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Summary

Tools used in software engineering often balance a tradeoff between generality
and specificity. The most important tools in software engineering are program-
ming languages, and the most common ones are General-Purpose Languages
(GPLs). Because of their generality, GPLs can be used to develop many kinds
of software. Domain-Specific Languages (DSLs) are a more specific counterpart;
they are programming languages tailored to a specific domain. DSLs are not
generally applicable but can be more effective for developing software within
their particular domain.

DSLs can be beneficial if their benefits outweigh the investments. Advan-
tages attributed to DSLs include improved software engineering productivity,
improved automation possibilities, and enabling non-programmer domain
experts to contribute to the software engineering process. Disadvantages at-
tributed to DSLs include the costs of introducing and maintaining a DSL and
dependency on skills. In practice, it is hard to predict whether a DSL will be
beneficial.

Language workbenches are tools for developing and deploying DSLs. They aim
to reduce the investment that is required for DSLs and to improve the usability
of the created DSLs. By lowering the investment, language workbenches can
improve the opportunity for DSLs to be effective. Although much academic
work has been published about the underlying technology and concepts of
language workbenches, there is little empirical evidence on the actual impact
of language workbenches in practice.

In this dissertation, we contribute such empirical evidence on the creation
and evaluation of DSLs that are developed with language workbenches. We
do so by conducting case studies in an industrial setting. This is important,
as such empirical evidence can help others to determine whether to adopt
DSLs developed with language workbenches. In particular, we use and eval-
uate Spoofax, a language workbench developed at the Delft University of
Technology.

The context of our work is Canon Production Printing, a digital printing
systems manufacturing company. Canon Production Printing provides a good
environment for evaluating DSLs as they have obtained extensive domain
knowledge for complex domains like modeling behavior, performance, and
physical aspects of printing systems. We develop and evaluate DSLs for
two of such domains. First, we develop CSX, a new DSL for the domain of
configuration spaces of digital printing systems. Second, we reimplement OIL,
an existing DSL for control software based on state machines. In both cases,
we compare the newly created DSL with the existing situation.

For both cases, we draw generally positive conclusions. For example, in
the CSX project, the DSL enables the use of constraint-solving technology
which aids automatic and accurate configuration of printing systems, which

vii
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can ultimately improve the quality, performance, and usability of printing
systems. In the OIL project, we found that Spoofax is more than adequate
for developing a complex DSL with industrial requirements and we found
indications that it is more productive to develop a DSL with Spoofax compared
to using a GPL and available libraries.

Our extensive case studies at Canon Production Printing have taught us
valuable lessons and insights. In particular, to make good on the promise
of DSLs in industry, language workbenches need to improve in terms of the
non-functional aspects. We expect that improving on, e.g., portability, usability,
and documentation will improve the impact of Spoofax on industrial DSL
development.

viii
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Samenvatting

Gereedschap voor softwareontwikkeling balanceert vaak tussen algemeenheid
en specificiteit. Het belangrijkste gereedschap voor softwareontwikkeling zijn
programmeertalen, en het meest voorkomend zijn General-Purpose Languages
(GPLs). Vanwege hun algemeenheid kunnen GPLs worden gebruikt om allerlei
soorten software te ontwikkelen. Domain-Specific Languages (DSLs) zijn een
meer specifieke tegenhanger; dat zijn programmeertalen op maat gemaakt voor
een specifiek domein. DSLs zijn niet breed toepasbaar, maar kunnen effectiever
zijn voor het ontwikkelen van software binnen hun specifieke domein.

DSLs kunnen voordelig zijn als hun voordelen groter zijn dan de inves-
teringen. Voordelen die aan DSLs worden toegeschreven zijn onder andere
verbeterde productiviteit voor softwareontwikkeling, verbeterde automati-
seringsmogelijkheden en het mogelijk maken dat domein experts die geen
programmeur zijn kunnen bijdragen aan de softwareontwikkeling. Nadelen
die aan DSLs worden toegeschreven zijn onder andere de kosten van het intro-
duceren en onderhouden van een DSL en de afhankelijkheid van vaardigheden.
In de praktijk is het moeilijk te voorspellen of een DSL voordelig zal zijn.

Language workbenches zijn gereedschap voor het ontwikkelen en implemen-
teren van DSLs. Ze hebben tot doel om de investering die nodig is voor
DSLs te verminderen en de gebruiksvriendelijkheid van de gecreëerde DSLs te
verbeteren. Door de investering te verlagen, kunnen language workbenches
de kans vergroten dat DSLs effectief zijn. Hoewel er veel academisch werk is
gepubliceerd over de onderliggende technologie en concepten van language
workbenches, is er weinig empirisch bewijs over de daadwerkelijk impact van
language workbenches in de praktijk.

In dit proefschrift dragen we dergelijk empirisch bewijs bij over de creatie en
evaluatie van DSLs die zijn ontwikkeld met language workbenches. Dit doen
we door case studies uit te voeren in een industriële omgeving. Dit is belangrijk,
omdat dergelijk empirisch bewijs anderen kan helpen te bepalen of ze DSLs
ontwikkeld met language workbenches willen toepassen. In het bijzonder
gebruiken en evalueren we Spoofax, een language workbench ontwikkeld aan
de Technische Universiteit Delft.

De context van ons werk is Canon Production Printing, een bedrijf dat di-
gitale printsystemen produceert. Canon Production Printing biedt een goede
omgeving voor het evalueren van DSLs, omdat ze uitgebreide domeinkennis
hebben opgebouwd voor complexe domeinen zoals het modelleren van ge-
drag, prestaties en fysieke aspecten van printsystemen. We ontwikkelen en
evalueren DSLs voor twee van dergelijke domeinen. Ten eerste ontwikkelen we
CSX, een nieuwe DSL voor het domein van configuratieruimten van digitale
printsystemen. Ten tweede herimplementeren we OIL, een bestaande DSL voor
besturingssoftware op basis van state machines. In beide gevallen vergelijken
we de nieuw gecreëerde DSL met de bestaande situatie.
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Voor beide gevallen trekken we over het algemeen positieve conclusies. Zo
maakt de DSL in het CSX project het gebruik van constraint-oplossingstechno-
logie mogelijk, wat helpt bij automatische en nauwkeurige configuratie van
printsystemen, wat uiteindelijk de kwaliteit, prestaties en gebruiksvriendelijk-
heid van printsystemen kan verbeteren. In het OIL project vonden we dat
Spoofax ruimschoots geschikt is voor het ontwikkelen van een complexe DSL
met industriële vereisten en we vonden aanwijzingen dat het productiever is
om een DSL te ontwikkelen met Spoofax in vergelijking met het gebruik van
een GPL en beschikbare libraries.

Onze uitgebreide case studies bij Canon Production Printing hebben ons
waardevolle lessen en inzichten opgeleverd. Om de belofte van DSLs in de
praktijk waar te maken, moeten language workbenches met name verbeteren
op het gebied van niet-functionele aspecten. We verwachten dat verbeteringen
op het gebied van portabiliteit, gebruiksvriendelijkheid en documentatie de
impact van Spoofax op de ontwikkeling van industriële DSLs zal verbeteren.

x
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of his field of expertise differing from programming languages — I am very
happy he joined my team. I am thankful to Andy for all our nice interactions
and his strong support when writing papers. I very much appreciate his
leadership style. There have been times I was stuck and I was procrastinating,
lacking motivation. Andy often sensed these moments and got me back on
track. With very clear words, but always in the most friendly and respectful
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way. If I will get into leadership positions, I will think of his example.
When Eelco passed away, who could fill the gap in my team? I could not

think of someone better than Jurgen Vinju. During our collaboration, I realized
that his relationship with Eelco was even more valuable than I knew before,
nicely characterized by Jurgen as them being academic brothers. I am thankful
to Jurgen for stepping into a role that I can imagine is emotional for him as well.
Jurgen was essential in architecting my two most important papers. Without
Jurgen’s help, I do not know how these papers would have ever reached the
finish line. In addition to his deep analytical skills — something I had only
experienced before when working with Eelco — I very much appreciate the
enthusiasm and positive energy he consistently brings. He inspires me to keep
having fun and to never stop programming.

Doing a PhD within a company sounds nice, but without strong support
from a champion at the company, the research can easily fail. I am very happy
that Louis van Gool was my champion. Louis brings a unique blend of a strong
theoretical and academic background, combined with practical and industrial
experience. I am thankful to Louis for providing a great environment to do
research, minimizing the need for me to navigate corporate processes. Louis
maintained a high standard and actively contributed to papers through reviews
with a great level of detail, which I very much appreciated.

After my first presentation to a large audience at Canon, where I shared
the results of my first months of work, Marvin Brunner approached me with
an idea that could be interesting to have a look at. I am glad he did, as this
idea eventually led to the biggest project of my PhD, the CSX project. My
research heavily relies on extensive domain knowledge accumulated over years
within a company, and Marvin was great at transferring this knowledge. I am
thankful to Marvin for often asking “Hoe zit dit nou eigenlijk echt?” (“What is
really going on here?”), pushing us to better understand the problem we were
working on. Companies should be very happy with employees like Louis and
Marvin.

A large part of my work was in close collaboration with Olav Bunte. It was
nice to both do our PhD during the same period, even though he started later
and still managed to overtake me. I think our complementary skills made us a
great team, especially when it came to writing papers. The highlight of our
collaboration was our last journal paper on the OIL project, which was a very
tough one to write. With a large set of co-authors, we had to navigate with
many captains on our ship. So many times we thought we were on the right
track, only to find ourselves needing to go back to the drawing board. I am
thankful to Olav for his perseverance and attention to detail. I am proud that
we got the paper published, together.

At Canon Production Printing, many others have contributed to my work.
Several Master’s students did their thesis projects with us: Mark Frenken, Tom
Buskens, Samuël Noah Voogd, Bram van Walraven and Jordi van Laarhoven. I
appreciated the results those students achieved in a short amount of time. I
am thankful to all other employees who contributed to OIL and CSX, through
participation in our workshops, taking the time to share domain knowledge, or
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through nice discussions on language engineering in general. Finally, I want
to thank Jack van der Elsen for his guidance and support in filing our patent
related to CSX.

I am grateful to my colleagues in Delft, particularly those in the Program-
ming Languages group, for their welcoming and supportive attitude. I very
much appreciate the dedication with which so many members of the group
have contributed to Spoofax, alongside their numerous research and teaching
responsibilities. What they, along with previous generations of PhD students,
have achieved with Spoofax is truly impressive. I am also thankful to Maarten
Sijm for choosing to do his thesis project on parsing with us — it was a lot of
fun working together.

I want to thank the members of my PhD committee for taking the time
to evaluate my dissertation: Frits Vaandrager, Sebastian Erdweg, Neil Yorke-
Smith, Arie van Deursen, and Mathijs de Weerdt. I also want to thank Neil for
teaching a course on constraint programming at the Institute for Programming
research and Algorithmics (IPA) in 2019. Rarely have I learned so much in a
single day. Neil’s course gave me a kickstart on what would later become a
fundamental part of the CSX project.

I am fortunate to have many friends who have supported me along the way. I
want to thank a few in particular. I am thankful to Mike Loef, for always being
there for me. As someone who listened to so many of my complaints, I am
proud of him for still starting a PhD. I am thankful to my paranimphs, Hessel
de Gelder and Eloy Testerink, for supporting me during the defense. Hessel
and I held weekly accountability sessions, which helped a lot in learning about
my pitfalls and staying focused on the right things. Eloy, with his Monday
morning music suggestions, often provided encouragement to start the week
on a positive note.

I want to thank my family. In particular, I am thankful to my parents, for
their unconditional support and for giving me the freedom and opportunity to
pursue the things that I wanted in life. Finally, I am deeply thankful to the love
of my life, Manon, for her support and patience. I know it has not always been
easy to stand by my side, but I am proud of what we have achieved together
over the past few years. I very much look forward to sharing the rest of our
lives together.
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1
Introduction

The ever-increasing role of software in society is fueled by the programming
languages in which we write software. In daily life, we use natural languages
such as English to communicate with each other. For communication about
instructing computers, we use programming languages. With this commu-
nication, we develop and maintain software by expressing instructions for a
computer to solve problems we care about. It is essential that these instructions
are expressed and interpreted accurately, such that the computer can deliver
the correct outcomes for the computations the software was intended for. It is
also essential that these instructions are understandable by anyone contributing
to software because, otherwise, miscommunication arises in the contributions
and the quality of the outcomes of the software is in danger. In this disserta-
tion, we investigate how the development and application of Domain-Specific
Languages (DSLs) [1, 2, 3] impact the expression and interpretation of instruc-
tions for computers. DSLs are programming languages that are tailored to a
specific domain. In particular, we do our investigation in the context of Canon
Production Printing1, a digital printing systems manufacturing company.

Before further discussing DSLs, we discuss their more commonly used coun-
terpart: General-Purpose programming Languages (GPLs). Software engineers
often instruct computers by writing code in GPLs. Examples of GPLs are C++,
Java, and Python, which can be used for writing software in many domains
such as games, webshops, and medical data analysis. GPLs provide building
blocks (i.e., abstractions, notations, or constructs) that allow programmers
to instruct computers without being bothered with low-level machine code.
Still, developing software that controls printing systems using GPLs remains
challenging. For example, the functionality of the printing systems could be
improved if the control software would support finding optimal configurations,
but due to the complexity of the printing systems, this is hard to achieve.

DSLs provide building blocks that are typically larger than the building
blocks in GPLs, and that are specific to the DSL’s domain. These building
blocks thus allow the expression of instructions directly in terms of the do-
main [1]. This prevents programmers from repeating low-level technical details
and boilerplate code each time a new problem is solved using the DSL. Po-
tentially, it also enables domain experts who are not programmers to write or
validate software code [2]. A typical characteristic is that the code written in
a DSL is translated automatically to an existing language such as a general
purpose one [3]. Although using a DSL comes at the cost of investing in the
development and maintenance of the DSL itself, its benefits could advance soft-
ware development in complex industrial contexts such as at Canon Production
Printing.

1https://cpp.canon
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1 device ExamplePerfectBinder {
2 location bookIn : Stack
3 location coverIn : Sheet
4
5 // Max dimensions of input
6 [1000 ≤ bookIn.height and bookIn.height ≤ 3000]
7 [2000 ≤ bookIn.width and bookIn.width ≤ 5000]
8
9 component toMill = ToMill(bookIn, milledBook) {

10 [millingDepth ≤ 30] // Max 3mm of milling
11 [bookIn.thickness < 170] // Max 17mm book thickness
12 }
13
14 location milledBook : Stack
15
16 component toCrease = ToCrease(coverIn, creasedCover) {
17 [minDist ≥ 50] // At least 5mm between creases
18 }
19
20 location creasedCover : CreasedSheet
21
22 component toCover = ToCover(creasedCover, milledBook, out) {}
23
24 location out : PerfectBoundBook
25 }

Figure 1.1: An example of code written in a DSL. The code models a device
that performs perfect binding, a binding technique that produces books by
gluing a cover around a stack of sheets. The DSL in which the code is written
is CSX, developed in this dissertation. CSX is used to generate software that
can automatically configure printing systems.
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As an example, we discuss a DSL called CSX that is developed in this
dissertation for the Configuration Space eXploration of digital printing systems.
Configuration space exploration is the process of finding a configuration that
specifies the complete manufacturing process (the input materials, the device
parameters, and the end product). Challenges in realizing configuration space
exploration are making it automatic, accurate, and optimal. Automation means
that, given a description of an intended product by an operator, the software
automatically finds a valid configuration. Accuracy concerns that the delivered
configurations conform to the device’s capabilities and constraints. Ideally,
configuration space exploration supports finding optimal configurations, e.g.,
to configure devices to maximize print productivity or minimize paper waste.

Figure 1.1 shows an example of code written in CSX. The code models
a perfect binder. A perfect binder is a finishing device, i.e., it processes
sheets of paper after printing. This device uses the perfect binding technique,
which means that it produces books by gluing a cover sheet around a stack
of sheets2. The code captures physical limitations of the device, e.g., the
maximum dimensions of the input materials or the maximum amount of
milling3 that can occur; concerns relevant for the configuration of the device.
The location keyword (see, e.g., lines 2 and 3), which is used to represent
the physical locations of the devices, is an example of how CSX supports the
expression of (physical) aspects of the device directly in terms of the domain
of printing systems.

CSX enables and automates the use of SMT solving [4]: technology that can
automatically find an (optimal) solution among many possibilities. This is rele-
vant for the configuration of printing systems because they can be configured
in many ways. SMT solving can overcome the challenges of realizing config-
uration space exploration. However, the code required to instruct constraint
solving is low-level, hard to understand, and tedious to maintain. CSX tackles
these problems by automatically generating the code necessary for constraint
solving. Therefore, in the CSX project, one of the key advantages of a DSL is
automation through code generation. This enables the integration of useful
technology that ultimately can improve the quality of printing systems. CSX
will be further discussed in Chapter 2 and Chapter 3.

DSLs have been investigated extensively in research and have been applied
in practice frequently for over 20 years [1, 5]. DSLs have been attributed
improvements to the software engineering process in terms of productivity,
quality, maintainability, and taming accidental complexity [1, 2]. Still, little is
known about the impact in practice of DSLs developed with state-of-the-art
tooling. Although Voelter et al. demonstrated that systems of significant size
can be developed in industrial settings using a particular tool, they call for
more studies on the evaluation of such tooling [6]. This is necessary for testing
whether language workbenches are suitable for developing software in a wide
range of domains.

This research, which was done in close collaboration with our industrial

2The printed version of this dissertation is produced using the perfect binding technique.
3Milling makes the paper along the spine rough, improving the adherence of the glue.
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partner Canon Production Printing, created a unique opportunity to evaluate
the application of DSLs. The key question of this dissertation is how DSLs and
related tooling can impact software engineering within our particular industrial
context. In particular, we investigated the creation of DSLs using language
workbenches [7, 8]. Language workbenches provide the tools and infrastructure
for developing and deploying DSLs with accessible usage environments. In
our investigation, we compare DSLs developed with a language workbench to
existing solutions developed with traditional software engineering techniques.

We investigate this question by performing case studies of DSL development
at Canon Production Printing for projects that have already been running for
several years, for which the domains have been analyzed extensively, and for
which software components already exist. This setup enables us to take a deep
dive into idiosyncratic industrial cases that can produce lessons that neither a
generic theory nor a large empirical survey can produce. The outcomes may
be harder to generalize, but they are also more valid because we can manually
take into account the possible noise factors. Threats to internal validity are
easier to mitigate, although threats to external validity (generalizability) shall
remain. Using this method, we made contributions in the following categories:

DSL Creation We (re-)design and implement DSLs using a language work-
bench from the viewpoint of replacing existing software components.

Industrial Evaluation We evaluate the newly created DSLs and compare them
with the existing situation.

Lessons Learned We collect lessons learned for DSL development in an indus-
trial setting.

In the remainder of this chapter, we cover background information on
domain-specific languages, language workbenches, and our industrial context.
Then, we describe our research method and introduce the case studies. Finally,
we summarize our contributions and describe the structure of this dissertation.

1.1 Domain-Specific Languages

We previously referred to programming languages as a means for communi-
cating about software, and how such communication can be domain-specific.
Domain-specific communication is present outside the software context as well.
Aircraft marshallers use visual signaling expressed using their arms to guide
aircraft on the ground. The visual signs are clear and concise — tailored to the
domain of guiding aircraft — and easy to interpret for a pilot. DSLs aim to
bring the same advantages — expressing instructions clearly and concisely —
to software engineering.

In this section, we define DSLs in the context of software and we discuss
advantages, disadvantages, comparisons to other software engineering ap-
proaches, and their use in industry.
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1.1.1 Domain-Specific Software Languages

The following definition of domain-specific (software) languages was proposed
by Van Deursen et al. [1]:

A domain-specific language (DSL) is a programming language or executable specifica-
tion language that offers, through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular problem domain.

From this definition, we derive the following key characteristics of DSLs:

Programming Language Like GPLs, DSLs are programming languages, and
thus are used to write software that can be executed by computers.

Domain-Specificity DSLs are focused on and restricted to a particular domain.

Focused Expressive Power DSLs provide building blocks specific to the DSL’s
domain, which can be textual, graphical, or a combination thereof.

The example of visual signaling by aircraft marshallers has the characteristics
of domain-specificity and focused expressive power. However, it is not a
programming language that can be executed by computers. From now on, we
will use the term DSL to refer to domain-specific languages in the context of
software, conforming to the above definition. We will refer to the process of
developing and maintaining DSLs as language engineering and to people doing
this as language engineers.

In the domain-specificity characteristic, it remains vague what kinds of
domains a DSL can be specific to. We use the following definition of Czarnecki
and Eisenecker [9]:

A domain is an area of knowledge scoped to maximize the satisfaction of the require-
ments, including a set of concepts and terminology understood by practitioners in the
area, and including knowledge of how to build software systems (or their parts) in the
area.

DSLs can be classified across several dimensions. We discuss two of such
dimensions to indicate the scope of this dissertation.

Internal vs. External DSLs [7]. Internal (or embedded) DSLs are developed,
deployed, and used within an existing GPL. This GPL is then called the host
language. By making creative use of the host language’s syntax, the user of
an internal DSL can express domain-specific building blocks within the host
language. On the other hand, external (or standalone) DSLs are languages
with a custom syntax and usage environment. Typically, the investment for
developing an internal DSL is lower than for an external DSL [2]. However,
the development of an internal DSL is restricted by the host language’s syn-
tax and usage environment [2]. In this dissertation, we focus on external
DSLs. An external DSL developed with traditional techniques was already
present at Canon Production Printing, which enables us to compare this DSL
implementation with a re-implementation using a language workbench.

