(፬)

((𝜎(ኻ)።፣
𝜕𝑢(ኼ)።
𝜕𝑥፤

+ 𝜎(ኼ)።፣
𝜕𝑢(ኻ)።
𝜕𝑥፤

)𝜕𝑞፤𝜕𝑥፣
− 𝜎(ኻ)።፣ 𝜀

(ኼ)
።፣
𝜕𝑞፤
𝜕𝑥፤

)d𝑉, (2.29)

where 𝑞፤ is a continuous function with zero value outside 𝑉(𝑠), 𝜇፤(𝑠ᖣ) are com-
ponents of the unit vector generated from the junction of planes at point 𝑠ᖣ which
are perpendicular to the crack front and tangential to the crack plane. For the sake
of obtaining the mixed-mode SIFs from Equations (2.27), (2.28), and (2.29), an
appropriate auxiliary equilibrium state is chosen. For instance, if mode I is set as
the auxiliary field, then 𝐾(ኼ)I = 1,𝐾(ኼ)II = 𝐾(ኼ)III = 0, and the mode I SIF of the actual
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field is 𝐾(ኻ)I = 𝐸𝐼(𝑠)/(2(1−𝜈ኼ)). A similar strategy is used to obtain SIFs for modes
II and III. For the integration domain to compute SIFs, we set 𝜂 = 12/39 and
𝑟 = 16/39.

Figure 2.22 shows the normalized SIF 𝐾I/𝜎ኺ√𝜋𝑎 is a function of the relative
coordinate 𝑥ᖣኼ/𝑙 along the crack front, and the corresponding values are given in
Table 2.1. Under the plane strain condition, the analytical normalized SIF is 2.8284
[44]. The results obtained by DE-FEM show the same trend as other reference solu-
tions; the SIF values approach the result obtained under the plane strain condition
as 𝑥ᖣኼ reaches the center. Moreover, in accordance with other references, DE-FEM
also displays a decreasing 𝐾ፈ as 𝑥ᖣኼ reaches the boundary of the domain. For the
study of Raju and Newman [45], singularity elements (where square-root terms are
introduced to approximate the displacement field) were used to capture the singu-
lar stress field along the crack front. Generating the required mesh was, however,
quite involved. For the study of Sukumar et al. [12], which used X/GFEM, special en-
richment functions were used to capture the singular stress field. Yet, the required
computer implementation is also more involved since, among other things, singular
enrichments need special integration procedures [26]. There is always a trade-off
between accuracy and complexity, and DE-FEM can obtain SIFs in a fully mesh-
independent manner with a simpler computer implementation than that needed for
X/GFEM, at the expense of some accuracy lost—1.4% below the value obtained
by X/GEM at the center [12]. All these results were obtained on a coarse mesh,
so for reference we also added SIFs computed by X/GFEM where the values were
obtained using the mesh with local refinement along the crack front [46]. The SIF
at the center, which is affected by the finite domain boundary, is higher than the
one under the plane strain assumption.

0 0.51.6

2.83

𝑥ᖣኼ/𝑙

𝐾ፈ
𝜎ኺ√𝜋𝑎

Plane strain
Standard FEM
DE-FEM
Sukumar et al. [12]
Raju and Newman [45]
Pereira et al. [46]

Figure 2.22: Normalized SIF values as a function of relative local coordinate ፱ᖣኼ/፥. The results obtained
by DE-FEM show the same trend as other reference solutions and accuracy that is on a par with that of
standard FEM on matching meshes.
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Table 2.1: The values of normalized SIF ፊI/ኺ√ፚ obtained by DE-FEM.

𝑥ᖣኼ/𝑙 0 0.051 0.103 0.154 0.205 0.256 0.307 0.346 0.397 0.448 0.500

𝐾I/𝜎ኺ√𝜋𝑎 2.747 2.744 2.738 2.728 2.713 2.691 2.660 2.628 2.566 2.441 2.039

2.5.4. Stability
In this section we study how the condition number of the stiffness matrix grows
with mesh refinement for both DE-FEM and standard FEM. As mentioned in the in-
troduction, enriched methods like X/GFEM suffer from stability issues when discon-
tinuities get arbitrarily close to nodes of the background mesh, and discontinuity-
enriched methods like HIFEM/DE-FEM are not oblivious to this problem. For an
integration element, the enriched components of the local stiffness matrix are in-
versely proportional the element’s volume (in fact to the determinant of its Jacobian
matrix) [40]. Therefore, vanishingly small integration elements quickly deteriorate
the overall condition number of the system matrix. For weak discontinuities alone,
i.e., for IGFEM/HIFEM, an optimal function based on a 1-D analysis can be used
to scale weak enrichments, resulting in a stable formulation [40]. However, it is
also shown in that work that even if weak enrichments are not scaled, using a sim-
ple Jacobi-like preconditioner also results in a stable condition number. This is the
approach we follow next.

As it is commonly done in SGFEM, we study the condition number of a modified
stiffness matrix �̂� = 𝑫𝑲𝑫, where 𝐷።፣ = 𝛿።፣/√𝐾።፣ and thus �̂�።። = 1. This modifica-
tion is tantamount to applying a Jacobi-like preconditioner. The condition number
𝜘(�̂�) is then obtained as the ratio between the maximum eigenvalue 𝜆max and the
minimum (non-zero) eigenvalue 𝜆min. We compare this condition number to that of
the standard FEM component 𝜘(�̂�፮፮) (refer to Equation (2.10)), which grows with
respect to mesh size ℎ as 𝒪 (ℎዅኼ).

Two problems are used to study the stability. The first one consists of a solid cube
containing a slanted crack with an orientation that favors the creation of arbitrarily
shaped integration elements (see Figure 2.23(a)). The planar crack’s normal is 𝒏 =
0.1617𝒆ኻ + 0.1819𝒆ኼ + 0.9699𝒆ኽ. For the second example, we introduce an extra
spherical material interface with radius 𝑟 = 0.59 that intersects the planar crack
(see Figure 2.23(b)). The structured background meshes considered here are the
same as those used in the convergence study.

The results of both cases are reported in Figure 2.24, where the condition num-
ber is shown as a function of the reciprocal of the mesh size. Our reference curve is
that of the standard FEM component 𝜘(�̂�፮፮), which scales as 𝒪 (ℎዅኼ). The figure
shows that the condition number of the raw stiffness matrix 𝜘(𝑲), without the use
of a preconditioner, is much worse. Using the preconditioner results in the curve
𝜘(�̂�), which has about an order of magnitude higher condition number than the
standard part. However, the rate of growth is roughly the same, and therefore
DE-FEM is stable if a simple preconditioner is applied.
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Figure 2.23: Problem schematics for studying DE-FEM’s stability: (a) cube of side length ፥  ኼ partially
cut by a planar crack; (b) spherical material interface with radius ፫  ኺ.ዃ intersects the planar crack.
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Figure 2.24: Condition number as a function of ፡ዅኻ for (a) the planar crack shown in Figure 2.23(a); and
(b) the intersecting discontinuities shown in Figure 2.23(b) shows that, while the condition number of
the raw system matrix Ꭺ (𝑲) is unstable, applying a simple preconditioner results in Ꭺ(�̂�), which grows
roughly at the same rate as that of the standard FEM component Ꭺ(�̂�፮፮).

2.5.5. Bone fracture
We now use DE-FEM to simulate the fracture mechanics of a femur whose geometry
was obtained from [47], as shown in Figure 2.25(a). The femur is subjected to a
prescribed displacement field �̄� = ±1 mm 𝒆ኻ at its ends and a crack Γc that partially
splits the bone is introduced.

Bone can be considered a composite material with cancellous (inner) and corti-
cal (outer) phases with completely different material properties [48]. For simplicity,
here we consider them as isotropic materials with elastic constants 𝐸 = 10.4 GPa,
𝜈 = 0.12 (cancellous bone) and 𝐸 = 18.6 GPa, 𝜈 = 0.3 (cortical bone) [49, 50]. In
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addition, a level set function is introduced to describe their interface. Figure 2.25(b)
shows the finite element mesh used, composed of 7355 tetrahedral elements. Al-
though the mesh represents the femur external boundary accurately, the mesh is
non-conforming not only to the interface between materials, but also to the crack
Γc.

Γc
�̄�

�̄�
𝒆ኻ

𝒆ኼ

(a)

𝒆ኻ

𝒆ኽ

(b)

Figure 2.25: (a) The essential boundary condition prescribed on the femur model with the crack ጁc; (b)
The mesh used matches the femur’s external boundary but not the material interface nor the crack.

The results of this simulation are shown in Figure 2.26, where we see that new
children (integration) elements are created properly at each side of the interface
(Figure 2.26(a)). Figure 2.26(b) displays the resulting von Mises stress field, high-
lighting the stress concentration near the crack front and the higher stress in cortical
bone. This example showcases DE-FEM’s versatility not only in modeling both weak
and strong discontinuities with a unified formulation, but also in resolving them
even if they intersect the same element. This is possible due to the hierarchical
implementation discussed in the previous section, which allows for the splitting of
elements by several discontinuities seamlessly.

Γc

crack front

(a)

𝜎vM (GPa)
0.7478

0.0052
(b)

Figure 2.26: The discretized model near the crack extracted from the whole bone where the background
mesh is not matching to the interface nor to the crack: (a) The red and grey parts model cancellous
and cortical bone, respectively. The resulting integration mesh is matching to both the interface and the
crack; (b) von Mises stress field highlighting the higher stress in cortical bone.
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2.6. Summary and conclusions
In this chapter we introduced DE-FEM for solving problems with both weak and
strong discontinuities in 3-D. We discussed our implementation of a geometric en-
gine to handle complex 3-D configurations. By means of constrained Delaunay, the
geometric engine handles all possible scenarios that arise when splitting tetrahe-
dral elements with complex interfaces and/or cracks. In addition, a hierarchical data
structure was discussed for resolving an arbitrary number of discontinuities within a
single mesh element. This data structure is then used construct hierarchically weak
and strong enrichment functions.

The integration mesh that is created in our DE-FEM implementation serves three
purposes. Firstly, the tetrahedra that result from subdividing parent mesh elements
are used to construct the enriched approximation. Indeed the enrichment functions
are built with the aid of Lagrange shape functions of integration subdomains. Sec-
ondly, by using tetrahedra as subdomains we guarantee robustness when handling
multiple discontinuities since tetrahedra are the simplest 3-D volumes to split. Lastly,
creating integration tetrahedra with sides aligned to discontinuities ensures that
the discontinuous functions within these elements are smooth. Other integration
schemes that do not require subdividing into integration elements, but which can
otherwise recursively perform the numerical quadrature, are also possible for weak
discontinuities. However, because of the non-smooth nature of the functions, the
computational cost is higher because several levels of recursion are needed along
discontinuities [51].

Through a discontinuous patch test we showed that the DE-FEM formulation is
able to generate two independent kinematic fields. We also showed that DE-FEM
converges at the same rate as the standard FEM with matching meshes and that
DE-FEM can be used to extract stress intensity factors. Finally, we simulated the
challenging problem of resolving the interplay between weak and strong disconti-
nuities within a complex-shaped femur model.

In Table 2.2 we compare DE-FEM to both standard FEM and to X/GFEM. We
see that DE-FEM also decouples the underlying mesh from discontinuities (mesh
independency), which is X/GFEM’s most attractive feature. However, contrary to
X/GFEM, DE-FEM also retains the attractive properties of standard FEM. Because
enrichment functions are local to cut elements by construction, there is no need
to use the mesh’s partition of unity shape functions of the mesh to localize en-
richments. Also, since enrichments are exactly zero at nodes of the background
mesh, the DOFs associated to these nodes keep their physical meaning. Another
consequence of enrichments vanishing at mesh nodes is that it is straightforward to
impose Dirichlet boundary conditions. Non-homogeneous essential boundary condi-
tions can be prescribed strongly also at enrichment node locations through a simple
multiple point constraint. In fact, there is ongoing work on the use of DE-FEM as
an immerse boundary or fictitious domain technique with strong enforcement of
Dirichlet conditions [27]. Moreover, the requirements for the quality of the integra-
tion mesh are less strict than that of a proper matching mesh. Regarding stability,
we showed that the condition number of the whole stiffness matrix grows at roughly



2.6. Summary and conclusions

2

43

the same rate as that of standard FEM. Therefore DE-FEM is stable with the use of
a simple preconditioner.

Table 2.2: Characteristics of Standard FEM, X/GFEM, and DE-FEM

Standard FEM X/GFEM DE-FEM

Mesh independency 5 √ √

PoU for localizing
enrichments Not applicable √ Local by

construction

Physical meaning of
standard DOFs √ Shifting

required √

Non-zero essential
boundary conditions Direct

Penalty,
Lagrange

multipliers, etc.
Direct

Condition number
growth (stability) 𝒪 (ℎዅኼ) 𝒪 (ℎዅኼ) with

SGFEM [16] 𝒪 (ℎዅኼ)

Numerical
integration Standard

Integration
mesh in cut
elements

Conforming
integration

mesh

Optimal convergence 5 √ TBD

The simple formulation in DE-FEM leads to a simpler computer implementation
when compared to X/GFEM. The current formulation cannot get optimal conver-
gence rates for problems with singularities because the current formulation is devoid
of singular enrichments. These could be added if higher accuracy is required—e.g.,
for extracting stress intensity factors. Nevertheless, adding singular enrichments to
the formulation would complicate the computer implementation, not only because
of the need for bookkeeping new enriched DOFs (and variable DOFs per mesh
node), but also because singular enrichments need to be integrated accurately, for
which many more quadrature points are required. Adding DOFs also leads to in-
creasing the cost of solving the linear system of equations. Although we did not use
any enrichments to capture singularities, the predictions of SIFs are not far from
other more accurate values for the level of mesh size ℎ; our predicted result at the
center was just 1.4% below the value obtained by X/GFEM.

The geometric engine is the most intricate part of the implementation because
of the complexity of computational geometry operations involved and the need for
robustness with respect to the placement of discontinuities. This is the crux not only
of DE-FEM and other interface-enriched formulations such as IGFEM or HIFEM, but
also for X/GFEM when dealing with discontinuities. For DE-FEM we showed the im-



2

44

portance of creating a conforming enriched discretization for integration. Although
the geometric engine described in this work suffices for the types of problems de-
scribed, there is wide room for improvement and this will be the subject of subse-
quent work.
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3
An Object-oriented Geometric Engine
Design for Handling Discontinuities in
Unfitted/Immersed/Enriched Methods

In this chapter, an object-oriented geometric engine is designed for dealing
with discontinuities, such as material interfaces and cracks. Compared with
the one proposed in the last chapter, the new geometric engine is more gen-
eral, efficient, and robust. Both explicit and implicit methods, such as geo-
metric entities and level set, are introduced to describe configurations of dis-
continuities. In order to make the geometric engine efficient, a 𝑘-d tree data
structure that partitions the background mesh is constructed for detecting
cut elements whose neighbors are found by means of a dual graph struc-
ture. Moreover, the implementation for creating enriched nodes, integration
elements, and physical groups is described in detail, and the correspond-
ing pseudo-code is also provided. The complexity and efficiency of the geo-
metric engine are investigated by solving 2-D and 3-D discontinuous mod-
els. Later, numerical examples are proposed to demonstrate the capability
of the geometric engine. Topology optimization and intersecting discontinu-
ities problems are handled with enriched finite element methods, where en-
riched discretizations obtained from the geometric engine are used for the
analysis. Furthermore, polycrystalline structures are overlapped with a un-
fitted mesh, where integration elements created align with the grain bound-
aries. Finally, we show that the Standford Bunny model discretized by a
surface mesh with triangular elements is fully embedded into a 3-D back-
ground mesh.

This chapter has been submitted to International Journal for Numerical Methods in Engineering.
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3.1. Introduction
Commercial softwares such as Abaqus, Ansys, and COMSOL, have become the in-
dustry standard for finite element (FE) numerical analysis. They require, however,
FE meshes that fit the problems’ geometries, i.e., where the edges of finite elements
align with the boundary and other discontinuities such as material interfaces and/or
cracks. This is a strict requirement: The creation of fitted or geometry-conforming
meshes for complex geometries has been estimated to take about 80% of the total
analysis time [1]. Furthermore, creating a good-quality mesh is a challenging en-
deavour that is prone to failure, especially for 3-D models [2]. Creating fitted meshes
is troublesome and/or time-consuming, for instance, for fracture [3–5], structural
optimization [6–8], fluid-structure interaction [9, 10], fibre/particle-reinforced com-
posites [11], and structures with irregular boundaries [12, 13]. For these problems,
transferring the complexity of mesh generation to the finite element formulation has
been shown advantageous. Unfitted/immersed/enriched FEMs allow for a complete
decoupling between the problem geometry and the discontinuities. A shared aspect
among unfitted/immersed/enriched FEMs that use (usually structured) unfitted dis-
cretizations is that interactions between a background mesh and the problem’s
geometry have to be performed. This work presents a general object-oriented geo-
metric engine that can be used for mesh interactions with both implicit and explicit
representations of discontinuities in all dimensions.

Even though the proposed work is applicable for unfitted/immersed/enriched
FEMs, we place emphasis on the latter family of methods, for which the geometric
engine was originally designed. Enriched FEMs have been vastly explored to treat
discontinuities such as cracks and material interfaces. In the eXtended/Generalized
Finite Element Method (X/GFEM) [14, 15], which originates from the partition of
unity method [16, 17], the standard finite element approximation is augmented
by enrichment functions that reproduce a discontinuity in the primal field (e.g. for
cracks) or its gradient (e.g. for material interfaces). However, although X/GFEM
provides great flexibility in solving discontinuous problems with a fixed background
mesh, the method is not without issues, including loss of accuracy in blending
elements for certain choice of enrichment function [18, 19], the need for spe-
cial formulations for prescribing non-homogenous essential (Dirichlet) boundary
conditions (BCs) [20, 21], and lack of stability—i.e., the condition number of the
stiffness matrix may grow much faster than that of standard FEM with fitted dis-
cretizations [22–24]. There are, however, less known enriched finite element for-
mulations that, while retaining the mesh-geometry decoupling, are devoid of the
aforementioned issues. The Interface-enriched Generalized Finite Element Method
(IGFEM) [25], for instance, is a simpler enriched formulation that can be derived
from X/GFEM [26]. IGFEM adds enriched degrees of freedom (DOFs) to nodes cre-
ated along discontinuities—instead of associating them to nodes of the original
FE mesh as done in X/GFEM. IGFEM recovers the standard finite element space
and thus it can be seen as a method between X/GFEM and FEM. IGFEM is intrin-
sically stable by a proper scaling of enrichment functions or the use of a simple
diagonal preconditioner [27, 28], and nonzero essential BCs can be prescribed
strongly [29]. Furthermore, multiple discontinuities within a single finite element
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can be handled via a hierarchical implementation [28]. The method can seamlessly
resolve boundaries so it can be used to solve immersed boundary (fictitious domain)
problems—and with smooth reactive tractions in Dirichlet boundaries [29, 30]. In
addition, IGFEM has been used to prescribe Bloch-Floquet periodic boundary con-
ditions in the analysis of phononic crystals [31], and for coupling non-conforming
meshes and highly-nonlinear contact problems [32]. In the context of topology op-
timization, IGFEM has been used for compliance minimization [26], and for tailoring
the fracture resistance in brittle structures [33]. Finally, IGFEM has also been gen-
eralized for the unified treatment of both weak and strong discontinuities in the
Discontinuity Enriched Finite Element Method (DE-FEM) [34–36]. These enriched
FEMs have been shown to outperform standard FEM for solving weak and/or strong
discontinuous problems, including

• Multi-phase materials Inclusions embedded in a matrix material with dis-
tinct properties (see Figure 3.1(a)) are prevalent in natural materials such as
bone [37] and in artificial materials such as fibre-reinforced composites [38].
Multi-phase materials can also exhibit a microstructure where there is no ap-
parent matrix phase, as is the case with polycrystalline microstructures (see
Figure 3.1(b)). These materials, which are assemblies of small grains (crys-
tals) with different material properties, include polycrystalline ceramics, met-
als, and alloys. Because of their common use in industrial applications, multi-
phase materials require accurate numerical characterization. Material inter-
faces, which may have a critical effect on the macroscopic material behavior,
have been modeled by assuming perfect bonding between interfaces (𝐶ኺ–
continuity) [39–41] and progressive degradation of the interface by means of
cohesive models (𝐶ዅኻ–continuity) [42, 43].

• Solidification Boundaries between phases can evolve as a consequence of
temperature changes, e.g., liquid to solid (the molten metal back into the
solid state during metal casting). This solidification phenomenon plays an im-
portant role in material processing in many industries because it could lead to
important variations in material properties such as strength, thermal stabil-
ity, and ductility [44, 45]. It is therefore important to understand this phase
transformation process so it can be precisely controlled [46]. Due to the com-
plex nature of the problem, where the location of phase interfaces varies with
time, only a limited number of analytical solutions are available [47]. Numeri-
cal techniques are therefore widely used to model the discontinuous temper-
ature gradient field at phase interfaces [48–52].

• Two-phase flows A flow consisting of different phases (see Figure 3.1(c))
is commonplace in the industrial applications, such as oil and gas in pipelines,
and water and steam in nuclear reactor cooling systems [53]. Since these
phases have different properties, the interface between them can result in
discontinuous velocity/pressure fields (under a slip condition) and their corre-
sponding gradient fields. This characteristic makes very challenging to solve
two-phase flow problems in an analytical way [54, 55]. Although most two-
phase flow formulations obtained are based on experimental data [56], nu-
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merical simulation (based on enriched FEMs) also provides a viable alterna-
tive to describe the flow behavior [57–60]. Two important aspects should
be carefully considered for obtaining an accurate approximation: First, a ro-
bust representation is necessary to describe the geometric configuration of
interfaces, which could be altered significantly during the analysis. More im-
portantly, appropriate enrichment functions should be constructed to account
for the discontinuities in the primal/gradient fields along phase interfaces.

• Fluid-structure interaction Unlike two-phase flows, fluid-structure inter-
action (FSI) is a problem that couples fluid dynamics and solid mechan-
ics (loosely referred as multiphysics) [61]. There are multiple applications
of FSI, such as dams [62], aircrafts [63], and even the cardiovascular sys-
tem [64]. For solving the FSI problem, capturing accurately the interaction
between fluid and solid, i.e., both the fluid velocity and pressure at fluid-solid
interfaces and the structure deformation, is a challenging endeavour for which
enriched FEMs have proven to be effective [65–67].

• Fracture Cracks (see Figure 3.1(d)), which could nucleate along the bound-
ary or inside the structure, may have a detrimental effect on the integrity of
a structure and could even result in its failure [68, 69]. Therefore, it is of
utmost important to properly characterize their effect, for which a plethora
of works can be found on enriched FEMs alone. Cracks are usually modeled
as strong discontinuities that introduce the kinematics of a discontinuous pri-
mal displacement field [15, 34]. Enriched FEM has been used to obtain stress
intensity factors (SIFs) in stationary cracks [35, 70], and to model crack prop-
agation by means of cohesive zone models [71, 72] or by comparing the stress
intensity to critical values [14, 15].

• Dislocations These are linear defects that generally occur in crystalline ma-
terials, e.g., metals, diamonds, rocks, or ceramics [73]. Dislocations could
result in phase transformations and grain growth, and even change material
properties [74]. The geometrical configuration of a dislocation is represented
by a glide plane with unit normal vector 𝒏 (see Figure 3.1(e)), where either
side of the glide surface shears with respect to another. Unlike cracks, the bare
presence of dislocations can result in stresses in the material, even without
applying external tractions [75]. Similarly to cracks, dislocations are treated as
strong discontinuities, and the jump in the displacement field is described by
the Burgers vector 𝒃 that is tangent to the glide plane [73]. Therefore, similar
considerations to fracture can be made when modeling dislocations [76, 77].

• Shear bands These are narrow zones with intense localized shearing (see
Figure 3.1(f)) that are usually observed in soil [78], rock [79], ceramics [80],
and metal [81]. Created by strain localization, shear bands could lead to ex-
treme deformations, instabilities, and even failure [82]. The influence of shear
hands on material behavior has been widely investigated via theoretical and
experimental studies [79, 83]. Within the realm of enriched FEMs, a shear
band can be modeled as a strong discontinuity when the width of the band
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relative to the medium is small [84, 85], or as two weak discontinuities oth-
erwise [86, 87].

A common feature on the use of enriched FEMs to solve all aforementioned dis-
continuous problems is that a simple (usually structured) finite element mesh is
used. Yet, this flexibility does not come for free; usually, enrichment functions need
to be created, which relies on the known location of discontinuities. In addition, the
numerical quadrature of these discontinuous enrichment functions usually requires
intersection tests between discontinuities and mesh elements, and the further sub-
division of the latter into so-called integration elements. For some problems it is also
required to keep track of the evolution of such discontinuities. In enriched FEMs all
this functionality is handled by a geometric engine.

Matrix

Inclusion

(a) (b)

Gas

Liquid

(c)

Cracks

(d)

𝒃 𝒏
Glide plane

(e)

Shear band

(f)

Figure 3.1: (a) Material inclusions embedded in a matrix with distinct material properties; (b) Polycrys-
talline materials which are assemblies of different small grains (crystals); (c) Two-phase flow model
where liquid and gas share an interface and interact with each other; (d) Cracks nucleate along the
boundary and inside the structure; (e) Dislocations lead to a discontinuous primal field where the jump
is described by the Burgers vector 𝒃; (f) A shear band occurs under intense localized shearing.

An appropriate geometric engine should be robust and work for an arbitrary
number of discontinuity-mesh configurations. Still, designing a robust engine is ex-
tremely challenging, simply because it is not straightforward to write computational
geometry functions that are robust when dealing with floating-point arithmetic. One
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may opt to use external libraries at the expense of increasing the software depen-
dency. For instance, open-source libraries such as the Computational Geometry
Algorithms Library (CGAL) [88] have been used. Ren and Younis [89] used CGAL
to describe and update the geometric description of cracks under the hydraulic
fracture propagation. Rather than using a single library, Massing et al. [90] devel-
oped a geometric package that uses data structures and algorithms from CGAL and
GTS [91], showing good performance in detecting intersections between two un-
fitted and overlapping meshes and integration over cut cells. These computational
geometry libraries, however, make software’s learning curve steeper and may not
be necessary for some implementations (overkill). Therefore, implementing an in-
house geometric engine is also a viable alternative and a popular one in the en-
riched FEM community. In the context of X/GFEM for fracture problems, Sukumar
et al. [70, 92] described in detail the geometric operations for detecting elements
that intersect with cracks and the data structures used to store relevant geomet-
ric information. Instead of using level set functions to represent cracks, Pereira
et al. [93] adopted a mesh with triangular elements to describe a crack surface
explicitly in 3-D, and briefly described the strategy used for creating integration
elements. Soghrati et al. [94] listed all possible situations when a tetrahedral el-
ement is completely split by a material interface, and explained the scheme for
performing tetrahedralization of the resulting subdomains. For speeding up geo-
metric operations, Březina and Exner [95] proposed a set of the algorithms aiming
to calculate intersections between 3-D background meshes and lower-dimensional
simplices, whereby the number of calculations is minimized by reusing information
obtained from neighboring elements. Yang et al. [96] proposed an approach for re-
constructing an explicit description of heterogeneous materials based on scanning
electron microscopy images, where Non-Uniform Rational B-Splines (NURBS) are
used to represent the morphology of fibers and bounding boxes are used to check
for intersections between newly-added and existing inclusions. Recently, Zhang et
al. [35] discussed a basic geometric engine that is able to deal with multiple dis-
continuities cutting a single element hierarchically, whereby the entire hierarchy
that results from splitting completely or partially a tetrahedron is stored in an or-
dered tree data structure. All these works, however, just provide a sufficient ad
hoc solution for their particular problem. As a result, these ideas cannot be easily
generalized. In addition, although effective, most works do not discuss efficiency
of the computational geometry routines. Although bits and pieces on implementing
a robust geometric engine to be used with unfitted/immersed/enriched FEMs can
be found in the literature, a detailed discussion is still missing.

In this work we describe the objected-oriented design of a geometric engine that
can be used to solve problems with discontinuities by means of enriched FEMs. Al-
though discussed in the context of interface- and discontinuity-enriched FEMs, the
engine is general and thus could also be used together with any unfitted FEM with-
out much modification. The engine’s main functions are: i) Perform intersection
tests between discontinuities and finite elements; ii) Create enriched nodes that
are collocated at the intersection between discontinuities and edges of background
elements; iii) Create integration subdomains considering multiple discontinuities in-
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tersecting a single element; iv) Store such hierarchies of integration elements in an
ordered tree data structure; and v) Create physical groups that are then used to
assign correct material properties or to refer to discontinuities. The design of the
engine goes beyond basic requirements in many areas, including:

• Generality Discontinuities can be represented both implicitly (e.g., via level
set functions) and/or explicitly (e.g., line segments, polygons or even lower-
dimensional meshes). Integration subdomains of the background mesh in all
dimensions can be created by rules or by more advanced techniques such as
Delaunay triangulation (tetrahedralization) [97, 98];

• Robustness The use of tolerances is mitigated wherever possible, as tests
based on them are prone to fail;

• Efficiency Given a coordinate, a space partitioning method (concretely a 𝑘-d
tree) is used to find the background mesh element that contains it. In addi-
tion, a dual graph data structure of the background mesh is used to efficiently
discover neighbors of cut elements (and to avoid intersection checks). Data
on subdomains of cut elements’ edges (or faces) is reused for generating sub-
cells of the neighboring elements. An ordered tree data structure is used to
store hierarchical element information and to efficiently iterate over quadra-
ture elements (leaves of the tree). Finally, we exploit a flood-fill algorithm that
works in conjunction with a dual graph data structure to determine which
(background and integration) elements belong to a corresponding physical
domain.

The design of the geometric engine is thoroughly explained with pseudo-code, and
its computational complexity is investigated with several 2-D and 3-D examples of
material interfaces and cracks. The capability of the proposed engine is illustrated
by means of several examples. First, the topology of time-dependent discontinu-
ities represented as level set is optimized for the minimal structural compliance in
3-D. Next, a crack junction problem, where cracks intersect at the same location, is
solved with using DE-FEM. Later, a discontinuous model that includes intersected
cracks and material interfaces is investigated. Furthermore, we overlap the unfit-
ted mesh and polycrystalline structures described by polygons or polyhedra, where
integration elements created align with the grain boundaries. Finally, the Stand-
ford Bunny model discretized by a surface mesh with triangular elements is fully
immersed into a 3-D background mesh, where a new discretization with more ele-
ments are created along the exterior of the Standford Bunny.