Horizontal vs. Vertical DSLs [10]. “Horizontal” and “vertical” refer to the
organization of software typically consisting of layers and columns. The

Chapter 1. Introduction 5
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horizontal layers are of a technical nature, corresponding to, e.g., low-level
machine code or a high-level web application framework. The vertical columns
relate to application or business domains. Horizontal DSLs thus target a
technical domain. Horizontal DSLs are typically used by software engineers
only and aim to improve writing software for a particular technical task.
Examples of horizontal DSLs are SQL for the domain of database querying and
CSS for styling websites. On the other hand, vertical DSLs target an application
or business domain and might have non-programmer domain experts as
users. Traditionally, domain experts involved in software engineering write
requirements in, e.g., Word documents that software engineers interpret and
write software for. This gap between requirements and software engineering
often involves miscommunication and thus negatively impacts the process,
which Fowler calls the “worst bottleneck in software development” [2]. Vertical
DSLs potentially bridge this gap by enabling domain experts to write or read
code in a DSL. For example, the Risla DSL enabled financial experts to validate
the correctness of interest rate products [11]. In this dissertation, we consider
both a horizontal and a vertical DSL.

1.1.2 Advantages of DSLs

DSLs are popular for several reasons [2]. The following advantages attributed
to DSLs motivated their use in our case studies at Canon Production Printing:

Facilitating Automation & Integration Using code generation, DSLs can gen-
erate code for (automation of) integration with other technology [3]. For
example, this improves the accessibility of technologies requiring low-level
code such as constraint solving or model checking. This is relevant as enabling
the use of such technology can improve the quality of printing systems.

Involving Domain Experts Fowler considers improving communication with
domain experts to be one of the two main reasons for DSL’s popularity [2]. Due
to the domain-specificity and simplicity compared to GPLs, domain experts
can read code written in a DSL or even write code themselves using a DSL.
Reading DSL code by domain experts improves validatibility; if domain experts
can understand the code and validate it in the DSL’s environment, validation
can occur early in the software deployment cycle. Writing or modifying DSL
code by domain experts bridges the gap from requirements to implementation,
which can overcome the communication overhead between domain experts
and programmers. At Canon Production Printing, this could enable, e.g.,
mechanical engineers to contribute more directly to software engineering.

Improving Productivity Fowler considers improving productivity for devel-
opers to be the other main reason for DSL’s popularity [2]. By abstracting over,
e.g., boilerplate code and algorithmic details, using a DSL can improve soft-
ware engineering productivity compared to not using a DSL. Since boilerplate
code and algorithmic details are generated automatically, they do not require
to be written repeatedly by hand, decreasing programming effort and thereby
improving productivity. Improving productivity is relevant in an industrial
setting as it can decrease the cost of software engineering.

6
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Validation and Optimization Because DSLs are at the abstraction level of
the DSL’s domain, they allow for automated domain-specific validation and
optimization [1], reducing errors and improving quality. Possibly, validation
already occurs in the IDE, while editing programs written in the DSL, and can
prevent errors early in the development process. This is relevant for Canon
Production Printing as it could shorten the development cycle and improve
the quality of the products.

Other advantages attributed to DSLs include [1, 12, 3]: code written in
DSLs is concise, self-documenting, and reusable; DSLs improve quality, main-
tainability, reusability, reliability, traceability, and portability; DSLs capture
domain knowledge enabling the conservation and reuse of this knowledge;
DSLs improve testability; and DSLs enable simulation, model checking, and
verification.

1.1.3 Disadvantages of DSLs

We consider the following disadvantages attributed to DSLs to be relevant in
the context of our case studies:

Costs: Introduction and Maintenance There is a cost to introducing and main-
taining a DSL [1]. Next to the software language engineering component of
introducing and maintaining a DSL, both language engineers creating the DSL
as well as users of the DSL need to be trained [2]. These costs should be
affordable.

(Unclear) Return on Investment Both the investment and outcome of intro-
ducing a DSL depend on many factors, which makes it a risk that introducing
a DSL is not beneficial, i.e., that it has no positive return on investment [3].
This risk makes it difficult to opt for using a DSL in an industrial setting.

Learning Curve Developing and applying DSLs in practice is non-trivial due
to the required language engineering skills [1]. There is a steep learning
curve for software engineers to learn language engineering [13], especially for
developing external DSLs, which can be a hurdle for adopting DSLs in an
industrial setting.

Dependency on Tooling Introducing a DSL with, e.g., a language workbench,
introduces a dependency on an external party, although this dependency can
be smaller if the language is open source. In an industrial setting, such a
dependency could conflict with corporate policies.

Other disadvantages attributed DSLs to include [1]: limited availability;
difficulty in finding the proper scope for a DSL; the difficulty of balancing
between specificity and generality; and potential loss of efficiency in generated
code compared to manually optimized code.

1.1.4 Comparison to Other Software Engineering Approaches

We compare DSLs with other software engineering approaches, mostly by
discussing abstraction. Abstraction involves the collection of information con-
cerning a specific purpose, and the hiding of information that is not relevant

Chapter 1. Introduction 7
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for that purpose [3]. Using abstraction therefore simplifies information pro-
cessing, and thus it is often used in software engineering to tackle complexity.
We refer to the level of abstraction as the dimension that indicates how much
simplification and hiding of complexity occurs. Finding a suitable level of
abstraction is challenging, as hiding complexity is an advantage on the one
hand, but on the other hand, a too high level of abstraction might oversim-
plify. How abstraction plays a role in software varies per software engineering
method. We discuss the role of abstractions in GPLs, model-driven software
engineering, and low-code/no-code software engineering, and compare these
approaches to DSLs.

GPLs. GPLs themselves are already an abstraction compared to low-level
machine code. When using a GPL like Java, you use keywords and symbols and
a compiler takes care of translating the GPL code to low-level machine code a
computer can execute. Still, as a software engineer, you need to handle all kinds
of technical aspects such as memory management or concurrency. Abstractions
provided by the GPL can be used to ease the handling of such aspects. For
example, subroutines can be used to define a reusable piece of code that can
be called repeatedly without repeating the details of its implementation. A
software library is a collection of abstractions such as subroutines, typically
for some domain, that can be imported and reused across software projects.
For example, a software library could provide abstractions for processing
images. Similarly, frameworks implemented in a GPL can be used to implement
a particular type of application. For example, a framework for developing
web applications provides infrastructure for, e.g., a server-client architecture,
handling browser requests, and validating user input through web forms. The
most important difference between GPLs and DSLs is that DSLs are more
tailored to a specific domain, rather than being general, and that DSLs are
at a higher level of abstraction. The higher level of abstraction and domain-
specificity of a DSL enables its users to benefit from the earlier discussed
advantages but also limits the scope in which it can be applied. DSLs and
GPLs also differ in terms of user experience. First, the previously discussed
abstractions within GPLs (subroutines, libraries, and frameworks) require
an understanding of and experience with programming. Typically, a DSL
also contains abstractions, but, in contrast to GPLs, it has limited support
for adding new abstractions. Although adding new abstractions is powerful,
it is hard to understand for non-programmers [14], and thus restricting the
possibilities for creating new abstractions within DSLs can likely make them
more accessible. Second, using a GPL comes with its usage environment
tailored to programmers, which is typically not accessible to non-programmers.
A DSL allows for introducing a usage environment that is tailored to the
specific domain, which can make them more accessible to non-programmers.

Model-driven software engineering (MDSE). Models are used in many engineer-
ing disciplines. For example, mechanical engineers use three-dimensional
models of bikes. Such models are abstractions of reality made with a given
purpose in mind [3] such as design or production. MDSE [15] refers to the
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method of software engineering that focuses on using models and model-
ing as opposed to programs and programming [3]. However, modeling and
programming can be closely related [16], and models can also be captured
using code. Based on such models, software gets automatically generated. In
MDSE, the models capture properties that are relevant to the realization of
software. There are several ways of giving shape to MDSE, e.g., by configuring
the parameters of a fixed model, modeling using a general-purpose modeling
language, drawing a model in a visual DSL, or writing models in a textual DSL.
Textual DSLs are a linguistic viewpoint on MDSE and thus one of the design
patterns for implementing MDSE. Although many interpretations of MDSE
and its variants exist, MDSE and DSLs both are often used for the accurate
capturing of information on a higher level of abstraction, that hides complexity
and automates the realization of software. Typically, this is motivated with
the aim of improving the software engineering process, e.g., improving pro-
ductivity or involving (non-programmer) domain experts. Canon Production
Printing uses MDSE with DSLs in various engineering disciplines for their
development of digital printing systems [17].

Low-code/no-code (LCNC). Low-code/no-code is a software engineering method
that can be used to create software requiring little to no code [18], relying on
MDSE [3]. It focuses on improving software engineering productivity and
enabling non-programmers to contribute to software engineering. Typically,
LCNC involves visual abstractions offered through graphical user interfaces,
which allows non-programmers to develop software. In contrast to DSLs,
we could see LCNC as a user interface configuration viewpoint on MDSE; it
provides a visual user interface in which (a model of) an application can be
configured. LCNC solutions are typically tailored to realizing a particular type
of applications such as web applications, thereby addressing technical concerns
similar to horizontal DSLs. Compared to vertical DSLs, LCNC solutions are
more general and can thus lack the advantages that vertical DSLs bring due to
their domain-specificity. Similar to DSLs, LCNC can involve (non-technical)
business experts to speed up the software engineering process. LCNC can be
more cost-effective compared to DLSs as it does not require the investment of
creating a DSL.

1.1.5 DSLs in Industry

Although DSLs have the potential to solve relevant problems, they come with
significant development and maintenance costs. When using DSLs in practice,
the question is whether their use will lead to a positive return on investment.
Van Deursen and Klinkt state that a successful application of DSLs in industry
should strike a proper balance between the benefits and risks [1]. Mernik et
al. state that deciding whether to adopt a DSL should be substantiated by
concerns such as improving software economics (the benefits should outweigh
the costs) and enabling software engineering by domain experts with little or
no software engineering experience [5].

Voelter gives three considerations for determining whether it is suitable to
use a DSL [19], although it remains unclear how to evaluate for these criteria:
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(1) the DSL should address a suitable domain that features richness and variety,
involve software that requires boilerplate or derived artifacts, or a need for
platform independence; (2) the organization adopting the DSL should have
a suitable business model that has a sufficient outlook for the DSL to return
on its investment, that could benefit from improved software engineering
effectivity, or that targets a focused domain; and (3) the organization adopting
the DSL should have enough technical maturity to manage the development
cycle of a DSL and it should have a willingness and ability to change.

1.2 Language Workbenches

A language workbench is “an environment designed to help people create
new DSLs, together with high-quality tooling required to use those DSLs effec-
tively” [2]. They prevent “reinventing the wheel” while developing DSLs and
their accompanying environments (IDEs), and thereby promise to reduce the
cost of introducing and maintaining DSLs. Examples of language workbenches
are Spoofax [20], MPS [21], Xtext [22], Rascal [23], MontiCore [24], Gemoc [25],
and Neverlang [26]. Language workbenches vary, e.g., in supported notations
(textual, graphical, or projectional) and types of maintainers (academic or
industrial). An overview and comparison of language workbenches is given
by Erdweg et al. [27, 8].

Developing a DSL for a particular domain involves coping with the complex-
ity inherent to that domain. The “ideal” language workbench should enable
language engineers to focus as much as possible on that inherent domain com-
plexity and on finding a proper language design and a design for the usage
environment. On the other hand, a language engineer should focus as little as
possible on practical aspects such as implementing the usage environment and
deployment. Language workbenches that fulfill this ideal could stimulate DSL
adoption by amplifying a DSL’s advantages and reducing its disadvantages.
This stems from the hypothesis that if we can reduce the cost of developing a
DSL, it can also improve their opportunity for a positive return on investment.
Also, deploying a DSL with a user-friendly environment makes a DSL more
accessible to its intended users.

Although many language workbenches promise to support the development
of DSLs close to the ideal, and there is ample literature on the underlying
theory of language workbenches (e.g., [8, 28]), little is documented about
the actual added value of language workbenches in practice or about their
perceived usefulness [29]. In addition to the supposed advantages of language
workbenches, they also come with disadvantages. For example, using a
language workbench introduces a dependency on an external tool, possibly
with vendor lock-in [12]. Also, adopting a language workbench comes with a
steep learning curve [30] and thus education costs.

Voelter et al. reported on an extensive case study using the MPS language
workbench under non-trivial industrial requirements [6]. Although they found
meaningful lessons learned for the particular case and language workbench,
the authors call for more studies on language workbench evaluation to expand
our knowledge of the usefulness of language workbenches in general. This is
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important as it will help industrial language engineers and companies decide
when and how to use language workbenches for DSL development.

The questions raised above motivated us to investigate the introduction of
DSLs in an industrial context using a state-of-the-art language workbench. In
particular, we do so with the Spoofax language workbench4.

Spoofax is an open-source language workbench for which it was promised
to support the development of textual DSLs by offering meta-DSLs (DSLs
for developing DSLs) for concise, declarative specifications of languages and
usage environments [31]. The idea of declarative language specification is that
language developers can think as much as possible about the high-level features
of their languages rather than focusing on the low-level implementation of, e.g.,
parsing or type-checking algorithms. Based on language aspect specifications in
the meta-DSLs, Spoofax automatically generates a usage environment. Further
technical details of Spoofax will be discussed in Section 4.2.

Spoofax originates from decades of research [32] and many of its underlying
components and theory have been evaluated. Typically, these evaluations
involve small or artificial cases. An exception to this is Visser’s case study on
the development of WebDSL [33], which discusses language design and imple-
mentation for a DSL in the domain of web programming. The development of
WebDSL has been continued by Groenewegen, including application and vali-
dation of WebDSL by creating and deploying real-world web applications [34].
However, this work does not evaluate Spoofax itself, let alone evaluate it in
an industrial context. We hypothesize that if the industrial evaluation of our
research increases confidence that Spoofax will bring significant improvements
in practice, that could positively impact its adoption opportunities. If we learn
that improvements to Spoofax are still needed, then that would be valuable
lessons for the language engineering community.

1.3 DSLs at Canon Production Printing

Our research has been conducted at Canon Production Printing, a large digital
printing systems manufacturing company. Manufacturing digital printing sys-
tems involves the cooperation between several engineering disciplines: physics,
chemistry, electrical-, mechanical-, and software engineering. The interplay
between these disciplines and the strict quality and performance requirements
imposed on the printers make their development complex. To tackle com-
plexity, many of these engineering disciplines use models. The company’s
software research and development department has a long history of applying
model-driven software engineering (MDSE). More recently, the company also
uses language workbenches to develop DSLs for coping with, e.g., variability,
encoding mechanical properties, and hardware-software interfaces [17].

While early results are promising, the company struggles to scale the adop-
tion of the technology. Training engineers to become language engineers is
hard. The language engineers that develop DSLs feel like having to “reinvent
the wheel” for particular language engineering tasks like code generation

4https://spoofax.dev
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because best practices and clear DSL design patterns are lacking. It is unclear
to what extent tool characteristics influence the success of introducing DSLs.
To use DSLs for critical parts of printers that directly impact the quality of the
systems, a high level of confidence in the language engineering techniques and
tools is needed. Despite the widely recognized potential of DSLs and language
workbenches, the above problems still make investing in DSL technology in
industry risky.

Most of the language engineering activities at Canon Production Printing
have been conducted with the MPS language workbench. In an overview of
some of the applications of MPS at Canon Production Printing, Schindler et al.
conclude “Moving to a model-based way-of-working is mostly a no-brainer
at Canon Production Printing. However, choosing MPS as core technology to
bridge domain-specific interpretation gaps certainly is not.” [17], which is due
to several challenges experienced with MPS. By using Spoofax as the language
workbench in our research, we create the opportunity to evaluate a different
tool within the same context. Spoofax mostly differs from MPS in the sense
that it uses textual notation rather than projectional notation and that it is
developed by an academic party rather than a commercial one.

The environment at Canon Production Printing provides a unique opportu-
nity to study DSLs developed with Spoofax. By applying the model-driven
approach in many projects, Canon Production Printing obtained extensive
domain knowledge for complex domains like modeling behavior, performance,
and physical aspects of printing systems. The domain analysis outcomes of
these projects are valuable assets for experimenting with DSL development.
Additionally, the environment has the potential for a big impact by DSL so-
lutions. An example of where a DSL solution could have a big impact is the
integration of printers with finishing devices such as booklet makers. The
integration of such finishing devices, some of which are produced by external
companies, with Canon Production Printing’s printers has a significant soft-
ware component and it is currently an expensive process. Therefore, there are
interesting opportunities to experiment with the usage of DSLs as a means
to integrate externally produced devices with the software from Canon Pro-
duction Printing, potentially even with external companies as users of such
DSLs.

1.4 Research Objective

The underlying goal of this research is to improve our understanding of how
DSLs developed with language workbenches can impact industrial software
engineering. This leads to our main research question:

RQ-Main: How do DSLs developed with a state-of-the-art language workbench
impact industrial software engineering?

Rather than taking a broad perspective, we investigate a specific language
workbench (Spoofax) within a specific industrial context (Canon Production
Printing). We aim to investigate this particular combination deeply, ultimately
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Figure 1.2: Our instantiation of Hevner et al.’s design science framework [35].

contributing to our general understanding of DSLs developed with language
workbenches. We do so by conducting two case studies of DSL development,
as further described in Section 1.5 and 1.6.

For our first case study (CSX), we investigate the following research question:

RQ-CSX: How does a DSL with a constraint-solving backend impact the devel-
opment of control software for digital printing systems with respect to domain
coverage, accuracy, and performance?

For our second case study (OIL), we investigate the following research
question:

RQ-OIL: How does the productivity of implementing an industrial language in
Spoofax compare to the productivity when using a GPL and available libraries?

1.5 Research Method

Our overarching research method is based on Hevner’s design science frame-
work [35]. Figure 1.2 depicts our instantiation of this framework. It incorporates
behavioral aspects, relevant for doing research in an industrial environment.
The proposed research builds on existing foundations and methodologies for
developing DSLs. In addition, it takes the business needs that arise from the
environment into account. Given both sources, we performed several iterations
of case studies of developing and evaluating DSL artifacts. The artifacts are
applied at Canon Production Printing and thus have to contribute to the indus-
trial environment. The outcomes of these case studies contribute back to the
knowledge base. We further discuss the three components of our instantiation
of the framework below.

Environment. Canon Production Printing is characterized by the development
of high-end products. This is part of the company’s strategy and implies the
need for the development of advanced software. There are multiple categories
of potential DSL users: Canon Production Printing’s employees, external
companies producing devices that interface with Canon Production Printing

Chapter 1. Introduction 13
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printers, and clients that configure their systems. Last, an important part of
the environment is the software for existing products and existing solutions
that are used. These aspects define the problem space in which we perform
our research.

Knowledge Base. We build on a knowledge base consisting of foundations
and methodologies relevant to our work. In particular, we apply existing
language engineering techniques and tools. In addition, we experiment with
combinations of technologies. For example, a DSL with constraint solving
as a backend enables declarative notations and fuses DSL technology with
constraint programming.

Research. Our research concerns the development and evaluation of DSL
implementations at Canon Production Printing. We use the Spoofax language
workbench [20, 31] for the development of the DSLs. This limits the scope of
the tooling perspective and allows us to focus on the evaluation of a particular
type of language workbench. For Spoofax, important characteristics are that
the notation is textual and the maintaining party is a research group.

We select projects based on the following criteria:

1. Existing Domain Analysis and Implementation The projects have extensive
domain analysis available and have an existing implementation using GPLs.

2. No Use of Language Workbench The projects do not already use a DSL, or
if they do use a DSL, it is not developed using a language workbench.

3. Complexity The projects should involve complexity which makes the en-
gineers working on it struggle with advancing their solutions using the
existing approach.

1.6 Case Studies & Contributions

We now summarize the core contributions of this dissertation which are
centered around two case studies of DSL creation that we have conducted at
Canon Production Printing. For each case study, we will describe the domain
and corresponding software engineering problem it concerns, indicate how the
case conforms to our selection criteria, and why using a DSL developed with a
language workbench is relevant. Furthermore, we list the contributions that
we make in each case study.

1.6.1 CSX: Configuration Space eXploration

The CSX case study concerns the development of a DSL for the domain of
configuration space exploration of printing systems. Configuration space
exploration is the process of finding a valid configuration that specifies the
complete manufacturing process (the input materials, the device parameters,
and the end product). Canon Production Printing develops flexible printing
systems that are highly complex systems that consist of printers, that print
individual sheets of paper, and finishing equipment, that processes sheets after
printing, for example, assembling a book. Integrating finishing equipment
with printers involves the development of control software that configures the
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devices, taking hardware constraints into account. This control software is
highly complex to realize due to (1) the intertwined nature of printing and
finishing, (2) the large variety of print products and production options for
a given product, and (3) the large range of finishers produced by different
vendors.

The CSX case conforms to our selection criteria because: (1) there is an
existing implementation of control software using traditional technologies that
captures decades of domain analysis, (2) no external DSL has been developed
for developing such control software, and (3) due to the complexity of control
software, engineers struggle to develop correct and complete control software.

In the CSX project, we develop a domain-specific language that offers an
interface to constraint solving specific to the printing domain. We use it to
model printing and finishing devices and to automatically derive constraint
solver-based environments for automatic configuration. In addition to realizing
configuration space exploration that is automatic and complete, it also supports
finding optimal configurations. For example, this can be used to configure
booklet makers in a way that maximizes printing productivity or minimizes
paper waste. CSX could be seen as both a horizontal and a vertical DSL. CSX is
a horizontal DSL in the sense that it is an abstraction over the technical domain
of constraint solving. CSX is a vertical DSL as it covers the business domain of
the configuration spaces of printing devices.

Using CSX is motivated in the following ways. First, CSX realizes configura-
tion space exploration that is automatic and complete (i.e., covers all possible
configurations), whereas the existing situation involved the implementation of
device-specific heuristics that were not necessarily complete. Although con-
straint solving is a natural fit for developing control software that is automatic,
modeling a printing system – including all the details of the mechanics – in a
generic constraint modeling language is tedious. Using a DSL makes it accessi-
ble to use constraint solving in the backend, and to support finding optimal
configurations. Second, CSX can help cope with the large variety of printing
systems; the DSL can be used to model the unique characteristics of devices
while the DSL itself captures the commonalities. We evaluate the impact of
CSX concerning these two motivations. Furthermore, using CSX is motivated
in ways for which evaluation is outside the context of this dissertation. Using
CSX could enable mechanical engineers to contribute to the modeling process
and thereby reduce the communication overhead between mechanical- and
software engineers. Also, the use of a DSL could improve software engineering
productivity by reducing the turnaround time required for developing control
software.

Contributions. Related to the CSX case study (see Chapter 2 and Chapter 3),
we make the following contributions, labeled by our previously introduced
categories of contributions:

• DSL Creation: CSX 1.0, a declarative language for the specification of
finishers at the conceptual level of the domain, including:

– a declarative semantics of CSX 1.0,
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– a denotational semantics of CSX 1.0 in terms of SMT constraints, and

– a programming environment for CSX 1.0 that integrates SMT solving as a
backend.

• Industrial Evaluation: An evaluation of CSX 1.0 based on two printing
system cases from Canon Production Printing (a perfect binder and a booklet
maker).

• DSL Creation: CSX 2.0, an extension of CSX 1.0, which extends the lan-
guage’s coverage of the printing domain by adding support for generic lists,
geometrical constructs, and functional-style operators.

• Industrial Evaluation: An evaluation of the domain coverage, accuracy,
performance, and relevance of CSX 2.0 in the context of Canon Production
Printing.

• Lessons Learned: Lessons learned on using a constraint-based DSL in an
industrial context.

1.6.2 OIL: Open Interaction Language

The OIL case study concerns the re-implementation of an existing DSL using
Spoofax. OIL is a DSL for modeling control software based on state machines,
developed internally at Canon Production Printing as no existing solution was
found suitable [17]. OIL is a horizontal DSL, as it covers the technical domain
of control software, not a business domain. In contrast to the CSX project that
compares a new approach using a DSL with the existing approach without a
DSL, the OIL project compares two implementations of the same DSL. For OIL
a custom design and implementation of the language itself using XML syntax
and Python already existed. Although the custom implementation of OIL led
to a working solution, its development involved reinventing the wheel and the
solution lacks features typically provided by language workbenches such as
editor support.

The OIL case conforms to our selection criteria because: (1) there is an
existing custom implementation of the OIL language using XML and Python
and existing components have been replaced by implementations using OIL,
(2) the existing implementation of OIL does not use a language workbench, and
(3) OIL and the domain it covers are sufficiently complex that this complexity
hinders further development.

By re-implementing OIL in Spoofax, we obtain two implementations of
the same DSL: one with custom technologies and one using Spoofax. This
enables us to make a fair comparison and get an indication of the effect of
using a language workbench. In particular, we evaluate the productivity of
using Spoofax compared to not using a language workbench. This is relevant
for two main reasons. On the one hand, there is opportunity: there exist
DSL implementations in industry that have not been developed with the
potential benefit of language workbenches. On the other hand, there are still
unknowns: language workbenches spawned from academic environments can
have different views on software engineering effectiveness compared to a pure
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industrial setting.

Contributions. Related to the OIL case study (see Chapter 4), we make the
following contributions:

• DSL Creation: An implementation of the OIL language in the Spoofax
language workbench.

• Industrial Evaluation: An evaluation of whether Spoofax’s original claims
— on making language development, compared to not using a language
workbench, more productive — stand when realizing the implementation of
a complex industrial language such as OIL.

• Lessons Learned: Strengths, weaknesses, and an agenda for future engi-
neering on Spoofax.

1.7 Structure & Origin of Chapters

We now discuss the rest of the structure of this dissertation. The main chapters
of this dissertation are based on three peer-reviewed accepted papers and one
pending publication. The author of this dissertation is the main contributor
and first author of three publications [36, 37, 38], and is shared first author
(with equal contributions) with Olav Bunte for the publication on OIL [39].

Since the chapters covering CSX are based on standalone publications with
distinct contributions, there is some redundancy in these chapters. However,
we chose not to remove that redundancy, to ensure that each chapter can be
read independently. The main chapters and their corresponding publication
are as follows:

• Chapter 2 (CSX 1.0) is an extended version of the paper Configuration Space
Exploration for Digital Printing Systems [37] from 2021, published in the pro-
ceedings of the Software Engineering and Formal Methods (SEFM) conference.
Part of the work in this chapter is recorded in the European patent EP3855304
A15, published on 28 July 2021.

• Chapter 3 (CSX 2.0) corresponds to the paper Taming Complexity of Industrial
Printing Systems Using a Constraint-Based DSL — An Industrial Experience
Report [38] from 2023, published in the Software: Practice and Experience (SPE)
journal.

• Chapter 4 (OIL) corresponds to the paper OIL: an Industrial Case Study in
Language Engineering with Spoofax [39], published in the journal on Software
and Systems Modeling (SoSyM). This chapter incorporates the paper Migrating
Custom DSL Implementations to a Language Workbench (Tool Demo) [36] from
2018, published in the proceedings of the Software Language Engineering (SLE)
conference.

Finally, in Chapter 5, we conclude by summarizing our results and we
provide directions for future work.

5https://worldwide.espacenet.com/patent/search?q=pn%3DEP3855304A1
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2
CSX 1.0: Configuration Space Exploration for
Digital Printing Systems

Abstract

Within the printing industry, much of the variety in printed applications comes
from the variety in finishing. Finishing comprises the processing of sheets
of paper after being printed, e.g., to form books. The configuration spaces
of finishers, i.e., all possible configurations given the available features and
hardware capabilities, are large. Current control software minimally assists
operators in finding useful configurations. Using a classical modeling and
integration approach to support a variety of configuration spaces is suboptimal
with respect to operatability, development time, and maintenance burden.

In this chapter, we explore the use of a modeling language for finishers
to realize optimizing decision-making over configuration parameters in a
systematic way and to reduce development time by generating control software
from models.

We present CSX, a domain-specific language for high-level declarative speci-
fication of finishers that supports specification of the configuration parameters
and the automated exploration of the configuration space of finishers. The
language serves as an interface to constraint solving, i.e., we use low-level
SMT constraint solving to find configurations for high-level specifications. We
present a denotational semantics that expresses a translation of CSX spec-
ifications to SMT constraints. We describe the implementation of the CSX
compiler and the CSX programming environment (IDE), which supports well-
formedness checking, inhabitance checking, and interactive configuration space
exploration. We evaluate CSX by modeling two realistic finishers. Benchmarks
show that CSX has practical performance (<1s) for several scenarios of configu-
ration space exploration.

Based on: Jasper Denkers, Marvin Brunner, Louis van Gool, and Eelco Visser. “Con-
figuration Space Exploration for Digital Printing Systems”. In: Software Engineering
and Formal Methods - 19th International Conference, SEFM 2021, Virtual Event, December
6-10, 2021, Proceedings. Vol. 13085. Lecture Notes in Computer Science. Springer, 2021,
pp. 423–442. doi: 10.1007/978-3-030-92124-8_24.
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2.1 Introduction

Digital printing systems are flexible manufacturing systems, i.e., manufacturing
systems that are capable of adjusting their abilities to manufacture different
types and quantities of products, without expensive hardware changes. The
variety in printing applications stems from both printing (printing on sheets
of paper) and finishing (processing collections of printed sheets, e.g., to form
a book). The configuration space for a digital printing system consists of all
possible configurations given the system’s features and hardware constraints.
For producing a booklet of a particular size, a printed stack of sheets can be
stitched, it can be folded, and it can be trimmed. Optionally, the sheets can
be rotated in an intermediate production step such that a single trimming
component can be used for trimming in multiple dimensions. The decisions
made for these manufacturing parameters influence important factors such as
productivity (production time increases when sheets are rotated) or efficiency
(paper is wasted when input sheets are trimmed).

Ideally, control software assists operators in exploring the configuration
space. For example, given some available paper and the intent to produce
a booklet, the software should automatically derive a viable manufacturing
configuration. Such a configuration, e.g., comprises the orientation of the input
sheets, the number of stitches, and the amount of side and face trimming
needed to get the desired end result. In addition, an optimization objective can
be relevant while finding a configuration, e.g., minimizing paper waste. The
control software and user interfaces of state-of-the-art digital printing systems
do not support such automated configuration space exploration. Instead, oper-
ators have to provide configurations for finishers manually. A configuration
can be simulated; by “executing” the finishing process in software, finishing vi-
ability can be checked without wasting resources. Still, it remains a cognitively
intensive task for operators to find a valid or optimal configuration.

Finishers are produced by many vendors and integrating them with printers
is non-trivial. Such integration involves connecting the control software of the
printer and finishers and driving embedded software components. Using a
classical modeling and integration approach to support the variety of finishing
is suboptimal with respect to development time and maintenance burden.
Issues with such a classical approach are the long code-build-test cycle and the
large number of finisher vendors and models that must be supported for many
years. The translation of the mechanical specifications into control software
code gives rise to additional complexity.

Our objective is to obtain an effective, efficient, and scalable method for
modeling finishers and obtaining control software for finishers that supports
automated configuration space exploration. In this work, we investigate how
linguistic abstraction can help to model the configuration space of digital
printing systems, and how we can automatically derive environments for
configuration space exploration from such specifications.

The global characteristics of finishers make the use of constraint (SMT)
solving a natural fit for realizing environments for configuration space explo-
ration. For example, trimming the paper along a certain dimension might
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impose a specific orientation or transformation in an earlier production step.
A constraint-based approach considers its specifications as global and will
take into account interdependent system-level constraints when finding solu-
tions, i.e., configurations. A constraint-based model of a finisher contains a
representation of the input materials at intermediate locations in the system.
However, for modeling domain objects such as sheets and stacks, abstraction
mechanisms such as classes are not naturally available in SMT modeling. An
SMT model of a finisher requires low-level encoding of the properties of the
materials at all locations. Therefore, expressing finishers in SMT by hand is
tedious, error-prone, and not in terms of domain concepts. Additionally, an
SMT model of a finisher is complex to understand and difficult to maintain.

In this chapter, we present CSX, a domain-specific language for the high-level
declarative specification of finishers. The language supports the specification
of input materials, configuration parameters, output products, and finishing
constraints in terms of domain concepts. The CSX IDE supports the devel-
opment and checking of specifications and the automated derivation of an
environment for configuration space exploration by operators of the finishers.

CSX provides a domain-specific interface to SMT solving by abstracting and
structuring over low-level properties. We translate specifications to the SMT
domain and use existing solvers to find solutions at the level of properties and
finishing parameters. A solution in the SMT domain corresponds to a valid
configuration. Unsatisfiability at the SMT level indicates an empty configura-
tion space, i.e., no finishing possibilities. By mapping SMT solutions back to
the specification level, we can interpret CSX specifications in multiple modes:
checking whether a configuration is valid, finding an (optimal) configuration,
and validating specifications. By caching invocations of the solver in the IDE,
response times are improved which leads to an interactive editing experience.

The approach of specifying a finisher with CSX and deriving control soft-
ware has similarities with the approach of simulation in control software. Both
approaches take representations of the products being produced at intermedi-
ate locations in the devices. However, while simulation involves an operational
and sequential application of transformations on objects, a constraint-based
approach considers the devices globally. CSX improves over simulation in the
sense that it derives environments that can search for (optimal) configurations
in an automated way, taking system-global interdependencies into account.

We evaluated the design and implementation of CSX by modeling two
finishers: a perfect binder and a booklet maker. In the process of modeling
these devices, we have experimented with various encodings. For both cases,
we benchmark the configuration space exploration performance for several
scenarios.

Contributions. To summarize, the contributions of this chapter are the follow-
ing:

• We have developed CSX, a declarative language for the specification of fin-
ishers at the conceptual level of the domain. We interpret CSX specifications
for several modes of configuration space exploration: checking whether
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configurations are valid, finding optimal configurations under objectives,
and interactively validating specifications.

• We define a denotational semantics of CSX in terms of SMT constraints that
serves as an interface to solvers that can be used to find models in order to
check inhabitance of a specification and to explore the configuration space
of the specified finisher.

• We realize a programming environment for CSX that integrates an SMT
solver as back-end and that presents solutions in terms of the specification.

• We evaluate CSX by specifying two types of finishers: a perfect binder and
a booklet maker. For these cases, we benchmark the performance for a
configuration space exploration scenario with and without optimization.

2.2 Finishers in the Digital Printing Domain

In this section, we discuss the domain of digital printing systems with finishers.
Complete printing systems for, e.g., producing books include, in addition to
printing itself, finishing capabilities. Finishing comprises the processing of
printed sheets of paper into end products. For example, a stack of printed
sheets could be stapled, folded, and trimmed to result into a booklet; stapling,
folding, and trimming are finishing operations. Finishing devices need to be
integrated with the printing system for realizing an integrated end-to-end
experience for the print system end-users (i.e., operators in print shops).

The turnaround time of integrating finishers with printers is high because of
multiple challenging aspects. First, finishers are often produced by external
vendors and communication is mostly documentation-based and thus requires
interpretation, reviews, implementation, and testing. Second, obtaining good
system behavior requires mechanical, electrical, and software interfaces to be
matched well between the printer and finisher. Third, total aspects such as
reliability are the result of all the mentioned interfaces being well designed.
Considerable testing time is needed to confirm reliability.

Creating control software that is user-friendly for operators is difficult and
requires a lot of manual programming. This is because of the high variability
and many configuration parameters in print and finishing systems. A typical
print and finishing system has more than 200 accessible parameters for the
operator, that are also interdependent. Because the whole production process is
a sequence of production steps, choices that you have to make in the beginning
influence the steps later on. From the product line perspective, the control
software supports tens of different finisher types, and each of them can have
more than 100 commercial variations. For all variations, the parameters that
are accessible for operators can vary.

Ideally, operators can use the combination of a printer with finishers as
an end-to-end solution instead of having to configure each device separately.
Additionally, optimization capabilities are also useful when considering the
system as a whole. For example, an operator would like to produce booklets
with the available resources while minimizing paper waste or optimizing
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Jogging

bookblock stack

Glueing

Milling cover sheet

Creasing

Covering

perfectly bound book

configurable

not configurable

Figure 2.1: Schematic view of the per-
fect binding book-producing process.
Only milling, creasing, and covering
are configurable and therefore impact
the configuration space. Jogging and
gluing are automatically configured
by the device itself.

courtesy creases
spine creases

book block cover

Figure 2.2: A perfectly bound book
viewed from the top. Spine creases re-
sult into a sharper fold, reduce wrin-
kles, and improve the fit of the cover
around the book block. Courtesy
creases ease opening the front and
back part of the cover. Glue in the
spine holds the book block sheets and
cover together.

productivity. If the different configuration possibilities impose a tradeoff
between, e.g., resource consumption and productivity, an operator should be
able to make a motivated choice with ease, i.e., without thinking about and
manually trying out many combinations of configuration parameters.

2.2.1 Perfect Binding

As an example, we discuss a perfect binder: a finisher that produces books by
binding a stack of sheets with glue and by covering the book block in a cover
sheet. A perfect binder typically has two inputs: one for the stack of sheets that
form the book block and one for the cover sheets. Figure 2.1 shows the perfect
binding process. Figure 2.2 depicts the components of a perfectly bound book,
viewed from above.

After collecting a stack of sheets, jogging makes sure the stack of sheets
becomes aligned in a corner of the spine. Then, a clamp grasps the book
block under pressure. Next, a few millimeters of paper are milled along the
spine edge to prepare the spine for the application of glue. Milling makes the
paper along the spine rough, improving adherence of the glue. Then, the spine
travels through a bath of heated glue.

Separately, cover sheets are prepared before being bound around the book
block. The preparation consists of creasing, i.e., applying pressure on the paper
to ease folding of the paper later. Two creases are applied at the location of
the cover that end up along the edges of the spine of the book. These creases
improve the fit of the cover along the spine of the book block, supporting a
tight fold around the spine. Additionally, two courtesy creases are applied on
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Figure 2.3: Components of a perfectly bound book (cover and book block) and
the dimensions as how we use them in the CSX specification.

the cover. Courtesy creases are applied on the front and back of the resulting
book to support the folding of the cover sheet. Note that courtesy creases are
applied at the opposite side as the spine creases, as they are used for folds in
opposite directions.

After preparing the book block and cover, the covering occurs. The book
block with glue is positioned in the center of the cover sheet. The cover sheet
is folded around the book block and fixed with a clamp. After a delay for the
glue to solidify, the book is released. In practice, the resulting book could be
processed further in a cutting machine to trim along the edges of the book and
cover to result into a nice book.

Perfect binders are flexible in the books they can produce, e.g., in terms
of sheet size or book thickness. Not all flexible manufacturing steps have an
impact on the configuration space. For example, jogging and gluing occur
automatically and are configured by the device itself based on measurements.
Other settings such as the milling depth and positioning of the book block
on the cover are of interest to the operator and therefore do impact the con-
figuration space; e.g., more milling might increase the overall production
time.

2.3 CSX

The key idea of CSX is that we model objects such as sheets and stacks and
that we specify symbolic values, i.e., instances, for these objects at several
intermediate steps in the finishing process. By adding constraints and indicat-
ing configuration parameters, a specification defines the configuration space
of a device. In CSX we also describe jobs, i.e., (partial) descriptions of the
production process in terms of the production objects and parameters. We
achieve configuration space exploration by synthesizing configurations from a
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1 type Sheet {
2 width: int, [width > 0],
3 height: int, [height > 0]
4 }
5 type Stack {
6 width: int, [width > 0],
7 height: int, [height > 0],
8 thickness: int, [thickness > 0],
9 volume =

10 width ∗ height ∗ thickness
11 }
12 type PerfectBoundBook {
13 book: Stack,
14 frontCover: Sheet,
15 backCover: Sheet
16 }

1 type CreasedSheet {
2 sheet: Sheet,
3 spineFront: Crease,
4 spineBack: Crease,
5 courtesyFront: Crease,
6 courtesyBack: Crease
7 }
8
9 type Crease {

10 // Offset:
11 off: int,
12 [off ≥ 0],
13 // Direction: 0 = down, 1 = up
14 dir: int,
15 [dir == 0 or dir == 1]
16 }

Figure 2.4: The specification of types for the example perfect binder in CSX.
Dimensions are in 0.1mm.

configuration space for a given job.
CSX is declarative: a specification in the language describes the behavior

and configuration spaces of finishers. A CSX specification does not describe
algorithms to compute configurations. Specifications include relations between
objects at locations in the systems. We use the language to model devices
as sequences of components that perform actions. Components instantiate
generic, reusable actions. Actions establish a relationship between snapshots of
objects in the finishers and thus, transitively, devices define a relation between
all snapshots of the products being produced. Parameters in actions represent
a dimension of configuration that is of interest to operators of the devices.
Constraints restrict instances of types and restrict the behavior of actions and
devices, reducing the configuration space. We will now introduce the language
concepts in more detail based on a specification for an example perfect binder
such as described in Section 2.2.

Defined types are records of properties that model objects at locations in a
device. In Figure 2.4, we define several types for the example perfect binder.
Dimensions (widths, heights, lengths, distances) are modeled with integers
with a precision of 0.1mm, such that an integer value of 10 stands for a length
of 1mm. Types contain defining properties that are of a primitive type (boolean
or integer) or of a defined type such that types can be nested. The nesting
of types may not contain a cycle. Types optionally contain constraints and
derived properties. Constraints restrict the inhabitants of a type. In Figure 2.4,
the constraints (between square brackets), e.g., restrict sheets to have positive
non-zero width and height. Derived properties are shorthands for expressions
over other properties. Defining properties are required to instantiate a type.
Derived properties are not required to instantiate a type and their values can
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1 action ToMill(in: Stack, out: Stack) {
2 parameter millingDepth: int
3 [millingDepth ≥ 0] [out.width == in.width - millingDepth]
4 [out.height == in.height] [out.thickness == in.thickness]
5 }
6 action ToCrease(in: Sheet, out: CreasedSheet) {
7 [out.sheet.width == in.width] [out.sheet.height == in.height]
8 [out.spineFront.dir == 0] [out.spineBack.dir == 0]
9 [out.courtesyFront.dir == 1] [out.courtesyBack.dir == 1]

10 // Ensure a minimum distance between creases
11 parameter minDist: int [minDist > 0] [out.courtesyFront.off ≥ minDist]
12 [out.spineFront.off ≥ out.courtesyFront.off + minDist]
13 [out.spineBack.off ≥ out.spineFront.off + minDist]
14 [out.courtesyBack.off ≥ out.spineBack.off + minDist]
15 [out.courtesyBack.off ≤ in.width - minDist]
16 }
17 action ToCover(cover: CreasedSheet, book: Stack, out: PerfectBoundBook)
18 {
19 parameter d: int [0 ≤ d and d ≤ cover.sheet.height - book.height]
20 [out.book.width == book.width] [out.book.height == book.height]
21 [out.book.thickness == book.thickness]
22 [out.frontCover.width ∗ 2 == cover.sheet.width - book.thickness]
23 [out.frontCover.height == cover.sheet.height]
24 [out.backCover.width ∗ 2 == cover.sheet.width - book.thickness]
25 [out.backCover.height == cover.sheet.height]
26 [cover.spineFront.off ∗ 2 == cover.sheet.width - book.thickness]
27 [cover.spineBack.off ∗ 2 == cover.sheet.width + book.thickness]
28 parameter courtesyCreaseDist: int
29 [cover.courtesyFront.off ∗ 2 ==
30 cover.sheet.width - book.thickness - courtesyCreaseDist ∗ 2]
31 [cover.courtesyBack.off ∗ 2 ==
32 cover.sheet.width + book.thickness + courtesyCreaseDist ∗ 2]
33 }

Figure 2.5: The specification of actions for the example perfect binder in CSX.
See Figure 2.3 for the dimensions used in this specification.