3.2. Geometric engine
The proposed object-oriented design of the geometric engine is composed of several
modules, as schematically illustrated in Figure 3.2:

i) Discontinuities 𝒟 is a collection of discontinuities, which can be repre-
sented implicitly (e.g., by means of a level set function) or explicitly (e.g., by
means of geometric primitives) (see Chapter 3.2.1);
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ii) SpacePartitioner S is a 𝑘-d tree data structure for partitioning the space
occupied by the background mesh, enabling fast search of background mesh
element(s) containing a given point along a discontinuity (see Chapter 3.2.2);

iii) DualGraph G is a graph data structure of the background mesh for fast
neighbor element search (see Chapter 3.2.3);

iv) Interactor is used for processing the interactions between the background
mesh and discontinuities (see Chapter 3.2.4);

v) Intersector finds intersection points between discontinuities and the sides
of background mesh elements (see Chapter 3.2.5);

vi) ElementCreator creates lower-dimensional and integration elements (see
Chapter 3.2.6);

vii) Mesh M contains data structures that store data regarding finite element
nodes 𝒩, elements ℰ, and physical groups 𝒫 (where geometrical entities
are combined into more meaningful groups, e.g., mathematical, functional or
material properties [99]). M is updated via adding enriched nodes and new
created elements, and creating new and modifying original physical groups
(see Chapter 3.2.7).

GeometricEngine

+ initialization( )
+ execution( )

SpacePartitioner

+ findElement( )

DualGraph

+ findNeighbors( )
Interactor

+ interact( )

Intersector
+ findIntersections( )

ElementCreator
+ createElements( )

Rule Delaunay

Mesh
+ modify( )

Discontinuities

LevelSet SurfaceMesh

Figure 3.2: Diagram of modules composing the geometric engine represented the unified modeling
language (UML) notation.

In addition, an associative container I keeps information about enriched nodes and
subdomains of cut element edges and/or faces, and aids in creating integration el-
ements of any cut element sharing the same cut edge/face. A hierarchical ordered
tree data structure T is used for storing cut mesh elements and their children. This
tree enables fast traversal of integration elements, which is required for comput-
ing their local contributions to system matrices and vectors. Pseudo-code for the
behavior of this geometric engine is given in Algorithm 3.1.
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Algorithm 3.1 Geometric Engine: Pre-process a background mesh for the use in
enriched finite element methods, such as DE-FEM
Input: A background mesh M ∶= {𝒩, ℰ, 𝒫} (node, element and physical

group sets),a set 𝒟 of discontinuities, and a set 𝒫new of new
physical groups

1: function initialization(M)
2: S ← SpacePartitioner(M) – Create a 𝑘-d tree data structure
3: G ← DualGraph(M) – Create a dual graph based on the background mesh
4: return S,G
5: end function

6: function execution(𝒟,𝒫new)
7: I,T ← ∅, ∅ – Initialize enrichment associative container and tree data structure
8: for 𝑑። ∈ 𝒟 do – Loop over discontinuities
9: {I,T} ← Interactor.interact(G,S, 𝑑። , I,T)
10: – Interact the background mesh with the discontinuity
11: M ← M.modify(𝒟,𝒫new, I,T)
12: – Modify mesh with the enriched nodes, elements and physical groups
13: return M
14: end function

Output: Modified mesh M ∶= {𝒩, ℰ, 𝒫}

3.2.1. Discontinuities
Both implicit and explicit descriptions are allowed for representing the geometry
of discontinuities. While the former can be achieved, for instance, by means of
a level set function, the latter is attained by using geometric entities in the form
of a finite element mesh—even for fundamental geometric primitives. Since these
two representation methods are fundamentally different, a separate implementation
is required to deliver the same functionality, namely for determining intersections
between the background mesh and discontinuities, and for detecting background
and integration elements inside or outside discontinuities.

Level set
Level set provides a flexible way to model moving/evolving boundaries [100]. They
have been widely used in many fields, such as multi-phase flows [101], image
processing [102], and topology optimization [103, 104]. A level set function 𝜙(𝒙)
describes boundaries in an implicit form as the iso-contour of a smooth function,
for instance the zeroth level contour. Then, 𝜙(𝒙) defined in domain 𝐷 is expressed
as

{
𝜙(𝒙) = 0 ⟺ 𝒙 ∈ 𝜕Ω,
𝜙(𝒙) < 0 ⟺ 𝒙 ∈ Ω,
𝜙(𝒙) > 0 ⟺ 𝒙 ∈ (𝐷\Ω),

(3.1)
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where 𝒙 is the Cartesian coordinate, Ω represents a subset of 𝐷 with closure Ω (see
Figure 3.3(a)). Level set can be used to represent a straight boundary, a circular
material interface (shown in Figure 3.3(b)) and even the structural topology with
more complex geometric configurations [105]. In the proposed geometric engine,
level sets are used to describe both static material interfaces in multi-phase ma-
terials, and the evolving boundaries in topology optimization. For the latter, radial
basis functions (RBFs) are used to discretize the level set function [106, 107], and
coefficients multiplying RBFs are considered as design variables that are updated
during the optimization process.

Ω 𝐷

𝜕Ω

(a)

(𝑥ኺ, 𝑦ኺ)
𝑟ኺ

(b)

Figure 3.3: (a) Level set used to describe a domain ፃ with an embedding void domain , and the
interface Ꭷ (marked with a red curve); (b) Level set function Ꭻ(፱, ፲)  √(፱ ዅ ፱ኺ)ኼ ዄ (፲ ዅ ፲ኺ)ኼ ዅ ፫ኺ
used to describe a circular interface in 2-D.

Surface mesh
Explicit representations based on geometric entities, such as segments, triangles,
rectangles, and polygons, are used to describe both weak and strong discontinuities
in form of a surface mesh with lower dimension compared to that of the background
mesh. As shown in Figure 3.4(a), a 1-D mesh consisting of line elements (marked

(a) (b)

Figure 3.4: (a) A 1-D mesh with eight line elements and eight nodes that intersects within a square
domain; (b) A 2-D mesh with four rectangular elements and nine nodes that splits a cube completely
can be used to describe a material interface or a crack.
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with red segments) is used to describe eight cracks intersecting a 2-D square do-
main. Figure 3.4(b) shows the representations of discontinuities in 3-D, whereby a
surface mesh with four rectangular elements that can either represent a crack or a
material interface, splits a cubic domain completely.

3.2.2. Space patitioner
SpacePatitioner constructs a 𝑘-d tree data structure S for partitioning the 𝑘-
dimensional space occupied by the background mesh M. As with a general 𝑘-d tree
for locating points in space, the 𝑘 axes are cycled as the tree is constructed. Each
non-leaf node in the tree is defined as a plane perpendicular to the specific axis,
dividing the space into two parts at either side of the plane. It is worth noting that
elements intersected with the plane are assigned to both parts. The coordinate
associated with non-leaf node is calculated as the average of elemental centers
along the corresponding axis. The tree construction is finalized when the element
set at either side of the splitting plane remains the same, and then these elements
are stored in the tree as a leaf node. This 𝑘-d tree is used for finding a background
element enclosing a given point, operation that is carried out by the function find-
Element. Given a point, we traverse the tree from the root and we use the point
coordinates to guide the search until a leaf node is found containing potential en-
closing elements. Then geometric predicates are performed to check which element
(or elements in case the point lies at an edge shared by two elements) contains the
point.
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0

−0.3333
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Figure 3.5: The background mesh consisting of ኽ × ኽ × ኼ triangular elements shown with numbers,
where a plane perpendicular to an axis is represented as a dashed line.

As an example, we show in Figure 3.5 the space partitioning of a square 2 × 2
domain discretized by a background mesh with 3 × 3 × 2 triangular elements;
the range for both 𝑥 and 𝑦 axes is [−1, 1]. For the corresponding 𝑘-d tree data
structure shown in Figure 3.6, the root node divides the space with the plane
𝑥 = 0. This plane divides the background mesh into two groups of elements



3

60

{0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15} and {2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 17} to the left
and right sides, respectively. Notice there are several elements that belong to both
groups since they are cut by the plane, namely {2, 3, 8, 9, 14, 15}. For the next level
in the hierarchy the plane 𝑦 = 0 is used, which further subdivides elements in
the previous level to either side. For example, the left subtree of the root is split
into {0, 1, 2, 3, 6, 7, 8, 9} and {6, 7, 8, 9, 12, 13, 14, 15}. For the former element group,
in the next hierarchical level a plane 𝑥 = −0.3333 is obtained as the elements’
centroid. Then this element group is divided into {0, 1, 6, 7} and {2, 3, 8, 9}. For the
next hierarchical level the 𝑦 = −0.3333 is computing, further subdividing elements
into {0, 1} and {6, 7}, which are finally stored as leaves in the three. The subdivision
of other element groups follows the same procedure. Finally, we obtain a 𝑘-d tree
with five levels, with each leaf node containing two elements. In order to detect a
point with coordinates (−0.25, −0.25) (marked with a red circle in Figure 3.5, we
follow the red path shown in the tree (see Figure 3.6), till arriving to the element
set {8, 9}, after which we find the point is contained in the 8th element using simple
predicates.

𝑥 = 0

𝑦 = 0

𝑥 = −0.3333

𝑦 = −0.3333

0,1 6,7

−0.3333

2,3 8,9

−0.3333

0.3333

6,7 12,13

0.3333

8,9 14,15

0

0.3333

−0.3333

2,3 8,9

−0.3333

4,5 10,11

0.3333

0.3333

8,9 14,15

0.3333

10,1116,17

Figure 3.6: The corresponding ፤-d tree data structure, where the red lines with arrows show the path
to find the elements enclosing the point (ዅኺ.ኼ, ዅኺ.ኼ).

3.2.3. Dual graph
DualGraph is an object that represents a dual graph data structure G ∶= {𝒱, 𝒮}
(composed of sets of vertices 𝒱 and edges 𝒮) of a given background mesh M. In
this graph, vertices 𝑣። , 𝑣፣ represent the 𝑖th and 𝑗th finite elements, respectively, and
they are connected with an edge if the elements share an edge. For constructing
this graph structure, the background elements are iterated and an auxiliary data
structure is used to store elements’ edges that are later checked for overlap with
other elements. Figure 3.7 shows a background mesh with 3 × 3 × 2 triangular
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elements and its corresponding dual graph structure, which clearly displays with
edges adjoining elements. This undirected graph is then used to find neighbors of
any given target element via the function findNeighbors.

Figure 3.7: The background mesh consisting of ኽ × ኽ × ኼ triangular elements with the corresponding
graph structure (shown with red vertices and edges).

3.2.4. Interactor
Interactor takes care of processing intersections between discontinuities and
the background mesh. Intersector is used to find intersections between discon-
tinuities and elements, forwarding that information to ElementCreator to create
children elements, and for storing the newly created elements in the ordered tree
data structure T. For bookkeeping purposes, an enrichment associative container
I is used, where the keys are cut element edges and/or faces. Their correspond-
ing values include enriched nodes on the keys and newly created edges and/or
faces. Keeping these data can facilitate the creation of integration elements. For
instance, if an element side is already split into several subparts, we can directly
get this information from I for creating children of background elements sharing
this cut edge or face. Although it is possible to create integration elements of a cut
background element immediately after finding it intersects a discontinuity, we defer
this operation to a later time. This is done because a single background element
may be cut by multiple discontinuities, and the most effective way to create inte-
gration elements requires all enriched nodes a priori. Therefore, we first process
all discontinuity-element intersections with the aid of a queue Q, and we store cut
elements in a set 𝒲 so that integration elements are created at a later stage.

The pseudo-code of function interact in Interactor is given in Algorithm 3.2.
Firstly, looping over a list of points that describe a given discontinuity 𝑑።, we detect
elements 𝑒 that intersect with this discontinuity by calling function findElement
in SpacePartitioner S, and store each cut element into the queue Q and the
set 𝒲. Secondly, the queue Q is iterated over cut elements 𝑒, and Intersector
is called to calculate the intersections of the cut element with the given disconti-
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nuity 𝑑።. Afterwards, enriched nodes are created at these intersections and stored
in the enrichment associative container I together with their corresponding cut ele-
ment’s edges/faces. The function findNeighbors in DualGraph G is then used
to find this cut element’s neighbors. If these neighboring elements are not yet in
the set 𝒲 or are not already processed, they are added subsequently to the queue
and set. We then continue to process stored components in the queue until Q
becomes empty. As all intersections between background elements and the dis-
continuity 𝑑። are detected, the function createElements in ElementCreator
is called to create children elements, which include both integration elements and
lower-dimensional elements along the discontinuity. Meanwhile, these elements 𝑒፡
are stored into the tree data structure T, where they are set as children of the
parent cut background elements. This tree data structure T will be later used to
update the background mesh data.

Algorithm 3.2 Interact a background mesh with a discontinuity
Input: A dual graph G, a 𝑘-d tree data structure S, the 𝑖th disconti-

nuity 𝑑።, a tree data structure T, and an enrichment associative
container I

1: function interact(G,S, 𝑑። , I,T)
2: 𝑒 ← S.findElement(𝑑።.points)
3: – Obtain elements intersected with the discontinuity
4: Q,𝒲 ← ∅, ∅– Initialize a queue and a set
5: Q,𝒲 ← addToQueue(𝑒),addToSet(𝑒)
6: – Add cut elements to the queue and set
7: do

8: 𝑒። ← getQueue(Q) – Get a cut element and remove it from queue
9: 𝒙። , I ← Intersector.findIntersections(𝑒። , 𝑑። , I)
10: – Obtain intersections and update enrichment associative container
11: if 𝒙። ≠ ∅ then

12: 𝑒፧ ← G.findNeighbors(𝑒።) – Obtain the neighboring elements
13: if 𝑒፧ ∉ 𝒲 then

14: Q,𝒲 ← addToQueue(𝑒፧),addToSet(𝑒፧)
15: – Add neighboring elements to the queue and set
16: while Q ≠ ∅
17: for 𝑒። ∈ 𝒲 do

18: 𝑒፡ ← ElementCreator.createElements(𝑒። , 𝑑። , I)
19: – Create children elements
20: T ← addToTree(𝑒፡ , 𝑒። ,T) – Add children elements to the tree data structure
21: return I,T
22: end function

Output: Enrichment associative container I and tree data structure T
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3.2.5. Intersector
Intersector is the object used to find intersections between element edges
(faces in 3-D) and a given discontinuity. Also, if applicable, it also detects points that
belong to discontinuities inside/outside background elements, e.g., those of a sur-
face mesh. The corresponding pseudo-code of the function findIntersections
is given in Algorithm 3.3, where enriched nodes 𝒙። are created and stored in the
enrichment map I. Depending on the dimension of the background mesh, differ-
ent approaches are implemented to detect element-discontinuity intersections. The
procedure used is determined by the type of discontinuity since finding intersections
for explicit representations follows a different approach than that used for implicit
representations. For simplicity, we assume that the background mesh consists of
triangular (tetrahedral) elements in 2-D (3-D).

Algorithm 3.3 Find intersections between an element and a discontinuity
Input: 𝑖th background element 𝑒።, 𝑖th discontinuity 𝑑።, and an enrich-

ment associative container I

1: function findIntersections(𝑒።,𝑑።,I)
2: 𝑑𝑖𝑚 ← 𝑒።.dimension – Get the element dimension
3: do

4: 𝒙። , I ← 𝑑።.findIntersections(𝑒። , I) – Obtain the intersections
5: 𝑑𝑖𝑚 ← 𝑑𝑖𝑚−1 – Check the lower-dimensional geometric entity
6: while 𝑑𝑖𝑚 ≠ 0
7: return 𝒙። , I
8: end function

Output: Intersections 𝒙። and enrichment associative container I

For a level set implicit representation, the approach is quite straightforward
as it remains the same regardless of the mesh dimension. Firstly, we iterate over
every edge of the background element and calculate their corresponding nodes’
level set values. If the level set signs are not the same, the edge is crossed by a
discontinuity at the zero level set value. The location of intersection point is then
simply determined by interpolation.

For a crack described by a surface mesh, the corresponding procedure is based
on algorithms for finding segment-segment (in 2-D) or segment-plane (in 3-D) inter-
sections. To illustrate this type of intersection, consider in Figure 3.8 a discontinuity
represented explicitly via a triangular (t3) element intersects a tetrahedral (T4) ele-
ment. In this situation, the tetrahedral element is considered as a 3-D geometric en-
tity that is composed of a collection of four triangular faces (2-D geometric entities)
and six edges (1-D geometric entities). Therefore, several computational geometry
tests are conducted to find the intersections. Firstly, we detect whether any of the
discontinuity nodes lie inside the tetrahedron (see a blue node in Figure 3.8). Then
we create the corresponding enriched node at the same location and add it to the
enrichment associative container I. Secondly, we iterate over the four triangular
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faces and determine whether they are intersected by any of the three edges of the
triangle. Enriched nodes are then created at intersection locations found (see red
nodes in Figure 3.8) and stored into the enrichment associative container I with
linking to the corresponding triangular face; This data will be used when computing
intersections in the neighboring element sharing the same face. Finally, intersec-
tions between the six edges and the discontinuity’s triangular surface elements are
determined (see a white node in Figure 3.8). As before, new enriched nodes cre-
ated are added to the enrichment associative container I and associated with the
corresponding tetrahedral edges. Obviously, it is more involved to handle explicit
discontinuities than implicit ones since more operations are required. Noteworthy,
this procedure works for any (surface and background) element type, for instance,
quadrilateral (Q4) or hexahedral (H8) elements.

Crack front

Figure 3.8: A crack represented by a triangular surface element (marked with red) intersects a tetrahe-
dral element. Intersection tests are conducted to determine nodes lying inside the tetrahedron (marked
with a blue circle) and along its boundaries (see red nodes located at two surfaces and a white node
located within an edge).

3.2.6. Element creator
ElementCreator uses two different strategies, i.e., lower-dimensional and inte-
gration elements are created based on specific rules or via a certain algorithm. For
the former, represented by the object Rule, considers all possible cut situations
and sets them as templates for generating lower-dimensional and integration el-
ements. The latter could use, for instance, Delaunay triangulation (tetrahedraliza-
tion) [97, 98], and is represented accordingly by a Delaunay object.

The procedure for creating new elements is elucidated based on Delaunay’s al-
gorithm, which is actually the only technique to handle complex situations where
elements are not fully split. Since creating 2-D triangular subdomains is included
in the procedure that constructs a discretization in 3-D, we focus on the descrip-
tion of the latter. Algorithms 3.4 and 3.5 show pseudo-code for the algorithm used
to create lower-dimensional and integration elements. For clarity, we denote a cut
background element as the parent element and integration elements that belong
to it as children or integration elements. Figure 3.9(a) shows a tetrahedral ele-
ment intersected by a discontinuity represented as a surface mesh composed of
three quadrilateral (Q4) elements (marked with different colors). We first create
lower-dimensional elements along the discontinuity, so surface elements describ-
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ing the discontinuity are split into smaller subdomains in the function create-
DiscontinuityElements. Since enriched nodes along the discontinuity had al-
ready been stored by Intersector in the enrichment associative container I, it
is now straightforward to create these lower-dimensional elements. In addition,
these elements are set as internal triangular faces for creating children elements
using the function createIntegrationElements. If these lower-dimensional
elements are not considered when creating integration elements, an incorrect situ-
ation could emerge, where internal faces do not match the original surface elements
(see Figure 3.9(a)). Later, triangular faces of this tetrahedron that are cut by sur-
face elements are handled, where the corresponding subfaces are created by using
Delaunay triangulation. Noteworthy, it is necessary to trace intersected segments
created between each surface element and the triangular faces, which are shown
as red segments in Figure 3.9(b). After obtaining children faces, we store them
into the enrichment associative container I. For the neighboring element sharing
the same cut face, these segments will be retrieved and not recreated. After all
cut triangular faces are handled, their corresponding subfaces, together with non-
cut faces, are used to create children tetrahedral elements by calling constrained
Delaunay tetrahedralization.

(a) (b)

Figure 3.9: An explicit discontinuity composed of three quadrilateral elements intersects a tetrahedral
element. (a) Lower-dimensional elements created along the discontinuity are set as internal faces when
creating integration elements (top), and wrong internal faces (that do not match the original surface
elements) could be created without considering lower-dimensional elements (bottom); (b) When cre-
ating the children elements of a triangular face, intersections between the face and this surface mesh
(marked with red segments) are considered as constrained segments.

Algorithm 3.4 Create children elements of a background element
Input: A parent element 𝑒፩, 𝑖th discontinuity 𝑑።, and an enrichment

associative container I

1: function createElements(𝑒፩,𝑑።,I)
2: 𝑒፝ᑚ ← createDiscontinuityElements(𝑒፩,𝑑።)
3: – Create lower-dimensional elements along the discontinuity
4: 𝑒 ← createIntegrationElements(𝑒፩,𝑒፝ᑚ,𝑑።,I)
5: – Create children elements of the background element
6: return 𝑒፝ᑚ , 𝑒
7: end function
Output: Lower-dimensional elements along the discontinuity 𝑒፝ᑚ and

volumetric children elements 𝑒
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Algorithm 3.5 Create volumetric integration elements
Input: A parent element 𝑒፩, lower dimensional elements 𝑒፝ᑚ, 𝑖th dis-

continuity 𝑑።, and an enrichment associative container I

1: function createIntegrationElements(𝑒፩,𝑒፝ᑚ,𝑑።,I)
2: 𝑑𝑖𝑚 ← getDimension(𝑒፩) – Get dimension of the parent element
3: 𝑿፩ ← getNodes(𝑒፩) – Get original nodes of the parent element
4: 𝒙፩ ← getEnrichedNodes(𝑒፩,I) – Get enriched nodes of the parent element
5: if 𝑑𝑖𝑚 = 1 then

6: 𝑙 ← createSegments(𝑿፩,𝒙፩) – Create segments of the edge
7: 𝑒 ← createElements(𝑙) – Create children elements
8: if 𝑑𝑖𝑚 = 2 then

9: 𝑒𝑑𝑔𝑒𝑠 ← getEdges(𝑒፩) – Get edges of the parent element
10: for 𝑒𝑑𝑔𝑒 ∈ 𝑒𝑑𝑔𝑒𝑠 do

11: 𝑛𝑒𝑤𝐸𝑑𝑔𝑒𝑠 ← createIntegrationElements(𝑒𝑑𝑔𝑒,𝑒፝ᑚ,𝑑።,I)
12: – Create children of each edge
13: 𝑡 ← Triangle.MeshInfo() – Initialize Triangle package
14: 𝑡 ← 𝑡.set_points(𝑿፩,𝒙፩) – Pass all nodes to Triangle
15: 𝑡 ← 𝑡.set_facets(𝑛𝑒𝑤𝐸𝑑𝑔𝑒𝑠) – Pass all edges to Triangle
16: 𝑒 ← Triangle.build(𝑡) – Create children elements
17: if 𝑑𝑖𝑚 = 3 then

18: 𝑓𝑎𝑐𝑒𝑠 ← getFaces(𝑒፩) – Get faces of the parent element
19: for 𝑓𝑎𝑐𝑒 ∈ 𝑓𝑎𝑐𝑒𝑠 do

20: 𝑛𝑒𝑤𝐹𝑎𝑐𝑒𝑠 ← createIntegrationElements(𝑓𝑎𝑐𝑒,𝑒፝ᑚ,𝑑።,I)
21: – Create children of each face
22: 𝑡 ← Tetgen.MeshInfo() – Initialize Tetgen package
23: 𝑡 ← 𝑡.set_points(𝑿፩,𝒙፩) – Pass all nodes to Tetgen
24: 𝑡 ← 𝑡.set_facets(𝑛𝑒𝑤𝐹𝑎𝑐𝑒𝑠) – Pass all faces to Tetgen
25: 𝑒 ← Tetgen.build(𝑡) – Create children elements
26: return 𝑒
27: end function

Output: Volumetric children elements 𝑒

3.2.7. Mesh
The last step of the geometric engine is transforming the background mesh into
the enriched discretization. This consists of three main functions as shown in Algo-
rithm 3.6: modifyNodes, modifyElements, and modifyPhysicalGroups. The
purpose of functions modifyNodes and modifyElements is straightforward,
since they update the mesh data structures adding newly created enriched nodes
and integration elements. When dealing with multi-phase problems, it is required to
specify physical groups to different parts of the mesh that correspond to different
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materials. The function modifyPhysicalGroups creates new physical domains
associated with discontinuities and changes the original physical domains (see Al-
gorithm 3.7). Geometric groups, which include elements inside or at either side of
a given discontinuity, are a prerequisite for the creation of physical groups. Once
geometric groups are defined, boolean operations are performed on them for cre-
ating the physical groups, which could have either the same dimension as that of
the background mesh or a lower dimension—e.g., lower-dimensional elements cre-
ated along discontinuities. If there is no need to create new physical groups, for
instance, when modeling a fracture problem with a single material phase, all inte-
gration and background elements are then assigned to the original physical group
of the background mesh.

Algorithm 3.6 Modify the mesh data structure
Input: A discontinuity set 𝒟, a new physical group set 𝒫new, a tree

data structure T, and an enrichment associative container I

1: function modify(𝒟,𝒫new, I,T)
2: 𝒩 ← modifyNodes(I) – Add enriched nodes to the mesh data structure
3: ℰ ← modifyElements(T)
4: – Add newly created elements and mask the cut background elements
5: 𝒫 ← modifyPhysicalGroups(𝒟,𝒫new,T)
6: – Add new physical groups and modify original ones
7: return 𝒩,ℰ,𝒫
8: end function

Output: Modified mesh M ∶= {𝒩, ℰ, 𝒫}

To explain this last step of the geometric engine, consider in Figure 3.10(a) a
2-D square matrix containing a circular inclusion (marked with darker color) of a
different material, which is described by a level set function. The model is discretized
by a mesh composed of 5×5×2 triangular elements. Then, 42 integration elements

(a) (b)

Figure 3.10: (a) A circular inclusion (marked with darker color and red interface) is embedded into a
square matrix; (b) A 2-D background mesh with ××ኼ triangular elements intersected by the circular
inclusion creates integration elements (marked with red triangles) that are assigned to a new physical
group, together with uncut elements that lie fully inside the inclusion (marked with darker color).
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and 14 lower-dimensional line elements along the material interface are created via
cutting 14 background elements (see Figure 3.10(b)).

Algorithm 3.7 Create and modify physical groups
Input: A discontinuity set 𝒟, a new physical group set 𝒫new, and a
tree data structure T

function modifyPhysicalGroups(𝒟,𝒫new,T)
𝒟፧፞፰ ← selectDiscontinuities(𝒟,𝒫new)

– Split original discontinuities if needed
𝐺፠፫፨፮፩ ← propagateGeoGroups(𝒟፧፞፰ , 𝒫፧፞፰ ,T)

– Create geometric groups for discontinuities in 𝒟፧፞፰ if needed
𝒫 ← assignPgroups(𝐺፠፫፨፮፩,𝒫፧፞፰)

– Create new physical groups and add them toℳ if needed
return 𝒫

end function

function propagateGeoGroups(𝒟፧፞፰ , 𝒫፧፞፰ ,T)
𝑑𝑖𝑚𝑠 ← list(dimensions(𝒫፧፞፰)) – Get dimensions of the new physical groups
for 𝑑። ∈ 𝒟፧፞፰ do – Loop over discontinuities to create geometric groups

for 𝑑𝑖𝑚 ∈ 𝑑𝑖𝑚𝑠 do

if 𝑑𝑖𝑚 ==M.𝑑𝑖𝑚 then – For volumetric geometric groups
𝑒፩ ← intersectDiscontinuity(𝑑።)

– Find a background element intersecting 𝑑።
𝑒 ← getTreeLeaves(𝑒፩ ,T) – Get children elements
𝑒in ← findElementsInside(𝑑።,𝑒)

– Find all elements inside 𝑑። by going through neighbors of 𝑒
𝐺፠፫፨፮፩ ← addToGroup(𝑒in) – Add elements to this geometric group

if 𝑑𝑖𝑚 <M.𝑑𝑖𝑚 then – For lower-dimensional geometric groups
𝑒፝ᑚ ← getDiscontinuityElements(𝑑።)

– Get lower dimensional elements along the discontinuity
𝐺፠፫፨፮፩ ← addToGroup(𝑒፝ᑚ) – Add elements to this geometric group

return 𝐺፠፫፨፮፩
end function

function assignPgroups(𝐺፠፫፨፮፩,𝒫፧፞፰)
for 𝑝። ∈ 𝒫፧፞፰ do

𝑝። ← boolean(𝐺፠፫፨፮፩) – Create new physical groups with boolean operations
𝒫 ← update(𝑝።) – Update physical groups

return 𝒫
end function

Output: Updated physical group 𝒫
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For assigning these elements to their corresponding geometric groups, we start
with any integration element and determine its group by checking its nodes’ level
set values. Later, neighboring integration elements are also assigned to their corre-
sponding geometric group based on the same strategy. As only one discontinuity is
considered in this example, the inclusion’s geometric group coincides with a physi-
cal group associated with different material properties. As shown in Figure 3.10(b),
18 integration and 2 original elements are added to this new physical group—and
are removed from the their original physical group.

In the case of handling models that contain multiple interfaces and/or cracks,
the function selectDiscontinuities is used to select the discontinuities asso-
ciated with new physical groups 𝒫new. For instance, when solving a problem with
a crack and an inclusion, only the discontinuity representing the material interface
is required to create its corresponding physical group. However, when modeling a
problem with multiple phases, geometric groups could be combined into a single
physical group with a single material property. The geometric engine makes this
possible by means of boolean operations performed on geometric groups associ-
ated with different discontinuities. For instance, Figure 3.11 shows two overlapping
material interfaces represented implicitly. In order to collect elements shared by
them into a single physical group, as shown in Figure 3.11(a), the boolean opera-
tion Intersection is used to choose elements from the corresponding geometric
groups. Other operations, such as Subtraction or Union, are also available to
create complex physical groups (see Figures 3.11(b) and (c), respectively).

(a) (b) (c)

Figure 3.11: Two overlapping circular material interfaces, where different parts are assigned to a new
physical group: (a) Intersection between discontinuities; (b) Subtraction of the right discontinuity; (c)
Union of discontinuities.

3.3. Complexity
The complexity of the geometric engine depends on that of each individual com-
ponent. It is well known that finding the nearest neighbor in a 𝑘-d tree for any
given point has time complexity 𝒪(log |ℰ|) on average, where |ℰ| is the number of
elements in the background mesh. DualGraph takes constant time (i.e., 𝒪(1)) to
obtain neighbors of the target element, where a maximum number of neighbors
equals to the number of element sides. The time complexity of Interactor de-
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pends on the number of background elements intersected by discontinuities. Every
cut element is tested for intersection against all discontinuities for constructing new
children elements; this is done by iterating over all element edges and faces, which
asymptotically has constant time complexity 𝒪(1). Considering Delaunay’s algo-
rithm for the creation of children elements, the time complexity is 𝒪(|𝒩 | log |𝒩 |)
in 2-D [108] and 𝒪(|𝒩 |) in 3-D [109], respectively, where |𝒩 | is the number of
original and enriched nodes in a cut background element. Noteworthy, as |𝒩 | is rel-
atively small, asymptotically ElementCreator has constant time complexity both
in 2-D and 3-D. Since discontinuities have one dimension less than that of the back-
ground mesh—i.e., they are lower-dimensional manifolds—as problems increase in
size, the number of intersected (and integration) elements becomes less significant
compared to the total number of mesh elements. We can therefore estimate the
total complexity of the Interactor as 𝒪(|ℰ|ኻ/ኼ) and 𝒪(|ℰ|ኼ/ኽ) in two and three
dimensions, respectively.