26



653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers
Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024 PDF page: 41PDF page: 41PDF page: 41PDF page: 41

1 device ExamplePerfectBinder {
2 location bookIn : Stack location coverIn : Sheet
3 [1000 ≤ bookIn.height and bookIn.height ≤ 3000]
4 [2000 ≤ bookIn.width and bookIn.width ≤ 5000]
5 component toMill = ToMill(bookIn, milledBook) {
6 [millingDepth ≤ 30] // Max 3mm of milling
7 [bookIn.thickness < 170] // Max 17mm book thickness
8 }
9 location milledBook : Stack

10 component toCrease = ToCrease(coverIn, creasedCover) {
11 [minDist ≥ 50] // At least 5 mm between creases
12 }
13 location creasedCover : CreasedSheet
14 component toCover = ToCover(creasedCover, milledBook, out) {}
15 location out : PerfectBoundBook
16 }

Figure 2.6: The specification of the example perfect binder device in CSX.

be derived from other properties. A derived property expression may refer to
the type’s properties and to other derived properties, but derived properties
may not contain cyclic references. In Figure 2.4, Stack has a derived property
volume which is defined in terms of defining properties.

Actions define a relation between locations. In Figure 2.5, we define several
actions for the example perfect binder. The body of an action definition
contains parameters and constraints that indicate the relations between its
parameters.

Devices are sequences of components connected through locations. Compo-
nents instantiate actions and can restrict or specify behavior further by adding
constraints. Thus, action behavior is defined separately from specific instantia-
tions in components. Therefore, actions are generic and potentially reusable
between different device specifications. Limitations of a particular instance of
an action in a device can be specified by adding constraints to the component.
In Figure 2.6 we define a perfect binder device by instantiating several actions
in components and by connecting them through the locations.

2.3.1 Configurations and Jobs

A configuration for a device is a value assignment to all locations and parame-
ters. A valid configuration is a configuration that conforms to the constraints
of the types of the locations, the actions, the components, and the device itself.
In practice, an operator is only interested in the values for the input and output
locations, and not in the intermediate locations.

A job is an expression of intent for which a configuration needs to be
found. Whereas configurations are a complete specification of locations and
parameters, we could see jobs as a partial configuration. For example, a job
could define the input and the output of the finisher. The remaining parts of
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the configuration, i.e., the finishing parameters, need to be derived in order to
instruct the finisher to realize the intent of the job. Different usage scenarios of
a device lead to different jobs and approaches to configuration.

2.3.2 Exploration and Validation

The CSX language supports configuration space exploration, which includes
leveraging exploration at the specification level for validation. Given the
specification of a device, the language supports describing scenarios for testing
devices by asserting expectations on configuration spaces.

The following test scenario validates that the correct cover dimensions are
chosen for a particular input book block and the desired output perfectly
bound book:

1 scenario device ExamplePerfectBinder
2 config bookIn = Stack(2125,2970,50)
3 config out = PerfectBoundBook(Stack(2100,2970,50), Sheet(2100,2970),

Sheet(2100,2970)) {
4 [coverIn.width == 2100 + 2100 + 50]
5 [coverIn.height == 2970]
6 [toMill.millingDepth == 25]
7 }

The body of the scenario contains expectations (between square brackets)
on its configuration space. In particular, it validates the cover dimensions
that must be chosen. Since the configuration space could contain multiple
configurations, expectations should only validate common properties of the
configuration space and not individual configurations.

Scenarios can optionally specify an objective. Objectives indicate a dimension
for optimization of a property of the system, typically expressed using derived
properties. Potentially relevant objectives are, e.g., maximizing throughput,
minimizing energy consumption, or minimizing resource waste. Alternatively,
scenarios with optimization can characterize the device. For example, based
on the following scenario a scenario can be found for the largest book that the
perfect binder can produce:

1 scenario device ExamplePerfectBinder maximize out.book.volume

2.4 Denotational Semantics

Because of the declarative characteristic of CSX, a translation to SMT constraints
is natural. In this section, we define the denotational semantics of CSX that
expresses a translation of CSX specifications to SMT constraints. Figure 2.7
contains the denotational semantics of CSX with the denotation expressed in
MiniZinc [40, 41] definitions. Because we use MiniZinc in the implementation
of CSX (Section 2.5), we also use it as the syntax for the denotation. The
MiniZinc grammar can be found online1.

1https://www.minizinc.org/doc-2.5.5/en/spec.html?highlight=grammar#
spec-grammar
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[[S′]]S,N,R = M Specification part S′ of S translates to M in namespace N with
location renaming R

N = [x1, x2, . . . , xn] Namespace N consisting of parts x1 to xn
R = {. . . , Li → L′

i , . . . } Renaming of location names Li to L′
i

name([x1, x2, . . . , xn]) = x1_x2_. . . _xn Identifier for namespace [x1, x2, . . . , xn]
Locations L, components C, constraints E, defining properties P, types T, action
parameters PM.

Devices [[device d { L1 . . . Ln, C1 . . . Cm, E1 . . . Eq, . . . }]]S,[],∅ =

n⋃

i=1
[[Li]]S,[],∅ ∪

m⋃

i=1
[[Ci]]S,[],∅ ∪

q⋃

i=1
[[Ei]]S,[],∅ (Device)

Locations type T { P1:T1 . . . Pn:Tn, E1 . . . Em, . . . } ∈ S

[[location L : T]]S,[],∅ =
n⋃

i=1
[[Pi:Ti]]S,[L],∅ ∪

m⋃

i=1
[[Em]]S,[L],∅

(Location)

T ∈ {int, bool}
[[P:T]]S,N,∅ = var T : name(N ++[P]) ;

(DefProp-PrimType)

type T { P1:T1 . . . Pn:Tn, E1 . . . Em, . . . } ∈ S

[[P:T]]S,N,∅ =
n⋃

i=1
[[Pn:Tn]]S,N++[P],∅ ∪

m⋃

i=1
[[Em]]S,N++[P],∅

(DefProp-DefType)

Components action A(L1:TL
1 . . . Ln:TL

n )
{parameter PM1 : TP

1 . . . parameter PMm : TP
m, EA

1 . . . EA
q , . . . } ∈ S

R = {L1 → L′
1, . . . , Ln → L′

r}
[[component C = A ( L′

1 . . . L′
r ) { EC

1 . . . EC
s }]]S,[],∅ =

m⋃

i=1
[[parameter PMm : TP

m]]S,[C],∅ ∪
q⋃

i=1
[[EA

i ]]S,[C],R ∪
s⋃

i=1
[[EC

s ]]S,[C],∅

(Comp)

T ∈ {int, bool}
[[parameter PM:T]]S,N,∅ = var T:name(N++[PM]) ;

(Param)

Constraints & References
[[ [ e ] ]]S,N,R = constraint [[e]]S,N,R; (Constraint)

x is a defining property or parameter
[[x]]S,N,R = name(N++[x])

(DefProp-Ref/Param-Ref)

x is a location x → x′ /∈ R
[[x]]S,N,R = name(N++[x])

(Location-Ref)

x is a location x → x′ ∈ R
[[x]]S,N,R = name(N++[x′])

(ActionLocation-Ref)

x is a derived property with body e
[[x]]S,N,R = [[e]]S,N,R

(DerProp-Ref)

[[e.x]]S,N,R = [[e]]S,N,R + _x (Proj)

Figure 2.7: Denotational semantics of CSX, expressed in MiniZinc. We have
omitted the rules for literals and arithmetic for brevity; they map one-to-one.
++ is namespace concatenation. + is identifier concatenation.
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The intuition behind the translation is that the properties of locations and the
parameters of components are mapped to constraint variables. Additionally,
all CSX-defined constraints translate to corresponding constraints in MiniZinc.
The translation is from the perspective of a device, making use of type and
action definitions of the CSX specification of which the device is part.

The translation starts with the Device rule, generating MiniZinc definitions
for members of the device: locations, components, and device-level constraints.
The translation is defined under the context of a namespace N, starting with
the empty namespace. The naming scheme for constraint variables follows
their corresponding hierarchical position in the CSX specification. Since the
translation is for a single device, we do not have to prefix the namespace with
the device name.

A location translates into variables for its properties and into constraints to
restrict its inhabitants (Location). Locations are always of a user-defined type.
Each property of the type translates to variables. If the property is of primitive
type, the translation is a variable of this primitive type (DefProp-PrimType)).
If the property is of a user-defined type, the translation is the translation of its
nested properties in the namespace of the property (DefProp-DefType).

The Comp rule defines the translation for a component, i.e., an action instan-
tiation. The action’s parameters translate into variables in the namespace of the
component (Param). Both the action and the component can define constraints
(EA

i and EC
i , respectively). These constraints are mapped to corresponding

MiniZinc constraints. Since the action’s constraints are defined on the action’s
location parameters, and the action gets instantiated with specific location ar-
guments, renaming is required. The translation defines R: a mapping from the
location’s parameter names to the component’s location argument names. We
only use the renaming for translating references to locations from constraints
defined in the action definition.

The expressions that are used to define constraints, except references and
projection, map mostly one-to-one to their MiniZinc counterparts. For refer-
ences and projection, we consider several cases. A reference to a property or
parameter (DefProp-Ref/Param-Ref) translates to a name for x in the context.
For example, a reference of x in namespace [a, b] will result in the denotation
into a reference to name a_b_x. For projection (Proj), we recursively translate
the base expressions into a name and concatenate the projected name.

For a location reference, we consider two cases. Location references from
outside actions translate similarly as regular references (Location-Ref). Loca-
tion references within actions refer to location parameters, while the actions
are instantiated with location arguments from a device. Therefore, for such
location references, we replace the location parameter name with the argument
name for which it is instantiated (ActionLocation-Ref).

Types, actions, and devices can have derived properties. These only translate
into constraints if they are referenced, i.e., by replacing the reference with
the body of the derived property and by propagating the namespace and
location renaming (DerProp-Ref). For the definition of derived properties, no
translation takes place. The definitions of derived properties are ignored by
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. . . in the specification.
Solutions found for the MiniZinc denotations are related to valid configura-

tions for CSX specifications, and we can translate such solutions back to CSX
specifications. The correspondence between location properties and component
parameters in CSX and MiniZinc is defined by the naming scheme used in the
denotation, and mapping them back is thus straightforward.

2.5 Implementation

In this section, we describe how we obtain a usable integrated development
environment (IDE) for CSX by integrating an implementation of the language
with configuration space exploration and interactive validation. The IDE con-
tains components for parsing, syntax highlighting, code completion, name
binding and type checking, and interactive reporting of static semantics viola-
tions. The CSX validation constructs are interpreted interactively and invalid
assertions are marked on the specification.

We have implemented the CSX language using Spoofax [20], a language
workbench [8] that provides infrastructure for designing, implementing, and
deploying DSLs by means of declarative specification of language aspects
using meta-DSLs. We define the syntax of CSX in SDF3 [42], a meta-language
for multi-purpose syntax definition. From the CSX syntax definition, SDF3
automatically derives a parser, pretty printer, syntax highlighting, and syntactic
code completion. The parser yields abstract syntax trees (ASTs) on which we
first apply desugaring. Desugaring, e.g., involves propagating the properties of
a scenario to the tests within that scenario. The desugared ASTs are input to the
static analysis and further transformations. We specify desugaring and other
transformations using the Stratego [43] meta-language. Based on the language
specification, Spoofax automatically generates an IDE for the language.

We define the CSX static semantics in NaBL2 [44, 45]. NaBL2 is a meta-
language for specifying static semantics for languages from which name
binding and type checking are automatically derived. Static semantic violations
are reported interactively in the IDE. For CSX, this could be invalid composition
of components in a device or incorrect type checking of constraint expressions.
Interactive reporting of errors assists users of the language during specification
writing.

In addition to the automated derivation of name binding and type check-
ing, we implement analysis for other well-formedness conditions. If well-
formedness checking succeeds, the result is a desugared AST that is annotated
with name binding and typing information. The name binding information is
used to check non-cyclic references of defining properties and derived proper-
ties, i.e., by following references of properties and checking whether those do
not contain cycles.

To realize configuration space exploration, we implement a translation of
CSX specifications to SMT constraints for which we can use existing solving
techniques. In particular, we translate CSX to the MiniZinc constraint modeling
language [40, 41]. MiniZinc is solver-independent, which enables us to use
multiple solvers as a backend for CSX. In particular, we use solvers with the
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theories of linear arithmetic and optimization modulo theories.
We implement the translation from CSX to MiniZinc as an AST-to-AST

transformation using Stratego. In addition to the syntax definition of CSX, we
have also defined the syntax of MiniZinc in Spoofax with SDF32. The syntax
definitions of both languages generate an AST schema on which we define the
Stratego transformation. After transforming a parsed CSX AST to a MiniZinc
AST, the MiniZinc pretty printer generates concrete MiniZinc syntax from the
AST.

The translation uses information from name binding and type analysis. This
is necessary for references and projection expressions. By using name binding
and typing information, the distinction between references to properties, pa-
rameters, locations, and action locations can be made to generate the correct
reference on the MiniZinc level.

We integrate solving of constraint models by calling MiniZinc from Strat-
ego through integration with Java. Stratego provides an API for integrating
transformations with custom Java code. We implement such a custom transfor-
mation and use a Java program to call the MiniZinc command-line interface.
The Java program is called with as input the generated MiniZinc model. The
Java program parses the textual solving result that is returned by MiniZinc
and returns it as a list of variable bindings. In the Stratego code, for the
interpretation of configurations, we evaluate expressions and lookup values
for references by following the same naming schema as in the translation
semantics. After replacing the referenced properties and parameters by their
values on the constraint level, the evaluation of expressions remains regular
expression evaluation. As a result, we have a configuration space exploration
pipeline from interpreting specifications using constraint solving with the
solution mapped back to the specification level as a configuration.

The configuration space exploration pipeline serves two purposes in the IDE:
test evaluation and inhabitance checking. For test evaluation, the configuration
space of the device that is selected in the scenario is translated to MiniZinc
and passed as an input to the pipeline. Additional constraints are added to
reduce the configuration space, e.g., to configure the input or output location
values, or parameters as specified in the scenario. If the scenario contains
an objective, the objective is also mapped to MiniZinc and provided as input
to the pipeline. The configuration that is returned by the pipeline is used
to evaluate test expectations. This evaluation is done by a basic interpreter
that evaluates expressions that should result into true. The expressions can
contain references to parameters and location properties, and based on the
name binding information the references are mapped to the corresponding
value from the configuration. For failed test expectations we report an error
which is marked with red underlining on the original specification using origin
tracking [46].

The evaluation of tests and reporting of results is triggered in the IDE on file
changes, resulting into an interactive experience. Additionally, the experience is
improved by providing information while hovering over references to locations,

2https://github.com/metaborgcube/metaborg-minizinc
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Figure 2.8: An architecture for applying CSX in control software. GPL stands
for general-purpose programming language, such as C# or Java.

properties, and parameters in test expectations. The same interpretation
approach as for test expectations is used to evaluate the expression being
hovered over and the value is presented in a popup, giving the user insight
into the configuration that is found.

Similar to the treatment of scenarios, inhabitance checks are triggered on
file changes. The pipeline is triggered for each type, action, and device using
the translation semantics. For inhabitance checking of a type, we translate
a random instance of that type to SMT. For an action, we instantiate it with
instances for all its parameters. Instead of finding a configuration for it, for
inhabitance checking we only check satisfiability on the constraint level. If the
pipeline concludes unsatisfiability, we report an error on the corresponding
construct to indicate that the construct is not inhabited.

To prevent unnecessary checking of inhabitance and evaluation of tests, we
use simple caching of analysis results with ASTs of the subjects as the caching
key. If a type definition AST has not changed, it does not have to be checked
again for inhabitance. If a scenario has not changed, it does not have to be
evaluated again.

While we have described the realization of a programming environment
for CSX specifications, the eventual goal of CSX is to deploy control soft-
ware to finishers. Figure 2.8 gives an overview of how configuration space
exploration with CSX would with fit in a realistic setting. The configuration
space exploration component would be integrated with a software component,
implemented using a general-purpose language, that provides a UI and that
instructs low-level embedded software components.
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2.6 Evaluation

We evaluate CSX by modeling two realistic cases, a perfect binder and a booklet
maker, and by benchmarking the configuration space exploration for a scenario
with and without optimization. The perfect binder case corresponds to the
example of Section 2.3. In the scenario without optimization, CSX derives
the required input cover given an input book block and a desired output. In
the scenario with optimization, CSX finds a configuraton for the smallest size
book the finisher can produce. The bookletmaker case concerns a finisher
that performs rotating, stitching, folding, and trimming in order to produce
a booklet from a stack of sheets. In the scenario without optimization, CSX
finds the action parameters given an input and output. In the scenario with
optimization, CSX finds a configuration that minimizes paper waste given only
the desired output. Both specifications are based on realistic cases present at
Canon Production Printing.

By writing scenarios in the language, we can interactively validate the
specification within the IDE. Initially loading a specification can take a few
seconds: a specification typically consists of multiple type definitions, action
definitions, a device definition, and several scenarios. For the type, action,
and device definitions, inhabitance checking is triggered, which for each check
leads to an invocation of the SMT solver. Additionally, for each scenario the
solver is invoked. The caching of invocations of the solver decreases response
times after a change, making the IDE usable in an interactive way. For example,
inhabitance for a type will not be re-checked if only a test scenario changes.

We set up a benchmark which makes use of Spoofax core, i.e., the core of
Spoofax which enables integration of language components with Java, such
that we can only execute the relevant part of the pipeline in the benchmark. For
benchmarking, we use the JMH framework3. We executed the benchmarks on a
server with two 32-core processors with a base frequency of 2.3GHz and 256GB
RAM, running Ubuntu 20.04, using OpenJDK version 1.8.0_275-b01. From
experimentation it appeared that the ORTools solver4 had best performance,
and therefore we use this solver in the benchmarks. We use MiniZinc version
2.5.5 and ORTools version 9.0. We measure 10 iterations and average the result.
In the benchmarks, we separately measure the translation time and solving
time. We leave out parsing, name binding and type checking time, as they are
minimal compared to translation and solving time.

Figure 2.9 shows the benchmarking results. For each scenario, solving time
is in the order of 100’s milliseconds. We consider sub-second performance as
practical and therefore conclude that CSX’s performance for the two cases we
consider has practical performance for finding (optimal) configurations.

For specifying these devices in CSX, we have chosen a model of objects
(sheets, stacks) with a certain level of detail. The bookletmaker and perfect
binding cases translated in the SMT level into 32 and 29 variables and 56 and
58 constraints, respectively. Although we achieve useful configuration space

3https://openjdk.java.net/projects/code-tools/jmh/
4https://developers.google.com/optimization
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Figure 2.9: The benchmarking results on a perfect binder and a booklet maker
for a scenario of finding a configuration and for finding an optimal configura-
tion.

exploration for these scenarios, it could be that in practice more detail has
to be added to the model, which could also influence solving performance.
By deploying CSX at Canon Production Printing, we aim to further evaluate
whether CSX is adequate in modeling and integrating the full product line of
finishers available and evaluate its usability for domain experts.

2.7 Related Work

We discuss related work that uses constraint solving in the backend of high-
level specification or domain-specific languages for realizing static analyses,
validation, verification, consistency checking, or synthesis.

Keshishzadeh et al. use SMT solving for the validation of domain-specific
properties to achieve fault detection early in the software development cycle. In
particular, they develop a DSL with industrial application in a case on collision
prevention for medical imaging equipment [47]. The approach includes delta
debugging, i.e., an approach to trace causes of property violations and report
them back to the specification in a systematic way. The work is related to CSX
because it also uses SMT solving in the backend of a domain-specific language.

Voelter et al. use SMT solving with the Z3 solver for advanced error checking
and verification in the KernelF language [48], a reusable functional language
for the development of DSLs. Voelter et al. apply SMT solving successfully
in a DSL on a case study for the domain of payroll calculations [49], i.e.,
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for statically checking completeness and overlap of domain-specific switch-
like expressions. Similarly to CSX, in this work, SMT solving is used in the
backend of a domain-specific language for realizing static analyses. While the
application of SMT was successful in the domain-specific case, the authors
report difficulties in applying SMT solving generically in KernelF. The authors
plan to develop a successor to KernelF that is realized with SMT solving
completely.

Constraint solving in feature models solves a different problem than CSX.
Feature models describe systems as compatible compositions of features or
software components; finding/checking feature compositions occurs “statically”
from which a software artifact can be derived. CSX specifications express the
physical properties of finishers; finding configurations occurs “dynamically”
(at run time) to find instances of the manufacturing process. This goes all the
way down to the “semantic” level, e.g., by using sheet dimensions and the
location of fold edges instead of only an abstract feature that enumerates the
kinds of folds a device can do. Feature modeling is useful in the finishing
context, e.g., to derive which devices are necessary for a production route for
booklets. In CSX, we assume the production route is known.

Relational model finders are related to CSX in the sense that they map high-
level specifications to constraints and map solutions back to the specification
level. Alloy [50] is a specification language that applies finite model finding
to check formal specifications of software. Alloy is backed by KodKod [51], a
relational model finder for problems expressed using first-order logic, relational
algebra, and transitive closures. In contrast to CSX, KodKod does not offer
support for reasoning over data nor for optimization objectives. In CSX, the
nature of specifications is not relational: manufacturing paths are fixed and we
consider snapshots of the product being manufactured at different steps in the
process.

AlleAlle [52] adds support for first-class data attributes and optimization to
relational model finding. Similar to KodKod, Stoel et al. consider AlleAlle as
an intermediate language. AlleAlle and CSX are related in the sense that both
approaches take the data of problems into account and use SMT solving for
model finding. While AlleAlle is an intermediate language generally targeting
relational problems, CSX is a more domain-specific language in which relations
are not a first-class concept. Similar to CSX, for AlleAlle it is unclear yet how
to map reasons for unsatisfiability that are found in the constraint level back
to the specification level.

Rosette [53] is a solver-aided programming language that supports verifi-
cation, debugging, and synthesis. Rosette extends the Racket language with
support for symbolic values that stand for, e.g., an arbitrary integer value.
Such values translate to a constraint variable in the runtime. Rosette realizes
verification and synthesis in the runtime by integrating its symbolic virtual ma-
chine with SMT solvers. Whereas in Rosette selected variables are replaced by
symbolic values, in CSX all variables in the specification translate to constraint
variables. Rosette is a general language tailored to program verification and
synthesis whereas CSX is focused on a particular domain, i.e., manufacturing
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systems, although we have only experimented with CSX in the digital printing
domain.

Muli [54] is a constraint-logic object-oriented language that integrates con-
straint solving with object-oriented programming in the Java programming
language. Muli extends Java’s syntax with the free keyword for indicating
symbolic values that translate to constraint variables in the runtime. Frag-
ments of programs that are considered as search regions are executed non-
deterministically, searching for concrete values for the constraint variables.
The Muli runtime is based on a symbolic Java virtual machine that integrates
constraint solvers. Muli only supports primitive types as constraint variables.
Support for arrays and objects as constraint variables is listed as future work.
CSX does support search on non-primitive types such as user-defined record
types. Similar to how support for arrays is desired for Muli, support for
lists is desired for CSX, but that is future work. Muli differs from CSX in
the sense that Muli preserves the Java syntax and, by doing so, serves as
a general-purpose programming language, whereas CSX introduces a new
domain-specific language. In contrast to Muli, CSX supports optimization.

2.8 Conclusions

We have presented CSX, a language and method for high-level declarative
specification of finishers and their configuration spaces. We have developed
a translation of CSX to SMT constraints which enables us to use constraint
solving to find (optimal) configurations for finishers. We have presented an
implementation of the CSX programming environment, including support for
well-formedness checking, inhabitance checking, and interactive configuration
space exploration. Our benchmarks show that, in two realistic cases, CSX has
practical sub-second performance in finding configurations for scenarios with
and without optimization.

Future work. Our focus has been on finding a domain abstraction for config-
uration space exploration applied in the digital printing domain for finishers.
While we have designed the language in collaboration with control software
engineers, we plan to further evaluate CSX by deploying it at Canon Produc-
tion Printing. By doing so, we can further evaluate the adequacy of CSX in
covering the full product line of finishers. Additionally, we plan to evaluate
the language in terms of usability for control software engineers and in terms
of validatability by mechanical engineers.

To improve the usability of the environments for configuration space explo-
ration for operators, it would be useful to characterize the reduced configura-
tion spaces for given jobs. In particular, when multi-objective optimization is
relevant for objectives such as maximizing throughput and minimizing waste,
it would be useful if CSX could indicate the tradeoff between these objectives.
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2.9 Appendix: Declarative Semantics

Specifications in CSX describe configuration spaces of devices. For a device
specified in CSX, a configuration assigns values to the locations and param-
eters of the device. A valid configuration is a configuration that satisfies all
constraints of the device. We describe the satisfiability relation of CSX by
defining the declarative semantics of CSX in Figure 2.10. The rules follow the
same pattern as the rules of the denotational semantics in Figure 2.7. The
configuration space of a device corresponds to the set of all valid configurations
that satisfy the declarative semantics.

M |=S,R S′ M models specification part S′ of S with location renaming R
M |=S,R S′ ⇒ v M models specification part S′ of S and evaluates to value v

with location renaming R
R = {. . . , Li → L′

i , . . . } Renaming of location names Li to L′
i

D(T) Domain of type T. D(bool) = {
,⊥}, D(int) = Z.
Locations L, components C, constraints E, defining properties P, types T, action
parameters PM.

Devices

M |=S,∅ L1 . . . Ln M |=S,∅ C1 . . . Cm M |=S,∅ E1 . . . Eq

M |=S,∅ device d { L1 . . . Ln, C1 . . . Cm, E1 . . . Eq, . . . }
(Device)

Locations

type T { P1:T1 . . . Pn:Tn, E1 . . . Em, . . . } ∈ S
M.L = v v |=S,∅ P1:T1 . . . Pn:Tn v |=S,∅ E1 . . . Em

M |=S,∅ location L : T
(Location)

T ∈ {int, bool} M.P ∈ D(T)
M |=S,∅ P : T

(DefProp-PrimType)

type T { P1:T1 . . . Pn:Tn, E1 . . . Em, . . . } ∈ S
M.P = v v |=S,∅ P1:T1 . . . Pn:Tn v |=S,∅ E1 . . . Em

M |=S,∅ P : T
(DefProp-DefType)

Figure 2.10: Declarative semantics of CSX (continued on next page). We have
omitted the rules for literals and arithmetic for brevity; they map one-to-one.
We define models M recursively as (M, x = v) in which value v binds to x
and with the empty model ∅ as base case. We define model projection as
(M, x = v).x = v and (M, x = v).y = M.y if x �= y. e ⇒ v indicates that
syntactic expression e evaluates to value v. Values are booleans (
 and ⊥),
integers, and models.
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Components
action A(L1:TL

1 . . . Ln:TL
n )

{parameter PM1 : TP
1 . . . parameter PMm : TP

m, EA
1 . . . EA

q , . . . } ∈ S
R = {L1 → L′

1, . . . , Ln → L′
r} M.C = v

v |=S,∅ parameter PM1 : TP
1 . . . parameter PMm : TP

m
v |=S,R EA

1 . . . EA
q v |=S,∅ EC

1 . . . EC
s

M |=S,∅ component C = A ( L′
1 . . . L′

r ) { EC
1 . . . EC

s }
(Comp)

T ∈ {int, bool} M.PM ∈ D(T)
M |=S,∅ parameter PM : T

(Param)

Constraints & References

M |=S,R e ⇒ v v = 

M |=S,R [ e ]

(Constraint)

x is a defining property or parameter M.x = v
M |=S,R x ⇒ v

(DefProp-Ref/Param-Ref)

x is a location x → x′ /∈ R M.x = v
M |=S,R x ⇒ v

(Location-Ref)

x is a location x → x′ ∈ R M.x′ = v
M |=S,R x ⇒ v

(ActionLocation-Ref)

x is a derived property with body e M |=S,R e ⇒ v
M |=S,R x ⇒ v

(DerProp-Ref)

M |=S,R e ⇒ v1 v1.x = v2
M |=S,R e.x ⇒ v2

(Proj)

Figure 2.10: Declarative semantics of CSX (continued).
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2.10 Appendix: Inhabitance

The CSX syntax allows to define types, actions, and devices without inhabitants.
For example, the following type is not inhabited:

1 type T { i: int [i != i] }

Since there are no valid configurations for such definitions, we want to detect
and report uninhabited definitions. Specifications with definitions that are not
inhabited, i.e., there are no models for their instantations, are not useful in
practice. Therefore, we restrict CSX such that types, actions, and devices must
be inhabited. Below, we define inhabitance in terms of the satisfiablity relation
of Figure 2.10.

A type T is inhabited if there exists a model M that is a value for a arbitrary
location L of type T and that satisfies the specification of the type:

arbitrary name L
∃M |=∅,∅ location L : T

An action A is inhabited if there exists a model M that satisfies an instance of
the action, i.e., a valuation its for parameters and that satisfies the specification
of the action:

M |=∅,∅ location L1 : TL
1 . . . location Tn : TL

n
R = {L1 → L1, . . . , Ln → Ln}

M |=∅,∅ parameter PM1 : TP
1 . . . parameter PMm : TP

m
M |=∅,R EA

1 . . . EA
q

∃M |=∅,∅ action A(L1:TL
1 . . . Ln:TL

n )
{parameter PM1 : TP

1 . . . parameter PMm : TP
m, EA

1 . . . EA
q , . . . }

A device d is inhabited if there exists a model M that satisfies the device:
∃M |=S,∅ device d { ... }.

Inhabitance corresponds to satisfiability in the SMT domain. Unsatisfiability
of an SMT model for a type, action, or device indicates the definition is not
inhabited. For a device, it means the configuration space is empty. The
denotational semantics in Figure 2.7 defines a translation from the perspective
of a device. We build on this translation to define rules for checking inhabitance
of types and actions in Figure 2.11.

For inhabitance checking of types and actions, we can reuse the rules but
have to provide an artifical context for the translation. For example, for
inhabitance checking of type T, we check satisfiability of the SMT model for
an instance of the type in a arbitrary location (Location-Inhab). The type is
inhabited if the SMT model for an instance of the type in an arbitrary location
is satisfiable. For inhabitance checking of actions, we take a similar approach
(Action-Inhab). Instead of taking a single arbitrary location, we instantiate
locations for all location paramaters, and use them to instantiate the action A
for an arbitrary component C.
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arbitrary name L
[[location L : T]]S,[],∅

(Location-Inhab)

action A(L1:TL
1 . . . Ln:TL

n ) {
parameter PM1 : TP

1 . . . parameter PMm : TP
m,

EA
1 . . . EA

q , . . . } ∈ S R = {L1 → L1, . . . , Ln → Ln}
arbitrary name C

n⋃

i=1

[[location Li : TL
i ]]S,[],∅∪

m⋃

i=1

[[parameter PMm : TP
m]]S,[C],∅∪

q⋃

i=1

[[EA
i ]]S,[C],R

(Action-Inhab)

Figure 2.11: Denotational semantics for inhabitance checking, building on the
rules of Figure 2.7.
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3
CSX 2.0: Taming Complexity of Industrial
Printing Systems Using a Constraint-Based
DSL — An Industrial Experience Report

Abstract

Flexible printing systems are highly complex systems that consist of printers,
that print individual sheets of paper, and finishing equipment, that processes
sheets after printing, e.g., assembling a book. Integrating finishing equipment
with printers involves the development of control software that configures the
devices, taking hardware constraints into account. This control software is
highly complex to realize due to (1) the intertwined nature of printing and
finishing, (2) the large variety of print products and production options for
a given product, and (3) the large range of finishers produced by different
vendors.

We have developed a domain-specific language called CSX that offers an
interface to constraint solving specific to the printing domain. We use it to
model printing and finishing devices and to automatically derive constraint
solver-based environments for automatic configuration. We evaluate CSX on
its coverage of the printing domain in an industrial context, and we report on
lessons learned on using a constraint-based DSL in an industrial context.

Based on: Jasper Denkers, Marvin Brunner, Louis van Gool, Jurgen J. Vinju, Andy
Zaidman, and Eelco Visser. “Taming complexity of industrial printing systems using
a constraint-based DSL: An industrial experience report”. In: Software: Practice and
Experience (2023). doi: 10.1002/spe.3239.
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3.1 Introduction

What if we could have the worldwide offer in books, delivered tomorrow,
at exceptionally low cost? Keeping all these books in stock is not an option
because of storage prices. This is where flexible printing systems come in. With
a flexible printing system, any book can be printed on demand and delivered
to your home the same day. Such a printing system can be adjusted to print
books with varying sizes and binding methods. To make this feasible for the
operator of such a system, we need control software that supports configuring
the printing system based on a description of the end product. This involves
the process of configuration space exploration: finding a valid configuration that
specifies the complete manufacturing process (the input materials, the device
parameters, and the end product).

Developing control software with support for configuration space explo-
ration is complex because it needs to take many interdependent hardware
details into account. This leads to handwritten software implementations that
handle many individual cases non-systematically, while still not covering all
possible configurations. The corresponding user interfaces of devices par-
tially assist operators in finding configurations, but many aspects still require
manual configuration. Moreover, such control software implementations are
difficult to maintain, and this problem is further amplified by the large variety
of printing systems.

Canon Production Printing initiated a collaboration with Delft University
of Technology to explore a model-driven approach for developing control
software to tackle two challenges. First, realizing environments for configura-
tion space exploration that is automatic and complete (i.e., covers all possible
configurations). Second, coping with the large variety of printing systems;
besides devices that produce books, there are many others that, e.g., produce
magazines, packaging, or decoration.

Constraint solving seems a natural fit for developing control software with
automatic configuration. By modeling printing systems as constraint models,
we can use constraint solvers to achieve automatic configuration space explo-
ration. A solution of the constraint model would correspond to a configuration
for the printing system. Solvers can also find optimal solutions and thus
optimal configurations, e.g., for objectives such as minimizing paper waste or
maximizing print productivity. Therefore, we explore the usage of constraint
modeling in realizing the next generation of control software.

However, modeling a digital printing system — including all details of the
mechanics — in a generic constraint modeling language is tedious, because
it involves low-level modeling. Using a domain-specific language (DSL) for
modeling configuration spaces has the potential to tackle this issue. With
a DSL, we can automate the transformation of more high-level models of
printing systems to constraint models. On these generated constraint models,
we use constraint solvers to find (optimal) configurations and realize automatic
configuration space exploration. The modeling of printing systems in the DSL
is in terms of the printing domain and abstracts over low-level and repetitive
constraint modeling, making the modeling task feasible in practice.
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1 type Sheet { width: int, height: int }
2 type Stack { sheets: list<Sheet> }
3 device D {
4 location a: Stack
5 }

(a) CSX model of device D that instantiates the user-defined record-type Stack (modeled
as list of Sheets) in location a.

1 var 0..10 : a_sheets_size;
2 array [1..10] of var int : a_sheets_width;
3 constraint forall(i in 1..10) (i > a_sheets_size → a_sheets_width[i] =

0);
4 array [1..10] of var int : a_sheets_height;
5 constraint forall(i in 1..10) (i > a_sheets_size → a_sheets_height[i]

= 0)

(b) MiniZinc [40] constraint model for device D with variables for the size and properties
of the stack’s sheet list, for an upper bound of 10 sheets. The constraints on lines 3–4
frame variables that are not considered in the sheet list to a default value (0 for integers).

1 a_sheets_size = 2
2 a_sheets_width = [2100, 2100, 0, 0, 0, 0, 0, 0, 0, 0]
3 a_sheets_height = [2970, 2970, 0, 0, 0, 0, 0, 0, 0, 0]

(c) A solution found by an SMT constraint solver that corresponds to two sheets of
width 2100 and height 2970.

1 a = Stack([
2 Sheet(2100, 2970), Sheet(2100, 2970)
3 ])

(d) A configuration for device D based on the SMT solution of (c).

Figure 3.1: An artificial CSX model (a), its translation to constraints (b), a
solution for the constraint model (c), and the solution mapped back to a
configuration on the CSX level (d).
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We have additional motivations for using a DSL in our context, in contrast
to using a GPL. First, a DSL can enable domain experts such as mechanical
engineers to contribute to the modeling process. Second, the use of a DSL
promises to improve productivity by reducing the turnaround time for devel-
oping control software. Third, a DSL can better handle the variability when
modeling many similar devices. Finally, a DSL can be accompanied by an
IDE specific to its domain, potentially improving the usability of the modeling
environment.

In the previous chapter, we have developed CSX (Configuration Space
eXploration), a DSL for modeling digital printing systems, automatically gen-
erating constraint models from device models, mapping solutions back to the
domain of printing configurations, and deriving environments for configura-
tion space exploration. Figure 3.1 depicts the translation of CSX to constraints
and the mapping of a solution to a device configuration for an example model.
Our hypothesis is that CSX is an effective and scalable method for creating
control software for digital printing systems. With sufficient coverage and
practical solving performance, it has the potential to improve the current state
of control software development for printing systems by adding functionality
(introducing configuration space exploration that is automatic and complete)
and reducing software engineering complexity.

In addition to validating the concepts of CSX, our objective is to evaluate
CSX’s practical applicability. This has guided our approach in two ways. First,
we design the language from the perspective of the user, top-down, meaning
that we do not restrict language features before having substantiation for
such restrictions from practice. Second, we use MiniZinc [40] as a facade
for different underlying SMT solvers [4], as we did not want an early design
decision for a specific solver to later hinder our experimentation opportunities.

Although CSX 1.0 was already suitable for modeling devices and realizing
configuration space exploration for realistic scenarios, empirical results have
shown that it does not yet effectively cover all aspects of the full range of digital
printing systems. In particular, we identify and tackle the three most prominent
problems of CSX 1.0, that if solved, would bring CSX closer to applicability in
practice: (1) CSX 1.0 is limited to modeling a stack of sheets uniformly. To allow
more detail in models, we need to be able to model sheets in stacks individually.
For that, we add support for generic lists in CSX 2.0. (2) Geometrical concepts
such as orientations and transformations are heavily used in printing systems,
but require modeling on a low level of abstraction in CSX 1.0. To effectively
incorporate geometrical aspects in models, we add geometrical constructs to
CSX 2.0 that abstract over linear algebra. (3) CSX is a constraint-based language
and therefore involves a style of modeling that can be unintuitive for software
engineers who are not familiar with constraint programming. Therefore, in
CSX 2.0 we add support for operators in the style of functional programming
that are automatically translated to constraint-based counterparts.

In summary, our contributions with respect to our previous work on CSX
1.0 are as follows:

• CSX 2.0, which adds language support for generic lists, geometrical con-

46



653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers
Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024 PDF page: 61PDF page: 61PDF page: 61PDF page: 61

structs, and functional-style operators.

• An evaluation of CSX 2.0 in an industrial context.

• Lessons learned on using a constraint-based DSL in an industrial context.

3.2 Industrial Printing and Finishing Systems

3.2.1 Printing and Finishing

Digital printing systems consist of a printer and finishing equipment where
the printer prints individual sheets and the finishing equipment handles
subsequent processing steps. Examples of finishing devices are an edge stitcher
and a booklet maker. An edge stitcher takes a stack of sheets and binds them
by stitching one or more stitches at an edge. A booklet maker takes a set
of individual sheets as input and produces a booklet as output by stitching,
folding, and trimming. Ideally, print system end-users (e.g., operators in a
print shop) can operate the printing system as a whole, in which printing and
finishing are fully integrated.

Although finishing devices are capable of processing large volumes of prin-
ting products at high productivity, they have mechanical, hardware, and soft-
ware limitations that influence their configuration possibilities. The challenge
of an operator that uses such devices is: given the available input materials
and printer capabilities, how do I need to configure the finishers such that
I obtain the desired end product? Answering this question is an exercise
in configuration space exploration: finding a complete configuration that is
possible with the devices at hand and that leads to the manufacturing of a
product that satisfies the client’s wishes. Even for a seemingly simple device
such as an edge stitcher, reasoning about its configuration space can already
become complex.

As an example, we take an edge stitching device such as depicted in Fig-
ure 3.2. This device takes a stack of sheets of limited sizes, stitches the stack
at the right edge, and optionally rotates the stitched stack before outputting
it. Table 3.1 depicts four scenarios of configuration space exploration for this
device.

Scenario A considers as input a stack of A4 sheets in portrait orientation
without rotation after stitching. We can compute a complete configuration for
this scenario step-wise from input to output. At the location Stitched, the stack
of sheets is still in A4 in portrait orientation, but with a stitch at the right edge.
Since we do not rotate, the output location gets the same characteristics.

Scenario B is more complicated, as it requires an output of A4 sheets in
portrait orientation with the stitch at the top edge. We need to reason from
output back to input to find a configuration for this scenario. The scenario is
possible, and requires to take A4 sheets in landscape orientation as input with
a rotation of 90 degrees after stitching. Similarly, we can derive a configuration
for A3 sheets in portrait orientation with the stitch at the top edge (scenario C).

Scenario D is not possible. It requires A3 sheets in landscape orientation
with the stitch at the top edge. The stitch at the top edge requires to rotate 90
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Stitch
right edge

Rotate
0° or 90°Input Stitched Output

[120mm ≤ width ≤ 450mm]
[150mm ≤ height ≤ 320mm]

Figure 3.2: Schematic overview of the finishing steps of a simplified edge
stitching device. Dots indicate locations at which we consider a snapshot of
the stack of sheets that is stitched. The input is limited to the sizes of sheets it
can handle. Rectangles represent the actions that are performed on the objects.
The device can only perform a right-edge stitch, and can subsequently rotate
the stack by 0 or 90 degrees.

Sc. Input Stitched Rotation Output Possible

A w=210
h=297 ? 0° ? yes

B ? ? ?
w=210
h=297
e=top

yes

C ? ? ?
w=297
h=420
e=top

yes

D ? ? ?
w=420
h=297
e=top

no

Table 3.1: Scenarios of configuration space exploration for the edge stitching
device from Figure 3.2. Each row (A-D) represents a scenario. The middle four
columns indicate the values for a configuration corresponding to the scenario.
Question marks (?) indicate unknown values, for information that needs to be
derived by configuration space exploration. Width (w), height (h), and stitch
edge (e) are abbreviated and the millimeter unit is omitted.

degrees after stitching because the device is limited to stitching at the right
edge. The rotation implies that the input for this scenario should be A3 sheets
in portrait orientation. However, A3 sheets in portrait orientation, with a
height of 420mm, violates the device’s input size limitation of a maximum
height 320mm.