2-D and 3-D models with discontinuities are used to corroborate the time com-
plexity of the geometric engine. For 2-D, a square domain contains 9 discontinuities
(represented by 9 line elements) with arbitrary orientations (see Figure 3.12(a)). This
computational domain is then discretized with increasingly finer meshes with 882,
3362, 13 122, 51 842, 206 082, 821 762 and 3 281 922 constant strain triangles. The
cubic 3-D model contains 6 discontinuities described by 12 triangular elements (see
Figure 3.12(b)), and is discretized by meshes containing 750, 4374, 29 478, 215 622
and 1 647 750 linear tetrahedra. In order to show the efficiency of the geometric en-
gine, we first compare the computational complexity for finding cut elements via a
brute-fore approach that loops over all background elements and uses SpacePar-
titioner to locate elements that contain given points. The computational time
𝜘 has been normalized by the maximum value obtained by all methods. From Fig-
ures 3.13(a) and (b), it can be seen that, asymptotically, the brute-fore approach
and SpacePartitioner associated with the problem size scales as 𝒪(|ℰ|) and
𝒪(log |ℰ|), respectively.

(a) (b)

Figure 3.12: (a) A 2-D model including 9 cracks represented by line elements; (b) A 3-D model with 6
discontinuities described as triangular elements.
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Figure 3.13: Complexity for finding cut elements with given points of discontinuities via Brute-force
method and SpacePartitioner in (a) 2-D and (b) 3-D.

The computational time for interacting discontinuities with the background mesh
is studied via three different strategies: i) A brute-force approach that iterates over
background elements; ii) The brute-force approach to find cut elements but calls
Dualgraph to find neighbors of cut elements; iii) Adopting both SpaceParti-
tioner and Dualgraph. The normalized computational time 𝜘 for 2-D and 3-D
examples with respect to the number of background elements |ℰ| is shown in Fig-
ures 3.14(a) and (b), respectively. For both examples, the first strategy has com-
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plexity 𝒪(|ℰ|) and is therefore the most time-consuming; the second strategy has
the same complexity, but takes less time with the help of Dualgraph; the last
approach is the least expensive one, scaling as predicted above as 𝒪(|ℰ|ኻ/ኼ) in 2-D
and 𝒪(|ℰ|ኼ/ኽ) in 3-D.

10ኽ 10ኾ 10 10ዀ |ℰ|10ዅዀ
10ዅ
10ዅኾ
10ዅኽ
10ዅኼ
10ዅኻ
10ኺ
10ኻ
10ኼ
𝜘

Brute-force method
Brute-force method and DualGraph

SpacePartitioner and DualGraph
𝒪(|ℰ|)
𝒪(|ℰ|ኻ/ኼ)

(a)

10ኽ 10ኾ 10 10ዀ |ℰ|10ዅዀ
10ዅ
10ዅኾ
10ዅኽ
10ዅኼ
10ዅኻ
10ኺ
10ኻ
10ኼ
𝜘

Brute-force method
Brute-force method and DualGraph

SpacePartitioner and DualGraph

𝒪(|ℰ|)
𝒪(|ℰ|ኼ/ኽ)

(b)

Figure 3.14: Complexity for interacting discontinuities and the background mesh via looping over ele-
ments, Brute-fore method with DualGraph, and SpacePartitioner with DualGraph in (a) 2-D and
(b) 3-D.
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3.4. Numerical examples
In this section we demonstrate the capability of the proposed geometric engine
with several 2-D and 3-D discontinuous problems. Two examples focus on creating
a new discretization without conducting analysis, whereas the rest use IGFEM and
DE-FEM to solve weakly and strongly discontinuous problems, respectively. Since
no units are given, geometrical parameters, Young’s moduli, and magnitudes of
applied tractions can be taken under any consistent unit system.

3.4.1. Topology optimization
The first example considers evolving material interfaces described by a level set
function in the context of topology optimization. Figure 3.15(a) shows the schematic
of a 3-D cantilever beam problem with the corresponding initial hole seed design
used; the back surface is clamped and a downward line traction �̄� is applied along
the middle of the front surface. The cantilever beam is discretized by a structured

�̄�

(a) (b)

Figure 3.15: 3-D Cantilever beam topology optimization problem: (a) Schematic where the back surface
is clamped and a downward line traction �̄� is applied along the middle of the front surface. The figure
also shows the initial hole seed design; (b) Optimized design for minimal structural compliance after 200
iterations.

background mesh with 40× 20× 10× 6 tetrahedral elements. Young’s moduli 𝐸፬ =
1 and 𝐸፯ = 10ዅዀ are assigned for solid and void domains, respectively. Both of
them have the same Poisson’s ratio 0.3. Although it is possible to directly use nodal
level set values as design variables—thus the set function is discretized by means
of standard finite element shape functions—we use instead compact radial basis
functions (RBFs) [106] to parameterize the level set function. This choice, whereby
the design space is decoupled from the discretization, shows benefits comparable
to a filter in density-based topology optimization [26]. The design space with the
same dimension as that of the cantilever beam is discretized using a grid of 21 ×
11 × 6 RBFs, with a supported radius of 𝑟፬ = √2 ⋅ 𝑎, where 𝑎 is the grid size. The
cantilever beam is optimized for minimum structural compliance (i.e., maximum
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stiffness) with solid material constrained at 55% of the total volume of the design
domain. Figure 3.15(b) shows the optimized design with satisfied volume constraint
after 200 iterations. This example shows the geometric engine’s ability to handle
moving level set—thus implicit—weak discontinuities in 3-D. For more information
on level set-based topology optimization using IGFEM we refer to van den Boom et
al. [26].

3.4.2. Intersecting discontinuities
Fracture junction
In this example DE-FEM is used to resolve multiple intersecting cracks. As shown
in Figure 3.16(a), a star-shaped fracture is placed at the center of a finite plate
with dimensions 1.25 × 1.25, where unit magnitude bi-axial tractions �̄� are pre-
scribed normal to the boundary. Cracks, represented explicitly as line elements of

�̄�

�̄�

�̄�

�̄�1.0

1.25

1.25

(a)

‖𝒖‖
0.39

0

(b)

Figure 3.16: (a) Schematic diagrams for star-shaped cracks in a finite plate; (b) The displacement 𝒖
distribution with the deformed model discretized by the background mesh consisting of 45 × 45 × 2
triangular elements.

unit length, intersect at the center of the domain. The background mesh used has
45 × 45 × 2 triangular elements. After detecting intersections between cracks and
background elements and creating integration elements, a new discretization with
712 integration elements is obtained. For modeling crack junctions using DE-FEM,
the number of strong nodes (for resolving the jump in displacement) added in the
junction depends on the number of intersecting cracks. In other words, we need to
create a displacement jump between each two intersecting cracks, and if 𝑛 cracks
intersect, we need at least 𝑛−1 strong enriched nodes, since the last displacement
jump can be formed by a linear combination of all other displacement jumps. In our
example, since six line segments intersect, five strong nodes are generated. The
resulting displacement field is shown in Figure 3.16(b). More details on the use
of DE-FEM for resolving multiple intersecting discontinuities can be found in Liu et
al. [43].
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Resolving both weak and strong discontinuities
Figure 3.17(a) shows a 2 × 2 plate that contains a material interface (marked with
blue) and a crack (marked with red). While the former is represented using a level
set function, for the latter we use a one-dimensional surface mesh. An elastic ma-
terial with Young’s modulus 𝐸ኻ = 1 and Poisson’s ratio 𝜈ኻ = 0 is assigned to the
domain at the left side of the interface, and 𝐸ኼ = 2 and 𝜈ኼ = 0 is assigned to
the rest of the plate. While the left boundary is fully constrained, only the ver-
tical displacement is restricted along top and bottom edges. Horizontal tractions
�̄�ኻ = 𝒆ኻ and �̄�ኼ = 2𝒆ኻ are imposed on the right edge below and above the crack, re-
spectively. For this example, which aims at showing the hierarchical data structure
used to store the information of cut elements and their corresponding subdomains,
a simple background mesh with 5 × 5 × 2 triangular elements is used. The result
obtained via DE-FEM is shown in Figure 3.17(b), where it can be seen that two inde-
pendent kinematic fields with constant state of stress 𝝈 are recovered at either side
of the crack. The resulting discretization after processing the interaction between
both discontinuities with the non-fitted mesh is given in Figure 3.18, where a rep-
resentation of the tree data structure shows the three hierarchical levels created
to store integration elements. For instance, the background element (hatched in
Figure 3.18) intersects with both the material interface and the crack. The material
interface first splits this element (added to the first level of the tree data struc-
ture) into three children elements, which are created at the second level of the
hierarchy. Later, these elements intersect with the crack, and their corresponding
integration elements are stored at the last level (leaves of the tree). More details
about this example can be found in van den Boom et al. [29].

𝒕ኻ

𝒕ኼ

𝐸ኻ, 𝜈ኻ 𝐸ኼ, 𝜈ኼ

(a)

‖𝝈‖
2

1

(b)

Figure 3.17: (a) A square domain with dimensions ኼ × ኼ includes both a material interface (marked
with blue) and a crack (marked with red); horizontal tractions ‖𝒕ኻ‖  ኻ and ‖𝒕ኼ‖  ኼ are imposed on
the right boundary below and above the crack, respectively. (b) Two independent kinematic fields with
constant state of stress are generated in either side of the crack.
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Figure 3.18: The new discretization created after interacting discontinuities with the background mesh,
where a cut element (hatched) intersects with both material interface (marked with blue) and crack
(marked with red); the corresponding children elements are created and stored into a hierarchical tree
data structure with three levels.

3.4.3. Polycrystalline materials
In this example, subdividing the computational domain into grains is aggravated by
the correct assignment of material properties. Here grains are represented explicitly
with polygons in 2-D and polyhedra in 3-D. Polygons are represented by segments
forming a closed surface. This is achieved by defining a proper nodal connectivity—
similarly to the way we store the node connectivity of finite elements. Similarly,
surface polygons are required to describe the corresponding polyhedra.

(a) (b)

Figure 3.19: (a) A 2-D polycrystalline model and (b) the corresponding finite element discretization after
interacting with the geometric engine. The figure shows that the geometric engine is able to properly
construct integration elements and that the right material properties are assigned (color-coded regions).
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We showcase the geometric engine’s capability to cope with polycrystalline mod-
els in 2-D and 3-D. The 2-D model shown in Figure 3.19(a) is composed of 30
polygonal grains with different material properties (every color corresponds to a
different material), and a structured mesh of 25 × 25 × 2 triangular elements is
used. As apparent from Figure 3.19(b), the geometric engine is able to correctly
assign the appropriate material properties to each grain. Obtaining the same results
in 3-D is more challenging. Figure 3.20(a) shows 157 polyhedra used to describe
the 3-D polycrystalline model, on a background mesh composed of 17×17×17×6
tetrahedral elements. The result of interacting the polycrystalline model with the
background mesh in Figure 3.20(b) shows the proper creation of integration ele-
ments and assignment of material properties.

(a) (b)

Figure 3.20: (a) A 3-D polycrystalline model and (b) the corresponding finite element discretization after
interacting with the geometric engine. The figure shows that the geometric engine is able to properly
construct integration elements and that the right material properties are assigned (color-coded regions).

3.4.4. Immersing lower-dimensional manifolds
Here we demonstrate the geometric engine’s ability to immerse a 2-D surface mesh
(composed of triangular elements) into a 3-D tetrahedral mesh. To this end we use
the well-known Stanford bunny in the computer graphics literature [110], which
is discretized by a coarse surface mesh containing 1006 triangular elements (see
Figure 3.21(a)). This surface mesh is then fully immersed into a structured mesh
composed of 20×20×20×6 tetrahedral elements, as shown in Figure 3.21(b). A to-
tal of 3768 background elements are cut by the surface mesh (see Figure 3.21(c)),
where 57 172 integration elements are created. The resulting new volumetric dis-
cretization of the Stanford bunny is composed of 2844 background and 28 066
integration elements, and the original surface mesh is split into 20 319 triangular
elements (see Figure 3.21(d)).
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(a) (b)

(c) (d)

Figure 3.21: (a) The Stanford bunny surface mesh discretized by 1006 triangular elements; (b) The
background mesh consisting of 20 × 20 × 20 × ዀ tetrahedral elements; (c) 3768 tetrahedral elements
intersected by the surface mesh; (d) The new volumetric discretization of the Stanford bunny model
with 2844 background and 28 066 integration elements.

3.5. Summary and conclusions
In this work we proposed an object-oriented geometric engine especially designed
for unfitted/immersed/enriched FEMs, which aims to interact the background mesh
with discontinuities for generating a new discretization. Consider the representation
of discontinuities, both implicit and explicit methods are implemented to describe
their corresponding geometric configurations. The geometric engine design con-
tains several main modules. SpacePartitioner creates a 𝑘-d tree data structure
for partitioning the background mesh, which is used to identify elements enclosing a
given point. DualGraph builds a graph structure targeting for finding neighbors of
any given element. These two components are called in the rest for facilitating the
geometric operations. Interactor focuses on creating enriched nodes at intersec-
tions between discontinuities and the background mesh via calling Intersector
and integration elements within ElementCreator that are stored in a hierarchical
data structure used for the assembly. Later, enriched nodes and integration ele-
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ments are added to the original mesh data in Mesh, where new physical groups
associated with discontinuities are created, for instance, when solving multi-phase
problems. Together with the detailed explanation, the corresponding pseudo-code
of each module was also provided. We investigated the computational complexity
of the geometric engine through several 2-D and 3-D models including weak or
strong discontinuity, where the behavior of the computational time associated with
the number of background elements |ℰ| is asymptotically approaching 𝒪 |ℰ|ኻ/ኼ) (in
2-D) and 𝒪(|ℰ|ኼ/ኽ) (in 3-D)

Furthermore, several challenging numerical examples were used to investigate
the performance of the geometric engine under IGFEM and DE-FEM. First, a 3-D
topology optimization example for minimizing the structural compliance was pro-
posed, where the level set function is used to describe the structural boundary and
the structural analysis is performed by IGFEM. Next, a fracture junction problem
was solved by DE-FEM, where several cracks intersect with each other within a sin-
gle background element. Later, an example including intersected weak and strong
discontinuities was proposed to show the hierarchical data structure that stores cut
background elements and integration elements. Moreover, we incorporated poly-
crystalline materials that are represented as polygons in 2-D and polyhedra in 3-D
into the background mesh, where new physical groups associated with the corre-
sponding grains are created for assigning different material properties. Finally, the
Stanford bunny model with complex geometry configurations, which is discretized
as a surface mesh with 1006 triangular elements, is immersed into a 3-D background
mesh, where the new discretization conforming to the surface of the Stanford bunny
is generated.

A summary of the main findings of this work is listed in the following.

• Delaunay triangulation (tetrahedralization) behaves well for creating the cor-
responding integration elements in 2-D and 3-D. However, if only considering
the background mesh with triangular or tetrahedral elements, it is also prac-
tical to set specific routines to construct integration elements. For instance,
there are only a few scenarios when a triangle is split with a line segment
completely. Although more cases should be taken into account for splitting a
tetrahedron, it is still durable to implement the corresponding scheme to per-
form tetrahedralization. Although this alternative could increase the difficulty
in the implementation and require more efforts to take all possible situations
into account, the resulting geometric engine does not require any extra pack-
age based on Delaunay algorithm.

• Discontinuities can be handled in either hierarchical or sequential way within
the geometric engine. For instance, when only one surface mesh is used to
represent several cracks, where each surface element is considered as a crack,
these cracks are handled sequentially as they are defined as one discontinu-
ity. However, these cracks can be defined in the same amount of surface
mesh that only contains one element, where each crack (surface mesh) is
one discontinuity that is processed in a hierarchical way. Generally, the latter
could create more integration/children elements, as children elements associ-
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ated with previous discontinuities could be split by the rest cracks. Therefore,
in terms of efficiency, the former method is recommended when handling
discontinuous models with multiple cracks.

• As geometric operations between different geometric entities are performed
to detect intersections and create integration elements, it is critical to set
an appropriate value of tolerance/precision to keep the robustness of the
proposed geometric engine. For example, intersections between background
element edges and surface elements are detected via using the geometric
algorithm based on their corresponding coordinates. The recommendation is
to choose the value of tolerance related to the background/surface mesh size.

• Considering efficiency, when handling any cut background element, it is im-
portant to store the information about subdomains of cut element edges
and/or faces, which can save the computational cost and avoid the preci-
sion issue related to check the location of intersections. On the one hand,
this data can be directly used to create children of any background elements
sharing these edges/faces. On the other hand, it is useful for handing discon-
tinuities in a hierarchical way, as any subedges and/or subfaces created by
the handled discontinuities could be split by the following ones.
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4
An Improved Stress Recovery Technique

for the Unfitted Finite Element Analysis of
Discontinuous Gradient Fields

Stress analysis is an all-pervasive practice in the engineering design pro-
cess. With displacement-based finite element analysis (FEA), stress fields
are obtained in a post-processing step by computing the gradient of the dis-
placement field—therefore less accurate. In enriched finite element analy-
sis (EFEA), which provides unprecedented versatility by decoupling the fi-
nite element mesh from material interfaces, cracks, and structural bound-
aries, stress recovery is further aggravated when such discontinuities get
arbitrarily close to nodes of the mesh; the presence of bad element aspect
ratios and/or tiny integration elements often leads to stress overestimation,
which could have a detrimental impact on nonlinear analyses (e.g., damage
or plasticity) since stress concentrations are just a non-physical numerical
artifact. In this work we propose a stress recovery procedure for enhancing
the stress field in problems containing weak discontinuities—i.e., where the
field gradient is discontinuous. The formulation is based on a stress improve-
ment procedure (SIP) initially proposed for low-order finite elements with the
standard FEA. Although generally applicable to all EFEA, we investigate the
technique in the context of the Interface-enriched Generalized Finite Element
Method (IGFEM). We compare the procedure to other post-processing tech-
niques that are used to smoothen the stress field; we demonstrate that the
modified SIP for EFEA provides an enhanced stress field that is more accu-
rate than that obtained by directly applying the gradient to the primal field,
even for standard FEM with fitted meshes.

This chapter has been published in International Journal for Numerical Methods in Engineering,
doi:10.1002/nme.6825.

89



4

90

4.1. Introduction
Standard finite element analysis (FEA) is today considered the standard procedure
for solving boundary value problems in solid mechanics. However, the modeling of
problems containing material interfaces and/or cracks requires fitted or matching
discretizations, where finite element (FE) edges are aligned to such discontinu-
ities [1]. The creation of such meshes can prove fairly challenging for complex
geometric configurations, particularly in 3-D [2]. Furthermore, problems where dis-
continuities are not known a priori but evolve throughout the simulation, such as
topology optimization, mandate for a different analysis procedure because remesh-
ing is not only prone to fail but also increases computational costs [3]. Enriched
finite element analysis (EFEA) [4–9] provides an elegant solution to the use of fit-
ted meshes by decoupling discontinuities from the FE mesh. In these methods,
which have become fairly popular in the computational mechanics community be-
cause of their versatility and the possibility of using simple (usually structured) FE
meshes, the standard FE approximation is extended or enhanced by means of an
enriched FE space that properly resolves the discontinuities’ kinematics—e.g., via a
Heaviside function for cracks (strong discontinuities) [5] or distance-based functions
for material interfaces (weak discontinuities) [10]. However, even though complete
discontinuity-mesh decoupling is attained, the accuracy of gradient fields greatly
depends on the resulting enriched FE space, which may be severely affected by the
way elements are cut by discontinuities.

It is well known that finite elements with bad aspect ratios are prone to sig-
nificant errors in gradient fields [11]. But even when meshes are properly con-
structed, stress fields are usually obtained by taking the gradient of the primal
field—therefore less accurate—and are 𝐶ዅኻ-continuous at element edges. Conse-
quently, recovery/smoothing techniques that post-process the primal field have
been proposed to improve the accuracy of the stress field. Improving gradient
fields was first conducted by Brauchli [12], who obtained a consistent stress field
based on the theory of conjugate approximations [13]; because the approxima-
tion functions used to interpolate stresses are expressed as a linear combination of
linearly independent functions defined over the entire domain, the resulting stress
field is continuous across element boundaries. Hinton and Campbell [14] later pro-
posed local and global smoothing techniques based on a least squares procedure,
whereby enhanced stresses are obtained by minimizing their difference with re-
spect to directly-calculated stresses. The superconvergent patch recovery (SPR) by
Zienkiewicz and Zhu [15, 16] was introduced afterwards as a more computationally
efficient method that uses an element patch surrounding the nodes where stress
is sought; in this technique, the same shape functions used to interpolate the dis-
placement field are used to construct a smooth stress field, whose polynomial form
is obtained by solving a least squares problem at superconvergent points (locations
where stress accuracy is the highest within the element). Subsequently, Wiberg
and Abdulwahab [17] proposed an enhanced version of SPR by taking the equilib-
rium equation into account (SPRE), where the residual of the governing equilibrium
equation obtained with the smooth stress interpolation is considered in the least
squares procedure. However, the quality of recovered stresses at boundaries is
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worse than that obtained in the interior. Wiberg et al. [18] further proposed an
improved extension of SPR considering both the equilibrium equation and bound-
ary conditions (SPREB), where the recovered stress field satisfies the appropriate
prescribed boundary conditions by adding the corresponding residuals to the least
squares fit. A similar idea was also introduced by Blacker and Belytschko [19],
who only focused on natural boundary conditions. Later, Ródenas et al. [20] pro-
posed an improvement of SPR that uses constraint equations (SPR-C); this method
shares similarities with SPREB, where stress interpolation polynomials are required
to satisfy, in the local patch, equilibrium and compatibility equations, and bound-
ary conditions. With several modifications, this technique was extended to recover
the stress field in singular elasticity problems by decomposing the primal field in
smooth and non-smooth components [21, 22]; while recovering the smooth part
follows the standard SPR-C procedure, an expression based on stress intensity fac-
tors (SIFs) that describes the asymptotic fields near the crack tip is used to recover
the singular part.

Even though SPR-based techniques perform well in recovering gradient fields,
they rely on the existence of superconvergent points; these points are not always
defined, for instance in quadratic triangular elements [23]. Therefore, several post-
processing recovery methods that do not rely on superconvergent points were pro-
posed. Tabbara et al. [24] used a moving least square (MLS) method to construct a
local interpolation of the displacement field, where the recovered strain field is ob-
tained by taking the gradient of the displacement polynomial interpolants. Later, the
recovery by equilibrium in patches (REP) [25, 26] was proposed to extract a stress
field by satisfying equilibrium equations in a weak sense over patches of elements;
a smooth stress field is obtained by using a least squares scheme, where the error
between enhanced and directly-calculated stresses is projected onto the finite ele-
ment strain space over the patch. Instead of minimizing the difference between re-
covered and directly-calculated stresses over the patch, Ubertini proposed another
recovery technique by considering compatibility in patches (RCP) [27], whereby the
strain error (difference between the directly-calculated and enhanced strains) is or-
thogonal to the space of enhanced stresses over each patch. Rather than using the
support of a node (i.e., union of elements sharing it) as the patch [27], Benedetti
et al. [28] further developed RCP by considering patches composed of a main target
element and all its surrounding elements; once the enhanced stress interpolant is
obtained over the patch, the stress in the target element is recovered, and without
considering results from adjacent patches. Later, Payen and Bathe [29] proposed a
stress improvement procedure (SIP) derived from a mixed formulation based on the
Hu-Washizu principle, which is effective in obtaining accurate stress predictions. A
mixed formulation is also the only option for getting optimal finite element dis-
cretizations when solving problems including (almost) incompressible media, thin
structures, or multiphysics phenomena (see [29] and references therein). Within
SIP, the point-wise relationship between stress and strain is relaxed; two equations
are used to obtain the recovered stress field, one that requires the stress error (dif-
ference between enhanced and directly-calculated stresses) is orthogonal to the
space of self-equilibrated stresses, and another one that enforces equilibrium over
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the element patch (in weak sense) with the enhanced stress field. This recovery
procedure has several advantages over its predecessors: Unlike RCP, this tech-
nique does not use a particular stress field defined a priori that satisfies equilibrium
within the patch. Moreover, the number of basic equations used is independent of
the number and type of elements considered in the stress calculation domain. Fi-
nally, as a limitation of using low-order elements to model nearly incompressible
materials, a spurious checkerboard pattern of stresses can be avoided by using
this recovery technique [30]. Recently, Sharma et al. [31] extended this method
to recover the stress field in 3D low-order finite element meshes. The preceding
procedures were not proposed for problems with discontinuities that exhibit singu-
lar stress fields. Xiao and Karihaloo [32] introduced another recovery approach for
fracture problems, which they named the statically admissible stress (SAR) recovery
scheme; this method, which is based on complete polynomial functions that satisfy
the equilibrium equation and traction boundary conditions in each patch, uses MLS
to enforce stress continuity between patches; unlike SPR-C, the smooth and singu-
lar stress fields are handled together, where the original stress field near the crack
tip is obtained by using hybrid crack elements [33].

Regarding EFEA, many stress recovery procedures have been proposed in the
context of the extended/generalized finite element method (X/GFEM). The SAR
technique, which was designed to recover the stress field in fracture problems with
standard FEM, was later extended to improve the accuracy of the stress approxi-
mation in X/GFEM [34]. Duflot and Bordas [35] used the global derivative recovery
method—which requires the entire model as the calculation domain—to smooth
the strain field for linear elastic fracture mechanics problems; the procedure works
by minimizing the square of the 𝐿ኼ-norm of the difference between the directly-
calculated and smoothened strain fields, the latter consisting of three parts (i.e.,
a smooth component interpolated by standard shape functions, a non-smooth dis-
continuous part enriched by Heaviside function, and an enrichment used to capture
the singularity near the crack tip). Jin et al. [36] used this technique to quantify
the interpolation error, a measure that is then used to drive mesh adaptivity. Later,
the technique was used to recover the strain field for problems that contain only
weak discontinuities, with an a posteriori error estimate based on the recovered
strain that is used for adaptive local mesh refinement [37, 38]. As an alternative
to the global derivative recovery method, a derivative recovery procedure based
on extended moving least squares (XMLS) was proposed to obtain a smooth strain
field [39, 40]; a smoothened displacement field is first constructed with the original
nodal displacements and MLS shape functions, where near-tip asymptotic functions
are added to capture singularities; the recovered strains are then obtained by apply-
ing the gradients to this new displacement field. SPR was also adapted to X/GFEM
(SPR-XFEM) [41] with three major modifications: direct calculation of recovered
stresses at integration points (not mesh nodes), decomposing the stress field into
singular and smooth parts, and using different stress interpolation polynomials at
each side of the crack [19]. Later, this technique was used to evaluate upper error
bounds [42] and to create a recovery based goal-oriented error estimator for XFEM
approximations [43]. While these works were modifications/extensions of methods



4.1. Introduction

4

93

proposed for standard FEM, other procedures were also introduced exclusively for
X/GFEM. Prange et al. [44] developed a recovery procedure based on a global least
squares projection of raw stresses calculated from X/GFEM approximations in frac-
ture problems with arbitrarily distributed cracks and inelastic material behavior. Lins
et al. [45] later adapted this approach to improve the stress field within stable GFEM
(SGFEM); because SGFEM modifies the X/GFEM enrichment functions to solve the
issue of ill-conditioned stiffness matrices [46–48], the enrichment functions used
to interpolate the recovered stress field are also modified. Instead of using a global
least squares projection, Lins et al. [49] proposed a more computationally efficient
recovery technique, whereby a consistent block-diagonal projection operator [50]
is used to perform a locally weighted least squares projection of directly-calculated
stresses over patches of elements. Sharma and Maute [51] introduced the ghost
penalty method [52] into X/GFEM for penalizing the jump in displacement gradients
across element boundaries near material interfaces; this method is later combined
with a smoothing technique defined over the entire domain to obtain a smooth
stress field.

Contrary to X/GFEM, where enrichments are associated to nodes of the orig-
inal FE discretization, interface- and discontinuity-enriched finite element proce-
dures seek to enhance the approximation by associating enrichments to nodes that
are created directly along discontinuities. The Interface-enriched Generalized Finite
Element Method (IGFEM) [7], the Hierarchical Interface-enriched Finite Element
Method (HIFEM) [53, 54], and the Discontinuity-Enriched Finite Element Method
(DE-FEM) [8, 9, 55] thus provide an alternative enriched approach for solving prob-
lems with discontinuities. These procedures decouple the background mesh from
discontinuities as in X/GFEM, but they do not have many of the latter’s drawbacks:
By creating enriched DOFs at the intersections between the background mesh and
discontinuities, these EFEA techniques are endowed with intrinsic stability with re-
gard to the condition number of stiffness matrices [54], no loss of accuracy in
blending elements (neighboring to cut elements) due to the locality of enrichment
functions [8], straightforward enforcement of non-homogeneous essential bound-
ary conditions [56], and smooth recovered traction profiles from Dirichlet bound-
aries [56, 57]. Nevertheless, because these methods recover the standard FEM
space by means of an enrichment, they also suffer from inaccurate stress fields
caused by sliver elements; it has been reported that stresses can be overestimated
more than 150% [58].

In this paper we propose a stress recovery technique for EFEA based on SIP,
which as stated above has several advantages over other recovery techniques. SIP
has been shown to enhance stress fields from displacement-based FEM results,
with higher convergence rates than those of directly-calculated stresses. While the
method is generally applicable and thus could also be used with X/GFEM, we demon-
strate the procedure on weak discontinuities resolved by IGFEM. When solving mul-
tiphase material problems, only elements with the same material properties are
considered when constructing the patch of elements for stress recovery, as initially
suggested by Payen and Bathe [29]. The performance of the proposed method is
studied by means of three numerical examples. With Eshelby’s inclusion problem
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we explore the accuracy of stress fields obtained using standard FEM with fitted
meshes and IGFEM with unfitted meshes. The recovery technique coupled to IGFEM
provides more accurate stresses, for the same mesh size, than directly-calculated
stresses obtained by standard FEM on fitted meshes. The second example studies
an elliptical cavity in an infinite plate under remote loading, where we first adjust
the ratio between the elliptical axes. The corresponding results show that the pro-
posed recovery technique generally provides more accurate approximations than
the direct calculation. Later, we consider a circular cavity under the same boundary
condition, where the radius of the circle is adjusted to create different enriched
discretizations for the same structured background mesh. In addition to evaluat-
ing elemental stresses, we also calculate nodal stresses obtained via the proposed
method and other smoothing procedures based on directly-calculated stresses. The
proposed stress recovery technique performs best for evaluating the stress concen-
tration factor 𝐾፭, which is the ratio of the highest stress to the nominal far field
stress. Furthermore, a convergence study shows the reliability of the proposed re-
covery technique with regard to mesh size. Finally, a pressurized sphere example
demonstrates that the proposed recovery technique can also avoid overestimated
stresses in tiny integration elements in 3-D.

4.2. Formulation
4.2.1. IGFEM-based analysis
Consider an open domain Ω ⊂ ℝ፝ with closure Ω that is composed of two disjoint

regions Ωኻ and Ωኼ, which are occupied by different phases. For simplicity, the 2-
D case is shown in Figure 4.1. We denote by 𝒖 the displacement field and by 𝒖።
its restriction to the 𝑖th domain Ω።, i.e., 𝒖𝒊 = 𝒖|። . A similar notation is used for
other subscripted quantities. The domain’s boundary Γ ≡ 𝜕Ω = Ω⧵Ω is smooth and
consists of two disjoint regions Γፍ and Γፃ, where surface tractions �̄� and displace-
ments �̄� are prescribed, respectively. We denote by 𝒏 the outward unit normal to
the boundary 𝜕Ω. The material interface between domains Ωኻ and Ωኼ is denoted
as Γኻኼ and has unit outward normal 𝒏ኻኼ.

Γፍ
𝒏

𝒏ኻኼ

Ωኻ

Ωኼ

Γኻኼ

Γፃ
Figure 4.1: A domain  consists of two parts ኻ and ኼ with a smooth boundary Ꭷ  ጁፃ ∪ ጁፍ.
Dirichlet boundary conditions are prescribed on ጁፃ and surface tractions on ጁፍ. For the discretized model,
enriched nodes (marked with red) are created at the intersections between material interfaces (red
segments) and element edges; integration elements (red triangles) are also created near the interface.
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The strong form of the elastostatics boundary value problem is: Find the dis-
placement field 𝒖 such that

∇ ⋅ 𝝈። + 𝒃። = 0 in Ω። , 𝑖 = 1, 2
𝒖 = �̄� on Γፃ , (4.1)

𝝈 ⋅ 𝒏 = �̄� on Γፍ ,

with interface conditions

𝒖ኻ = 𝒖ኼ on Γኻኼ,
𝝈ኻ ⋅ 𝒏ኻኼ = 𝝈ኼ ⋅ 𝒏ኻኼ on Γኻኼ,

where ∇⋅ denotes the divergence operator, 𝝈 Cauchy’s stress tensor, and 𝒃 the body
force. We assume a linear elastic material behavior and thus 𝝈 = C ∶ 𝜺(𝒖), where
C is the elastic modulus tensor, and 𝜺 = ኻ

ኼ (∇𝒖 + ∇𝒖
⊺) the infinitesimal strain tensor.

The weak form of the boundary value problem is: Find 𝒖 ∈ 𝓤(Ω) such that

𝑎(𝒖, 𝒗) = ℓ(𝒗) ∀𝒗 ∈ 𝓥 (Ω) , (4.2)

where 𝓤 and 𝓥 are vector-valued function sets defined as

𝓤(Ω) = {𝒖 ∈ ℝ፝| 𝒖 ∈ [ℒኼ (Ω)]፝ , 𝒖|። ∈ [ℋ
ኻ (Ω።)]

፝} , (4.3)

𝓥(Ω) = {𝒗 ∈ 𝓤(Ω) , 𝒗|ጁፃ = 0} , (4.4)

with ℒኼ denoting the Hilbert space of square-integrable functions and ℋኻ the first-
order Sobolev space, respectively. The bilinear 𝑎(𝒖, 𝒗) and linear ℓ(𝒗) forms are
given by

𝑎(𝒖, 𝒗) = ∫

𝜺(𝒗) ∶ C ∶ 𝜺(𝒖) dΩ , (4.5)

and
ℓ(𝒗) = ∫


𝒗 ⋅ 𝒃 dΩ +∫

ጁፍ
𝒗 ⋅ �̄� dΓ . (4.6)

In order to solve the problem above, Ω is discretized by a finite element mesh—
not necessarily fitting to material interfaces—such that the the discretized domain
Ω፡ = ⋃ፄ።ኻ 𝑒።, with 𝑒። denoting the 𝑖th finite element and 𝐸 the total number of
elements. Then, the finite-dimensional form of Equation (4.2) is expressed as

ፄ

∑
።ኻ
∫
።፞
𝝐(𝒗፡) ∶ C ∶ 𝝐(𝒖፡) dΩ =

ፄ

∑
።ኻ
∫
።፞
𝒗፡ ⋅ 𝒃 dΩ +

ፄ

∑
።ኻ
∫
Ꭷ ።፞∩ጁፍ

𝒗፡ ⋅ �̄� dΓ , (4.7)

where 𝒖፡ ∈ 𝓤፡ ⊂ 𝓤 and 𝒗፡ ∈ 𝓥፡ ⊂ 𝓥 are trial and test functions, respectively. In
the Interface-enriched Generalized Finite Element Method (IGFEM), the displace-
ment field 𝒖፡ is expressed as

𝒖፡ = ∑
።∈᎖፡

𝑁።(𝒙)𝑼።
⏝⎵⎵⎵⏟⎵⎵⎵⏝
standard FEM

+ ∑
።∈᎖፰

𝜓።(𝒙)𝜶።
⏝⎵⎵⎵⏟⎵⎵⎵⏝

enrichment

, (4.8)
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where the first term is the standard FEM approximation, with 𝜄፡ denoting the index
set of all standard nodes of the background mesh (dark circles in Figure 4.1), as-
sociated with standard shape functions 𝑁። and degree of freedoms (DOFs) 𝑼።; the
second term represents the enrichment, where 𝜄፰ is the index set of enriched nodes
that are associated with enrichment functions 𝜓። and enriched DOFs 𝜶።. Enriched
nodes (red circles in Figure 4.1) are created at the intersections between element
edges and material interfaces. Cut background elements are split into integration
elements, which as the name suggests, are used for the numerical quadrature of
local stiffness and force vector arrays; in addition to be used for constructing enrich-
ment functions 𝜓። and to ensure that the least number of integration points are used
for their numerical quadrature (since 𝜓። ∈ 𝐶ኺ), integration elements are also helpful
in the post-processing stage to properly visualize the primal field [9]. Enrichment
functions 𝜓። are constructed by means of Lagrange shape functions of integration
elements. They attain their maximum value at the location of enriched nodes and
decrease linearly to zero at other nodes in the cut elements (see Figure 4.2).

1
2 3

4

5

𝜓

𝑒ኻ 𝑒ኼ

Figure 4.2: Enrichment function Ꭵ created by the aid of Lagrange shape functions in integration ele-
ments, which are created by considering the material interface (marked with a red curve) the function
is non-zero only in cut elements ኻ፞ (with nodes 𝒙ኻ, 𝒙ኼ and 𝒙ኾ) and element ፞ኼ (with nodes 𝒙ኼ, 𝒙ኽ and
𝒙ኾ). The enrichment function, which is associated with enriched DOFs 𝜶, attains a maximum unit value
at node 𝒙 and decreases linearly to zero at all other nodes.

Background elements that are not cut by discontinuities follow the standard FEM
procedure for constructing their corresponding stiffness matrix 𝒌፞ and force vector
𝒇፞. For integration elements, these arrays are computed as

𝒌፞ = ∫
፞
𝑩⊺C𝑩 d𝑒 , and 𝒇፞ = ∫

፞
[𝑵 𝝍]⊺ 𝒃 d𝑒 + ∫

Ꭷ፞ ∩ጁN
[𝑵 𝝍]⊺ �̄� d𝜕𝑒 (4.9)

where 𝑩 ≡ [𝝏𝑵 𝝏𝝍] is the strain-displacement matrix, 𝑵 and 𝝍 are the element’s
standard shape functions and enrichment functions, respectively, and the differen-
tial operator 𝝏 defined in 2-D or 3-D is given, respectively, by

𝝏 ≡ [
Ꭷ
Ꭷ፱ 0 Ꭷ

Ꭷ፲

0 Ꭷ
Ꭷ፲

Ꭷ
Ꭷ፱

]

⊺

, (4.10)
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or

𝝏 ≡
⎡
⎢
⎢
⎢
⎣

Ꭷ
Ꭷ፱ 0 0 Ꭷ

Ꭷ፲ 0 Ꭷ
Ꭷ፳

0 Ꭷ
Ꭷ፲ 0 Ꭷ

Ꭷ፱
Ꭷ
Ꭷ፳ 0

0 0 Ꭷ
Ꭷ፳ 0 Ꭷ

Ꭷ፲
Ꭷ
Ꭷ፱

⎤
⎥
⎥
⎥
⎦

⊺

. (4.11)

The global stiffness matrix 𝑲 and force vector 𝑭 then are obtained by

𝑲 =
ፄ𝔸
።ኻ

𝒌። , 𝑭 =
ፄ𝔸
።ኻ

𝒇። , (4.12)

where 𝔸 is the standard finite element assembly operator. For more details on
IGFEM’s formulation see [7, 54].

IGFEM not only retains the most salient feature of X/GFEM—decoupling the
background mesh from discontinuities—but also keeps the attractive properties of
standard FEM: As enrichment functions are constructed with Lagrange shape func-
tions of integration elements, they are exactly zero at original mesh nodes; DOFs
associated with these therefore keep their physical meaning. Standard shape func-
tions retain the Kronecker-𝛿 property, i.e., 𝑁። (𝒙፣) = 𝛿።፣ for any standard node
𝒙፣. Furthermore, prescribing non-zero essential boundary conditions along discon-
tinuities is as straightforward as in the standard FEM [56], with smooth recovered
tractions (reactions) [56, 57, 59]. The computer implementation is therefore con-
siderably simpler than that of X/GFEM since it only requires a few modification to
a displacement-based FE code [9]. Most importantly, intrinsic stability is attained
in IGFEM by scaling enrichment functions with a proper scaling factor as interfaces
approach mesh nodes [54]. With such scaling the rate of growth of the condition
number is the same as that of standard FEM on fitted meshes, that is, 𝒪 (ℎዅኼ),
where ℎ is the mesh size. Furthermore, even without such scaling factor—which
causes the condition number of the global stiffness matrix to grow unbounded as
interfaces get arbitrarily close to mesh nodes—a simple Jacobi-like preconditioner
recovers stability [54].

4.2.2. Stress improvement procedure
SIP is derived from a mixed formulation based on the Hu-Washizu principle [60].
It relaxes the stress-strain relationship point-wise, but enhances the fulfillment
of equilibrium over the patch. Following the procedure proposed by Payen and
Bathe [29], the recovered stress 𝝈፞ of the 𝑒th element should satisfy the equilib-
rium in weak form over the calculation domain ℰ (i.e., a patch of elements), and
the projection of the difference between enhanced and directly-calculated stresses
onto the space of self-equilibrated stresses should be zero. To wit,

∑
{፞∈ℰ}

∫
፞
𝛿�̃�⊺፞ {𝝈፞ − 𝝈፡፞ } d𝑒 = 0, (4.13)
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and
∑
{፞∈ℰ}

∫
፞
𝛿𝜻⊺፞ {div (𝝈፞) + 𝒃} d𝑒 = 0, (4.14)

where, denoting by 𝑃፤ is the space of complete polynomials of degree 𝑘 in the patch,
𝜻፞ belongs to the vector-valued space [𝑃ኻ]

ኼ, �̃�፞ is any element in the tensor-valued
space of the self-equilibrated stress defined as {�̃�፞ ∣ �̃�፞ ∈ [𝑃ኼ]

ኼ×ኼ , ∇ ⋅ (�̃�፞) = 0}, and
𝝈፡፞ is the directly-calculated stress at the 𝑒th element, i.e., 𝝈፡፞ = C𝑩𝑼፞, where
𝑼፞ is the local element DOF vector. As shown in Figure 4.3(a), for evaluating the
recovered stress of the hatched element, a patch of elements (in darker shade) is
considered as the calculation domain. The quantities above can be interpolated as

𝝈፞ = E�̂�, 𝛿𝜻፞ = E᎓ �̂�, 𝛿�̃�፞ = Ē ̂�̄�, (4.15)

where �̂�, �̂�, and ̂�̄� are coefficient vectors, and E, Ē, and E᎓ are interpolation

(a) (b)

Figure 4.3: (a) 2-D Patch of elements (darker shade) used to recover the stress of the target element
(hatched); (b) Nodal patch (darker shade) used to compute the enhanced average stress at a node (red
circle).

matrices as defined in Appendix A.2. Noteworthy, a complete polynomial of degree
2 is used to construct the interpolation matrices E and Ē, thereby having an ex-
pected order of convergence 𝒪(ℎኼ) [29], where ℎ is the mesh size. Equations (4.13)
and (4.14) can then be expressed as

[ ∑
{፞∈ℰ}

(
∫
፞
Ē⊺E d𝑒

∫
፞
E⊺᎓𝝏⊺E d𝑒

)] �̂� = {∑
{፞∈ℰ}

(
∫
፞
Ē⊺𝝈፡፞ d𝑒

−∫
፞
E⊺᎓𝒃 d𝑒

)} , (4.16)

which is solved for coefficient vector �̂� of the target element, after which its cor-
responding recovered enhanced stress is simply 𝝈፞ = E(𝒙)�̂�. Gauss quadrature
is used to evaluate Equation (4.16). Considering the interpolation matrices and the
differential operator, the highest-order term is found in Ē⊺E. Since the maximum
polynomial order is quartic, six integration points are then used to exactly integrate
the integrands.
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A nodal stress field can be constructed by recovering stresses in all elements
and averaging their values at nodes. In order to obtain the recovered stress �̄�፣ at
the 𝑗th node, a nodal patch ℰ፣ containing 𝑁፣ elements sharing the node is first
assembled (see Figure 4.3(b)). Then, the nodal stress �̄�፣ is simply computed as the
average, i.e.,

�̄�፣ =
∑

{፞∈ℰ፣}
𝝈፞(𝒙፣)

𝑁፣
, (4.17)

where 𝝈፞(𝒙፣) = E(𝒙፣)�̂�፞ is the stress of the 𝑒th element evaluated at the 𝑗th
node.

In IGFEM-based analysis, elements at either side of material interfaces are as-
signed different material properties. Therefore, the calculation domain considers
only a patch of elements with the same material properties. Figure 4.4 shows three
cases of element patches used for recovering the stress near a material interface
(marked with red) in both 2-D and 3-D, where the union of elements connected to
a target element is set as the stress calculation domain. A similar strategy is used

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Computational domain used to compute the enhanced element stress considers only el-
ements on the same side of the interface (shown in red). (a-c) 2-D element patch shown in darkest
shade; (d-f) 3-D element patch shown as opaque.

to obtain the enhanced nodal stress (see Figure 4.5). There is a special scenario for
recovering the stress of a node at a corner, where a larger patch of elements is used
for making the nodal stress distribution smoother when constructing the calculation
domain (see Figures 4.5(a) and (d) for 2-D and 3-D, respectively). Figures 4.5(c)
and (f) show a situation where the patch of a node, which is not located along the
material interface, is composed of both background and integration elements. It
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is worth noting that the stress calculation domain (the patch) is tied to the finite
element discretization, and therefore refining the original background mesh creates
a discretization where discontinuities cut more background elements; however, the
configuration of the element patch used to recover the stress distribution does not
change for structured meshes regardless of the mesh size.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Computational domain used to compute the enhanced node stress considers only elements
on the same side of the interface (shown in red). (a-c) 2-D element patch shown in darkest shade; (d-f)
3-D element patch shown as opaque.

4.2.3. Alternative smoothing formulations
We compare the proposed stress recovery technique for both elemental and nodal
stresses to other two stress smoothing procedures. The first one averages directly-
calculated stresses on a target element or node considering a patch; the averaged
stress is computed as

�̄�፡ =
∑𝝈፡፞
𝑁፞

, (4.18)

where 𝑁፞ is the number of the element in the patch, which is taken to be the same
as that used for the proposed recovery technique. We use �̄�፡፞ and �̄�፡። to denote the
averaged stresses of the 𝑒th element and 𝑖th node, respectively. We also consider
an area-weighted average stress, computed as

�̄�፡▷ =
∑𝝈፡፞𝐴፞
∑𝐴፞

, (4.19)

where 𝐴፞ is the area of the 𝑒th element. Similarly, �̄�፡▷፞ and �̄�፡▷። denote the area-
weighted averaged stresses of the 𝑒th element and 𝑖th node, respectively.
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4.3. Numerical examples
In this section three examples are investigated to demonstrate the effectiveness of
the proposed approach. The finite element analysis is performed under plane strain
conditions, and no units are used so results can be interpreted in any consistent
unit system. We perform a convergence study for both examples to investigate the
accuracy of the proposed approach with increasingly finer meshes, and we use the
𝐻ኺ-norm of the stress to quantify the error:

‖𝜔‖ፇኺ = √∑
፞∈፡

(∫፞
(𝝈ex − 𝝈፞)

⊺ ⋅ (𝝈ex − 𝝈፞) d𝑒
∫፞ 𝝈⊺ex ⋅ 𝝈ex d𝑒

) (4.20)

where 𝝈ex is the exact analytical stress. This global error is evaluated by summing up
the contribution of all standard and integration elements. For the error in directly-
calculated stresses, 𝝈፞ is replaced by with 𝝈፡፞ .

4.3.1. Eshelby’s inclusion problem
As shown in Figure 4.6, a circular inclusion with radius 𝑟። is embedded into a matrix
with radius 𝑟፨ = 2. The mismatch in material properties at the interface between

𝑟፨

𝑟። 𝐸ኻ, 𝜈ኻ

𝐸ኼ, 𝜈ኼ

𝑥
𝑦

2

2

�̄�

�̄�

�̄�

�̄�

Figure 4.6: Schematic of Eshelby’s inclusion problem with outside radius ፫፨  ኼ and inside radius ፫።. For
the numerical analysis, a square domain of size ኼ × ኼ (darker shade) is considered, with the analytical
displacement �̄� prescribed on the boundary. For the material properties, ፄኼ/ፄኻ  ኻኺ.

matrix and inclusion is responsible for the discontinuous gradient field. Young’s
moduli and Poisson ratios for the inclusion and matrix are, respectively, 𝐸ኻ = 1, 𝜈ኻ =
0.25 and 𝐸ኼ = 10, 𝜈ኼ = 0.3. Dirichlet boundary conditions 𝑢፫ = 𝑟፨ and 𝑢᎕ = 0 are
imposed on the matrix’s outer boundary (along 𝑟 = 𝑟፨). The exact solution for the
displacement field in polar coordinates is given by [10, 56, 59]

𝑢፫ = {
𝑟𝑓(𝑟።) for 0 ≤ 𝑟 ≤ 𝑟።
𝑟𝑓(𝑟) for 𝑟። ≤ 𝑟 ≤ 𝑟፨ ,

𝑢᎕ = 0,
(4.21)
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where the function 𝑓(𝑟) = (1 − ፫ኼ፨
፫ኼ ) 𝐶 +

፫ኼ፨
፫ኼ . In this equation, 𝐶 is a function of

material properties:

𝐶 =
(𝜆ኻ + 𝜇ኻ + 𝜇ኼ) 𝑟ኼ፨

(𝜆ኼ + 𝜇ኼ) 𝑟ኼ። + (𝜆ኻ + 𝜇ኻ) (𝑟ኼ፨ − 𝑟ኼ። ) + 𝜇ኼ𝑟ኼ፨
, (4.22)

where 𝜇። , 𝜆። , 𝑖 = 1, 2 are the Lamé constants, which can be obtained as a function
of 𝐸። and 𝜈። as

𝜆። =
𝐸።𝜈።

(1 + 𝜈።)(1 − 2𝜈።)
,

𝜇። =
𝐸።

2(1 + 𝜈።)
.

(4.23)

The stress field for this problem is given by

𝜎።፣ = 𝜆𝛿።፣𝜀፤፤ + 𝜇 (𝜀።፣ + 𝜀፣።) , (4.24)

where 𝛿።፣ is the Kronecker delta, 𝑖, 𝑗, 𝑘 ∈ {𝑟, 𝜃}, and the exact strain field for this
problem is given by

𝜀፫፫ = 𝑓(𝑟።), 𝜀᎕᎕ = 𝑓(𝑟።), 𝜀፫᎕ = 0, for 0 ⩽ 𝑟 ⩽ 𝑟። ,
𝜀፫፫ = (1 + ፫ኼ፨

፫ኼ ) 𝐶 −
፫ኼ፨
፫ኼ , 𝜀᎕᎕ = 𝑓(𝑟), 𝜀፫᎕ = 0, for 𝑟። ⩽ 𝑟 ⩽ 𝑟፨ .

(4.25)

A 2 × 2 square computational domain is chosen, as shown in Figure 4.6, and
the domain is discretized by a finite element mesh composed of 60 × 60 × 2 con-
stant strain triangular elements. The exact displacement given in Equation (4.21) is
prescribed along the square’s boundary. For studying the performance of the pro-
posed recovery technique, the internal radius 𝑟። is set to increase from 𝑟። = 0.35 to
𝑟። = 0.42 with step size Δ𝑟። = 0.035, which ensures the creation of integration ele-
ments with bad aspect ratios and/or tiny areas along the interface. Furthermore, we
compare results with standard FEM using conforming meshes, where cut elements
are replaced by standard FEM elements with the same geometry as integration
elements in IGFEM. This approach is called the Conformal Decomposition Finite
Element Method (CDFEM) [61–63].

Figure 4.7 shows the maximum von Mises stress as a function of the internal ra-
dius 𝑟።. Directly-calculated and recovered stresses for standard FEM and IGFEM are
compared to the analytical solution. It can be seen that IGFEM recovered stresses
are more accurate than directly-calculated ones for both standard FEM on match-
ing meshes and IGFEM with a fixed unfitted mesh. As IGFEM can fully recover
the approximation space of standard FEM, curves of directly-calculated and recov-
ered stresses obtained under standard FEM on the same conforming discretizations
overlap with those of IGFEM. The stresses closest to the analytical solution are ob-
tained by the recovery technique applied to standard FEM on fitted meshes at the
expense of losing the versatility of using a mesh that is fully decoupled from the
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interface. Figure 4.8 further compares the proposed procedure to the other two
smoothing techniques discussed in Chapter 4.2.3. It is shown that the maximum
von Mises stress computed with averaged stress fields given by Equations (4.18)
and (4.19) is worse than that obtained by the proposed approach.
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Figure 4.7: Maximum von Mises stresses associated with the internal radius ፫። evaluated by standard
FEM with fitted meshes, IGFEM with a structured background mesh, and CDFEM with the conforming
discretizations created in IGFEM.
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Figure 4.8: Maximum von Mises stress associated with the internal radius ፫። obtained with the averaged
and area-weighted smoothing formulations using IGFEM.
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Figure 4.9: von Mises stress fields for an internal radius ፫።  ኺ.ኽዀኺ: (a, b) Standard FEM on a fitted
mesh; (c, d, e, f) IGFEM on an unfitted mesh; (g, h) Standard FEM on a conforming discretization created
using IGFEM’s integration elements (CDFEM); The fields correspond to (a, c, g) directly-calculated, (b,
d, h) recovered, (e) averaged, and (f) area-weighted stresses.

The von Mises stress distributions for 𝑟። = 0.3605 are given in Figure 4.9. The
fields for directly-calculated and recovered stresses using standard FEM on good-
quality fitted meshes are given in Figures 4.9(a) and (b), respectively. Figures 4.9(c)–
(f) show the results for IGFEM-based analysis. Figure 4.9(c) displays an element
along the material interface with the peak stress, which is caused by the tiny ele-
mental area. However, the recovery technique proposed removes the stress over-
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estimation and makes the stress distribution smoother around that region (see
Figure 4.9(d)). The von Mises stress fields obtained with the averaged and area-
weighted elemental stresses are displayed on Figures 4.9(e) and (f), which shows
the averaging equations yield an underestimated stress. Figures 4.9(g) and (h)
show von Mises distributions evaluated with directly-calculated and recovered stresses
with CDFEM, which are the same to those of IGFEM.

Finally, four background meshes with 30 × 30 × 2, 60 × 60 × 2, 120 × 120 × 2,
and 240×240×2 linear triangular elements are used for the convergence analysis
with 𝑟። = 0.371. Figure 4.10 shows the global error defined in Equation (4.20) as a
function of mesh size ℎ. It can be seen that the recovered stress 𝝈፞ convergences
faster (with a rate of 1.20) than the directly-calculated stress 𝝈፡፞ . The recovered
stress with a coarse mesh can reach the same level of accuracy of the directly-
calculated stress with a refined mesh.
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Figure 4.10: ፇኺ-norm of the error in stress as a function of mesh size ፡ with ፫።  ኺ.ኽኻ. The curves for
recovered stress 𝝈፞ and directly-calculated stress 𝝈፡፞ show that the former is not only more accurate for
any given mesh size, but also that it converges at a faster rate.

4.3.2. An elliptical cavity in an infinite plate under remote load
Figure 4.11 shows a traction-free elliptical hole in an infinite domain that is subjected
to a distant tensile stress 𝜎ኺ in the 𝑥 direction, where the elliptical axes 2𝑎 and 2𝑏
are aligned with the 𝑥 and 𝑦 coordinate axes, respectively. The analytical stress
field for this problem is given by [64]:

{
𝜎፱፱
𝜎፲፲
𝜎፱፲

} = 𝜎ኺ ({
1
0
0
} − 𝑝ፚ𝑝 (

1
2 {

𝐻ኻ
𝐻ኼ
𝐻ኽ

} − (𝑏𝑎 +
1
2){

𝐻ኾ
𝐻ኻ
𝐻

})) , (4.26)
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where

𝐻ኻ =
𝑎ኼ𝜌ኼፚ𝜌ኼ + 𝑏ኼ𝜌ኼፚ + 𝑎𝑏𝜌ፚ𝜌

(𝑎𝜌 + 𝑏𝜌ፚ)
ኼ − 𝜌ኼ𝑛ኼ፱ − 𝜌ኼፚ𝑛ኼ፲ + (5𝜌ኼፚ + 5𝜌ኼ − 4𝜂) 𝑛ኼ፱𝑛ኼ፲ ,

𝐻ኼ =
𝜌𝑎 (𝑎𝜌 + 𝑏𝜌ፚ + 2𝑏𝜌ፚ𝜌ኼ + 𝑎𝜌ኽ)

(𝑎𝜌 + 𝑏𝜌ፚ)
ኼ + 𝑛ኼ፲ [2 − 6𝜌ኼ + (𝜌ኼፚ + 9𝜌ኼ − 4𝜂) 𝑛ኼ፲] ,

𝐻ኽ = 𝑛፱𝑛፲ [1 − 3𝜌ኼ + (3𝜌ኼፚ + 7𝜌ኼ − 4𝜂) 𝑛ኼ፲] ,

𝐻ኾ =
𝜌ፚ𝑏 (𝑎𝜌 + 𝑏𝜌ፚ + 2𝑎𝜌ኼፚ𝜌 + 𝑏𝜌ኽፚ)

(𝑎𝜌 + 𝑏𝜌ፚ)
ኼ + 𝑛ኼ፱ [2 − 6𝜌ኼፚ + (9𝜌ኼፚ + 𝜌ኼ − 4𝜂) 𝑛ኼ፱] ,

𝐻 = 𝑛፱𝑛፲ [1 − 3𝜌ኼፚ + (7𝜌ኼፚ + 3𝜌ኼ − 4𝜂) 𝑛ኼ፱] ,

𝜌ፚ =
𝑎

√𝑎ኼ + 𝜆
,

𝜌 =
𝑏

√𝑏ኼ + 𝜆
,

(4.27)

wherein the above equation

𝜂 = 𝜌ኼፚ𝑛ኼ፱ + 𝜌ኼ𝑛ኼ፲ + 1,

𝒏 = (𝑛፱ , 𝑛፲) =
1

√𝑥ኼ(𝑏ኼ + 𝜆)ኼ + 𝑦ኼ(𝑎ኼ + 𝜆)ኼ
(𝑥(𝑏ኼ + 𝜆), 𝑦(𝑎ኼ + 𝜆)),

𝜆 = 1
2 (𝑥

ኼ + 𝑦ኼ − 𝑎ኼ − 𝑏ኼ +√(𝑥ኼ + 𝑦ኼ − 𝑎ኼ + 𝑏ኼ)ኼ + 4 (𝑎ኼ − 𝑏ኼ) 𝑦ኼ) .

(4.28)

𝑦
𝑥2𝑏

𝒏

2𝑎

𝐸, 𝜈

𝜎ኺ 𝜎ኺ

�̄�

�̄�5

5

Figure 4.11: Schematic of an elliptical cavity with semi-principal axes ፚ and  in an infinite plate under
remote loading ኺ in the ፱ direction. For the analysis, only the shaded area is considered due to symme-
try (with appropriate symmetry boundary conditions) and exact tractions obtained from Equation (4.26)
are applied on the right and top sides.

Due to the symmetry, only the 5 × 5 region (darker shade) is considered as the
analysis domain, and is discretized with a mesh of 60×60×2 constant strain trian-
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gles. Symmetry boundary conditions are then imposed along left and bottom edges,
and tractions obtained from the analytical equation with 𝜎ኺ = 1 are prescribed on
top and right sides. In order to avoid an ill-conditioned stiffness matrix, a material
with Young’s modulus 10ዅዃ is assigned to the void part; the solid part has Young’s
modulus 𝐸 = 1 and Poisson’s ratio 𝜈 = 0.3.

For this problem we adjust the ratio between the semi-major axis 𝑎 and semi-
minor axis 𝑏 to investigate the performance of the proposed recovery technique,
where 𝑎 and 𝑏 are chosen from a set of values {2.49, 1.245, 0.498, 0.249, 0.1245},
resulting 𝑎/𝑏 ratios from 0.05 to 20. In addition, we solve the problem on three
different discretizations, i.e., 60 × 60 × 2, 120 × 120 × 2, and 240 × 240 × 2 tri-
angular elements with corresponding mesh sizes ℎ = 0.1348, 0.0674, and 0.0337,
respectively. For simplicity, the maximum von Mises stress 𝜎vM obtained via direct
calculation and the recovery technique is normalized by the analytical result for the
corresponding ratio.
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Figure 4.12: Maximum normalized von Mises stress vM (top) and ፇኺ-norm of the error in stress (middle)
obtained with directly-calculated and recovered stresses as a function of ፚ/. Three different discretiza-
tions are used with ዀኺ × ዀኺ × ኼ, ኻኼኺ × ኻኼኺ × ኼ and ኼኾኺ × ኼኾኺ × ኼ elements. The corresponding mesh
sizes are ፡  ኺ.ኻኽኾዂ, ኺ.ኺዀኾ, and ኺ.ኺኽኽ, respectively. The cavity configurations for different values of
ፚ/ are shown at the bottom.
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Figure 4.12 shows the normalized von Mises stress values as a function of 𝑎/𝑏,
where it can be seen that the proposed recovery technique generally provides more
accurate approximations than the direct calculation. However, as the ratio 𝑎/𝑏 is
decreased, the cavity progressively morphs into a crack perpendicular to the remote
loading. As a result, the stress field becomes increasingly singular, and both directly-
calculated and recovered stresses do not behave well. The corresponding errors in
the 𝐻ኺ norm are also given in the figure, where the difference between the recovery
technique and the direct calculation becomes small for small and large values of 𝑎/𝑏.