The context of our work is Canon Production Printing. This company
develops and manufactures printers which need to be integrated with finishers
from many external vendors. Therefore, we are mostly concerned about the
configuration spaces of finishing devices, and realizing control software for
integrated systems of printers and finishers.

In principle, we can use a general-purpose programming language to model
printing systems, and to implement algorithms for finding configurations

48



653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers
Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024 PDF page: 63PDF page: 63PDF page: 63PDF page: 63

for the finishing devices. However, using a general-purpose programming
language has two problems. First, the systems span large configuration spaces,
in which configurations for print jobs need to be found automatically — taking
all the features and limitations of the devices into account. Second, the variety
of printing systems is large, involving many variants that can behave similarly,
but have subtle differences. These problems make developing and maintaining
control software for printing systems complex.

A natural starting point for modeling a printing system, or a manufacturing
system in general, is to identify locations through which objects of the manu-
facturing process pass. Next, we can define each action with its parameters
that alter the manufacturing objects from one intermediate location into the
next. By doing so, each location represents a snapshot of the process that
transforms the input step-wise. These actions and locations correspond to
those in Figure 3.2.

Based on these snapshots of the manufacturing process and the actions that
occur in between these snapshots, we can use simulation to find a configuration.
Simulation means that we start with a given input object at the first snapshot
location of the model and calculate consecutive snapshots by executing actions
for their given parameters. Note that this is an imperative approach: the input
and parameters need to be known upfront and we can then calculate the end
result step by step. Also, by calculating the manufacturing objects at each
snapshot location of the device, we can check whether the (partial) configura-
tion — consisting of the input objects and action parameters — conforms to
the device’s limitations. If device limitations are violated, the printing system
operator needs to try again with an updated specification of the input and
the action parameters. If we would want to go the other way around, e.g., by
requesting a desired end result, the simulation approach falls short in finding
the corresponding input objects and action parameters.

The existing control software at Canon Production Printing is based on
the aforementioned simulation approach, which constructs configurations. To
partially overcome the inherent limitations in configuration space exploration
of a constructive algorithm, heuristics are added that automatically derive
partial configurations for particular cases of output product descriptions. In the
software implementations, these heuristics still do not cover the complete con-
figuration space. There remain configurations that the device can handle but
the control software cannot derive. Moreover, the heuristics are device-specific
and not composable, and therefore hinder reusability and maintainability. In
the rest of this chapter, we refer to this approach as pre-CSX.

We need an analytical approach — different than the constructive approach
based on simulation and manual heuristics — that automatically derives the
complete configuration space of a device, given only a partial description
of a configuration. Because the configuration space is large and actions are
interdependent, this is hard to achieve with manual programming effort,
especially given the large variety of printing systems. This is where we
can leverage the power of constraint solving, which seems a natural fit for
configuration space exploration. By specifying the configuration spaces in
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terms of constraints, we can use constraint solvers to find configurations.
It does not matter anymore for which scenario — forward, backward, or
anything in between such as finding parameters given an input and output.
The problem with modeling digital printing systems directly in a generic
constraint modeling language, however, is that it is tedious and repetitive
work.

3.2.2 Requirements

Our objective is to obtain a method for modeling printing systems and deriving
environments for automatic configuration space exploration that satisfies the
following requirements:

Domain Coverage The modeling language covers the aspects and features of
digital printing systems.

Configuration Accuracy The automatic finding of configurations for said as-
pects and features is correct (configurations that are found conform to the
device’s limitations; there are no false positives) and complete (i.e., there are no
configurations that are not found but that are possible on the device; there are
no false negatives).

Configuration Performance Configurations are found in the order of seconds,
i.e., in a timespan that is considered practical by control software engineers for
use in interactive UIs.

3.2.3 CSX: Configuration Space eXploration

In the previous chapter, we have developed CSX 1.0: a language and en-
vironment that serves as an interface to constraint programming specific to
the printing domain, abstracting over the complexity of developing control
software in two ways. First, CSX offers domain-specific constructs that abstract
over low-level details. Such details do not need to be rethought each time a
new device is modeled. In CSX, a library of actions can be built, which can be
reused in device models. Second, by leveraging the power of constraint solvers
to find configurations for printing devices, control software engineers do not
have to manually develop algorithms to find configurations. Therefore, CSX
promises to tackle two of the most challenging aspects of developing control
software for printing systems.

In CSX, we model printing systems by modeling intermediate locations
of the manufacturing process and configuration parametricity. We will now
further introduce CSX’s language concepts using Figure 3.3, an example CSX
model of an edge stitching device.

User-defined record-types. In CSX, we use user-defined record-types to model
the objects in the manufacturing process. This concerns the input, output,
and snapshots of the products at intermediate locations. Instead of specifying
all properties individually, CSX users can define record-like types such as
sheets and stacks. In the example, Sheet and StitchedStack are user-defined
types (lines 1–9). User-defined types are records of properties which can be
either defining properties or derived properties. We can use this abstraction
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1 type Sheet {
2 width: int, [width > 0],
3 height: int, [height > 0]
4 // Width and height in 1/10mm precision
5 }
6 type StitchedStack {
7 sheets: list<Sheet>,
8 stitchEdge: edge
9 }

10 action Stitcher(input: list<Sheet>, output: StitchedStack) {
11 // At least two sheets required for stitching
12 [size(input) ≥ 2]
13 parameter stitchEdge: edge
14 [output.sheets == input]
15 [output.stitchEdge == stitchEdge]
16 }
17 device EdgeStitcher {
18 location input: list<Sheet>
19 [size(input) ≤ 10] // Max number of sheets
20 [input.forall { sheet =>
21 // Min and max sheet sizes
22 sheet.width ≥ 1200 and sheet.height ≥ 1500 and
23 sheet.width ≤ 4500 and sheet.height ≤ 3200
24 }]
25 stitcher = Stitcher(input, stitched)
26 // This device can only stitch on the right edge
27 [stitcher.stitchEdge == right]
28 location stitched: StitchedStack
29 parameter rotation: orientation
30 [rotation == rot0 or rotation == rot90]
31 [output.sheets.forall { sheet =>
32 (rotation == rot0 implies sheet == stitched.sheets[index])
33 and
34 (rotation == rot90 implies (
35 // Swap width and height in case of 90 degrees rotation
36 sheet.width == stitched.sheets[index].height and
37 sheet.height == stitched.sheets[index].width
38 ))
39 }]
40 [size(output.sheets) == size(stitched.sheets)]
41 [output.stitchEdge == orientate(stitched.stitchEdge, rotation)]
42 location output: StitchedStack
43 }

Figure 3.3: CSX model of an edge stitching device (schematically depicted in
Figure 3.2) that has a list of sheets as input, stitches them in the right edge, and
optionally rotates the stitched stack 90 degrees before it leaves the machine as
output. Integer dimensions in this model represent 1/10mm.
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to incorporate objects such as sheets and stacks in a device model to model
the snapshots of printing products. Besides user-defined types, the language
supports integers and booleans as primitives.

Actions. Units of printing behavior are captured in actions. Actions are
defined for one or more locations that can be inputs or outputs. In the example,
the stitching behavior is captured in an action (lines 12–21). Additionally,
actions can contain parameters that contribute to the configuration space, such
as the stitchEdge parameter (line 17).

Devices & Locations. We can model devices in CSX, which are representa-
tions of systems that instantiate the user-defined types for snapshot products
at locations and instantiate actions in between those snapshots. The exam-
ple model considers three snapshot locations of the printing objects: input,
stitched, and output. The configuration space of a device is defined as the
possible values for all locations and action parameters that conform to the
constraints. CSX supports modular decomposition in the sense that devices are
modeled by building on a set of reusable type and action definitions, which
can be instantiated in varying ways.

Constraints. In square brackets, we can write expressions to form constraints
that limit the configuration space of a device. Examples of constraints are
enforcing that sheets have a positive width and height (lines 2–3), stitching
requires at least two sheets (line 15), and the minimum and maximum sheet
sizes the device can handle (lines 28–32). Additionally, constraints express how
snapshot printing objects relate to other snapshot printing objects in the device.
For example, the rotation parameter impacts whether the width and height of
sheets are swapped between the stitched and output location.

Scenarios & Tests. In CSX models, we can also define tests for devices.
Such tests are used to specify configuration space exploration scenarios with
assertions to validate the models. Figure 3.4 lists several tests for the example
model. By using scenarios, a restricted configuration space can be considered
for multiple tests nested in the scenario. The assertions can simply expect
there to be a configuration (succeeds), no configuration (fails), or expect
something more specific using the constraint notation. For example, the first
test expects a rotation of 0 degrees (line 14) and the second test expects a
rotation by 90 degrees (line 19).

We have implemented the CSX language and IDE using the Spoofax lan-
guage workbench [20]. We express the translations of CSX models to SMT
models in MiniZinc [40]. MiniZinc is a generic and solver-independent con-
straint modeling language, which allows us to use various solvers for finding
configurations. Both the translation of CSX models and tests to MiniZinc and
the mapping of SMT solutions back to the CSX level are implemented using
the Stratego transformation language [43]. Tests are evaluated interactively in
the IDE, i.e., a test is re-evaluated automatically if and only if it or the device
under test has changed. Figure 3.5 depicts how feedback on tests is presented
in the IDE.

Figure 3.6 depicts an architecture that applies CSX to realize control software.
We have implemented the CSX language and IDE and all components relevant
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1 // All tests are for the EdgeStitcher device and with two sheets in the
output

2 scenario device EdgeStitcher
3 config size(output.sheets) == 2 {
4
5 // A4 sheets in portrait orientation
6 scenario config output.sheets[1].width == 2100
7 config output.sheets[1].height == 2970
8 config output.sheets[2].width == 2100
9 config output.sheets[2].height == 2970 {

10
11 // Stitch on right edge requires no rotation
12 test config output.stitchEdge == right {
13 [rotation == rot0]
14 }
15
16 // Stitch at top edge requires rotation of 90 degrees
17 test config output.stitchEdge == top {
18 [rotation == rot90]
19 }
20
21 }
22
23 // A3 sheets in portrait orientation with stitch on
24 // right edge is not possible
25 test config output.sheets[1].width == 2970
26 config output.sheets[1].height == 4200
27 config output.sheets[2].width == 2970
28 config output.sheets[2].height == 4200
29 config output.stitchEdge == right {
30 fails
31 }
32
33 // A3 sheets in landscape orientation with stitch on
34 // right edge is possible
35 test config output.sheets[1].width == 4200
36 config output.sheets[1].height == 2970
37 config output.sheets[2].width == 4200
38 config output.sheets[2].height == 2970
39 config output.stitchEdge == right {
40 succeeds
41 }
42
43 }

Figure 3.4: Tests accompanying the CSX model of Figure 3.3.
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Figure 3.5: An example of interactive validation in CSX. The test (a modified
version of the third test in Figure 3.4) incorrectly expects CSX to find a configu-
ration. The CSX IDE reports that this expectation is incorrect using an error
marker. While hovering over the incorrect expectation, the popup indicates
that no configuration was found.

for automatic configuration space exploration. The deployment of CSX with
code generation for communication with embedded software in devices and
the integration with user interfaces is future work. For further details about
the semantics and implementation of CSX 1.0, we refer to the previous chapter.
The technical contribution of the current chapter focuses on extending the
coverage of CSX within the existing framework, which we discuss next.

3.2.4 Coverage Gaps

For a domain-specific language such as CSX to be successful, it is crucial that
the language’s constructs are adequate in covering the printing domain. Al-
though CSX 1.0 was found to be suitable in modeling realistic printing systems
and to realize configuration space exploration with practical performance, fur-
ther application of the language on more printing systems revealed limitations
of the approach. We discuss three coverage gaps in this section, for which we
extend the language in the following section.

Non-Uniformity. In CSX 1.0 one is limited to modeling uniform stacks of
sheets. In the case of a booklet maker, one would be limited to only modeling
booklets with a uniform stack of sheets. If we would like the cover sheet to be
of a different type, the cover sheet needs to be modeled separately from the
body sheets. Non-uniformity can be dealt with in a more generic way using
lists of sheets. In the example, we have used the newly introduced generic lists
to model non-uniform stacks. A list is, e.g., also useful for a stitching device
that can stitch with a variable number of stitches.

Geometry. Modeling geometric transformations requires low-level modeling
in CSX 1.0. For example, one could manually define constraints for each case
a rotation parameter can take, or manually implement linear algebra. In the
example, we have used the newly introduced geometrical constructs (e.g., edge)
and transformations.
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Figure 3.6: An architecture in which CSX is applied to realize control software
for digital printing systems. GPL stands for a general-purpose programming
language such as C#.

Function-Style Operators. Operators in a CSX 1.0 are expressed using predi-
cates. These predicate-style operators do not naturally express the processing
steps of printing processes which are directional. Functional-style operators
do express a direction and therefore they are more appropriate for modeling
printing systems. In the example, orientate is an example of an operator in
functional style.

3.3 Increasing Domain Coverage

In this section, we describe how we have engineered CSX 2.0, which features
improved coverage of the digital printing domain.

3.3.1 Non-Uniform Stacks of Sheets

Although the existing version of CSX was able to cover useful printing
systems, it lacked the ability to model non-uniform stacks of sheets. To support
non-uniform modeling, we need an additional data structure for generic and
ordered collections. For this purpose, we add support for lists to CSX 2.0.

In the configuration space of devices such as booklet makers, products with
a variable number of sheets can be produced. Therefore, we need to be able to
model devices with lists that have a variable size. Implementing a list with a
variable size is trivial in object-oriented programming. When a list needs to
grow, additional memory can be allocated for this list at runtime. However, in
constraint programming with modeling languages such as MiniZinc, realizing
this is not trivial. A constraint model needs to define all variables upfront;
additional variables cannot be added at runtime. Lists with a variable size
therefore do not naturally map to the constraint domain.
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1 var xs: list<int>
2 var ys: list<int>
3
4 reverse xs into ys

1 size(ys) == size(xs)
2 xs.forall { x =>
3 ys[size(xs) + 1 - index] = x
4 }

(a) reverse

1 var xs: list<int>
2 var ys: list<int>
3
4 map xs with x => x + 1 into ys

1 size(ys) == size(xs)
2 xs.forall { x =>
3 ys[index] = x + 1
4 }

(b) map

1 var xs: list<int>
2 var ys: list<int>
3 var z: int
4
5 append z after xs into ys

1 size(ys) == size(xs) + 1
2 xs.forall { x =>
3 ys[index] = x
4 }
5 last(ys) == z

(c) append

1 var xs: list<int>
2 var ys: list<int>
3 var z: int
4
5 prepend z before xs into ys

1 size(ys) == size(xs) + 1
2 first(ys) == z
3 xs.forall { x =>
4 ys[index + 1] = x
5 }

(d) prepend

Figure 3.7: Translation of CSX’s list operations (left-hand sides) into forall
(right-hand sides, also CSX). The target models (right-hand sides) have variable
declarations omitted for brevity.
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In CSX 2.0, we add support for the generic list<T> type for lists with ele-
ments of type T. Lists in CSX 2.0 do have a variable size and can be instantiated
for both primitive and user-defined types. Figure 3.1a shows an example that
models a stack as a list of sheets (line 2).

We realize variably sized lists by using fixed-size arrays in the target (MiniZ-
inc) model that are only partially considered in the actual configuration. The
size of the target arrays (nmax) determines the range of sizes the list on the
CSX level can have; the CSX list thus has an upper bound on its dynamic size.
When translating the CSX model, a nmax should be chosen that ensures the
configuration space is sufficient for the particular model.

For a CSX list with values of a primitive type, e.g., a list of integers, a single
array is needed in the target model. For a CSX list of a user-defined type
such as a sheet with multiple properties, the target model gets an array for
each property. Additionally, the target model contains an integer variable that
indicates the size n of the list (0 ≤ n ≤ nmax) in the configuration.

When mapping solutions found in the constraint domain back to CSX, only
the first n elements of the arrays are considered. On the target level, the
elements in the array for size positions n < i ≤ nmax (using 1-based indices)
are ignored and framed to default values to avoid what is commonly called
“junk” in constraint solving. By doing so, CSX lists behave as dynamically
sized lists. Although this approach could also work for nested lists by adding
extra dimensions to the arrays in the generated constraint model, we have not
found a need for it in the domain of printing.

Figure 3.1 shows an example of a stack that is modeled as a list of sheets
and how that translates to constraints, expressed in MiniZinc. The variable
a_sheets_size represents the size of the list of sheets. The domain for this
variable (0..10, i.e. an integer value in the range 0 to 10) represents the
possible sizes of the list (given that the upper bound nmax is 10). Sheets have
two properties: width and height, both of type int. The target model contains
an array with variables for each property, denoted in MiniZinc with, e.g., array
[1..10] of var int : a_sheets_width for the width property. Again, the
size of this array is determined by the upper bound on the size of lists.

The forall constraint makes sure that the elements in the arrays that are not
part of the actual solution (i.e., for indices larger than the size of the list), are set
to a default value. This enforces that a single CSX configuration corresponds
to a single solution at the constraint level. Otherwise, multiple solutions at the
constraint level could correspond to the same configuration at the CSX level,
making the solution space unnecessarily large. Note, however, that CSX does
not prevent references to values outside the size of the list.

To make lists in CSX practical, we add operations on lists such as re-
verse, append, prepend, and map. Many of such expressions over lists can
be expressed by translation into a forall construct. The forall and exists
quantifiers are common constructs in (functional) languages that support lists.
The forall operator is used to express whether a predicate holds for all ele-
ments in a collection. We implement the forall construct and use it as a core
construct which other operations translate to, see Figure 3.7.
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Note that the index operator in the examples is implicit and can only be
accessed in the context of a forall. It denotes the 1-based index of the element
in the list for which the predicate is declared. By design, the forall operators
cannot be nested, because for a single index operator it would not be clear to
which forall it corresponds. Although a specialized index operator would be
possible, we think this would make the language unnecessarily more complex.

In addition to the forall construct, we add support for list access using
square brackets. The first and last functions are implemented by translating
to list access. The size function translates to the variable on the constraint
level that represents the list size.

We call the operations in Figure 3.7 to be in predicate-style, i.e., the operators
enforce a predicate over multiple (list) variables. For example, reverse xs
into ys evaluates to true if xs is the reverse of ys. The type of the predicate-
style reverse, append, prepend, and map operations is therefore boolean.

Many aspects of printing processes are directional, which is unnatural to
capture in constraint programming or with predicate-style operators. It would
be more natural to be able to use list operations in functional-style, in which the
result of the operations is also a list. Similar to functional programming, that
would allow chaining of operations, i.e., combine operators in such a way that
the output of one operator is directly considered as input to the next operator.
When modeling a printing system, such operators better capture the actual
direction of the manufacturing process.

While a functional language would dynamically allocate memory for inter-
mediate values of such chains of operations at runtime, in constraint program-
ming the variables need to be known upfront. In Section 3.3.3 we describe
an algorithm for introducing intermediate variables where needed. That will
allow writing, e.g., ys == reverse(xs), which will then first translate into the
predicate-style variant (reverse xs into ys), which in turn will translate into
a forall expression.

3.3.2 Geometrical Constructs

Concepts from the geometrical domain such as orientations, transformations,
and edges are frequently used in the printing domain. For example, finishing
devices can have the possibility to orientate input sheets to be flexible in input
and output formats. A hardware characteristic might limit the maximum
width of a sheet in a location in the manufacturing process. By being able to
rotate the sheet after such a location, there are more possibilities for sheet sizes
in the following steps.

Typically, geometrical properties and transformations are captured numer-
ically, in linear algebra. Transformations of orientations or edges are then
expressed by matrix multiplication. Although matrices could be expressed
using user-defined types in CSX with properties for the matrix elements, it
involves modeling on a low level of abstraction. By lifting a restricted but high-
level set of geometrical constructs from the numerical domain to a symbolic
domain in CSX 2.0, incorporating geometrical aspects in models can be done
at a high level of abstraction.
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1 // Artificial device model that transforms an edge
2 device D {
3 location e1: edge
4 location e2: edge
5 location o: orientation
6
7 [e2 == orientate(e1, o)]
8 }
9 test device D config e1 == top config e2 == bottom {

10 [o == rot180 or o == flip0]
11 }

Figure 3.8: An artificial CSX model with an orientation parameter o that
transforms edge e1 into e2.

Although arbitrary transformations could be expressed using matrices, many
transformations in the printing domain are limited to rotation over a multiple
of 90 degrees, either with or without flipping. We reflect this in CSX 2.0 by
including a restricted set of orientations that correspond to those commonly
used transformations: rot0, rot90, rot180, rot270, flip0, flip90, flip180,
and flip270. In the constraint model, those orientations correspond to a 2-by-2
matrix. For example, rot90 corresponds to

[ 0 1
−1 0

]
.

To effectively use orientations, we introduce high-level constructs for con-
cepts that can be orientated such as edges. Again, edges could already be
modeled using primitives or user-defined types, but having dedicated con-
structs enables us to implement concise operations for them with orientations.
An edge is one of top, right, bottom, or left, which are represented as two-
dimensional vectors in the constraint domain. For example, top corresponds
to [ 0 1 ].

We translate the application of an orientation to an edge in the constraint
model to matrix multiplication. As an example, we take the rotation of
the top edge over 90 degrees. In CSX 2.0, we can express this using e ==
orientate(top, rot90), in which variable e of type edge is considered equal
to the result of the rotation. At the constraint level, this would correspond to
the matrix multiplication [ 0 1 ]× [ 0 1

−1 0
]
= [ −1 0 ]. We interpret the resulting

vector [ −1 0 ] as the left edge such that the linear algebra is hidden from the
CSX user.