We now set 𝑎 = 𝑏 to consider a circular cavity in an infinite plate with the same
boundary conditions. The analyses are performed with different values of radius 𝑎,
increasing from 𝑎 = 1.895 to 𝑎 = 2.095 with step Δ𝑎 = 0.01. Figure 4.13 shows the
stress concentration factor 𝐾፭—i.e., the ratio of the highest stress to the nominal
far field stress [65]—evaluated by means of Equations (4.17), (4.18), and (4.19) for
different radii 𝑎. For this problem 𝐾፭ = 3 (Equation (4.26) for (𝑥, 𝑦) = (0, 𝑎)) and
thus it can be seen that all numerical values fluctuate around this value, since differ-
ent values of radius 𝑎 also imply different finite element discretizations. Averaged
and area-weighted averaged stresses show large differences between the maxi-
mum and minimum values, and thus they are greatly effected by the discretization.
For instance, there is a huge drop in the stress concentration factor as 𝑎 increases
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Figure 4.13: Stress concentration factor ፊ፭ associated with radius ፚ that is evaluated by averaged and
area-weighted average stresses, recovery technique, and analytical solution, respectively.

from 1.915 to 1.925. With 𝑎 = 1.915, Figure 4.14(a) shows the element patch
(in darker shade) used to evaluate 𝐾፭ at the location of a node (red circle). Since
patch elements are close to the expected coordinate, they provide an accurate ap-
proximation of the stress concentration factor. As the radius 𝑎 increases to 1.925, a
larger patch is considered as the calculation domain (see Figure 4.14(b)). However,
considering more distant elements in the patch, which have lower stress, yields an
underestimated stress concentration factor. The proposed recovery technique pre-
dicts the best approximation of the analytical value as its curve is the most stable
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one. Notice that the same patches are used in the proposed recovery technique,
which is therefore less sensitive to changes in the discretization. Figures 4.14(c)
and (d) show the same configuration of element patches within a refined mesh
used to recover the stress of nodes shown Figures 4.14(a) and (b).

(a) (b)

(c) (d)

Figure 4.14: Element patches (darker shade) used to evaluate the stress concentration factor ፊ፭ at the
location of node (red circle). ፚ  ኻ.ዃኻ for (a, c) and ፚ  ኻ.ዃኼ for (b, d). The patches’ shape remains
the same as meshes are refined.

Furthermore, we perform a convergence study by using background meshes
with increasingly smaller mesh size ℎ to investigate the behavior of each formula-
tion. In addition to the mesh with 60 × 60 × 2 elements used earlier, we consider
extra meshes with 30 × 30 × 2, 120 × 120 × 2, and 240 × 240 × 2 linear triangular
elements. For a given mesh size, minimum, maximum, and average values were
obtained for the same radii range, i.e., 𝑎 = [1.895, 2.095]. Results are reported in
Figure 4.15, where the curves correspond to average values and the shades span
from minimum to maximum values of the stress concentration factor 𝐾፭. While all
formulations approach the analytical value as the mesh is refined, the stress recov-
ery technique shows the most accurate prediction, as its shaded area is the smallest
one among all formulations. With the same background meshes, we also calculate
the global 𝐻ኺ-norm of the error for 𝑎 = 1.895. Note that this study looks again at
elemental stresses for computing Equation (4.20). Figure 4.16 shows that the con-
vergence rate of the recovered stress is 1.34, which is in agreement with the value
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obtained when applying the SIP recovery technique on standard FEM tetrahedral
elements [31].
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Figure 4.15: Stress concentration factor ፊ፭ as a function of mesh size ፡. In this convergence study,
meshes with ኽኺ×ኽኺ×ኼ, ዀኺ×ዀኺ×ኼ, ኻኼኺ×ኻኼኺ×ኼ, and ኼኾኺ×ኼኾኺ×ኼ linear triangular elements were
used. For each mesh size, the figure reports minimum, average, and maximum values of ፊ፭ for radii in
the range ፚ  [ኻ.ዂዃ, ኼ.ኺዃ].
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Figure 4.16: ፇኺ-norm of the error in stress as a function of mesh size ፡ with ፚ  ኻ.ዂዃ. The curves for
recovered stress 𝝈፞ and directly-calculated stress 𝝈፡፞ show that the former is not only more accurate for
any given mesh size, but also that it converges at a faster rate.
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4.3.3. Pressurized sphere
A hollow sphere with internal radius 𝑎 = 1 and external radius 𝑏 = 2 is considered
in this example, where a uniform pressure 𝑝 = 1 is applied to the internal surface
(see Figure 4.17(a)). The analytical displacements and stresses for this problem are
given by [66]:

{
𝑢፱
𝑢፲
𝑢፳

} = 𝑎ኽ𝑝 (2𝑟ኽ(1 − 2𝜈) + 𝑏ኽ(1 + 𝜈))
2 (−𝑎ኽ + 𝑏ኽ) 𝐸𝑟ኼ {

cos𝜙 sin𝜃
sin𝜙 sin𝜃

cos𝜃
} , (4.29)

and

⎧
⎪

⎨
⎪
⎩

𝜎፱፱
𝜎፲፲
𝜎፳፳
𝜎፱፲
𝜎፲፳
𝜎፱፳

⎫
⎪

⎬
⎪
⎭

= 𝑎ኽ𝑏ኽ𝑝
8 (𝑎ኽ − 𝑏ኽ) 𝑟ኽ

⎧
⎪
⎪

⎨
⎪
⎪
⎩

−(1 + 8 ፫
ኽ

ኽ + 3 (cos 2𝜃 + cos 2𝜃 cos 2𝜙 − cos 2𝜙))

−(1 + 8 ፫
ኽ

ኽ + 3 (cos 2𝜃 − cos 2𝜃 cos 2𝜙 + cos 2𝜙))
−8 ፫

ኽ

ኽ + 6 cos 2𝜃
6(sin𝜃)ኼ sin 2𝜙
6 sin 2𝜃 sin𝜙
6 cos𝜙 sin 2𝜃

⎫
⎪
⎪

⎬
⎪
⎪
⎭

,

(4.30)

respectively, where 𝑟 = √𝑥ኼ + 𝑦ኼ + 𝑧ኼ is the distance from the sphere center,
𝜙 = arctan (𝑦/𝑥), and 𝜃 = arccos (𝑧/𝑟). Due to symmetry, we only consider

𝑥

𝑦

𝑧

𝑎𝑏 𝑝

(a) (b)

Figure 4.17: (a) Schematic of an internally pressurized sphere with internal radius ፚ and external radius
 where the uniform pressure ፩ is imposed on the internal surface; (b) Due to symmetry, an 1/8 sphere
is considered and immersed into a background mesh with ኻኺ× ኻኺ× ኻኺ× ዀ linear tetrahedral elements.

one eighth of the sphere for the analysis (see Figure 4.17(b)); consequently, sym-
metric boundary conditions are prescribed on the planar surfaces in the 𝑥, 𝑦, and
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𝑧 directions. The sphere portion is then immersed into a cubic domain with dimen-
sions 2.25 × 2.25 × 2.25, which is discretized by a structured mesh composed of
10 × 10 × 10 × 6 linear tetrahedra.

According to the analytical solution, the maximum value of von Mises stress is
𝜎vM = 1.71. However, the maximum von Mises stress obtained with directly calcu-
lated stresses is 𝜎vM = 2.11 (see Figure 4.18(a)), where peak stresses are the result
of several tiny integration elements (marked with gray). Figure 4.18(b) shows that
the recovered stresses are much closer to the exact solutions. The corresponding
error distributions are shown in Figures 4.18(c) and 4.18(d), where the maximum
value of the latter is one order of magnitude smaller than that of the former. In
addition, background meshes with 5×5×5×6, 10×10×10×6, 20×20×20×6,
and 40×40×40×6 tetrahedral elements are used to perform a convergence study,
and we compute the 𝐻ኺ-norm of the error for both directly-calculated and recovered
stresses. Figure 4.19 shows a much faster convergence rate for recovered stresses
(1.46 vs. 0.89). The convergence rate is on par with the value 1.49 obtained by
the recovery technique applied on standard FEM using fitted meshes by Sharma et
al. [31].

𝜎vM(𝝈፡፞ )
2.11

0.18

(a)

𝜎vM(𝝈፞)
1.58

0.20

(b)

Error(𝝈፡፞ )
2.21 × 10ዅኾ

2.16 × 10ዅዃ

(c)

Error(𝝈፞)
4.43 × 10ዅ

1.85 × 10ዅዃ

(d)

Figure 4.18: (a,b) von Mises stress fields obtained with (a) directly-calculated and (b) recovered stresses,
where the former shows several tiny integration elements (marked with red) with peak stresses and the
latter displays a more smooth distribution. (c,d) Element-wise error distributions in the ፇኺ form under (a)
directly-calculated and (b) recovered stresses, where the maximum value of the latter is one magnitude
smaller than that of the former.
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Figure 4.19: ፇኺ-norm of the error in stress as a function of mesh size ፡, where the recovered stress 𝝈፞
converges faster than the directly-calculated stress 𝝈፡፞, this time with a higher convergence rate of ኻ.ኾዀ.

4.4. Summary and conclusions
In this article we extended the stress improvement procedure (SIP) proposed by
Payen and Bathe [29] to recover the stress field in problems with discontinuous
gradient fields, whose solution is obtained by means of an enriched finite element
analysis. We investigated the proposed recovery technique in conjunction with the
Interface-enriched Generalized Finite Element Method (IGFEM), although we fore-
see no further developments when coupling the technique to other EFEA such as
X/GFEM. In IGFEM material interfaces subdivide mesh elements into subdomains
to which different material properties are assigned. In order to smooth the stress
field close to the interface, the calculation domain used is carefully constructed by
selecting a patch of (integration) elements with the same material properties. We
also used the recovery technique to evaluate nodal stresses along discontinuities,
where only integration elements at the same side of discontinuities are used as the
element patch. For corner nodes along the discontinuity, a larger patch of elements
that involves standard uncut elements is used as the calculation domain.

The technique was demonstrated by means of 2-D and 3-D numerical exam-
ples. With Eshelby’s inclusion problem, we showed that recovered IGFEM stresses
are more accurate than directly-calculated ones for both standard FEM and IGFEM.
Therefore, for IGFEM the stress recovery technique provides an elegant means to
approximate the stress field compared to standard FEM on fitted meshes. The cir-
cular cavity example was used to investigate the recovery of nodal stress fields. In
order to avoid a singular stiffness matrix, the cavity was assigned a material with
a Young’s modulus orders of magnitude smaller than that of the solid material. Av-
eraged and area-weighted smoothing techniques were also used to evaluate the
nodal stresses. In comparison, the proposed recovery technique does not only pro-
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vide a more accurate result for the value of stress concentration factor, but is also
less sensitive to the choice of discretization (see Figure 4.13). For the 3-D pres-
surized sphere example, it was shown that the proposed recovery technique can
avoid overestimated stresses in tiny integration elements. More importantly, the
convergence rate of the recovered stresses associated with mesh size ℎ is close to
the value 1.49 obtained from standard FEM using the recovery approach on fitted
meshes by Sharma et al. [31]. Note that although in all examples we used analyt-
ical solutions, the proposed methodology could also be used for a posteriori error
estimation when solving problems without closed-form solutions (similarly to other
recovery approaches such as SPR)

Even though this work focused on static material interfaces, the proposed pro-
cedure does not suffer any modification for problems with evolving interfaces, e.g.,
stress-based topology optimization, for which an accurate approximation of the
stress field is paramount [67]. In fact, the proposed method has been used to re-
cover the stress field in an incoming article that designs structures with tailored
brittle fracture resitance [68], which hinges on an accurate evaluation of energy
release rates—which in turn greatly depend on the approximation of stress field.

As the proposed recovery technique aims to improve the stress approximation
for a linear field using a quadratic interpolant in a target element, future work may
develop the proposed methodology to recover stress fields of higher order. This
could be done via increasing the order of the approximation—for both standard
and enrichment functions—and using an order higher interpolant to recover the
stress field. The proposed technique can also be extended straightforwardly to re-
cover stress fields in problems with strong discontinuities such as fracture, for which
the Discontinuity Enriched Finite Element Method (DE-FEM) has been proposed re-
cently [8, 9]; DE-FEM is a generalization of IGFEM for the seamless treatment of
both weak and strong discontinuities with a unique formulation, and inherits all of
IGFEM’s advantages. Nevertheless, the DE-FEM formulation does not use singular
enrichments so a modification would be required to the enriched formulation if ac-
curate singular stress fields are sought. For instance, following the work of Duflot
and Bordas [35], the stress field could be decomposed into smooth, non-smooth
non-singular, and non-smooth singular components. While the first two could be
handled using the same strategy mentioned in this paper, the last one could use an
analytical formulation based on stress intensity factors that describes the asymp-
totic fields near the crack tip. This could greatly improve the recovered stress at
crack fronts.

As a final note, although the proposed recovery approach can greatly improve
the accuracy of the stress field obtained with IGFEM, it is just a post-processing
technique that does not solve the fundamental issue at its core: Because IGFEM
recovers—through an enriched procedure—the same standard finite element space,
the recovery of gradient fields is still susceptible to the way elements are cut by
interfaces. Therefore, addressing this issue at the root would require for alternative
means to create the enriched finite element space.
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5
On Tailoring Fracture Resistance of Brittle
Structures: A Level Set Interface-enriched

Topology Optimization Approach

In this chapter we propose a fully immersed topology optimization proce-
dure to design structures with tailored fracture resistance under linear elas-
tic fracture mechanics assumptions for brittle materials. A level set function
discretized by radial basis functions is used to represent the topology, and
the Interface-enriched Generalized Finite Element Method (IGFEM) is applied
to obtain an accurate structural response. Unlike most fracture-based topol-
ogy optimization approaches, which predefine cracks at specific locations at
the beginning, the technique assumes that cracks can nucleate at right an-
gles from the boundary, at the location of enriched nodes that are added
to enhance the finite element approximation. Instead of performing multiple
finite element analyses to evaluate the energy release rates (ERRs) of all
potential cracks—a procedure that would be computationally intractable—
we approximate them by means of topological derivatives after a single en-
riched finite element analysis of the uncracked domain. ERRs are then ag-
gregated to construct the objective function, and the corresponding sensitivity
formulation is derived analytically by means of an adjoint formulation. Sev-
eral numerical examples demonstrate the technique’s ability to tailor frac-
ture resistance, including the well-known benchmark L-shaped bracket and
a multiple-loading optimization problem for obtaining a structure with frac-
ture resistance anisotropy.

This chapter has been published in Computer Methods in Applied Mechanics and Engineering, 388,
114189 (2022).
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5.1. Introduction
Cracks in engineering structures, which could develop during their manufacturing
or service life, may affect adversely the mechanical performance and even lead
to catastrophic failure (particularly brittle fracture). When it is either impractical
or just too expensive to simply change a defective component, a structure could
be reconditioned by simply applying adhesively bonded patches [1–3]. Neverthe-
less, without any doubt the best way to mitigate the effect of cracks is preventing
them from materializing in the first place. Structural failure due to fracture should
therefore be considered in the early stages of structural design. At worst, the en-
gineer should follow guidelines of best practices to avoid unsafe designs. At best,
computational tools should be used to obtain designs that have been optimized to
reduce the likelihood of fracture or other mechanisms that could compromise struc-
tural integrity. One such tool is topology optimization [4–7], which has become a
popular design technique in real-world industrial applications [8, 9]. Based on struc-
tural failure criteria, topology optimization procedures can be classified into three
categories: stress-, damage-, and fracture-based approaches.

Stress-based topology optimization is by far the most widely used technique. In
this procedure, the stress state in the final design must fulfill a stress requirement,
for instance, not exceeding the yield strength. Therefore, yield criteria such as von
Mises [10–13] and Drucker靨Prager [14, 15] are enforced as constraints. Moreover,
various static failure theories for brittle and ductile materials have also been used
in topology optimization [16]. Since stress is a local quantity, a large number of
stress constraints must be satisfied, making the optimization complex and com-
putationally demanding [17, 18]. To circumvent this, one approach widely used
is to employ aggregation functions that group all stress-based terms into a single
quantity; aggregation functions include the Kreisselmeier-Steinhauser (KS) [19], 𝑃-
mean [20], and 𝑃-norm [21]. As a caveat, although these stress measures simplify
the computational implementation, they also “globalize” stress so local values are
harder to enforce exactly. As a result, various techniques have been proposed to
recover stress locality, including divide-and-conquer strategies, where aggregation
functions are used on various disjoint subdomains [22, 23] and stress fields that
are weighted by the structural boundary’s curvature [24] (which significantly influ-
ences stress concentrations [25]). An alternative approach to the use of aggregation
functions was recently proposed, whereby an augmented Lagrangian formulation is
used to deal with a large number of local stress constraints in the objective function
directly [26]. Instead of considering stresses as constraints, the stress distribution
can also be directly minimized, for which the optimization requires a global stress
measure [27–29].

Damage-based topology optimization has also gained considerable attention in
the past decade. The idea, which was first explored by Bendsøe and Diaz [30], intro-
duced damage-related criteria either as an objective or constraint. They used a con-
tinuum damage model to reinforce an existing structure for minimum damage. An-
other procedure based on continuum damage was later proposed to maximize the
stiffness of concrete structures by optimizing the rebar layout [31]. Amir [32] then
extended this method to design concrete structures with minimum weight, in which
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both the rebar and concrete layout were optimized simultaneously. James and Wais-
man [33] also used the above damage model to optimize structures with minimum
weight under the constraint on maximum local damage. They later used their ap-
proach to solve multiple-loading optimization problems, where superposition was
used to consider the influence of damage accumulation [34]. All these studies fo-
cused on continuum damage models for brittle materials. Elastoplastic damage
models were also investigated for designing energy absorbing structures [35–37],
where the objective was to maximize plastic work while constraining maximum
damage.

As strength and fracture toughness are usually inversely proportional to each
other in many materials [38], fracture criteria have also been explored in structural
optimization. Works in this category can be classified according to whether cracks
are stationary or evolving (allowed to nucleate and/or propagate). In the former
category cracks are therefore predefined in the computational domain and topol-
ogy optimization is used to mitigate their effect. Kang et al. [39] borrowed linear
elastic fracture mechanics (LEFM) concepts and considered the energy release rate
(ERR)—amount of energy available for crack extension—evaluated by means of the
𝐽-integral [40] in their optimization. In fact, they solved a multi-objective optimiza-
tion problem, where structural compliance and ERRs were considered as separate
objective functions optimized simultaneously, yielding a Pareto set of solutions that
revealed their trade-offs. Hu et al. [41] later followed a similar strategy to de-
sign structures including cracks at specific locations, where they used bi-directional
evolutionary structural optimization (BESO) to update the structural topology and
the extended/generalized finite element method (X/GFEM) for the structural anal-
ysis. As an alternative to avoid fracture failure by optimizing the topology of the
structure with cracks, Klarbring et al. [3] optimized an adhesively bonded patch
fixed to a structure, thereby minimizing the crack energy release rate. In addition
to gradient-based optimization, improving fracture resilience in materials and struc-
tures has also been investigated with gradient-free algorithms [42].

Evolving cracks have also been studied in topology optimization, primarily by
means of phase-field methods [43–45]. Xia et al. [46] maximized fracture resis-
tance of quasi-brittle composites for multiple predefined cracks that were allowed to
propagate using a phase-field approach. Russ and Waisman [47] used a phase-field
approach within a SIMP-based topology optimization, and minimized the weight of
a structure while putting a constraint on the fracture surface energy. The same au-
thors later added the fracture surface energy to the objective function and weighted
its priority with a scaling factor [48]. Da and Yvonnet [49] combined BESO with the
phase-field method to design a composite material with improved fracture resis-
tance by considering interfacial failure. Instead of using density-based methods,
Wu et al. [50] incorporated a phase-field fracture model into the level set-based
topology optimization to improve a structure’s capability to withstand fracture; both
crack initiation and propagation were considered during the optimization, which
sought to optimize the reinforcement layout in two-phase composite materials. Af-
terwards, the same authors developed their methodology to include nonlinear finite
element analysis (FEA) when designing structures with enhanced fracture resis-
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tance [51]. The use of phase-field methods, however, is not without issues [45]. For
instance, the length scale parameter used to define the transition zone tends to be-
come small, requiring a very fine mesh especially at the vicinity of a crack. Accurate
phase-field models are therefore computationally demanding.

For designing a structure that minimizes the likelihood of fracture, it would be
desired to consider the possibility of cracks nucleating anywhere in the computa-
tional design domain. However, the design of structures with enhanced fracture
resistance, which considers cracks nucleating at many locations under LEFM as-
sumptions, has only been scarcely explored to date. This is mainly because of the
vast computational demands required for such a design approach: A single TO iter-
ation would have to evaluate every potential crack nucleating at multiple locations
in the solid domain, for instance, by means of FEA with special finite element (FE)
meshes tailored to resolve accurately the cracks’singular stress fields. To complicate
things further, every potential crack could have an arbitrary orientation. Then ERRs
would have to be computed for every potential crack, for example, by means of
the 𝐽-integral. As a result, such an approach to design is simply intractable. To cope
with this limitation, some studies have relied heavily on simplifying assumptions. In
shape optimization, Jones et al. [52] proposed a modified biological algorithm to
obtain the optimal shape of a hole under the assumption that cracks could nucle-
ate only at right angles from it; stress intensity factors (SIFs) were evaluated by
the finite element alternating technique, whereby a single FEA of the uncracked
body is used together with analytical functions for any crack in a post-processing
step [53]. Later, Das et al. [54] presented a modified evolutionary structural opti-
mization (ESO) algorithm to optimize the shape of structures for maximum fracture
resistance, also allowing cracks nucleating along the boundary but with SIFs calcu-
lated using an analytical expression derived by Kujawski [55]. Regarding topology
optimization, Challis et al. [56] used a failure model that considered pseudo-cracks
initiating at element nodes along the domain boundary. The objective function for
fracture resistance is derived from the change of structural compliance at these lo-
cations using the “virtual crack extension” technique, whereby element nodes are
moved in the direction of the inward normal to the boundary to mimic crack nucle-
ation. They acknowledge that such objective function is close to only considering
the energy density of each node in tension along the boundary, which results in
similar optimized designs as those obtained from compliance minimization in most
cases. To date, no work has attempted to conduct topology optimization under
LEFM assumptions, where cracks are allowed to nucleate at many locations in the
computational domain.

In this work we propose an LEFM-based topology optimization procedure to
design structures with tailored fracture resistance by optimizing an aggregation
of ERRs. The methodology builds on our previous work in the context of compli-
ance minimization [57], where we use a level set function to describe topology and
the Interface-enriched Generalized Finite Element Method (IGFEM) to analyze the
structural response [58]. Cracks are allowed to nucleate perpendicularly to solid-
void interfaces, at the location of enriched nodes that are added in IGFEM to re-
solve the displacement field accurately. ERRs of all potential cracks are obtained
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by means of topological derivatives [59], for which a single FEA of the uncracked
domain is required. Consequently, topological derivatives are the key ingredient to
make the topology optimization tractable. Since an accurate stress field is required
to obtain ERRs, we use a stress recovery technique for low-order finite elements
to smoothen the stress field [60–62], and thus avoid the stress overestimation that
usually arises in enriched FEM [63]. In this optimization framework, ERRs calcu-
lated at each potential crack are aggregated into a single term using the 𝑃-mean
function [20]. In addition, an alternative formulation based on von Mises stresses is
proposed to design structures with uniform stress distribution. Their corresponding
analytical sensitivity formulations are derived by using an adjoint formulation. The
method of moving asymptotes (MMA) is set as the optimizer to update the design
variables [64]. The capability of the proposed technique is showcased on various
examples that tailor fracture resistance. First, we solve the shape optimization prob-
lem of a square design domain with a hole in the center under biaxial tension; we
show the optimal design of a circular hole with a uniform distribution of energy
release rates is obtained. Then, the topology of the L-shaped bracket is optimized,
where the sharp re-entrant corner in the initial design is removed and a smooth
round corner emerges in the optimized design. We compare this result with that of
a von Mises stress minimization problem aimed at obtaining a uniform stress dis-
tribution. The latter’s optimized result also eliminates the sharp re-entrant corner
with the stress concentration. Finally, we obtain an optimized design for maximum
fracture resistance anisotropy by solving a multiple loading optimization problem;
the objective of this problem is to maximize energy release rates when the domain
is compressed horizontally, while simultaneously minimize them when compressed
vertically.

5.2. Formulation
Consider an open bounded domain Ω ⊂ ℝኼ defined within a fixed background do-
main Δ. As shown in Figure 5.1, the domain Ω is composed of isotropic linear elastic
solid material with Young’s modulus 𝐸ኻ and Poisson’s ratio 𝜈ኻ, and its smooth bound-
ary consists of two-non-overlapping regions Γፃ and Γፍ, where Dirichlet boundary
conditions �̄� and surface tractions �̄� are prescribed, respectively. Boundary Γፍ is
free to move during the optimization except for a region Γ̄ፍ ⊂ Γፍ that remains fixed
together with Γፃ. We denote Ω as a closure of the domain Ω and Δ\Ω as the part of
the domain occupied by void with with Young’s modulus 𝐸ኼ and Poisson’s ratio 𝜈ኼ.

The displacement field 𝒖 is a unique solution to the boundary value problem
that describes the static equilibrium and the corresponding boundary conditions:

{
−∇ ⋅ 𝝈 = 𝒃 in Ω,

𝒖 = �̄� on Γፃ ,
𝝈 ⋅ 𝒏 = �̄� on Γፍ ,

(5.1)

where ∇⋅ represents the divergence operator, 𝝈 is Cauchy’s stress tensor, 𝒃 denotes
the body force, and 𝒏 is the outward normal to the boundary 𝜕Ω. Under the as-
sumption of linear elastic material behavior, the stress tensor 𝝈 is related to strain
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𝜺 by the Hooke’s law as 𝝈 = C ∶ 𝜺(𝒖), where C is the constitutive tensor, and
𝜺 = ኻ

ኼ (∇𝒖 + ∇𝒖
⊺) is the infinitesimal strain tensor.

enriched
standard

�̄�

�̄�Δ ⧵ Ω

Ω

Γፃ 𝑥

𝑦

Γፍ

𝐸ኻ, 𝜈ኻ

𝐸ኼ ≪ 𝐸ኻ, 𝜈ኼ

𝒏

Figure 5.1: A solid domain  with a smooth boundary Ꭷ  ጁፃ ∪ ጁፍ defined in a fixed background
domain ጂ. Dirichlet boundary conditions are prescribed on ጁፃ, and surface tractions are prescribed on
ጁፍ. For the discretized model, enriched nodes (marked with red circles) are created at intersections
between Ꭷ and the edges of mesh elements. The integration elements are created near the boundary
(marked with red triangles).

The weak formulation of this linear elasticity problem is: Find 𝒖 ∈ 𝓤 such that

𝑎(𝒖, 𝒗) = ℓ(𝒗) ∀𝒗 ∈ 𝓥, (5.2)

where𝓤 is the vector-valued set of kinematically admissible displacement fields and
𝓥 the vector-valued space of weight functions that satisfy homogeneous essential
boundary conditions on Γፃ. The bilinear 𝑎(𝒖, 𝒗) and linear ℓ(𝒗) forms, which also
represent the virtual work of internal and external forces, respectively, are given by

𝑎(𝒖, 𝒗) = ∫

𝜺(𝒖) ∶ C ∶ 𝜺(𝒗) dΩ, (5.3)

and
ℓ(𝒗) = ∫


𝒗 ⋅ 𝒃 dΩ +∫

ጁፍ
𝒗 ⋅ �̄� dΓ. (5.4)

In order to solve the problem above, the design domain Δ is discretized by a
finite element mesh Δ፡ = int(⋃። 𝑒።), where 𝑒። is the 𝑖th finite element and int(⋅)
represents set. The finite-dimensional form of Equation (5.2) is then obtained as

∑
።
∫
።፞
𝜺(𝒖፡) ∶ C ∶ 𝜺(𝒗፡) dΩ =∑

።
∫
።፞
𝒗፡ ⋅ 𝒃 dΩ+∑

።
∫
Ꭷ ።፞∩ጁፍ

𝒗፡ ⋅ �̄� dΓ, ∀𝒗፡ ∈ 𝓥፡

(5.5)
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where 𝒖፡ ∈ 𝓤፡ and 𝒗፡ ∈ 𝓥፡ are the trial solution and weight function, respectively.
In the Interface-enriched Generalized Finite Element Method (IGFEM), the inter-

action between Δ፡ and Γ creates new (enriched) nodes (marked with red circles in
Figure 5.1) at intersections between element edges and the boundary. Afterwards,
cut elements in Δ፡ are split into integration elements. The displacement field 𝒖፡ is
given by

𝒖፡ = ∑
።∈፥፡

𝑁።(𝒙)𝑼።
⏝⎵⎵⎵⏟⎵⎵⎵⏝
standard FEM

+ ∑
።∈፥፰

𝜓።(𝒙)𝜶።
⏝⎵⎵⎵⏟⎵⎵⎵⏝

enrichment

. (5.6)

In this equation, the first term is the standard FEM approximation, where 𝜄፡ denotes
the index set of all nodes in Δ፡ from the original background mesh (marked with
black circles in Figure 5.1), and 𝑁። and 𝑼። are the Lagrange shape function and
degrees of freedom (DOFs) of the 𝑖th mesh node. In the second enrichment term,
𝜄፰ represents the index set of enriched nodes, and 𝜓። is the enrichment function
associated with corresponding enriched DOFs 𝜶።.

Regarding the evaluation of the local stiffness matrix 𝒌፞ and force vector 𝒇፞,
elements that are not intersected follow standard FEM procedures. For integration
elements, following a standard isoparametric procedure, 𝒌፞ and 𝒇፞ can be evaluated
as

𝒌፞ = ∫
፞
𝑩⊺C𝑩𝑗 d𝝃 , and 𝒇፞ = ∫

፞
[𝑵𝝍]𝒃𝑗 d𝝃 + ∫

፞ ∩ጁፍ
[𝑵𝝍] �̄�𝑗 d𝜕𝝃 (5.7)

where 𝝃 is the master coordinate, 𝑵 and𝝍 are vectors that stack the element’s stan-
dard shape functions and enrichment functions, respectively, 𝑗 is the Jacobian de-
terminant (for the integration element’s transformation), and𝑩 = 𝜟⊺𝝃 [𝑵⊺𝑱ዅ⊺ 𝝍⊺𝑱ዅ⊺፞ ]
is the strain-displacement matrix, where 𝑱ዅ⊺፞ and 𝑱ዅ⊺ are the transpose of the in-
verse of the Jacobian of the isoparamatric mapping for the integration and parent
elements, respectively, and the differential operator 𝜟𝝃 is given by

𝜟𝝃 ≡ [
Ꭷ
Ꭷኻ

0 Ꭷ
Ꭷኼ

0 Ꭷ
Ꭷኼ

Ꭷ
Ꭷኻ

]

⊺

. (5.8)

Considering the contribution of all elements in the discretization, the global stiffness
matrix 𝑲 and force vector 𝑭 are given by

𝑲 =𝔸
።
𝒌። , 𝑭 =𝔸

።
𝒇። , (5.9)

where 𝔸 is the standard finite element assembly operator. For more details about
IGFEM’s formulation see references [58, 65].

Similarly to X/GFEM, the complexity of creating a fitted discretization in standard
FEM is transferred in IGFEM to the enriched formulation, which requires advanced
computational geometry operations for intersecting a usually structured background
finite element mesh with the discontinuities. However, although IGFEM retains the
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main feature of X/GFEM, it also keeps the attractive properties of standard FEM:
Since enrichment functions are constructed with Lagrange shape functions of inte-
gration elements, their value is exactly zero at original mesh nodes (this property
requires shifting in X/GFEM [66, 67]). This means that DOFs associated with back-
ground mesh nodes represent the displacement at their corresponding location,
thus keeping their physical interpretation. Moreover, essential boundary conditions
on discontinuities can be prescribed strongly after solving a local problem or via
multiple point constraints (MPCs) [68]. For instance, as shown in Figure 5.2(a), an
original element 𝑒 with (𝒙ኻ, 𝒙ኼ, 𝒙ኽ) is cut by a material interface (marked with a red
segment), where enriched nodes 𝒙ኾ and 𝒙 are created. In order to impose the dis-
placement field �̄� on nodes 𝒙ኻ, 𝒙ኼ and 𝒙ኾ, we then obtain the following formulation
based on Equation (5.6)

𝜶ኾ = �̄�(𝒙ኾ) − 𝑁ኻ(𝒙ኾ)�̄�(𝒙ኻ) − 𝑁ኼ(𝒙ኾ)�̄�(𝒙ኼ). (5.10)

This equation shows that the displacement boundary condition is imposed on en-
riched DOFs in a strong form, which is the same as that in the standard FEM.

𝒙ኻ

𝒙ኼ

𝒙ኽ

𝒙ኾ

𝒙
𝑒

Γፃ
(a)

𝒙ኻ

𝒙ኼ

𝒙ኽ

𝒙ኾ

𝒙
𝑒 Γፃ

(b)

Figure 5.2: Two enriched nodes 𝒙ኾ and 𝒙 are created as the background mesh element with connec-
tivity (𝒙ኻ , 𝒙ኼ , 𝒙ኽ) is cut by a material interface (marked with a red segment), where Dirichlet boundary
conditions are imposed on line elements containing (a) both enriched and original nodes, and (b) only
enriched nodes.

Considering the same cut element, Figure 5.2(b) displays another scenario where
the displacement �̄� is only prescribed on enriched nodes 𝒙ኾ and 𝒙 using MPCs. Ac-
cording to Equation (5.6), displacements of enriched DOFs can be expressed as

𝜶ኾ = �̄�(𝒙ኾ) − 𝑁ኻ(𝒙ኾ)𝑼ኻ − 𝑁ኼ(𝒙ኾ)𝑼ኼ,
𝜶 = �̄�(𝒙) − 𝑁ኼ(𝒙)𝑼ኼ − 𝑁ኽ(𝒙)𝑼ኽ.

(5.11)

These two equations can be rewritten in the matrix form as

⎡
⎢
⎢
⎢
⎣

𝑼ኻ
𝑼ኼ
𝑼ኽ
𝜶ኾ
𝜶

⎤
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

𝑼

=
⎡
⎢
⎢
⎢
⎣

I 0 0 0 0
0 I 0 0 0
0 0 I 0 0

−𝑁ኻ(𝒙ኾ) ⋅ I −𝑁ኼ(𝒙ኾ) ⋅ I 0 0 0
0 −𝑁ኼ(𝒙) ⋅ I −𝑁ኽ(𝒙) ⋅ I 0 0

⎤
⎥
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝑻

⎡
⎢
⎢
⎢
⎣

�̃�ኻ
�̃�ኼ
�̃�ኽ
�̃�ኾ
�̃�

⎤
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

�̃�

+

⎡
⎢
⎢
⎢
⎢
⎣

0⃗
0⃗
0⃗

�̄�(𝒙ኾ)
�̄�(𝒙)

⎤
⎥
⎥
⎥
⎥
⎦⏝⎵⎵⏟⎵⎵⏝

𝒈

,

(5.12)
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where I is an identity matrix, 0 is a zero matrix with the same dimension, and
0⃗ is a vector with two zero components. 𝑻 is a transformation matrix containing
the relation between original DOFs 𝑼 and new DOFs �̃�, and 𝒈 is a vector of the
prescribed values �̄�. In this case, the original equilibrium equation 𝑲𝑼 = 𝑭, where
𝑲 and 𝑭 are the global stiffness matrix and force vector, respectively, is modified to
�̃��̃� = �̃�. �̃� and �̃� are expressed as

�̃� = 𝑻⊺𝑲𝑻, (5.13)

and
�̃� = 𝑻⊺(𝑭 − 𝑲𝒈), (5.14)

respectively. If displacement boundary conditions are only prescribed on original
mesh nodes, then 𝑻 is an identity matrix and 𝒈 is a zero vector, which leads to �̃� = 𝑲
and �̃� = 𝑭. The transformation to the stiffness matrix given by Equations (5.13)
and (5.14) will change the sparsity of the global stiffness matrix. Consider in Fig-
ure 5.3(a) a background mesh with 3 × 3 × 2 linear triangular elements that is
intersected by an interface (marked with red), where Dirichlet boundary conditions
are prescribed. The change in sparsity before and after applying MPCs is shown
in Figures 5.3(b) and (c), where non-zero terms (marked with blue squares) show
that no new terms are generated after the transformation.

(a)

𝑲 =

Standard Enriched

(b)

�̃� =

Standard Enriched

(c)

Figure 5.3: (a) A background mesh with ኽ × ኽ × ኼ triangular elements intersects an interface (marked
with red), where essential boundary conditions are prescribed; (b, c) Non-zeros terms (marked with
blue squares) of the global stiffness matrix before (b) and after (c) applying multiple-point constrains.

5.3. Topology optimization formulation
By means of topology optimization, we seek to solve the following problem

minimize 𝐽(𝒔)
subject to �̃��̃� = �̃�,

𝑉ዷ ≤ 𝑉ዧ.
(5.15)

where 𝐽(𝒔) is an objective function associated with design variable 𝒔, and more
details will be explained later. 𝑉s is the volume occupied by solid material, and 𝑉c is
its maximum allowed value.



5

130

The objective function 𝐽(𝒔) simplified as 𝐽 is an aggregation function in 𝑃-mean
form that collects energy release rates of all potential cracks, and it is defined as

𝐽 = ( 1
𝑁node

ፍnode

∑
።ኻ

𝐺፩። )

ኻ
፩

, (5.16)

where 𝑝 is an integer exponent, 𝑁node is the number of nodes along external and
internal boundaries that are under tension, and 𝐺። is the energy release rate at the
𝑖th enriched node.

5.3.1. Topology description
In this work the location of the boundary Γ is represented by a level set function
𝜙, which was first introduced to structural topology optimization by Sethian and
Wiegmann [69]. This implicit function is defined as

𝜙(𝒙) = 0 ∀𝒙 ∈ Γ,
𝜙(𝒙) < 0 ∀𝒙 ∈ Ω,
𝜙(𝒙) > 0 ∀𝒙 ∈ Δ\Ω.

(5.17)

Compactly supported radial basis functions (RBFs) are used to interpolate the level
set function for a number of reasons [70]: i) The smoothness of RBFs results in a
smooth level set function; ii) By increasing the support area of RBFs, each design
variable (weight associated with the RBF) has a higher influence on the level set
function and thus in the evolution of the material boundary, which can make the
optimization process converge faster; iii) As the RBF grid is decoupled from the
finite element discretization of the domain, the design space dimensionality and
the background mesh size can be set independently. The level set function 𝜙(𝑥) is
then expressed as

𝜙(𝒙) = 𝒁(𝒙)⊺𝒔 =
ፍ፤
∑
።ኻ
𝜁።(𝒙)𝑠። , (5.18)

where 𝑁፤ is the number of RBFs, 𝜁።(𝒙) is 𝑖th compactly supported RBF, and 𝑠። is
the corresponding expansion coefficient. 𝒁(x) is a matrix including all RBFs:

𝒁(x) = [𝜁ኻ(x), 𝜁ኼ(x), … , 𝜁ፍ፤(x)]
⊺ , (5.19)

and 𝒔 is a vector of the corresponding expansion coefficient:

𝒔 = [𝑠ኻ, 𝑠ኼ, … , 𝑠ፍ፤ ]
⊺ . (5.20)

In this work we adopt 𝜁።(𝒙) with 𝐶ኼ smoothness [71]:

𝜁።(𝒙) =max (0, 1 − 𝑟። (𝒙))
ኾ (4𝑟።(𝒙) + 1), (5.21)



5.3. Topology optimization formulation

5

131

where the scaling parameter 𝑟።(𝒙) is defined as:

𝑟።(𝒙) =
√‖𝒙 − 𝒙።‖

𝑟፬
. (5.22)

In the above equation, √‖𝒙 − 𝒙።‖ is the distance between coordinate 𝒙 and the
center 𝒙። of 𝑖th RBF, and 𝑟፬ is the radius of support.

Regarding the update procedure for the level set function, mathematical pro-
gramming algorithms such as sequential quadratic programming (SQP) [72] and
the method of moving asymptotes (MMA) [64], become increasingly popular in
level set-based topology optimization [57, 73–76]. Because our level set function is
parameterized using compactly supported RBFs, it is readily suitable for incorpora-
tion in mathematical schemes because of the explicit sensitivities [74]. Therefore,
MMA is used to update the design variables, and the optimization terminates when
reaching a given maximum number of iterations.

It is worth noting that our procedure is not standard, since the solution of
the Hamilton靨Jacobi (H-J) equation has traditionally governed the evolution of the
topology for level set-based topology optimization procedures [77, 78]. However,
this first-order partial differential equation is solved by explicit methods with up-
wind schemes [79, 80], where the time step must satisfy the Courant靨Friedrichs靨
Lewy (CFL) condition for stability and convergence [81]. As a result, updating level
set function requires more iterations than our approach, with the consequent in-
crease of computational resources—in addition to the increase in computational
time required to solve the H-J equation in each iteration. Moreover, it is necessary
to extend the velocity field from the structural boundary to the whole design do-
main or at least to a narrow band along the boundary [69]. Finally, regularization,
which requires solving another H-J equation, should be integrated into the update
procedure for obtaining accurate optimized results [82].

5.3.2. Evaluation of energy release rate
Based on LEFM considerations, the energy release rate 𝐺 is defined as

𝐺 = 1
𝐸ኻ
(𝐾ኼI + 𝐾ኼII) , (5.23)

where 𝐸ኻ = 𝐸ኻ/ (1 − 𝜈ኼኻ) for plane strain and 𝐸ኻ = 𝐸ኻ for plane stress. 𝐾I and
𝐾II are the stress intensity factors under modes I and II, respectively. According to
Silva et al. [59], 𝐾I and 𝐾II can be computed for an infinitesimal crack at a location
𝒙። = (𝑥። , 𝑦።) along the boundary Γ as

[𝐾I(𝒙። , 𝜂, 𝛾, 𝛽)
𝐾II(𝒙። , 𝜂, 𝛾, 𝛽)] = √𝜋𝜂 [

ℎኻኻ(𝛾) ℎኻኼ(𝛾)
ℎኼኻ(𝛾) ℎኼኼ(𝛾)]⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

𝑯(᎐)

[𝜎᎕᎕(𝒙። , 𝛾, 𝛽)𝜎፫᎕(𝒙። , 𝛾, 𝛽)] , (5.24)

where, as illustrated in Figure 5.4, 𝜂 is the crack length, 𝛾 is the angle between the
crack and the inward normal of the local boundary, and 𝛽 is the angle between the
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global coordinate system and a local coordinate system located at 𝒙።. As ℎ።፣(𝛾), 𝑖, 𝑗 ∈
{1, 2} is a complicated polynomial function associated with angle 𝛾 [83], its definition
is given in Appendix A.3. 𝜎᎕᎕ and 𝜎፫᎕ are stress components defined under the polar
coordinate system (𝑟, 𝜃). Equation (5.23) can then be rewritten by replacing 𝐾I and
𝐾II with Equation (5.24) as

𝐺(𝒙። , 𝜂, 𝛾, 𝛽) =
𝜋𝜂
𝐸ኻ
[𝜎᎕᎕(𝒙። , 𝛾, 𝛽)𝜎፫᎕(𝒙። , 𝛾, 𝛽)]

⊺
𝑯⊺(𝛾)𝑯(𝛾) [𝜎᎕᎕(𝒙። , 𝛾, 𝛽)𝜎፫᎕(𝒙። , 𝛾, 𝛽)] . (5.25)

The energy release rate 𝐺(𝒙። , 𝜂, 𝛾, 𝛽) as a function of stress 𝝈 = [𝜎፱፱ 𝜎፱፲ 𝜎፱፲ 𝜎፲፲]
⊺

in global coordinates is

𝐺(𝒙። , 𝜂, 𝛾, 𝛽) =
𝜋𝜂
𝐸ኻ
𝝈(𝒙።)⊺𝑸(𝛾, 𝛽)𝝈(𝒙።), (5.26)

where 𝑸(𝛾, 𝛽) accounts for the transformation between coordinate systems (see
details in Appendix A.4).

𝒆ኼ

𝒆ኻ

�̄�ኼ
�̄�ኻ𝛾

𝛽
𝒙።

𝜂

Figure 5.4: The illustration of a crack with length ᎔ nucleating at node 𝒙።, where ᎐ is the angle between
this crack and the internal normal of structural boundary, and ᎏ is the angle between the global and
local coordinate systems.

Noteworthy, the results obtained with Equation (5.24) are in good agreement
with those evaluated via finite element analyses when crack size is smaller than 5%
of the domain size [59]. In addition, the accuracy of energy release rates obtained
by topological derivatives can be increased by considering high-order terms into the
formulation when treating longer cracks [84].

5.3.3. Stress calculation
Because the stress field is obtained by applying the gradient to the displacement
field, directly computed stresses from linear finite element solutions are piece-wise
constant. Since the stress field plays a critical role in the evaluation of the energy
release rate, it is important to use an appropriate method to approximate it. Even
though enriched finite element techniques yield more accurate solutions than those
obtained by the Ersatz material approach [85], they could also yield poor approxi-
mation for the stress field when interfaces get arbitrarily close to background mesh
nodes.
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To circumvent the issue, several pre- and post-processing techniques have been
proposed. One approach is to eliminate small elements by merging nodes in close
proximity into a single node [86–88]. This approach can totally prevent the overes-
timation of the stress, but it requires meddling with the mesh or the interfaces. An-
other strategy smoothens the stress of an element with small areas by taking its
neighboring elements into account. For instance, an average-weighted formulation
considering element areas can be used to post-process the stress of these tiny el-
ements [89].!Although this method can provide quite good approximations [90], it
does not avoid the overestimation of the stress completely.!Yet another technique
interpolates the stress field by using stress recovery approaches, such as the su-
perconvergent patch recovery technique [87, 91].!Even though sensitivities of the
objective function with respect to design variables become intricate, the evaluation
of the recovered stress field is more accurate than other techniques. Therefore, the
stress recovery technique proposed in Chapter 4 is adopted to smoothen the stress
field.

5.3.4. Sensitivity analysis
The sensitivity of the objective function 𝐽 with respect to design variables 𝒔 is derived
by using the adjoint variable method. A Lagrangian function of the objective, which
is constructed by using the adjoint vector 𝝀, is expressed as 𝐿 = 𝐽 + 𝝀⊺(�̃��̃� − �̃�)
Then the derivative of 𝐿 with respect to the 𝑗th design variable 𝑠፣ is given by

d𝐿
d𝑠፣

= 𝜕𝐽
𝜕𝑠፣

+ 𝜕𝐽
𝜕�̃�

𝜕�̃�
𝜕𝑠፣

+ 𝝀⊺ (𝜕 (�̃��̃�)𝜕𝑠፣
− 𝜕�̃�
𝜕𝑠፣

)

= 𝜕𝐽
𝜕𝑠፣

+ ( 𝜕𝐽𝜕�̃� + 𝝀
⊺�̃�) 𝜕�̃�𝜕𝒔፣

+ 𝝀⊺ (𝜕�̃�𝜕𝑠፣
�̃� − 𝜕�̃�

𝜕𝑠፣
) .

(5.27)

In order to obtain the adjoint vector 𝝀, the following adjoint equation is solved:

𝜕𝐽
𝜕�̃� + 𝝀

⊺�̃� = 0. (5.28)

Details about the evaluation of 𝜕𝐽/𝜕𝑠፣, and 𝜕𝐽/𝜕�̃� are given in Appendix A.5.1.
𝜕�̃�/𝜕𝑠፣ and 𝜕�̃�/𝜕𝑠፣ are explained in detail in Appendix A.5.2.

5.4. Numerical examples
In this section, several numerical examples are investigated to demonstrate the
capability of the proposed approach in obtaining designs with tailored fracture re-
sistance. The crack length is set to 1% of the domain size to ensure the validity
of Equation (5.24). No units are given to material properties, tractions, nor domain
dimensions, so results can be interpreted in any consistent unit system. If not ex-
plicitly specified, Young’s moduli are taken as 𝐸s = 1 and 𝐸v = 10ዅዀ for solid and
void materials, respectively. The Poisson’s ratio for both materials is 𝜈 = 0.3. Linear
triangular elements are used to discretize the design domain—for which a single
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gauss point is sufficient in standard and integration elements—and the finite el-
ement analysis is conducted under plane strain conditions. Topological gradient
information, which has traditionally been used to nucleate holes in the interior of
the design domain during topology optimization [92, 93], is not considered in the
proposed procedure. Therefore, all examples start with an initial design seeded with
holes.

5.4.1. Shape optimization
Firstly, a shape optimization example is studied, where unit magnitude tractions
𝒕ኻ and 𝒕ኼ are applied on the sides of a 2 × 2 square domain as illustrated in Fig-
ure 5.5. Because the design region is immersed into a background domain, the
tractions are prescribed by properly integrating the force vector in cut elements, as
described in Chapter 5.2. Due to symmetry, only a quarter of the design domain
is considered with symmetric boundary conditions. A value 𝑝 = 8 is used in the
objective function, and the volume of solid material is constrained at 𝑉s = 0.875. A
background mesh with 20 × 20 × 2 linear triangular elements is used to discretize
the bacground domain, and the maximum number of iterations is set to 100.

𝒕ኻ
𝒕ኻ

𝒕ኼ

𝒕ኼ

2

2

Figure 5.5: Schematic of the biaxial tension example with tractions 𝒕ኻ and 𝒕ኼ prescribed to edges of a
square design domain as shown. The design domain is immersed into a larger background domain that
is discretized by constant strain triangles. Due to symmetry, only a quarter of this domain is considered.

Figure 5.6(a) shows the initial design, which has a hole with triangular shape
at the bottom-left corner. The corresponding optimized design with a quarter of a
circular hole is displayed in Figure 5.6(b). Figures 5.6(a) and (b) also show their
corresponding energy release rate distributions. From Figure 5.6(a), it can be seen
that energy release rates around top and right vertices of the triangle are much
higher than elsewhere because of the stress concentrations. However, energy re-
lease rates in the optimized design are uniform along the circular boundary.

The convergence for both the objective and material volume fraction is shown
in Figure 5.7, where it can be seen that the former converges at around 50 iter-
ations. Even though the volume of the optimized design is not the same as the
constrained value, it still satisfies the constraint. Structures obtained at 10, 30, and
50 iterations are also displayed in this figure. Note that even though the volume
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of the optimized design is not the same as the constrained value, the constraint is
still satisfied; although the MMA optimizer minimizes the objective and satisfies the
volume constraint in parallel, it assigns higher priority to the former as a relatively
small Lagrange multiplier is associated with the latter. The inset in Figure 5.7 shows
how the volume increases after 45 iterations.

𝐺
0.446

0.032

(a) (b)

Figure 5.6: (a) Initial design with a triangular hole, where energy release rates around top and right
vertices of the triangle are much higher than those at other places in the initial design; (b) Optimized
design with a quarter of circle, where the distribution of energy release rates is uniform along the material
interface in the optimized structure.
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Figure 5.7: Convergence plot of the biaxial tension example displays that objective converges around
after 50 iterations. Designs obtained after 10, 30, and 50 iterations are shown.
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5.4.2. L-shaped bracket
We investigate the performance of the proposed method in optimizing the topology
of an L-shaped bracket, domain that is also immersed in a square computational
domain with dimensions 11 × 11. The latter is discretized with a background FE
mesh composed of 100×100×2 constant strain triangles. As shown in Figure 5.8,
the area outside the L-shaped bracket, together with a small area in the vicinity of
the load, is considered as a non-design domain. Homogeneous Dirichlet boundary

4

10

10
4
𝑭

Figure 5.8: Schematic of the L-shaped bracket where the top part is fixed and a loading ‖𝑭‖  ኺ.ኼ is
applied on the middle of the right side.

condition are prescribed on the immersed top edge of the bracket, as discussed in
Chapter 5.2, and a vertical downward load 𝑭 = −1/4 𝒆ኼ is applied on the middle of
right side. A value 𝑝 = 8 is used in the objective function, and the volume constraint
is set to 𝑉c = 25.6 (40% of the volume of the L-shaped bracket fully occupied by
solid material). The maximum number of iterations is set to 500, and the initial
design with many circular holes is shown in Figure 5.9(a).

𝐺
3.122

0

(a) (b)

Figure 5.9: (a) Initial design and its corresponding distribution of energy release rate, and (b) Final
design obtained with minimizing the energy release rate and its corresponding distribution.

The optimized structure is shown in Figure 5.9(b), and the corresponding energy
release rate distribution is given in the same figure. It can be seen that the sharp in-
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ternal corner in the initial design with high energy release rate has been removed. At
this location, a rounded corner appears in the final result with a uniform distribu-
tion of energy release rate values. Figure 5.9(b) shows zigzagging of some edges
in the optimized design where the level set function is not perfectly smooth. This
approximation artifact, which actually improves the objective function, is caused by
the discretization. This issue is discussed in detail in van den Boom et al. [57]. The
convergence curves and optimized structures obtained at 50, 100, 200, and 300
steps are shown in Figure 5.10. Oscillations of the objective function are observed
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Figure 5.10: Convergence plot of objective and volume when optimizing the energy release rate; opti-
mized designs obtained at 50, 100, 200, and 300 iterations; the design obtained after 87 iterations with
a thin-wall structure.

during the optimization, particularly at the beginning. Since energy release rates
are obtained from the stress field, these oscillations are caused by elements with
high stress values. Although the stress recovery technique is used to smoothen the
stress field, avoiding stress overestimation caused by bad aspect ratios of integra-
tion elements, the merging of holes in the initial design is responsible for thin solid
structures with high stresses. An optimized design obtained after setting the crack
length to 0.5% of the domain size is also shown in Figure 5.11(a), where it can
be seen that the final result has the same topology with slightly different shapes
compared to the original optimized design of Figure 5.11(b). The maximum value
of the energy release rate of the new design is almost half of that obtained by
the original optimized structure—notice the linear relationship between the crack
length and the energy release rate in Equations (5.25) and (5.26). It is worth noting
that the optimization is very sensitive to the move limit of the MMA optimizer. If a
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large move limit is used, the final design could be disconnected, which is actually
beneficial to the objective function because stress is nil in isolated regions. A way to
eliminate this effect is to consider the structural compliance as a constraint [94]. In
addition, we also show the von Mises stress distribution of initial and optimized
designs in Figures 5.12(a) and (b), respectively. It is worth noting that while there
are locations with high stresses in the optimized structure, energy release rates are
low and therefore the L-shaped bracket will not fracture.

𝐺
0.4393

0

(a)

𝐺
0.8609

0

(b)

Figure 5.11: Final designs obtained assuming cracks with lengths of (a) 0.5% and (b) 1% of the domain
size. The same structural topology is obtained.

𝜎vM
2.994

0

(a) (b)

Figure 5.12: The von Mises stress distributions of (a) the initial design and (b) optimized structure with
minimal energy release rate.

Because energy release rates are derived from the stress field, one may wonder
how optimized structures compare with those obtained via stress optimization. Con-
sider the following von Mises stress-based objective function 𝐽vM , which aims at
obtaining a uniform stress throughout the entire domain:

𝐽vM =
1
𝑁e

ፍe

∑
።ኻ
(𝜎vM። − �̄�vM)

፪ , (5.29)
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where 𝑁፞ is the number of elements in the design domain with solid material, and
𝑞 is an integer exponent, 𝜎vM። is the von Mises stress of the 𝑖th element, and �̄�vM
is the average von Mises stress of all elements in the solid part. Detailed sensitivity
formulations for this objective function with respect to design variable 𝒔 and dis-
placement field �̃� are given in Appendix A.5.3. For consistency, we set 𝑞 to have
the same value as 𝑝. The same initial design is used as well, with the correspond-
ing von Mises stress field shown in Figure 5.12(a). The final design obtained with
the above objective function is given in Figure 5.13(a), where a round corner also
emerges to remove the stress concentration. In addition, Figure 5.13(b) shows the
energy release rate distribution of the final design with the maximum value 0.8352,
which is smaller than the optimized result 0.8609 given in Figure 5.9(b). As a lower
value of maximum energy release rate is obtained when optimizing the stress dis-
tribution, it is apparent that the final design obtained when optimizing the energy
release rate is a local optimum. The corresponding von Mises stress distribution,
which is relatively smooth near the rounded corner, is shown in the same figure.

𝜎vM
1.479

0

(a)

𝐺
0.8352

0

(b)

Figure 5.13: Final structure obtained by optimizing the difference between elemental and average von
Mises stresses: (a) von Mises stress distribution in the optimized design; (b) energy release rates along
the boundary.

The convergence plot and structural topologies obtained at 50, 100, 200 and 300
steps are shown in Figure 5.14, this time in semi-log scale because there are sev-
eral orders of magnitude between the objective function values of initial and final
designs. Since the value of 𝑞 is set to 8, this objective is a highly non-linear function
of the stress field. Therefore, if the difference between elemental and averaged von
Mises stresses 𝜎vM።−�̄�vM is greater than 1, the objective could be a large value. Con-
versely, if the difference is smaller than 1 the objective function approaches zero
very rapidly. Moreover, the thin solid structures with stress concentration appear in
the optimization process (see Figure 5.15(a)), which may result in peak objective
values. In addition, the sudden change of the topology in the local region adjusts the
loading path (see Figures 5.15(b) and (c)), which leads to the stress redistribution
nearby. We then observe more oscillations during the optimization.
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Figure 5.14: Convergence plot of objective and volume when optimizing the von Mises stress distribution
and optimized designs obtained at 50, 100, 200, and 300 iterations.

(a) (b) (c)

Figure 5.15: (a) Thin solid structure with high stress obtained at iteration 59; (b, c) The stress field is
redistributed in the local area marked with a black square from (b) 127 to (c) 128 steps, which leads to
a high stress distribution nearby.

5.4.3. Fracture anisotropy
The purpose of this example is to obtain an optimized design with fracture resistance
anisotropy. In order to achieve this, a multiple-loading optimization problem is set
up, where two unit magnitude compressive tractions 𝒕ኻ and 𝒕ኼ are applied in are
applied in two independent load cases, as shown in Figure 5.16. Therefore, two
different finite element analyses are performed to obtain the structural solutions
𝒖፡ኻ (𝒙) and 𝒖፡ኼ (𝒙). Only a quarter of design domain is considered with dimensions
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1×1. In order to introduce fracture resistance anisotropy, energy release rates are
minimized when compressing the computational domain along the vertical direction
and maximized when compressed along the horizontal direction. This optimization,
which is different from previous examples, is formally written as

minimize 𝐽 = 𝐽ኻ + 𝐽ኼ =
1

𝑁node

ፍnode

∑
።ኻ

𝐺ኻ። −
1

𝑁node

ፍnode

∑
።ኻ

𝐺ኼ።

subject to 𝑲ኻ𝑼ኻ = 𝑭ኻ,
𝑲ኼ𝑼ኼ = 𝑭ኼ,
𝑉s ≤ 𝑉c.

(5.30)

In this equation, 𝐽። , 𝑖 = {1, 2} is therefore an aggregation of energy release rate
values for the corresponding boundary value problem 𝑲።𝑼። = 𝑭።. Since these quan-
tities are always positive, the negative sign is introduced to the second term 𝐽ኼ to
maximize energy release rates for the horizontal load case. Solid material is con-
strained at 𝑉c = 0.50.

𝒕ኻ

𝒕ኻ

𝒕ኼ 𝒕ኼ2

2

2

2

Figure 5.16: A domain with dimension ኼ× ኼ under compression, where 𝒕ኻ and 𝒕ኼ are prescribed on the
vertical and horizontal directions, respectively. Under the finite element analysis, a quarter of domain
(marked with red dashed segments) is considered.

Figure 5.17(a) shows initial design including four holes in the whole domain
(only one hole in the actual computational domain) where the ratio 𝐽ኼ/𝐽ኻ = −1. The
corresponding final design in Figure 5.17(b) displays that more solid material is
placed in along the vertical direction to make the structure tougher. Conversely,
there are tiny bars that greatly contribute to maximizing energy release rates for
the horizontal load case. For the optimized design, the ratio 𝐽ኼ/𝐽ኻ = −14.85. The
convergence plot about 𝐽ኻ and 𝐽ኼ is given in Figure 5.18, where 𝐽ኻ increases and
𝐽ኼ decreases throughout the optimization. Since the magnitude of 𝐽ኼ is larger than
that of 𝐽ኻ, the optimizer gives priority to the former.
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(a) (b)

Figure 5.17: (a) Initial design with four holes in the whole domain where the ratio ፉኼ/ፉኻ  ዅኻ; (b) The
corresponding optimized design with ፉኼ/ፉኻ  ዅኻኾ.ዂ.
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Figure 5.18: Convergence plot of ፉኻ and ፉኼ when optimizing the fracture resistance anisotropy.