Figure 3.8 depicts an artificial CSX model for a device that transforms an
edge over an orientation. Figure 3.10 depicts the corresponding MiniZinc target
model. The translation of geometrical constructs in CSX to MiniZinc makes
use of a prelude, which is depicted in Figure 3.9. This prelude is MiniZinc
code that represents data types, predicates, and functions over the geometrical
constructs that are referenced in the target (MiniZinc) model of a specific CSX
model.

An edge is represented with a two-dimensional vector in MiniZinc, using
the type array[1..2] of var -1..1; an array with indices in the range 1..2
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1 % Prelude for target model (in MiniZinc)
2
3 % Constants for the eight relevant orientations
4 array[1..2,1..2] of var -1..1: Rot0 = [| 1, 0| 0, 1|];
5 array[1..2,1..2] of var -1..1: Rot90 = [| 0, 1|-1, 0|];
6 array[1..2,1..2] of var -1..1: Rot180 = [|-1, 0| 0,-1|];
7 array[1..2,1..2] of var -1..1: Rot270 = [| 0,-1| 1, 0|];
8 array[1..2,1..2] of var -1..1: Flip0 = [| 1, 0| 0,-1|];
9 array[1..2,1..2] of var -1..1: Flip90 = [| 0,-1|-1, 0|];

10 array[1..2,1..2] of var -1..1: Flip180 = [|-1, 0| 0, 1|];
11 array[1..2,1..2] of var -1..1: Flip270 = [| 0, 1| 1, 0|];
12 % Constants for the four relevant edges
13 array[1..2] of var -1..1: Top = [| 0, 1|];
14 array[1..2] of var -1..1: Right = [| 1, 0|];
15 array[1..2] of var -1..1: Bottom = [| 0,-1|];
16 array[1..2] of var -1..1: Left = [|-1, 0|];
17 % Predicate to restrict an orientation's matrix
18 predicate isOrientation(array[1..2,1..2] of var -1..1: o) =
19 o = Rot0 ∨ o = Rot90 ∨ o = Rot180 ∨ o = Rot270 ∨
20 o = Flip0 ∨ o = Flip90 ∨ o = Flip180 ∨ o = Flip270;
21 % Predicate to restrict an edges's matrix
22 predicate isEdge(array[1..2] of var -1..1: e) =
23 e = Top ∨ e = Right ∨ e = Bottom ∨ e = Left
24 % Function for orientating an edge
25 function array[1..2] of var -1..1: orientateEdge(
26 array[1..2] of var -1..1 : e,
27 array[1..2,1..2] of var -1..1 : o
28 ) =
29 array1d(1..2,[
30 e[1] ∗ o[1,1] + e[2] ∗ o[1,2],
31 e[1] ∗ o[2,1] + e[2] ∗ o[2,2]
32 ]);

Figure 3.9: The prelude MiniZinc code for geometrical constructs that is added
to target models.

1 % Device-specific target model (in MiniZinc)
2 array [1..2] of var -1..1 : e1;
3 constraint isEdge(e1);
4 array [1..2] of var -1..1 : e2;
5 constraint isEdge(e2);
6 array [1..2,1..2] of var -1..1 : o;
7 constraint isOrientation(o);
8 constraint e2 == orientateEdge(e1,o)

Figure 3.10: The device-specific target model corresponding to Figure 3.8,
making use of the prelude (Figure 3.9).
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and with values in the domain of -1..1. Since variables of this type can get
values that do not correspond to one of the four edges we consider (e.g., [ 1 1 ]
does not represent one of the four edges), we need to frame its instances. We
do so by applying the isEdge predicate to each instance. For each instance of
an edge variable in CSX, a two-dimensional array is declared on which the
isEdge predicate is applied. We realize orientations in a similar way.

CSX supports high-level operators for geometrical constructs. A CSX user
does not need to write out matrix multiplications, but can directly express
operations on the geometric data structures using these operators. For example,
one could write e2 == orientate(e1, o). Type checking ensures that only
valid combinations can be used for transformations.

Using constraints in the backend of CSX involves a translation that is bidirec-
tional. The constructs in CSX are translated to variables and constraints in the
constraint domain. Also, solutions in the constraint domain are mapped back
to the CSX level. Interpreting a solution for a geometrical construct involves a
new mechanism. For example, for orientations and edges we need to map the
individual values that are found in the solution to one of the possibly restricted
values on the CSX domain. If for an edge in the constraint domain the value
[ 0 1 ] is found, that would map to the top value at the CSX level. Orientations
are interpreted analogously.

We also add support for lists of orientations and edges. The arrays for
orientations and edges in the constraint model then get an extra dimension.

3.3.3 Functional-Style Operators

A printing process is typically directional: input objects are processed step by
step into output objects. The functional paradigm supports modeling such a
directional process naturally. Functional-style operators are composable and
thus can be chained. By doing so, a sequence of chained operations expresses
an order or direction in computation — similar to the order of manufacturing
steps that are involved in a printing system.

For atomic values such as integers, booleans, and user-defined enums, chain-
ing of operators is supported by default in MiniZinc and thereby also in CSX.
Such atomic values are represented by a single variable in the constraint do-
main. In contrast, compound values such as user-defined types, lists, and
geometrical constructs, are represented by multiple variables in the constraint
domain. Chaining of operators on compound values is not supported in MiniZ-
inc. Still, we want to support chaining of operations in CSX on compound
values, too, as it would make the switch from functional programming lan-
guages to CSX easier. Therefore, in addition to the predicate-style operations
on, e.g., lists and geometric constructs, we add functional variants that support
the chaining of such operations.

An expression written in predicate style such as reverse x in y could be
written in functional notation as y == reverse(x). More interestingly, an
expression such as reverse x into y and z == y[2] could be written as z
== reverse(x)[2]. To achieve such style of modeling — that allows chaining
of operations — we need to instantiate constraint variables for the intermediate
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results.
Imposing the responsibility for declaring the intermediate variables to the

language user would negatively impact CSX’s usability. To prevent this, CSX
derives where intermediate variables are necessary and introduces them auto-
matically. CSX 2.0 analyses expressions to detect and unfold chained operations
where necessary. In the case of chained operations, intermediate variables
are introduced and the expressions are rewritten in a form that makes use of
the intermediate variables and that removes the chaining. This happens in an
intermediate translation step in the CSX compilation pipeline.

Let’s take the following CSX spec:

1 var bs: list<bool>
2
3 [reverse(bs)[1]]

The constraint reverse(bs)[1] has the following abstract syntax tree:

ListAccess

Reverse

bs

1

In this tree, the Reverse node represents a compound value that is derived
from the bs variable, and it is an input for the ListAccess node, which
also derives a new compound value. Therefore, this expression requires an
intermediate variable to be inserted.

It will be translated into:

1 var bs: list<bool>
2 var i1: list<bool>
3
4 [reverse(bs) == i1]
5 [i1[1]]

A new variable i1 is introduced which is considered equal to the reverse of
bs. Then, the initial expression gets expressed in terms of the new variable.

Still, the deriving reverse expression is not in predicate style. Since it is on
one side of an equality expression with an instance value on the other side, we
can rewrite it into predicate style. This results in:

1 var bs: list<bool>
2 var i1: list<bool>
3
4 [reverse bs into i1]
5 [i1[1]]

Finally, the transformation step for predicate-style operations on lists (as
defined in Section 3.3.1) transforms the expression into a forall construct:
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1 var bs: list<bool>
2 var i1: list<bool>
3
4 [bs.size == i1.size]
5 [bs.forall { x => i1[bs.size + 1 - index] = x }]
6 [i1[1]]

Algorithm. The algorithm repeatedly finds and rewrites expressions from
functional style into predicate style until no functional-style operators remain.
The algorithm starts with identifying the types of variables in an expression
abstract syntax tree. First, it identifies the references of locations, parameters,
and other variables as instance values. Instance values are references to explicitly
declared variables in a CSX model. Second, the nodes for operations on
compound data types are identified as derived values. Derived values are the
result of an operation on another, possibly compound, value and might require
the introduction of an intermediate variable.

The algorithm repeatedly tries to find and replace operations that take a
derived value as an input and have a new derived value as output. For such
cases, the derived base value needs to be replaced by a newly introduced
intermediate variable. When this process finishes, i.e., there are no nodes left
that need an intermediate variable, we can start rewriting functional operations
to predicate-style operations. Finally, no functional-style operations are left,
and the normal form with only predicate-style operations remains.

3.4 Industrial Evaluation

Having designed the CSX language and associated environment for configura-
tion space exploration, we now evaluate the industrial application of CSX 2.0
at Canon Production Printing. We explore whether CSX as a constraint-based
language is effective for modeling printing systems and realizing automatic
configuration space exploration. We evaluate whether CSX meets our re-
quirements (Section 3.2.2) on domain coverage, configuration accuracy, and
configuration performance. Additionally, we evaluate the relevance of the
approach. In particular, we consider the following evaluation questions:

Domain Coverage Does CSX provide the constructs for modeling devices at
Canon Production Printing, without having to resort to low-level constraint
programming?

Configuration Accuracy Is configuration space exploration with CSX accurate,
i.e., is it correct (configurations that are found conform the device’s limitations;
there are no false positives) and complete (there are no configurations that are
not found but that are possible in the device; there no false negatives)?

Configuration Performance Do the generated constraint models in MiniZ-
inc find (optimal) solutions in reasonable time (within seconds) for realistic
printing system models?

Relevance Is it sufficient to use CSX to achieve automatic configuration space
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exploration and is it necessary to use CSX instead of directly modeling printing
systems in a generic constraint modeling language such as MiniZinc?

In the remainder of this section, we describe our evaluation method and
discuss results per question. Although this chapter presents an extension of
CSX 1.0 (Chapter 2), we evaluate CSX 2.0 as a whole — not only the new
features.

3.4.1 Domain Coverage

Study setup. The author of this dissertation and a domain expert participate
in an exploratory case study in which a realistic printing device is modeled
in-depth from scratch. The industrial context of the study is Canon Production
Printing and we consider a case for which the company has also developed
control software in practice. The first participant, the author of this dissertation,
is the developer of CSX. The second participant is a domain expert from Canon
Production Printing having 10+ years of experience with developing control
software for printing systems. The first participant was the main implementer
of CSX. The second participant has been actively involved in the development
of the language and environment.

The subject case of the study is a setup including a printer with two input
trays, an edge stitcher, and a virtual reader. The input of the device consists
of two input trays. Each input tray contains sheets that are the same. Con-
sequently, the stack that is gathered from those input trays can contain at
most two different types of sheets, which can occur in any amount and order.
Although this seems like a simple case, it was already difficult to cover in the
pre-CSX situation.

In the pre-CSX approach, modeling this device with support for only sim-
ulation — calculating the output based on the input and parameters — is
considered straightforward by the domain expert. For the simulation imple-
mentation, the input objects are specified up front and the output is calculated
by processing each step, given parameters such as orientations. However,
reasoning backward, e.g., to calculate the configuration parameters given an
input and a desired end product, is considered complex by the domain expert.
In particular, the freedom of orientation before and after printing results in
many configuration possibilities, for which it is not clear how to find all of
them. Therefore, this is a relevant case for our study.

The study consists of two parts. In the first part — a think-aloud study —
the participants model the device in think-aloud co-design sessions of two
hours. In the second part — reflection analysis — the participants discuss the
evaluation questions in a single two-hour session, reflecting on the co-design
sessions using the notes gathered in the sessions.

During think-aloud co-design sessions [55] the two participants gather data
for evaluating the language design. The participants model the edge stitching
device by gradually including aspects of increasing complexity, selected by the
domain expert. In particular, these sessions follow the following protocol:

• The participants communicate via a video call. The first participant has the
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CSX IDE open and shares the screen with the other participant, such that
both participants can see the IDE and models.

• The participants perform iterations of modeling in sessions of two hours.

• For each iteration, the domain expert selects an aspect of the device to model.
Initially, the domain expert selects the most simple aspect of the device. The
judgment of the domain expert is leading in gradually expanding the level
of detail of the model. For new iterations, the domain expert expands an
aspect with more detail or selects a new aspect. Each iteration starts in a
new CSX file by copying the previous file, initially starting with an empty
file.

• The participants engage in a think-aloud conversation [55] on which prop-
erties to consider and which design decisions to make during the process.
The first participant writes the CSX code that corresponds to the consensus
of the participants on how to model the selected aspect.

• The participants document the considerations and design decisions by taking
notes in comments of the CSX code such that the considerations can be
revisited when discussing the evaluation questions.

• The participants validate the model by writing tests, and revert to fixing the
model if tests reveal flaws in the model.

• The participants repeat this process until the domain expert concludes that
the device is modeled with a level of detail that is sufficient for realizing
control software.
In the reflection analysis part of the study, the participants discuss the

evaluation questions. Per question, the participants reflect on the modeling
sessions, revisiting the notes that were documented with comments in the
models.

Results. The participants performed six co-design sessions of two hours.
In some sessions, the participants worked on multiple iterations, and some
iterations were based on work from multiple sessions. The sessions resulted in
seven iterations of CSX models, of which the last contained the final model of
the edge stitching device. Table 3.2 gives an overview of the aspects that were
included in each iteration.

We now discuss the results of the study in more detail. First, we report on
general observations from the modeling sessions. Second, we discuss each
aspect of the case separately. We report both positive and negative observations.
For example, we label the ith observation on the aspect of domain coverage
with DOMAIN-COVERAGE i. We label the jth general observation, not related
to, e.g., domain coverage specifically, with GO j. The models from the session
that are included in this section have undergone light editing to improve
presentation.

General Observations. Before starting on the first CSX model, the participants
realized that they should determine the scope of what they would include
in the model. The most high-level question in that regard is whether the
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Table 3.2: The aspects that were included in each iteration of the co-design
evaluation sessions. The first attempt at modeling input trays (iteration 3) was
incorrect and was modeled again from scratch (iteration 6).

Iteration Aspects introduced
1 Uniform stacks of sheets, device, physi-

cal limitations, validation
2 Non-uniform stacks of sheets
3 Input trays (incorrect)
4 Sheets must have equal height
5 Edge stichting, orientations
6 Input trays (correct)
7 Integrate input trays with edge stitch-

ing

model should start before or after the printing device. Although CSX has
been originally designed with the intention to model and integrate finishing
equipment, there is also utility in including part of the printing device in CSX
models (GO 1).

In particular, a printing device typically has multiple input trays in a com-
ponent which is called the paper input module (PIM), which determines the
number of different types of sheets that can be used as input. It is relevant to
include this in the model, as the sheets in input trays are part of the configu-
ration space that is relevant for finishing. Alternatively, we can leave out this
part from the CSX model, and consider the output of the printer as input to
the finishing device that we model. This output of the printer then potentially
can consist of different types of sheets.

In the evaluation, the participants chose to include the input trays of the
printing device in the model. The actual printing operation is considered
implicit; its effect is not captured in the model in the study. It could be relevant
to include the printing in a later iteration, e.g., for modeling the printable area
of sheets.

The participants found that a convenient first step in every iteration of
the modeling sessions was to model the printing objects (sheets and stacks)
by adding or extending type definitions (GO 2). User-defined types in CSX
allowed the participants to be flexible in how the objects that undergo the
finishing actions are modeled, similar as in an object-oriented language. The
participants noticed that this flexibility is useful for the modeling process that
is incremental. They started with simple type definitions and first completed a
device model based on these type definitions. Later, they expanded the type
definitions to incrementally include more detail (GO 3).

Uniform stacks of sheets. In order to start simple and gradually expand the
level of detail in the model, the participants chose to start with modeling stacks
of sheets that are uniform. This has a restrictive implication: all sheets in a
stack are considered equal by design. Although this is an oversimplification
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1 // Precision: 1/10mm
2
3 type Stack {
4 width: int, [width > 0],
5 height: int, [height > 0],
6 sheets: int, [sheets ≥ 0]
7 }
8
9 device PaperInputModule {

10 location input: Stack
11
12 [input.width ≤ 4500 and input.height ≤ 3200] // Max size
13 [input.width ≥ 1200 and input.height ≥ 1500] // Min size
14
15 [output == input]
16
17 location output: Stack
18 }
19
20 // Check that the configuration conforms to the test setup
21 test device PaperInputModule config input.width == 2100
22 config input.height == 2970
23 config input.sheets == 1 {
24 [output.width == 2100]
25 [output.height == 2970]
26 [output.sheets == 1]
27 }
28
29 // Check that no configuration can be found for 100x100mm
30 test device PaperInputModule config input.width == 1000
31 config input.height == 1000 {
32 fails
33 }

Figure 3.11: The CSX model resulting from iteration 1. A simple device that
takes a uniform stack with a size (width and height) and number of sheets
as input and outputs the same stack. Hardware limitations on the size of
the input stack are captured in constraints. Two tests cover a succeeding and
failing scenario.
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which is not realistic, the participants considered it a good starting point.
Figure 3.11 (lines 1–5), from the first modeling iteration, depicts the type

definition for a uniform stack of sheets. Many properties could be included in
sheets, but the participants started with a simple representation of sheets with
only a size (width and height). An additional property sheets indicates how
many sheets are in the stack.

Since properties are of type integer, the participants had to choose a pre-
cision (GO 4). The participants chose a precision of 1/10mm. This precision
is common in the printing domain and considered precise enough. The par-
ticipants noticed a downside of this approach: a reader of a CSX model does
need to interpret integer values with a division or multiplication of 10 when
interpreting them in the more intuitive unit of millimeters (COVERAGE 1).

The integer type in CSX has a domain of both positive and negative integer
values. Since the size of the sheets and the number of sheets cannot be nega-
tive, the participants added constraints to the model to restrict the instances
(Figure 3.11, lines 2–4, between square brackets).

The participants noticed that user-defined types enable modeling on a level
of abstraction that corresponds to domain objects, which prevents having to
repeatedly model properties of an object such as a sheet separately (COVER-
AGE 2).

The participants observed that the equality between input and output (Fig-
ure 3.11, line 13) is in terms of stacks, not in terms of the individual properties
of stacks. Equality can thus be defined on a level of abstraction that cor-
responds to the objects modeled in CSX. This is in contrast to a low-level
constraint modeling language, in which one would need to define equality
with low-level constraints that compare each property of the stack individually
(COVERAGE 3).

Device. After having defined types that model uniform stacks, the participants
started to model the device. This started with identifying the locations in the
device where the stacks of sheets pass, typically just before and after the places
in the process where modifications are made to the sheets.

The first iteration only contained an input and output location, both of
type Stack (Figure 3.11). This is an oversimplification of the actual device:
the model does include the physical limitations of the device, but it does not
contain the different input trays, the stack cannot consist of different types of
sheet (non-uniformity), and stitching and the possibility to orientate the sheets
before and after stitching are not included.

The participants observed that the simplistic approach to modeling the
device in this first iteration also led to a simple CSX model (GO 5). In the
following iterations, as the level of detail in the models increased, additional
locations were added by the participants such that more intermediate snapshots
of the stacks could be considered in the model.

The participants observed that the stack of sheets at the input location of
the device could be interpreted in two ways: they represent the total number
of sheets that are in the input trays, or they represent the sheets in the input
trays that will be used in the configuration for a single product. Alternatively,
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the configuration could also be used for multiple products in one job. In this
model, the participants modeled the configuration space for single products.
Therefore, the input of the device in the model represents the sheets of paper
for a single job; there could be more paper in the physical tray.

The participants noticed that in the design process, they did not use actions
(see Section 3.2.3) yet to factor out common pieces of behavior, but modeled
everything directly in a device. CSX supports actions for building a library of
printing behavior that can be shared between many device models, but they
were not used in the study (GO 6).

Inherent to the setup of the study, devices were modeled in separate CSX
files. The incremental approach in the study has led to the insight that an
import mechanism – which would allow re-use of, e.g., type definitions and
actions between files – would be beneficial (GO 7).

Physical Limitations. The participants added physical limitations of the device
in the first iteration (Figure 3.11, lines 10–11). The constraints in square brackets
express the device’s physical limitations with respect to the minimum and
maximum size of sheets that it can handle. In this iteration, no maximum on
the number of sheets was modeled. Note that the constant values that indicate
the minimum and maximum width and height are integer values that represent
a dimension for the precision chosen in this model. For example, the constraint
input.width <= 4500 indicates that the maximum width is 450mm.

Validation. Having a first simple model of the device, the participants wrote
two tests to validate the physical constraints (Figure 3.11, lines 18–31). The
first test checks that for a given input that is accepted within the physical
constraints, the output contains the same stack. The second test checks that
for an input that is too small, no configuration can be found (indicated with
fails).

Also in the other iterations, the participants used tests to validate the behav-
ior of the models. The tests evaluate after having changed the file, resulting
in an interactive development experience. The domain expert observed that
the modeling approach – in think-aloud co-design sessions, with interactive
validation using the tests – works well and stimulates experimentation. In
particular, the domain expert noticed that the development and validation loop
is quick (GO 8); updating the model and testing results into feedback within
seconds.

The participants found it useful that CSX reports solutions found by solvers
in terms of the CSX model instead of the generated constraint model. When
inspecting a solution found by the solver, it is hard to map those to config-
urations of the device. Especially when lists are used, which are modeled
with an array per property, it is difficult to understand which low-level values
correspond to those of the CSX model. The participants observed that CSX is
at a high level of abstraction when interpreting and presenting configurations
(e.g., in tests): the configuration is reported in terms of the user-defined types
and parameters, not in terms of low-level values (GO 9).