5.5. Summary and conclusions
In this chapter we introduced a novel topology optimization procedure to design
structures with tailored fracture resistance. The methodology uses a level set func-
tion discretized by radial basis functions to describe the topology, and an enriched
finite element formulation to perform structural analysis. Contrary to other works,
we do not predefine the location of cracks but instead assume these can nucle-
ate perpendicularly to the structural boundary at discrete locations. Energy release
rates of all potential cracks are then evaluated by conducting a single enriched fi-
nite element analysis of the intact uncracked model by means of topological deriva-
tives. Since the stress field is used in the latter’s formulation, a stress recovery
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technique was proposed to enhance the stress field and thus overcome the issue
of stress overestimation that burdens IGFEM—and other enriched FEMs alike. Since
energy release rate is a local quantity, a 𝑃-mean aggregation function is used to
build the objective function. Because in IGFEM it is straightforward to prescribe es-
sential boundary conditions along discontinuities, the topology optimization can be
performed by fully immersing the design domain into a background mesh.

By means of a shape optimization example, we showed that the proposed
method recovers the optimal solution of a square plate with a circular hole, along
which energy release rate values are uniform. Subsequently, an L-shaped bracket
was embedded into a square computational domain discretized via a structured
mesh. It was shown how the methodology removed in the final design the sharp
inner corner with the stress concentration. Moreover, another objective function
associated with von Mises stress was introduced to design a structure with a stress
distribution as uniform as possible, which also removed the stress concentration
by rounding the corner of the initial design. Finally, a multiple-loading optimization
problem was used to design a structure with fracture resistance anisotropy. The
technique was able to obtain a design that simultaneously maximized energy re-
lease rates when compressing the computational design horizontally while minimiz-
ing them when compressing vertically. As a result, the optimized structure is much
tougher when compressing the structure vertically.

These are our final remarks:

• The methodology assume that cracks could only nucleate at right angles from
the boundary. However, as discussed by Silva et al. [59], there are situations
where this is not the most critical angle for crack nucleation. Our work could
therefore be extended to find the critical angle for each potential crack, al-
beit at the expense of more computational resources and a more complex
analytical sensitivity analysis formulation.

• We then used the 𝑃-mean function to aggregate all energy release rates cal-
culated along the structural boundary. However, the value of 𝑝 affects the
optimized result significantly. For instance, for 𝑝 = 2 the sharp re-entrant cor-
ner in the L-bracket is not smoothened. Even though the energy release rate
around that area has the highest value, the objective function approximates
the maximum value inaccurately. While the aggregation function approaches
to the maximum value as 𝑝 is increased, the function also becomes highly
nonlinear and could thus lead to instabilities. As a result, there is always a
trade-off between the accuracy of approximating the maximum value and the
stability of the methodology.

• We also used an alternative objective function based on von Mises stress. The
rationale behind obtaining a structure with a stress distribution as uniform as
possible was to make the best use of material. Even though we did not perform
the optimization for different values of the exponent 𝑞, optimized designs for
this problem proved to be quite sensitive to this value, as found elsewhere
with a similar stress-based formulation [95].
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• The accuracy of energy release rates obtained by means of topological deriva-
tives depends on the accuracy of the stress field. As a result, it is critical to
choose an appropriate methodology to avoid stress oscillations during the op-
timization process that could degenerate the final design. The stress recovery
technique adopted in this work cannot only prevent these issues, but also
provide more accurate stresses than the directly-calculated stresses obtained
by applying the gradient to the FE solution. However, the recovery technique
also increases the complexity of the sensitivity formulation, which is the most
intricate part of the this work. For instance, in order to obtain the sensitivity
of recovered stresses with respect to design variables, the derivative of the
equation used to evaluate the enhanced stress field should also be calculated,
which makes the sensitivity formulation involved.

• Owing to properties of IGFEM, such as creating enriched nodes along dis-
continuities and using Lagrange shape functions of integration elements to
construct enrichments, immersing design domains into any computational FE
mesh gives tremendous flexibility. Even though we use the proposed method
to obtain solid-void topologies, void material is still assigned to void areas
to avoid ill-conditioned stiffness matrices. However, the proposed procedure
can be extended to solve pure solid optimization problems by using techniques
presented by van den Boom et al. [68].

• Compared to a stress-based optimization that considers stress values in all
solid elements in the computational domain, our approach to optimize for
fracture resistance only considers the evaluation of energy release rates along
the boundaries. As a result, as the problems increase in size, asymptoti-
cally our approach is more efficient because it computes quantities in lower-
dimensional manifolds. In addition, only enriched nodes under tension are
considering when evaluating the objective function. To remain competitive, a
stress-based optimization procedure would have to consider only the stress in
solid elements crossed by interfaces. Nevertheless, such an approach would
mandate for a procedure that detects such elements, complicating the com-
puter implementation.

• Designing structures with enhanced fracture resistance in 3-D could also be
done by developing the proposed topology optimization methodology. To that
end, the most intricate part would be to obtain the formulation for the topo-
logical derivatives, for which some progress has already been made [96]. In
addition, extra efforts are required to obtain the analytical sensitivity formu-
lation for recovered stresses in 3-D.

References
[1] Z. Wu, K. Ghosh, X. Qing, V. Karbhari, and F.-K. Chang, Structural health mon-

itoring of composite repair patches in bridge rehabilitation, in Smart Structures
and Materials 2006: Sensors and Smart Structures Technologies for Civil, Me-
chanical, and Aerospace Systems, Vol. 6174, edited by M. Tomizuka, C.-B. Yun,



References

5

145

and V. Giurgiutiu (International Society for Optics and Photonics, 2006) pp.
670 – 678.

[2] R. Brighenti, Patch repair design optimisation for fracture and fatigue improve-
ments of cracked plates, International Journal of Solids and Structures 44,
1115 (2007).

[3] A. Klarbring, B. Torstenfelt, U. Edlund, P. Schmidt, K. Simonsson, and
H. Ansell,Minimizing crack energy release rate by topology optimization, Struc-
tural and Multidisciplinary Optimization 58, 1695 (2018).

[4] M. P. Bendsoe and O. Sigmund, Topology optimization: theory, methods, and
applications (Springer Science & Business Media, 2013).

[5] N. P. van Dijk, K. Maute, M. Langelaar, and F. Van Keulen, Level-set methods
for structural topology optimization: a review, Structural and Multidisciplinary
Optimization 48, 437 (2013).

[6] O. Sigmund and K. Maute, Topology optimization approaches, Structural and
Multidisciplinary Optimization 48, 1031 (2013).

[7] W. Zhang, D. Li, P. Kang, X. Guo, and S.-K. Youn, Explicit topology optimization
using iga-based moving morphable void (mmv) approach, Computer Methods
in Applied Mechanics and Engineering 360, 112685 (2020).

[8] C. B. W. Pedersen and P. Allinger, Industrial implementation and applications of
topology optimization and future needs, in IUTAM Symposium on Topological
Design Optimization of Structures, Machines and Materials, edited by M. P.
Bendsøe, N. Olhoff, and O. Sigmund (2006) pp. 229–238.

[9] J. Zhu, W. Zhang, and L. Xia, Topology optimization in aircraft and aerospace
structures design, Archives of Computational Methods in Engineering 23, 595
(2016).

[10] S. Amstutz and A. A. Novotny, Topological optimization of structures subject
to von mises stress constraints, Structural and Multidisciplinary Optimization
41, 407 (2010).

[11] W. Zhang, D. Li, J. Zhou, Z. Du, B. Li, and X. Guo, A moving morphable void
(mmv)-based explicit approach for topology optimization considering stress
constraints, Computer Methods in Applied Mechanics and Engineering 334,
381 (2018).

[12] Z. Fan, L. Xia, W. Lai, Q. Xia, and T. Shi, Evolutionary topology optimization of
continuum structures with stress constraints, Structural and Multidisciplinary
Optimization 59, 647 (2019).

[13] W. Zhang, S. Jiang, C. Liu, D. Li, P. Kang, S.-K. Youn, and X. Guo, Stress-
related topology optimization of shell structures using iga/tsa-based moving
morphable void (mmv) approach, Computer Methods in Applied Mechanics
and Engineering 366, 113036 (2020).



5

146

[14] M. Bruggi and P. Duysinx, Topology optimization for minimum weight with
compliance and stress constraints, Structural and Multidisciplinary Optimiza-
tion 46, 369 (2012).

[15] Y. Luo and Z. Kang, Topology optimization of continuum structures with
drucker–prager yield stress constraints, Computers & Structures 90, 65
(2012).

[16] S. H. Jeong, S. H. Park, D.-H. Choi, and G. H. Yoon, Topology optimization
considering static failure theories for ductile and brittle materials, Computers
& Structures 110, 116 (2012).

[17] R. Yang and C. Chen, Stress-based topology optimization, Structural optimiza-
tion 12, 98 (1996).

[18] P. Duysinx and M. P. Bendsøe, Topology optimization of continuum structures
with local stress constraints, International journal for numerical methods in
engineering 43, 1453 (1998).

[19] G. Kreisselmeier and R. Steinhauser, Systematic control design by optimizing
a vector performance index, IFAC Proceedings Volumes 12, 113 (1979).

[20] E. Holmberg, B. Torstenfelt, and A. Klarbring, Stress constrained topology
optimization, Structural and Multidisciplinary Optimization 48, 33 (2013).

[21] P. Duysinx and O. Sigmund, New developments in handling stress constraints
in optimal material distribution, in 7th AIAA/USAF/NASA/ISSMO symposium
on multidisciplinary analysis and optimization (1998) p. 4906.

[22] C. Le, J. Norato, T. Bruns, C. Ha, and D. Tortorelli, Stress-based topology op-
timization for continua, Structural and Multidisciplinary Optimization 41, 605
(2010).

[23] J. París, F. Navarrina, I. Colominas, and M. Casteleiro, Block aggregation of
stress constraints in topology optimization of structures, Advances in Engi-
neering Software 41, 433 (2010).

[24] W. Zhang, X. Guo, M. Y. Wang, and P. Wei, Optimal topology design of con-
tinuum structures with stress concentration alleviation via level set method,
International Journal for Numerical Methods in Engineering 93, 942 (2013).

[25] C. E. Inglis, Stresses in a plate due to the presence of cracks and sharp corners,
Trans Inst Naval Archit 55, 219 (1913).

[26] F. V. Senhora, O. Giraldo-Londono, I. F. Menezes, and G. H. Paulino, Topology
optimization with local stress constraints: a stress aggregation-free approach,
Structural and Multidisciplinary Optimization 62, 1639 (2020).

[27] G. Allaire and F. Jouve, Minimum stress optimal design with the level set
method, Engineering analysis with boundary elements 32, 909 (2008).



References

5

147

[28] Q. Xia, T. Shi, S. Liu, and M. Y. Wang, A level set solution to the stress-based
structural shape and topology optimization, Computers & Structures 90, 55
(2012).

[29] R. Picelli, S. Townsend, C. Brampton, J. Norato, and H. Kim, Stress-based
shape and topology optimization with the level set method, Computer Methods
in Applied Mechanics and Engineering 329, 1 (2018).

[30] M. P. Bendsøe and A. R. Díaz, A method for treating damage related criteria in
optimal topology design of continuum structures, Structural optimization 16,
108 (1998).

[31] O. Amir and O. Sigmund, Reinforcement layout design for concrete structures
based on continuum damage and truss topology optimization, Structural and
Multidisciplinary Optimization 47, 157 (2013).

[32] O. Amir, A topology optimization procedure for reinforced concrete structures,
Computers & Structures 114, 46 (2013).

[33] K. A. James and H. Waisman, Failure mitigation in optimal topology design
using a coupled nonlinear continuum damage model, Computer Methods in
Applied Mechanics and Engineering 268, 614 (2014).

[34] K. A. James and H. Waisman, Topology optimization of structures under vari-
able loading using a damage superposition approach, International Journal for
Numerical Methods in Engineering 101, 375 (2015).

[35] L. Li, G. Zhang, and K. Khandelwal, Topology optimization of energy ab-
sorbing structures with maximum damage constraint, International Journal
for Numerical Methods in Engineering 112, 737 (2017).

[36] R. Alberdi and K. Khandelwal, Topology optimization of pressure dependent
elastoplastic energy absorbing structures with material damage constraints,
Finite Elements in Analysis and Design 133, 42 (2017).

[37] L. Li, G. Zhang, and K. Khandelwal, Failure resistant topology optimization
of structures using nonlocal elastoplastic-damage model, Structural and Mul-
tidisciplinary Optimization 58, 1589 (2018).

[38] M. E. Launey and R. O. Ritchie, On the fracture toughness of advanced mate-
rials, Advanced Materials 21, 2103 (2009).

[39] Z. Kang, P. Liu, and M. Li, Topology optimization considering fracture me-
chanics behaviors at specified locations, Structural and Multidisciplinary Opti-
mization 55, 1847 (2017).

[40] J. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain
Concentration by Notches and Cracks, Journal of Applied Mechanics 35, 379
(1968).



5

148

[41] J. Hu, S. Yao, N. Gan, Y. Xiong, and X. Chen, Fracture strength topology
optimization of structural specific position using a bi-directional evolutionary
structural optimization method, Engineering Optimization 52, 583 (2020).

[42] G. X. Gu, L. Dimas, Z. Qin, and M. J. Buehler, Optimization of composite
fracture properties: method, validation, and applications, Journal of Applied
Mechanics 83, 071006 (2016).

[43] M. Ambati, T. Gerasimov, and L. De Lorenzis, A review on phase-field models
of brittle fracture and a new fast hybrid formulation, Computational Mechanics
55, 383 (2015).

[44] T. Q. Bui and X. Hu, A review of phase-field models, fundamentals and their
applications to composite laminates, Engineering Fracture Mechanics 248,
107705 (2021).

[45] P. Diehl, R. Lipton, T. Wick, and M. Tyagi, A comparative review of peridy-
namics and phase-field models for engineering fracture mechanics, (2021).

[46] L. Xia, D. Da, and J. Yvonnet, Topology optimization for maximizing the frac-
ture resistance of quasi-brittle composites, Computer Methods in Applied Me-
chanics and Engineering 332, 234 (2018).

[47] J. B. Russ and H. Waisman, Topology optimization for brittle fracture resis-
tance, Computer Methods in Applied Mechanics and Engineering 347, 238
(2019).

[48] J. B. Russ and H. Waisman, A novel topology optimization formulation for
enhancing fracture resistance with a single quasi-brittle material, International
Journal for Numerical Methods in Engineering 121, 2827 (2020).

[49] D. Da and J. Yvonnet, Topology optimization for maximizing the fracture re-
sistance of periodic quasi-brittle composites structures, Materials 13, 3279
(2020).

[50] C. Wu, J. Fang, S. Zhou, Z. Zhang, G. Sun, G. P. Steven, and Q. Li, Level-set
topology optimization for maximizing fracture resistance of brittle materials
using phase-field fracture model, International Journal for Numerical Methods
in Engineering 121, 2929 (2020).

[51] C. Wu, J. Fang, S. Zhou, Z. Zhang, G. Sun, G. P. Steven, and Q. Li, A path-
dependent level set topology optimization with fracture criterion, Computers
& Structures 249, 106515 (2021).

[52] R. Jones, P. Chaperon, and M. Heller, Structural optimisation with fracture
strength constraints, Engineering Fracture Mechanics 69, 1403 (2002).

[53] T. Nishioka and S. Atluri, Analytical solution for embedded elliptical cracks,
and finite element alternating method for elliptical surface cracks, subjected
to arbitrary loadings, Engineering Fracture Mechanics 17, 247 (1983).



References

5

149

[54] R. Das, R. Jones, and Y. Xie, Design of structures for optimal static strength
using eso, Engineering Failure Analysis 12, 61 (2005).

[55] D. Kujawski, Estimations of stress intensity factors for small cracks at notches,
Fatigue & Fracture of Engineering Materials & Structures 14, 953 (1991).

[56] V. J. Challis, A. P. Roberts, and A. H. Wilkins, Fracture resistance via topology
optimization, Structural and Multidisciplinary Optimization 36, 263 (2008).

[57] S. J. van den Boom, J. Zhang, F. van Keulen, and A. M. Aragón, An interface-
enriched generalized finite element method for level set-based topology opti-
mization, Structural and Multidisciplinary Optimization 63, 1 (2021).

[58] S. Soghrati, A. M. Aragón, C. A. Duarte, and P. H. Geubelle, An interface-
enriched generalized fem for problems with discontinuous gradient fields, In-
ternational Journal for Numerical Methods in Engineering 89, 991 (2012).

[59] M. Silva, P. H. Geubelle, and D. A. Tortorelli, Energy release rate approximation
for small surface-breaking cracks using the topological derivative, Journal of
the Mechanics and Physics of Solids 59, 925 (2011).

[60] D. J. Payen and K.-J. Bathe, A stress improvement procedure, Computers &
Structures 112-113, 311 (2012).

[61] R. Sharma, J. Zhang, M. Langelaar, F. van Keulen, and A. M. Aragón, An
improved stress recovery technique for low-order 3d finite elements, Interna-
tional Journal for Numerical Methods in Engineering 114, 88 (2018).

[62] J. Zhang, F. van Keulen, and A. M. Aragón, On tailoring fracture resistance:
Level set topology optimization using an interface-enriched formulation, Com-
puter Methods in Applied Mechanics and Engineering (2021).

[63] R. Lins, S. P. Proença, and C. A. Duarte, Efficient and accurate stress recovery
procedure and a posteriori error estimator for the stable generalized/extended
finite element method, International Journal for Numerical Methods in Engi-
neering 119, 1279 (2019).

[64] K. Svanberg, The method of moving asymptotes—a new method for structural
optimization, International Journal for Numerical Methods in Engineering 24,
359 (1987).

[65] A. M. Aragón, B. Liang, H. Ahmadian, and S. Soghrati, On the stability
and interpolating properties of the hierarchical interface-enriched finite ele-
ment method, Computer Methods in Applied Mechanics and Engineering 362,
112671 (2020).

[66] F. B. Barros, S. P. B. Proença, and C. S. de Barcellos, On error estimator and
p-adaptivity in the generalized finite element method, International Journal
for Numerical Methods in Engineering 60, 2373 (2004).



5

150

[67] G. Zi and T. Belytschko, New crack-tip elements for XFEM and applications to
cohesive cracks, International Journal for Numerical Methods in Engineering
57, 2221 (2003).

[68] S. J. van den Boom, J. Zhang, F. van Keulen, and A. M. Aragón, A stable
interface-enriched formulation for immersed domains with strong enforcement
of essential boundary conditions, International Journal for Numerical Methods
in Engineering 120, 1163 (2019).

[69] J. A. Sethian and A. Wiegmann, Structural boundary design via level set
and immersed interface methods, Journal of computational physics 163, 489
(2000).

[70] S. Wang and M. Y. Wang, Radial basis functions and level set method for
structural topology optimization, International journal for numerical methods
in engineering 65, 2060 (2006).

[71] H. Wendland, Piecewise polynomial, positive definite and compactly supported
radial functions of minimal degree, Advances in computational Mathematics 4,
389 (1995).

[72] J. Nocedal and S. J. Wright, Sequential quadratic programming, Numerical
optimization , 529 (2006).

[73] E. Haber, A multilevel, level-set method for optimizing eigenvalues in shape
design problems, Journal of Computational Physics 198, 518 (2004).

[74] N. van Dijk, M. Langelaar, and F. van Keulen, Explicit level-set-based topol-
ogy optimization using an exact heaviside function and consistent sensitivity
analysis, International Journal for Numerical Methods in Engineering 91, 67
(2012).

[75] P. Liu, Y. Luo, and Z. Kang, Multi-material topology optimization consider-
ing interface behavior via xfem and level set method, Computer Methods in
Applied Mechanics and Engineering 308, 113 (2016).

[76] M. Cui, C. Luo, G. Li, and M. Pan, The parameterized level set method for
structural topology optimization with shape sensitivity constraint factor, Engi-
neering with Computers 37, 855 (2021).

[77] J. A. Sethian, Level set methods and fast marching methods: evolving in-
terfaces in computational geometry, fluid mechanics, computer vision, and
materials science, Vol. 3 (Cambridge university press, 1999).

[78] J. A. Sethian, Evolution, implementation, and application of level set and
fast marching methods for advancing fronts, Journal of computational physics
169, 503 (2001).



References

5

151

[79] M. Y. Wang, X. Wang, and D. Guo, A level set method for structural topology
optimization, Computer Methods in Applied Mechanics and Engineering 192,
227 (2003).

[80] G. Allaire, F. Jouve, and A.-M. Toader, Structural optimization using sensitivity
analysis and a level-set method, Journal of Computational Physics 194, 363
(2004).

[81] S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces, Vol.
153 (Springer Science & Business Media, 2006).

[82] L. Jiang and S. Chen, Parametric structural shape & topology optimization
with a variational distance-regularized level set method, Computer Methods in
Applied Mechanics and Engineering 321, 316 (2017).

[83] M. Beghini, L. Bertini, and V. Fontanari, Stress intensity factors for an inclined
edge crack in a semiplane, Engineering Fracture Mechanics 62, 607 (1999).

[84] K. Alidoost, P. H. Geubelle, and D. A. Tortorelli, Energy release rate approxima-
tion for edge cracks using higher-order topological derivatives, International
Journal of Fracture 210, 187 (2018).

[85] P. Wei, M. Y. Wang, and X. Xing, A study on x-fem in continuum structural
optimization using a level set model, Computer-Aided Design 42, 708 (2010).

[86] N. Moës, A. Gravouil, and T. Belytschko, Non-planar 3d crack growth by the
extended finite element and level sets—part i: Mechanical model, Interna-
tional Journal for Numerical Methods in Engineering 53, 2549 (2002).

[87] M. Polajnar, F. Kosel, and R. Drazumeric, Structural optimization using global
stress-deviation objective function via the level-set method, Structural and
Multidisciplinary Optimization 55, 91.

[88] S. H. Nguyen and H.-G. Kim, Stress-constrained shape and topology optimiza-
tion with the level set method using trimmed hexahedral meshes, Computer
Methods in Applied Mechanics and Engineering 366, 113061 (2020).

[89] L. Van Miegroet, Generalized shape optimization using XFEM and level set
description, Ph.D. thesis, Universit é de Li é ge, Li é ge, Belgium (2012).

[90] L. Noël and P. Duysinx, Shape optimization of microstructural designs subject
to local stress constraints within an xfem-level set framework, Structural and
Multidisciplinary Optimization 55, 2323 (2017).

[91] O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and
a posteriori error estimates. part 1: The recovery technique, International
Journal for Numerical Methods in Engineering 33, 1331 (1992).

[92] Y. Mei and X. Wang, A level set method for structural topology optimization
and its applications, Advances in Engineering Software 35, 415 (2004).



5

152

[93] G. Allaire, F. De Gournay, F. Jouve, and A.-M. Toader, Structural optimization
using topological and shape sensitivity via a level set method, Control and
cybernetics 34, 59 (2005).

[94] X. Guo, W. Zhang, M. Y. Wang, and P. Wei, Stress-related topology opti-
mization via level set approach, Computer Methods in Applied Mechanics and
Engineering 200, 3439 (2011).

[95] M. Y. Wang and L. Li, Shape equilibrium constraint: a strategy for stress-
constrained structural topology optimization, Structural and Multidisciplinary
Optimization 47, 335 (2013).

[96] K. Alidoost, M. Feng, P. H. Geubelle, and D. A. Tortorelli, Energy release rate
approximation for small surface cracks in three-dimensional domains using the
topological derivative, Journal of Applied Mechanics 87 (2020).



6
Conclusions and Recommendations

6.1. Conclusions
The work presented in this thesis first focused on accurate finite element analysis
for solving fracture mechanics problems in 3-D. The Discontinuity-Enriched Finite El-
ement Method (DE-FEM) was therefore extended to handle 3-D discontinuous mod-
els including both weak and strong discontinuities with a unified formulation. Since
enriched formulations transfer the complexity from the matching mesh generation
to the construction of the approximation space, a well-constructed object-oriented
geometric engine was proposed to perform interactions between the background
mesh and discontinuities, where new enriched discretizations are generated. How-
ever, integration elements with bad aspect ratios and/or relatively tiny areas could
be created as discontinuities approach the background mesh nodes, which could
lead to stress overestimation (inaccurate field gradients). Therefore, a stress im-
provement procedure (SIP) was proposed to enhance the approximation of dis-
continuous stress fields obtained from enriched finite element analysis. Finally, a
computational methodology was proposed to carry out topology optimization for
designing structures with tailored fracture resistance, where a formulation based
on topological derivatives is used to evaluate energy release rates (ERRs). As this
formulation highly depends on the stress fields, the proposed recovery technique
was used to obtain an accurate stress approximation.

While extending DE-FEM to solve 3-D problems in Chapter 2, we showed that
the DE-FEM formulation is able to generate two independent kinematic fields via a
discontinuous patch test, where the importance of creating a conforming enriched
discretization for integration on both sides of cracks was illustrated. Although no
special enrichment functions are used to capture the singularity along the crack
front, DE-FEM gave an accurate prediction of stress intensity factors (SIFs). More-
over, we demonstrated that DE-FEM is capable of dealing with the interplay between
material interfaces and cracks within a complex-shaped femur model. More impor-
tantly, DE-FEM was demonstrated to be intrinsically stable with the use of a simple
diagonal preconditioner.

Regarding the object-oriented geometric engine proposed in Chapter 3, we
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found that it is critical to set appropriate tolerance values for the robustness when
performing computational geometry operations, and that it is recommended to
choose their values based on the background mesh size. Discontinuities can be han-
dled in either sequential or hierarchical way. Noteworthy, the later could generate
more integration elements, as children elements created by previous discontinuities
could be split by the other discontinuities. In terms of efficiency and complexity,
the sequential method is more appropriate for handling models with multiple dis-
continuities. Delaunay triangulation (tetrahedralization) behaved well for creating
subdomains of cut elements in both 2-D and 3-D. Alternatively, it is also feasible to
set specific routines to construct children elements for simple cases using straight-
forward rules, such as for splitting a triangle/tetrahedron completely.

In Chapter 4 it was shown that the proposed recovery technique can greatly
improve the accuracy of the discontinuous stress field obtained with the Interface-
enriched Generalized Finite Element Method (IGFEM), which even performs better
than the directly calculated stresses from standard FEM with matching meshes. It is
straightforward to extend the proposed technique to recover stress fields for fracture
mechanics problems, where more attention should be paid to capture the stress
singularity at the crack front. However, the recovery technique as a post-processing
step cannot solve the fundamental issues, which arise from the approximation space
constructed using enriched FEMs. Therefore, an alternative means to create the
enriched finite element space is required for addressing this issue at the root.

Chapter 5 introduced a novel topology optimization methodology to design struc-
tures with enhanced or anisotropic fracture resistance. As IGFEM was used to per-
form the structural analysis, the proposed procedure can be extended to solve
optimization problems, which do not require to assign weak materials to void parts
for avoiding the ill-conditioning issue. IGFEM provides tremendous flexibility to op-
timize immersed design domains into any background mesh. As stress oscillations
during the optimization process could make it difficult to find the optimal result,
it is critical to choose an appropriate methodology to improve the stress field ap-
proximation. The proposed stress recovery technique was therefore adopted, which
increases the complexity of the sensitivity formulation (the most intricate part of this
work). Most importantly, since only enriched nodes under tension are considered
into the objective function, which computes quantities in lower-dimensional mani-
folds, our approach is more efficient than stress-based optimization considering all
solid elements as the problems increase in size asymptotically.

6.2. Recommendations
Here, we provide several possible directions and the corresponding recommenda-
tions to extend the work in this thesis.

• Since DE-FEM cannot get optimal convergence rates for problems with singu-
larities, extra enrichment functions can be introduced to improve the stress
field along crack fronts. Extra enriched degrees of freedom (DOFs) can be
directly added to the original mesh data structure, and a specific quadrature
technique could be required to integrate singular enrichments accurately.
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• For simplicity, the work on topology optimization is based on the assumption
that cracks can only nucleate perpendicularly to the structural boundary. How-
ever, this work could be extended to find the critical angle for each potential
crack, which depends on the local stress field. Actually, this leads to a dual-
optimization problem, where the most “dangerous” angle is firstly calculated
and the corresponding energy release rate is then minimized. Although this
approach requires an even more involved analytical sensitivity formulation
and demands for more computational resources, the optimization procedure
provides a more accurate result.

• The proposed optimization approach can be extended to design composite
materials with enhanced fracture toughness, where its representative ele-
mentary volume (REV) is set to the design domain. Noteworthy, the effective
fracture toughness is defined as the maximum energy release rate during the
whole crack propagation process. Since the boundary of REV is not the same
as that of the structural boundary, a different formulation based on topological
derivatives would be required to evaluate energy release rates of all potential
cracks, where these cracks are assumed to nucleate inside the design do-
main. Periodic boundary conditions should be imposed on the unit cell, and a
constraint for keeping unit cells connected to each other should be satisfied.

• Design of 3-D structures with enhanced fracture resistance can be done by
extending the proposed topology optimization methodology, where the key
component is to obtain the formulation between SIFs and the stress field
obtained from the finite element analysis of an intact domain in 3-D.

• As strength and fracture toughness are usually inverse relationships for most
materials, both of them could be introduced into the same topology optimiza-
tion framework as different objectives. For instance, strength-related terms
can be set to the objective function, and energy release rates can be consid-
ered as constraints, or vice versa.

• Instead of improving the fracture resistance by optimizing the structural lay-
out, an alternative is to use repairing patches bounded at the location with
cracks to reduce the likelihood of fracture failure. Topology optimization could
then be performed on the bounded patches for obtaining an optimized de-
sign. This procedure could use DE-FEM to predict the behavior of the struc-
ture with cracks, and IGFEM for obtaining the structural response of bounded
patches. Noteworthy, it would also be necessary to predict the behavior of the
glue interface that connects the cracked structure with the bounded patches.

• In regards to predicting the structural behavior, IGFEM could be used in other
topology optimization techniques such as the moving morphable component-
based (MMC) method. Since each MMC used to represent the structural topol-
ogy is described explicitly with geometric parameters, such as length, thick-
ness, and orientation, IGFEM can be naturally integrated into this optimization
procedure.
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A.1. Analytical fields for modes I, II, and III
For completeness, the equations of the displacement and stress fields for modes I,
II, and III are provided. For displacement fields, they are expressed as
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where 𝜇 is the shear modulus, 𝜅 and 𝜈ኻ are equal to 3 − 4𝜈 and 0 under the plane
strain, or (3 − 𝜈)/(1 + 𝜈) and 𝜈 under the plane stress, respectively, 𝑟 and 𝜃 are
polar coordinates centered at the point along the crack front.
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Stress fields around the crack front are given, respectively, by

𝝈 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜎፱፱
𝜎፲፲
𝜎፳፳
𝜎፱፲
𝜎፲፳
𝜎፱፳

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐾I
√2𝜋𝑟

cos
𝜃
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − sin ᎕
ኼ sin

ኽ᎕
ኼ

1 + sin ᎕
ኼ sin

ኽ᎕
ኼ

2𝜈ኼ
sin ᎕

ኼ cos
ኽ᎕
ኼ

0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.4)

𝝈 = 𝐾II
√2𝜋𝑟

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− sin ᎕
ኼ (2 + cos ᎕ኼ cos

ኽ᎕
ኼ )

sin ᎕
ኼ cos

᎕
ኼ cos

ኽ᎕
ኼ

−2𝜈ኼ sin
᎕
ኼ

cos ᎕ኼ (1 − sin ᎕
ኼ sin

ኽ᎕
ኼ )

0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.5)

𝝈 = 𝐾III
√2𝜋𝑟

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0

cos ᎕ኼ
− sin ᎕

ኼ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.6)

where 𝜈ኼ equals to 𝜈 (0) under the plane strain (plane stress).

A.2. Expression of Ē𝜎,E𝜎 and E𝜁
Interpolation matrices Ē ,E and E᎓ used in Equation (4.16) for recovering stress
distributions in 2D and 3D are given by

Ē = [
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(A.7)

and
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦ኾዂ×ዀ

,

E = [

𝒆 𝒆 0𝒆 𝒆0 𝒆 𝒆

]

ዀ×ዀኺ

,

E᎓ = [
1 𝑥 𝑦 𝑧 0 0 0 0 0 0 0 0
0 0 0 0 1 𝑥 𝑦 𝑧 0 0 0 0
0 0 0 0 0 0 0 0 1 𝑥 𝑦 𝑧

]
ኽ×ኻኼ

,

(A.8)

respectively, where 𝒆 = [ 1 𝑥 𝑦 𝑧𝑥𝑦 𝑦𝑧 𝑧𝑥 𝑥ኼ 𝑦ኼ 𝑧ኼ ].
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A.3. Matrix 𝑯(𝛾) of influence coefficients
𝑯(𝛾) is a 2×2matrix associated with angle 𝛾 between cracks and the inward normal
of the structural boundary, and its components are defined as

ℎኻኻ(𝛾) =
ዀ

∑
።ኻ
{[1 − tan(𝛾)ኼ] ⋅ 𝑐(I,1)። cos[(𝑖 − 1)𝛾] − sin(𝛾)

cos(𝛾)ኽ
⋅ 𝑐(I,ኼ)። sin(𝑖𝛾)}

ℎኻኼ(𝛾) =
ዀ

∑
።ኻ
{2 tan(𝛾) ⋅ 𝑐(I,1)። cos[(𝑖 − 1)𝛾] + 1

cos(𝛾)ኼ
⋅ 𝑐(I,ኼ)። sin(𝑖𝛾)}

ℎኼኻ(𝛾) =
ዀ

∑
።ኻ
{[1 − tan(𝛾)ኼ] ⋅ 𝑐(II,ኻ)። sin(𝑖𝛾) − tan(𝛾)

cos(𝛾)ኼ
⋅ 𝑐(II,ኼ)። cos[(𝑖 − 1)𝛾]}

ℎኼኼ(𝛾) =
ዀ

∑
።ኻ
{2 tan(𝛾) ⋅ 𝑐(II,ኻ)። sin(𝑖𝛾) + 1

cos(𝛾)ኼ
⋅ 𝑐(II,ኼ)። cos[(𝑖 − 1)𝛾]}

, (A.9)

where 𝑐(I,1)። , 𝑐(II,1)። , 𝑐(I,2)። , and 𝑐(II,2)። are given by the following table:

Table A.1: Data of parameters (I,1)። , (II,1)። , (I,2)። , and (II,2)። in matrix 𝑯(᎐).

i 𝑐(I,ኻ)። 𝑐(II,ኻ)። 𝑐(I,ኼ)። 𝑐(II,ኼ)።
1 -0.174856 -0.198196 -0.419098 0.478653
2 1.393783 0.681479 -0.197271 -0.130868
3 -0.278259 -0.282608 -0.445897 0.663435
4 0.240695 0.136522 -0.050066 -0.066599
5 -0.071883 -0.041562 -0.022856 0.183693
6 0.011246 0.006177 0.003281 -0.006140

As cracks are assumed to nucleate perpendicularly to the structural boundary,
the angle 𝛾 is set to 0, which leads to a simplified 𝑯(𝛾) matrix:

𝑯(0) =
ዀ

∑
።ኻ
[ 𝑐

(I,1)
። 0
0 𝑐(II,2)።

] . (A.10)
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A.4. Matrix 𝑷𝑔 about angle 𝛽
The energy release rate was given in Equations (5.25) and (5.26) both in polar
and Cartesian coordinates, respectively. In fact, expanding the matrix 𝑸(𝛾, 𝛽), the
expression for the energy release rate takes the form

𝐺(𝒙። , 𝜂, 𝛾, 𝛽) =
𝜋𝜂
𝐸
𝝈(𝒙።)⊺𝑸(𝛾, 𝛽)𝝈(𝒙።)

= 𝜋𝜂
𝐸
𝝈(𝒙።)⊺𝑷፠(𝛽)⊺𝑷፥(𝛾)⊺𝑯⊺(𝛾)𝑯(𝛾)𝑷፥(𝛾)𝑷፠(𝛽)𝝈(𝒙።),

(A.11)

where we assume that cracks always nucleate perpendicularly to the boundary, i.e.,
𝛾 = 0 then for all potential cracks. 𝑷፠(𝛽) is a 4 × 4 matrix defined as

𝑷፠(𝛽) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cosኼ 𝛽 sin𝛽 cos𝛽 sin𝛽 cos𝛽 sinኼ 𝛽

− sin𝛽 cos𝛽 cosኼ 𝛽 − sinኼ 𝛽 sin𝛽 cos𝛽

− sin𝛽 cos𝛽 − sinኼ 𝛽 cosኼ 𝛽 sin𝛽 cos𝛽

sinኼ 𝛽 − sin𝛽 cos𝛽 − sin𝛽 cos𝛽 cosኼ 𝛽

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝑛ኼ፱ 𝑛፱𝑛፲ 𝑛፱𝑛፲ 𝑛ኼ፲
−𝑛፱𝑛፲ 𝑛ኼ፱ −𝑛ኼ፲ 𝑛፱𝑛፲
−𝑛፱𝑛፲ −𝑛ኼ፲ 𝑛ኼ፱ 𝑛፱𝑛፲
𝑛ኼ፲ −𝑛፱𝑛፲ −𝑛፱𝑛፲ 𝑛ኼ፱

⎤
⎥
⎥
⎥
⎥
⎦

,

(A.12)

where 𝒏 = (𝑛፱ , 𝑛፲) = (− cos𝛽,− sin𝛽) is the outward normal of the local bound-
ary.

Under the discretized model, 𝒏 is expressed as the inward normal 𝒏። of node 𝑖
that is evaluated by averaging the normal of segments along material interfaces.
As shown in Figure A.1, node 𝑖 is shared by two line elements 𝑛𝑖 and 𝑖𝑚 (marked

𝑖 𝑚

𝑛

Figure A.1: Line elements ፧። and ።፦ (marked with red segments) sharing node ። are used to compute
the inward normal 𝒏። of node ።.

with red segments). The average of normals of these two segments is evaluated
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as
𝒏avg = (𝑛avg፱ , 𝑛avg፲) =

1
2 (𝒏፧። + 𝒏።፦) . (A.13)

Then 𝒏። is evaluated by normalizing 𝒏avg as

𝒏። = (𝑛፱ , 𝑛፲) =
(𝑛avg፱ , 𝑛avg፲)

√𝑛ኼavg፱ + 𝑛ኼavg፲

. (A.14)

The other transformation matrix 𝑷፥(𝛾) is given by

𝑷፥(𝛾) = [
sinኼ(𝛾) − sin(ኼ᎐)

ኼ − sin(ኼ᎐)
ኼ cosኼ(𝛾)

− sin(𝛾) cos(𝛾) cosኼ(᎐)ዅsinኼ(᎐)
ኼ

cosኼ(᎐)ዅsinኼ(᎐)
ኼ sin(𝛾) cos(𝛾)

] .

(A.15)
Setting the angle 𝛾 = 0, 𝑷፥(𝛾) is simplified to

𝑷፥(0) = [
0 0 0 1
0 0.5 0.5 0

] . (A.16)

A.5. Sensitivity formulations
A.5.1. Energy release rate
According to Equation (5.16), the derivative of 𝐽 associated with design variable 𝑠፣
is expressed as

𝜕𝐽
𝜕𝑠፣

= ( 1
𝑁node

)
ኻ
፩ 1
𝑝 (

ፍnode

∑
።ኻ

𝐺፩። )

ኻ
፩ዅኻ

(
ፍnode

∑
።ኻ

𝑝𝐺፩ዅኻ።
𝜕𝐺።
𝜕𝑠፣

) , (A.17)

where

𝜕𝐺።
𝜕𝑠፣

= 𝜋𝜂
𝐸ኻ
𝜕 (𝝈(𝒙።)⊺𝑸(𝛾, 𝛽)𝝈(𝒙።))

𝜕𝑠፣

= 𝜋𝜂
𝐸ኻ
(𝜕𝝈(𝒙።)

⊺

𝜕𝑠፣
𝑸(𝛾, 𝛽)𝝈(𝒙።) + 𝝈(𝒙።)⊺

𝜕𝑸(𝛾, 𝛽)
𝜕𝑠፣

𝝈(𝒙።) + 𝝈(𝒙።)⊺𝑸(𝛾, 𝛽)
𝜕𝝈(𝒙።)
𝜕𝑠፣

) .

(A.18)

According to Equation (4.17), the derivative of nodal stress 𝝈(𝒙።) with respect to
design variable 𝑠፣ is defined as

𝜕𝝈(𝒙።)
𝜕𝑠፣

= 𝜕𝝈(𝒙።)
𝜕𝒙፧

𝜕𝒙፧
𝜕𝑠፣

= 1
𝑁።
𝜕 (∑𝑬(𝒙።)�̂�፞)

𝜕𝒙፧
𝜕𝒙፧
𝜕𝑠፣

= 1
𝑁።
∑(𝜕𝑬(𝒙።)𝜕𝒙፧

�̂�፞ + 𝑬(𝒙።)
𝜕�̂�፞
𝜕𝒙፧

) 𝜕𝒙፧𝜕𝑠፣
.

(A.19)
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The first term (𝜕𝑬(𝒙።)/𝜕𝒙፧) �̂�፞ is only non-zero, when 𝒙። equals to enriched node
𝒙፧, and derivatives of 𝑬(𝒙።) with respect to coordinates (𝑥። , 𝑦።) are given by

𝜕𝑬(𝒙።)
𝜕𝑥።

= [
0 1 0 𝑦። 2𝑥። 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 𝑦። 2𝑥። 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 𝑦። 2𝑥። 0

] ,

𝜕𝑬(𝒙።)
𝜕𝑦።

= [
0 0 1 𝑥። 0 2𝑦። 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 𝑥። 0 2𝑦። 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 𝑥። 0 2𝑦።

] .

(A.20)

In order to evaluate 𝜕�̂�፞/𝜕𝒙፧, we need to solve the derivative of Equation (4.16),
which is used to obtain the recovered stress field. For simplicity, we redefine several
terms in Equation (4.16) as

𝑨፞ = [
∫
፞
�̄�⊺𝑬d𝑒

∫
፞
𝑬⊺᎓𝜕⊺𝑬d𝑒

] , 𝑩፞ኻ = ∫
፞
�̄�⊺𝝈፡፞d𝑒, 𝑩፞ኼ = ∫

፞
𝑬⊺᎓𝒃d𝑒. (A.21)

Then, the corresponding derivative associated with enriched node 𝒙፧ is given by

(∑ 𝜕𝑨፞
𝜕𝒙፧

) �̂�፞ + (∑𝑨፞)
𝜕�̂�፞
𝜕𝒙፧

=∑[
Ꭷ𝑩፞ኻ
Ꭷ𝒙፧Ꭷ𝑩፞ኼ
Ꭷ𝒙፧

] . (A.22)

After solving the equation above, the derivative of �̂�፞ corresponding to enriched
node 𝒙፧is expressed as

𝜕�̂�፞
𝜕𝒙፧

= (∑𝑨፞)
ዅኻ
(∑[

Ꭷ𝑩፞ኻ
Ꭷ𝒙፧Ꭷ𝑩፞ኼ
Ꭷ𝒙፧

] − (∑ 𝜕𝑨፞
𝜕𝒙፧

) �̂�፞) . (A.23)

According to Equation (A.21), 𝜕𝑨፞/𝜕𝒙፧ and 𝜕𝑩፞።/𝜕𝒙፧ , 𝑖 = 1, 2 can be obtained
directly. As enriched nodes are created at intersections between element edges
and material interfaces, their locations are evaluated based on level set values and
coordinates of background mesh nodes. As shown in Figure A.2, enriched node 𝒙፧

𝒙፤

𝒙፥𝒙፧

Figure A.2: Enriched node 𝒙፧ is created at the intersection between a material interface (marked with
a red segment) and an element edge with (𝒙፤ , 𝒙፥).



A

164

is related to original mesh nodes 𝒙፤ and 𝒙፥, and it is expressed as

𝒙፧ = 𝒙፥ −
𝜙፥

𝜙፤ − 𝜙፥
(𝒙፤ − 𝒙፥) , (A.24)

where 𝜙፤ and 𝜙፥ are level set values of 𝒙፤ and 𝒙፥, respectively. The derivative of
𝒙፧ with respect to design variable 𝑠፣ is then given by

𝜕𝒙፧
𝜕𝑠፣

= 𝜕𝒙፧
𝜕𝜙፥

𝜕𝜙፥
𝜕𝑠፣

+ 𝜕𝒙፧𝜕𝜙፤
𝜕𝜙፤
𝜕𝑠፣

, (A.25)

where
𝜕𝒙፧
𝜕𝜙፥

= − 𝜙፤
(𝜙፤ − 𝜙፥)

ኼ (𝒙፤ − 𝒙፥) , (A.26)

and
𝜕𝒙፧
𝜕𝜙፤

= − 𝜙፥
(𝜙፤ − 𝜙፥)

ኼ (𝒙፤ − 𝒙፥) . (A.27)

Since level set function 𝜙 is constructed as compactly supported RBFs (shown in
Equation (5.18)), 𝜕𝜙፥/𝜕𝑠፣ and 𝜕𝜙፤/𝜕𝑠፣ equal to 𝜁፣(𝒙፥) and 𝜁፣(𝒙፤), respectively.
The derivative of 𝑸(𝛾, 𝛽) with respect to design variable 𝑠፣ in Equation (A.18) is
given in the following Chapter A.5.4. For the derivative of 𝐽 associated with the
displacement �̃�, it is shown as

𝜕𝐽
𝜕�̃� = ( 1

𝑁node
)
ኻ
፩ 1
𝑝 (

ፍnode

∑
።ኻ

𝐺፩። )

ኻ
፩ዅኻ

(
ፍnode

∑
።ኻ

𝑝𝐺፩ዅኻ።
𝜕𝐺።
𝜕�̃� ) , (A.28)

where

𝜕𝐺።
𝜕�̃� = 𝜋𝜀

𝐸ኻ
𝜕 (𝝈(𝒙።)⊺𝑸(𝛾, 𝛽)𝝈(𝒙።))

𝜕�̃�

= 𝜋𝜀
𝐸ኻ
(𝜕𝝈(𝒙።)

⊺

𝜕�̃� 𝑸(𝛾, 𝛽)𝝈(𝒙።) + 𝝈(𝒙።)⊺𝑸(𝛾, 𝛽)
𝜕𝝈(𝒙።)
𝜕�̃� ) .

(A.29)

Similar to Equation (A.19), the derivative of 𝝈(𝒙።) associated with displacement �̃�
is given by

𝜕𝝈(𝒙።)
𝜕�̃� = 𝜕 (∑𝑬(𝒙።)�̂�፞)

𝜕�̃� = 𝑬(𝒙።)∑
𝜕�̂�፞
𝜕�̃� .

(A.30)

In order to evaluate 𝜕�̂�፞/𝜕�̃�, we need to solve the derivative of Equation (4.16)
associated with �̃�. Then, the corresponding derivative is expressed as

𝜕�̂�፞
𝜕�̃� = (∑𝑨፞)

ዅኻ
(∑[

Ꭷ𝑩፞ኻ
Ꭷ�̃�Ꭷ𝑩፞ኼ
Ꭷ�̃�

] − (∑ 𝜕𝑨፞
𝜕�̃� ) �̂�፞) . (A.31)

As shown in Equation (A.21), 𝑨፞ is only related to coordinates, 𝜕𝑨፞/𝜕�̃� the equals
to 0.
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A.5.2. Stiffness matrix and force vector
According to Equations (5.13) and (5.14), derivatives of �̃� and �̃� associated to
design variable 𝑠፣ can be expressed as

𝜕�̃�
𝜕𝑠፣

= 𝜕𝑻⊺
𝜕𝑠፣

𝑲𝑻�̃� + 𝑻⊺ 𝜕𝑲𝜕𝑠፣
𝑻�̃� + 𝑻⊺𝑲 𝜕𝑻𝜕𝑠፣

�̃�, (A.32)

and
𝜕�̃�
𝜕𝑠፣

= 𝜕𝑻⊺
𝜕𝑠፣

(𝑭 − 𝑲𝒈) + 𝑻⊺ ( 𝜕𝑭𝜕𝑠፣
− 𝜕𝑲
𝜕𝑠፣

𝒈 − 𝑲 𝜕𝒈𝜕𝑠፣
) . (A.33)

According to Equation (5.7), 𝜕𝑲/𝜕𝑠፣ and 𝜕𝑭/𝜕𝑠፣ can be evaluated directly. 𝜕𝒈/𝜕𝑠፣
is a zero vector as prescribed displacements are not related to design variables. As
shown in Equation (5.12), 𝑻 matrix is constructed with shape function 𝑁። , 𝑖 = 1, 2, 3,
it can be expressed as a 10 × 10 matrix:

𝑻 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
−𝑁ኻ 0 −𝑁ኼ 0 0 0 1 0 0 0
0 −𝑁ኻ 0 −𝑁ኼ 0 0 0 1 0 0
0 0 −𝑁ኼ 0 −𝑁ኽ 0 0 0 1 0
0 0 0 −𝑁ኼ 0 −𝑁ኽ 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A.34)

Its sensitivity with respect to design variable 𝑠፣ can be computed as

𝜕𝑻
𝜕𝑠፣

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

−Ꭷፍኻ
Ꭷ፬፣

0 −Ꭷፍኼ
Ꭷ፬፣

0 0 0 0 0 0 0
0 −Ꭷፍኻ

Ꭷ፬፣
0 −Ꭷፍኼ

Ꭷ፬፣
0 0 0 0 0 0

0 0 −Ꭷፍኼ
Ꭷ፬፣

0 −Ꭷፍኽ
Ꭷ፬፣

0 0 0 0 0
0 0 0 −Ꭷፍኼ

Ꭷ፬፣
0 −Ꭷፍኽ

Ꭷ፬፣
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.35)

where the derivative of shape function 𝑁። , 𝑖 = 1, 2, 3 associated with design variable
𝑠፣ is given by

𝜕𝑁።
𝜕𝑠፣

= 𝜕𝑁።
𝜕𝒙፧

𝜕𝒙፧
𝜕𝑠፣

. (A.36)
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A.5.3. von Mises stress
Considering the objective function 𝐽vM associated with von Mises stress, it is given
by

𝐽vM =
1
𝑁e

ፍe

∑
።ኻ
(𝜎vM። − �̄�vM)

፪ . (A.37)

Its derivative associated to design variable 𝑠፣ is then shown as

𝜕𝐽vM

𝜕𝑠፣
= 𝑞
𝑁e

ፍe

∑
።ኻ
((𝜎vM። − �̄�vM)

፪ዅኻ 𝜕 (𝜎vM። − �̄�vM)
𝜕𝑠፣

)

= 𝑞
𝑁e

ፍe

∑
።ኻ
((𝜎vM። − �̄�vM)

፪ዅኻ 𝜕 (𝜎vM። − �̄�vM)
𝜕𝒙፧

𝜕𝒙፧
𝜕𝑠፣

) .

(A.38)

As von Mises stress 𝜎vM defined in 2-D is expressed as

𝜎vM = √𝜎ኼ፱፱ + 𝜎ኼ፲፲ − 𝜎፱፱𝜎፲፲ + 3𝜎ኼ፱፲ = √𝝈⊺𝑹𝝈, (A.39)

where

𝑹 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 −0.5
0 1 0.5 0
0 0.5 1 0

−0.5 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

, (A.40)

its derivative corresponding to design variable 𝑠፣ is defined as

𝜕𝜎vM

𝜕𝑠፣
= 𝜕√𝝈⊺𝑹𝝈

𝜕𝑠፣
= 1
2𝜎vM

(𝜕𝝈
⊺

𝜕𝑠፣
𝑹𝝈 + 𝝈⊺𝑹 𝜕𝝈𝜕𝑠፣

) . (A.41)

Then the sensitivity term (𝜕 (𝜎vM። − �̄�vM)) /𝜕𝑠፣ in Equation (A.38) can be expressed
as

𝜕 (𝜎vM። − �̄�vM)
𝜕𝑠፣

= 1
2𝜎vM።

(𝜕𝝈
⊺
።

𝜕𝑠፣
𝑹𝝈። + 𝝈⊺።𝑹

𝜕𝝈።
𝜕𝑠፣

) − 1
𝑁e

ፍe

∑
፥ኻ

𝜕𝜎vM፥
𝜕𝑠፣

. (A.42)

For the derivative of recovered elemental stress 𝝈። corresponding to design variable
𝑠፣, it is given by

𝜕𝝈።
𝜕𝑠፣

=
𝜕 (𝑬(𝒙፠)�̂�።)

𝜕𝑠፣
= (

𝜕𝑬(𝒙፠)
𝜕𝒙፧

�̂�። + 𝑬(𝒙፠)
𝜕�̂�።
𝜕𝒙፧

) 𝜕𝒙፧𝜕𝑠፣
, (A.43)
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where 𝒙፠ is the global coordinate of gauss points in the 𝑖th element, 𝜕�̂�።/𝜕𝒙፧ can be
obtained by solving Equation (A.23), and �̂�። is a vector derived from Equation (4.16).
The derivative of interpolation matrix 𝑬(𝒙፠) associated to 𝒙፧ is defined as

𝜕𝑬(𝒙፠)
𝜕𝒙፧

=
𝜕𝑬(𝒙፠)
𝜕𝒙፠

𝜕𝒙፠
𝜕𝒙፧

=
𝜕𝑬(𝒙፠)
𝜕𝒙፠

𝜕𝒙⊺፞
𝜕𝒙፧

𝑵(𝒙።), (A.44)

where 𝒙፞ is nodal coordinates of element 𝑖, 𝒙። is the local coordinate of gauss point,
and 𝑵 is a vector of shape functions.

For the derivative of 𝐽vM associated with the displacement �̃�, it is shown as

𝜕𝐽vM

𝜕�̃� = 𝑞
𝑁e

ፍe

∑
።ኻ
((𝜎vM። − �̄�vM)

፪ዅኻ 𝜕 (𝜎vM። − �̄�vM)
𝜕�̃� ) , (A.45)

where

𝜕 (𝜎vM። − �̄�vM)
𝜕�̃� = 1

2𝜎vM።
(𝜕𝝈

⊺
።

𝜕�̃� 𝑹𝝈። + 𝝈
⊺
።𝑹
𝜕𝝈።
𝜕�̃� ) −

1
𝑁e

ፍe

∑
፥ኻ

𝜕𝜎vM፥
𝜕�̃� . (A.46)

The derivative of recovered elemental stress 𝝈። associated with the displacement
�̃� is defined as

𝜕𝝈።
𝜕�̃� =

𝜕 (𝑬(𝒙፠)�̂�።)
𝜕�̃� =

𝜕𝑬(𝒙፠)
𝜕�̃� �̂�። + 𝑬(𝒙፠)

𝜕�̂�።
𝜕�̃� = 𝑬(𝒙፠)

𝜕�̂�።
𝜕�̃� , (A.47)

where 𝜕�̂�።/𝜕�̃� can be obtained by solving Equation (A.31).

A.5.4. Matrix 𝑸 about angles 𝛾 and 𝛽
According to Equation (5.26), 𝑸(𝛾, 𝛽) is a matrix used to transform stress 𝝈 defined
in the global coordinate system to stress 𝝈᎕ under the polar coordinate system
located along the boundary, and it is expressed as

𝑸(𝛾, 𝛽) = 𝑷፠(𝛽)⊺𝑷፥(𝛾)⊺𝑯⊺(𝛾)𝑯(𝛾)𝑷፥(𝛾)𝑷፠(𝛽). (A.48)

Since cracks are assumed to nucleate perpendicular to the structural boundary, the
angle 𝛾 is set as 0. It means that matrices 𝑷፥(𝛾) and 𝑯(𝛾) are not affected by
design variables. Derivative of matrix 𝑸(𝛾, 𝛽) with respect to design variable 𝑠፣ is
then expressed as

𝜕𝑸(𝛾, 𝛽)
𝜕𝑠፣

=
𝜕𝑷፠(𝛽)⊺
𝜕𝑠፣

𝑷፥(𝛾)⊺𝑯⊺(𝛾)𝑯(𝛾)𝑷፥(𝛾)𝑷፠(𝛽)

+ 𝑷፠(𝛽)⊺𝑷፥(𝛾)⊺𝑯⊺(𝛾)𝑯(𝛾)𝑷፥(𝛾)
𝜕𝑷፠(𝛽)
𝜕𝑠፣

.
(A.49)
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According to Equation (A.12), the derivative of 𝑷፠(𝛽) with respect to design variable
𝑠፣ is expressed as

𝜕𝑷፠(𝛽)
𝜕𝑠፣

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2𝑛፱
Ꭷ፧፱
Ꭷ፬፣

Ꭷ፧፱
Ꭷ፬፣
𝑛፲ + 𝑛፱

Ꭷ፧፲
Ꭷ፬፣

Ꭷ፧፱
Ꭷ፬፣
𝑛፲ + 𝑛፱

Ꭷ፧፲
Ꭷ፬፣

2𝑛፲
Ꭷ፧፲
Ꭷ፬፣

−Ꭷ፧፱
Ꭷ፬፣
𝑛፲ − 𝑛፱

Ꭷ፧፲
Ꭷ፬፣

2𝑛፱
Ꭷ፧፱
Ꭷ፬፣

−2𝑛፲
Ꭷ፧፲
Ꭷ፬፣

Ꭷ፧፱
Ꭷ፬፣
𝑛፲ + 𝑛፱

Ꭷ፧፲
Ꭷ፬፣

−Ꭷ፧፱
Ꭷ፬፣
𝑛፲ − 𝑛፱

Ꭷ፧፲
Ꭷ፬፣

−2𝑛፲
Ꭷ፧፲
Ꭷ፬፣

2𝑛፱
Ꭷ፧፱
Ꭷ፬፣

Ꭷ፧፱
Ꭷ፬፣
𝑛፲ + 𝑛፱

Ꭷ፧፲
Ꭷ𝒔፣

2𝑛፲
Ꭷ፧፲
Ꭷ፬፣

−Ꭷ፧፱
Ꭷ፬፣
𝑛፲ − 𝑛፱

Ꭷ፧፲
Ꭷ፬፣

−Ꭷ፧፱
Ꭷ፬፣
𝑛፲ − 𝑛፱

Ꭷ፧፲
Ꭷ፬፣

2𝑛፱
Ꭷ፧፱
Ꭷ፬፣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(A.50)
As shown in Equation (A.14), sensitivities of 𝑛፱ and 𝑛፲ associated with design
variable 𝑠፣ are calculated as

𝜕𝑛፱
𝜕𝑠፣

=
𝜕 ፧avg፱

√፧ኼavg፱ዄ፧ኼavg፲

𝜕𝑠፣
=
𝑛ኼavg፲

Ꭷ፧avg፱
Ꭷ፬፣

− 𝑛avg፱𝑛avg፲
Ꭷ፧avg፲
Ꭷ፬፣

(𝑛ኼavg፱ + 𝑛ኼavg፲)√𝑛ኼavg፱ + 𝑛ኼavg፲

, (A.51)

and

𝜕𝑛፲
𝜕𝑠፣

=
𝜕 ፧avg፲

√፧ኼavg፱ዄ፧ኼavg፲

𝜕𝑠፣
=
𝑛ኼavg፱

Ꭷ፧avg፲
Ꭷ፬፣

− 𝑛avg፱𝑛avg፲
Ꭷ፧avg፱
Ꭷ፬፣

(𝑛ኼavg፱ + 𝑛ኼavg፲)√𝑛ኼavg፱ + 𝑛ኼavg፲

. (A.52)

As the average normal (𝑛avg፱ , 𝑛avg፲) is evaluated by the normal of segments sharing
node 𝑖, we take segment 𝑖𝑚 as an example to illustrate the procedure for obtaining
the derivative of segment normal 𝒏።፦. Figure A.1 shows that segment 𝑖𝑚 is defined
by two enrich nodes 𝒙። and 𝒙፦, and its direction and normal then can be expressed
as

𝒅።፦ =
𝒙። − 𝒙፦

√(𝒙። − 𝒙፦) ⋅ (𝒙። − 𝒙፦)
= (𝒅።፦፱ , 𝒅።፦፲), (A.53)

and
𝒏።፦ = (−𝒅።፦፲ , 𝒅።፦፱). (A.54)

Then the derivative of the direction 𝒅።፦ associated with design variable 𝑠፣ can be
derived as

𝜕𝒅።፦
𝜕𝑠፣

=
√(𝒙። − 𝒙፦) ⋅ (𝒙። − 𝒙፦) ⋅ (

Ꭷ𝒙።
Ꭷ፬፣
− Ꭷ𝒙፦

Ꭷ፬፣
) − (𝒙። − 𝒙፦) ⋅

( Ꭷ𝒙።Ꭷ፬፣
ዅ Ꭷ𝒙፦Ꭷ፬፣ )⋅(𝒙።ዅ𝒙፦)

√(𝒙።ዅ𝒙፦)⋅(𝒙።ዅ𝒙፦)
(𝒙። − 𝒙፦) ⋅ (𝒙። − 𝒙፦)

(A.55)
where 𝜕𝒙።/𝜕𝑠፣ and 𝜕𝒙፦/𝜕𝑠፣ are extracted from Equation (A.25). The derivative of
𝒏።፦ corresponding to 𝑠፣ can be obtained via Equation (A.54).
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