The participants observed that the modeling of objects in tests is still at
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1 type Sheet {
2 width: int, [width > 0],
3 height: int, [height > 0]
4 }
5
6 type Stack {
7 sheets: list<Sheet>
8 }
9

10 device PaperInputModule {
11 location input: Stack
12
13 [input.sheets.forall {
14 sheet => sheet.width ≤ 4500 and sheet.height ≤ 3200}
15 ] // Max size
16 [input.sheets.forall {
17 sheet => sheet.width ≥ 1200 and sheet.height ≥ 1500}
18 ] // Min size
19
20 [output == input]
21
22 location output: Stack
23 }

Figure 3.12: The CSX model resulting from iteration 2 which includes the
aspect of non-uniform stacks of sheets. The physical limitations of the device
are expressed using a forall expression on the list of sheets in the input stack.

a low level of abstraction (COVERAGE 4). For example, to specify an input
sheet object, one needs to specify each property of the sheet with individual
constraints. Figure 3.18a depicts this: the test contains a config instance per
property of the sheet that is relevant for the test. In this case, the thickness of
the sheet is not relevant to the test and is thus omitted.

Non-uniform stacks of sheets. In iteration 2 (Figure 3.12), the participants aimed
to increase the level of detail of the model by allowing stacks to be non-uniform.
To do so, the participants refactored the model to use CSX’s list construct for
stacks of sheets (line 7). This enables to model non-uniform stacks, i.e., the
sheets in the stack can have different properties (COVERAGE 5). Since lists
can have a variable size, the stacks can have a variable number of sheets. The
participants noticed that a limitation of CSX is that although the upper bound
is configurable, all lists get the same upper bound (GO 10).

Input trays. In iteration 3 (Figure 3.13), the participants first attempted to
model input trays by combining the uniform stacks and non-uniform stacks.
There are two input tray locations of type UniformStack. The case focuses on
forming a non-uniform stack of sheets from the two input trays of uniform
stacks of sheets. The idea behind the approach was as follows: the output
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1 type Sheet {
2 width: int, [width > 0],
3 height: int, [height > 0]
4 }
5 type UniformStack {
6 width: int, [width > 0],
7 height: int, [height > 0],
8 sheets: int, [sheets ≥ 0]
9 }

10 device PaperInputModule {
11 location tray1: UniformStack
12 location tray2: UniformStack
13 [size(output) == tray1.sheets + tray2.sheets]
14 [sum(output.map { sheet =>
15 if (
16 sheet.width == tray1.width and
17 sheet.height == tray1.height
18 )
19 1
20 else
21 0
22 }) ≥ tray1.sheets]
23 [sum(output.map { sheet =>
24 if (sheet.width == tray2.width and sheet.height == tray2.height)
25 1
26 else
27 0
28 }) ≥ tray2.sheets]
29 // A count function could make above more expressive
30 /*
31 [count(input, { sheet =>
32 sheet.width == tray1.width and
33 sheet.height == tray1.height
34 } >= tray1.sheets)]
35 [count(output, { sheet =>
36 sheet.width == tray2.width and
37 sheet.height == tray2.height
38 } >= tray2.sheets)]
39 */
40 location output: list<Sheet>
41 }

Figure 3.13: The CSX model resulting from iteration 3; the first attempt at
modeling the input trays. In comments, it depicts how a count operator (which
is not yet in CSX) could improve expressiveness. Note that this approach
is incorrect for the case where the sheets in tray 1 and tray 2 are equal.
Counterexample: both tray 1 and tray 2 contain one sheet with width 1, height
1, weight 1. The output stack could contain a sheet with width 1, height 1,
weight 1 and a random second sheet, and still meet the constraints.

Chapter 3. CSX 2.0 71



653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers
Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024 PDF page: 86PDF page: 86PDF page: 86PDF page: 86

1 type UniformStack {
2 sheet: Sheet,
3 count: int, [count ≥ 0]
4 }
5
6 enum Tray { A B }
7
8 type Sheet {
9 width: int,

10 height: int,
11 isPortrait = height ≥ width
12 }
13
14 type Stack {
15 sheets: list<Sheet>,
16 stitches: list<Stitch>
17 }
18
19 type Stitch {
20 e: edge,
21 direction: Direction
22 }
23
24 enum Direction { Upwards Downwards }

Figure 3.14: The type definitions accompanying the final CSX model (Fig-
ure 3.15).

stack should contain the sheets defined in tray 1 and those in tray 2, in any
order. The counting is modeled by combining a map to a list of zeros and ones
and then a sum. A count operator would help to express this (see commented
part in Figure 3.13).

While modeling the input trays of the device, the participants noticed that
the modeling of a non-uniform stack that contains sheets from two uniform
stacks was challenging. In fact, the initial attempt was incorrect. In general,
the handling of grouping and ordering of sheets and stacks remains difficult;
the CSX user needs to incorporate several constraints that, e.g., enforce the
total number of sheets to be correct (COVERAGE 6).

In iteration 6, the participants re-modeled the tray assignment. This approach
was also included in the final model (Figure 3.15). In this new approach, the
participants included an enum with values for each sheet and added a list
that indicates the tray assignments for each sheet. By doing so, each sheet
is actually from one of the trays – if a sheet gets tray A assigned, its value
in the stack must be equal to the sheet defining the uniform stack in tray A.
Additionally, the number of assignments per sheet is counted and compared
to the number of sheets in the uniform stacks of the trays. This ensures that
the total number of sheets adds up. The participants observed that this was
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1 device PaperInputModuleAndStitcher {
2 location entryA: UniformStack
3 [entryA.sheet.width ≤ entryA.sheet.height]
4 location entryB: UniformStack
5 [entryB.sheet.width ≤ entryB.sheet.height]
6
7 parameter oA: orientation [oA == rot0 or oA == rot90]
8 parameter oB: orientation [oB == rot0 or oB == rot90]
9

10 [oA == rot0 implies entryA.sheet.width == trayA.sheet.width and
entryA.sheet.height == trayA.sheet.height]

11 [oA == rot90 implies entryA.sheet.width == trayA.sheet.height and
entryA.sheet.height == trayA.sheet.width ]

12 [oB == rot0 implies entryB.sheet.width == trayB.sheet.width and
entryB.sheet.height == trayB.sheet.height]

13 [oB == rot90 implies entryB.sheet.width == trayB.sheet.height and
entryB.sheet.height == trayB.sheet.width ]

14
15 location trayA: UniformStack
16 location trayB: UniformStack
17
18 [entryA.count == trayA.count]
19 [entryB.count == trayB.count]
20 [trayA.count ≥ trayB.count]
21
22 location assignment : list<Tray> [size(assignment) == size(input)]
23 location input: list<Sheet> [size(input) == trayA.count + trayB.count]
24
25 [input.forall { sheet =>
26 if (sheet == trayA.sheet)
27 assignment[index] == A
28 else
29 (sheet == trayB.sheet and assignment[index] == B)
30 }]
31
32 var xA: list<int> var xB: list<int>
33
34 [size(xA) == size(assignment) and assignment.forall { x =>
35 xA[ index ] == (if (x == A) 1 else 0)
36 }]
37 [sum(xA) == trayA.count]
38
39 [size(xB) == size(assignment) and assignment.forall { x =>
40 xB[ index ] == (if (x == B) 1 else 0)
41 }]
42 [sum(xB) == trayB.count]

Figure 3.15: The final CSX model resulting from the co-design sessions (con-
tinued on next page). It integrates the key aspects of iteration 6 (properly
modeling the input trays) and iteration 5 (edge stitching and orientations).
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1 // Max size
2 [input.forall { sheet => sheet.width ≤ 4500 and sheet.height ≤ 3300}]
3 // Min size
4 [input.forall { sheet => sheet.width ≥ 1200 and sheet.height ≥ 1500}]
5
6 [size(input) ≤ 50] // Max number of sheets that can be stitched
7
8 [input.forall { sheet => sheet.height == first(input).height }]
9

10 [gathered.sheets == reverse(input)] // Gathering a sequence of sheets
will have the first sheet at the bottom of the stack

11
12 location gathered: Stack [size(gathered.stitches) == 0]

[output.sheets == gathered.sheets]
13
14 [size(output.stitches) == 0 or size(output.stitches) == 2]
15 [output.stitches.forall { stitch => stitch.e == right and

stitch.direction == Upwards }]
16
17 location output: Stack
18
19 parameter o2: orientation [o2 == rot0 or o2 == rot90]
20 [(o2 == rot0) implies output.sheets.forall {
21 sheet => sheet.width == reader.sheets[index].width and sheet.height

== reader.sheets[index].height
22 }]
23 [(o2 == rot90) implies output.sheets.forall {
24 sheet => sheet.width == reader.sheets[index].height and

sheet.height == reader.sheets[index].width
25 }]
26 [reader.stitches.forall { stitch => output.stitches[index].e ==

orientate(stitch.e, o2) }]
27 [output.stitches.forall { stitch => stitch.direction ==

reader.stitches[index].direction }]
28
29 [size(output.stitches) == size(reader.stitches)] [size(output.sheets)

== size(reader.sheets)]
30
31 location reader: Stack
32 }

Figure 3.15: The final CSX model resulting from the co-design sessions (contin-
ued).
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challenging to implement due to the constraint-based paradigm of CSX, as it
failed on the first attempt and required additional data structures and extensive
testing to get right (GO 11).

Sheets must have equal height. In iteration 4, the participants included the
constraint that all sheets must have the same height, which was also included
in the final model (Figure 3.15, line 36). This captures a physical limitation of
the device. The participants modeled this limitation using a forall that enforces
all heights of the sheets to equal the height of the first sheet.

Edge Stitching. In iteration 5, the participants included the stitching capabil-
ities of the device, which was also included in the final model (Figure 3.15).
Again, for modeling the stitches, the first question that came to mind for the
participants was which level of detail to include. The participants started with
modeling stitches with an edge and a direction (Figure 3.14, lines 20–21). The
e property has type edge, i.e., one of the geometrical constructs introduced in
this chapter. A stitch can be applied in the upward or downward direction,
which is modeled using an enum.

The model for the device could include the actual positions on which the
stitches are applied on the sheets. In this model, we did not include the
positions of stitches. The participants observed here that devices with similar
features (in our case: stitching) can require different models (stitches with or
without positions) (GO 12).

The device can apply multiple stitches to the stack of sheets, and therefore
the participants used a list of stitches to model this. In addition to the usage
of lists for modeling non-uniform stacks of sheets, the list construct in CSX is
useful for coverage of a variable number of stitches (COVERAGE 7).

The participants observed that both an edge and direction are geometrical
constructs, but only the edge is provided first-class by CSX. Initially, the
difference seems little. However, in iteration 5 the participants noticed that the
support of edges in CSX is useful when applying orientations to the sheets with
stitches. In this device, transformations of only 0 and 90 degrees are possible,
which will not influence the direction of stitches. Therefore, this mode would
not benefit from first-class support for directions such that they can also be
transformed easily. However, in devices that can apply transformations that
include flipping a stack of sheets with stitches, it would be useful if directions
are supported first class with built-in transformations with orientations (CO-
VERAGE 8).

The participants noticed that geometrical constructs in CSX lift the level of
abstraction on the modeling of geometric properties and transformations in
CSX models. The geometrical constructs prevent the user from resorting to
low-level linear algebra or handling many individual cases (COVERAGE 9).
Additionally, simple properties and transformations such as the modeling of
an edge of a sheet become simple, e.g., when they need to be rotated. In CSX,
orientations (including simple rotations) are part of the language and can be
used to transform sheet sizes or edges. In our case, the participants used
orientations to model the freedom of orientating the sheets before and after
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stitching, and we used it to model the edge of the stack on which the stitching
occurs.

Orientations. In iteration 5, the participants modeled the aspect of orientations,
which was also included in the final model (Figure 3.15). The device has the
capability of orientating the stack of sheets before and after applying the
stitches. This is useful because then a stack of sheets that is too large to
be stitched in portrait orientation (lines 31–32) can be stitched in landscape
orientation but still be presented in portrait orientation to the reader.

The reader location in the model represents a virtual location in which the
operator picks up the product and inspects it. In the printing domain, it is
common to include the reading in the model, because it enables us to reason
about whether the end product conforms to the intent of the operator. For
example, on the reader location, we could express the intent of a landscape-
orientated product with stitches on the left edge.

The capability of our device to orientate the stack of sheets has interaction
with the geometrical constructs such as the edge on which a stitch is applied.
The edge construct in CSX — including built-in transformations with orien-
tations — makes it easy to express the transformation of an edge on a sheet
(Figure 3.15, line 55). However, the participants noticed that such transforma-
tions on sizes are not built into CSX (Figure 3.15, lines 48–53). For example,
when rotating a sheet by 90 degrees, the width and height are swapped. Al-
though we can still express this in CSX with low-level modeling, CSX models
would benefit from also having transformations of sizes expressed similar to
edges (COVERAGE 10).

Conclusions. We conclude our outcomes by summarizing the positive and
negative observations regarding the domain coverage of CSX:

Positive observations:

• User-defined types enable modeling on a level of abstraction that corre-
sponds to domain objects, which prevents having to repeatedly model
properties of an object separately (COVERAGE 2). Similarly, equality can
be defined in terms of user-defined types and does not require comparing
individual properties (COVERAGE 3).

• The list construct in CSX contributes to covering the printing domain by
enabling to properly model non-uniform stacks of sheets (COVERAGE 5)
or a variable number of stitches (COVERAGE 7).

Negative observations:

• CSX does not cover precision and units: the modeler needs to choose a
precision, and configurations that are found need to be interpreted under
the chosen precision (COVERAGE 1).
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• Object terms, e.g., in tests, cannot be specified in terms of the domain,
and need to be specified using low-level properties (COVERAGE 4).

• Handling grouping and ordering of sheets and stacks is not specifically
covered in CSX and thus remains cumbersome to model (COVERAGE 6).

• The set of geometrical constructs in CSX is not complete and should
be extended with directions (COVERAGE 8) and sizes (COVERAGE 10),
because currently they require low-level modeling (COVERAGE 9).

3.4.2 Configuration Accuracy

Study setup. To validate the accuracy of the CSX implementation, we test
our implementation for correctness and completeness. For correctness, we test
that the configurations that are found for a device correspond to the device’s
limitations. This ensures that there are no false positives. For completeness,
we test that there are no configurations that are not found but that are possible
in a device. This ensures that there are no false negatives.

To validate correctness and completeness, we test using artificial CSX models
for which we manually determine whether a configuration should or should
not be found. In particular, we test the CSX language transformations and con-
figuration space exploration. We approach testing systematically by covering
all features of the language at least once in each language aspect (syntax, static
semantics, desugaring, transformation to MiniZinc, integration with MiniZinc
solvers, and interpreting MiniZinc solutions).

In addition to the systematic coverage of all language features in the tests,
we add tests for specific cases of features that interact with each other. Because
testing all feature interactions would be very time-consuming, we test a subset
of feature interactions. For example, the use of lists of edges in CSX involves
a feature interaction between the specific way of translating lists to MiniZinc
and that of translating edges to MiniZinc, and therefore is tested separately.

Results. Our testing has resulted in 232 handwritten unit and integration
tests, which all pass and with that build confidence in the accuracy of the CSX
implementation by covering all features at least once, and a subset of feature
interactions, for correctness and completeness (CORRECTNESS 1).

Although the test suite covers a subset of the feature interactions of the
CSX implementation, still there can be untested interactions between features
that are not correctly handled by the implementation. While performing the
coverage study, the participants exposed two bugs that were related to feature
interactions. One of these bugs concerned the use of a list of a user-defined
type in which a nested property was of an enum type. Although lists of
user-defined types and lists of enums were tested, this particular case was not
tested and required the handling of an edge case in the translation to Minizinc.

Although we made a best effort to test accuracy also for feature interactions,
based on the current test suite we cannot guarantee accuracy of all feature
interactions (CORRECTNESS 2). In practice, specific interactions of features
could lead to incorrect behavior or runtime failures.
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Table 3.3: Scenarios of configuration space exploration for the final model
of the coverage study (Figure 3.15) that we use for benchmarking. The Di
scenarios derive a configuration. The Oj scenarios find an optimal configuration
by either minimizing or maximizing an objective. All scenarios use 10 as the
upper bound on list sizes.

ID Description
D1 Output landscape A3 with right edge stitch
D2 Output portrait A3 with stitches (which then need to be on the top

edge)
D3 Portrait A3 with stitch on right edge (which is not possible)
O1 Derive smallest portrait size with right edge stitch
O2 Derive smallest landscape size with right edge stitch
O3 Derive smallest portrait size with top edge stitch
O4 Derive smallest landscape size with top edge stitch
O5 Derive largest portrait size with right edge stitch
O6 Derive largest landscape size with right edge stitch
O7 Derive largest portrait size with top edge stitch
O8 Derive largest landscape size with top edge stitch

Conclusions. We conclude the following on the correctness of CSX 2.0:

A set of 232 unit tests generate confidence that all features, and a subset of
feature interactions, in CSX contribute to configuration space exploration
that is correct and complete (CORRECTNESS 1), but we cannot guarantee
correctness and completeness for all feature interactions (CORRECTNESS 2).

3.4.3 Configuration Performance

Study setup. We consider the configuration space exploration performance to
be practical when the complete pipeline of parsing, analyzing, and translating
models into MiniZinc, finding a solution for the MiniZinc model, and transla-
tion back to CSX occurs in the order of seconds. This threshold is considered
acceptable by Canon Production Printing’s control software engineers for usage
in interactive scenarios. In such scenarios, an operator interacts with a device
by, e.g., describing an intent for a print job; getting feedback regarding the
feasibility of this intent should not take longer than seconds in such cases.

Although the performance of constraint solving is hard to predict in general,
we conduct experiments to get an idea of the typical response times for typical
configuration scenarios at Canon Production Printing. In particular, we take
the final model of the domain coverage study and we define realistic scenarios
of configuration space exploration for it. Table 3.3 lists the scenarios that we
consider, which includes three scenarios that derive a configuration (including
one for which no configuration can be found) and eight scenarios that find
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an optimal solution. All scenarios use an upper bound on lists of 10 and all
consider an output stack with five sheets.

We perform benchmarks to measure the performance for the different sce-
narios. Initial experiments and measurements have shown that the time spent
on parsing, name binding, type checking, and translating solutions back to
configurations is neglectable (<10ms), Therefore, in the benchmarks, we only
measure the time of translating a model and scenario to constraints and the
actual solving time. We set a timeout of 10 seconds on the benchmarks (the
upper bound of the order of seconds).

To get an impression of the impact of list sizes on performance, we repeatedly
benchmark the first scenario for multiple list upper bounds. For that, we alter
scenario D1 such that the output stack size that is considered is half of the
upper bound on lists. This ensures that the lists in the MiniZinc solution both
have relevant values (that are considered in the configuration) and framed
values (which are ignored). For example, for the test with an upper bound of
list sizes of 300, the scenario considers an output stack of 150 sheets. For these
benchmarks, we do not set a timeout.

We use the JMH framework1 to implement the benchmarks, which is a
framework for benchmarks in Java. Spoofax offers a core library that allows us
to integrate the relevant components of CSX in the benchmark such that we
can measure the translation time and solving time separately. We executed the
benchmarks on a laptop with a quad-core processor with a base frequency of
3.1GHz and 16GB RAM, running macOS 12.4 and using Java version 1.8.0_-
275. Furthermore, we used version 2.6.4 of MiniZinc with two common
solvers [41]: Gecode2 and ORTools3. For each scenario, we first run 10 warmup
iterations, then run 10 measurement iterations, and we report the average of
the measurement iterations. We only report the results of the best-performing
solvers, based on the least timeouts.

Results. The Gecode solver completed the benchmarks with the least timeouts,
and therefore we only report the Gecode benchmark results. Figure 3.16
depicts the benchmarking results for the Gecode solver for all scenarios. The
results show that most of the scenarios succeed within one second, and thus
stay within the order of seconds time limit (PERFORMANCE 1). Two of the
optimization scenarios (D4 and D8) — although they seem comparable to
the other optimization scenarios — timed out (PERFORMANCE 2). For all
scenarios, the translation times are higher than the solving times. The ORTools
solver on average performed better on the derivation scenarios, but it timed
out on all optimization scenarios.

Figure 3.17 depicts the benchmarking results for increasing the list upper
bounds on scenario D1. The results indicate that increasing the list’s upper
bounds negatively impacts performance (PERFORMANCE 3). This is expected,
as increasing the list’s upper bound increases the solution space in which
solvers need to find a solution. It is unclear yet for which cases in practice this

1https://openjdk.java.net/projects/code-tools/jmh/
2https://www.gecode.org
3https://developers.google.com/optimization
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Figure 3.16: Benchmarking results for the Gecode solver for the scenarios from
Figure 3.3. The bars show the translation and solving time separately. Times
are reported in milliseconds. The tests D4 and D8 timed out and therefore are
not included in the figure.

could become problematic.

Conclusions. We conclude the following on the performance of CSX 2.0:

For several scenarios of configuration space exploration on a model of a de-
vice at Canon Production Printing, the performance is in the order of seconds
and thus acceptable for interactive configuration space exploration (PERFOR-
MANCE 1). However, performance is unpredictable, because for seemingly
similar scenarios the solving can also time out (PERFORMANCE 2). Increas-
ing the upper bound on list sizes increases the solution space and negatively
impacts performance (PERFORMANCE 3).

3.4.4 Relevance

Study Setup. To evaluate the relevance of CSX 2.0, we gather anecdotal evi-
dence by interviewing the domain expert and by considering general observa-
tions from the coverage study (Section 3.4.1). In particular, for the relevance
of CSX 2.0 for developing control software for printing systems, we consider
sufficiency and necessity:

Sufficiency (CSX vs. pre-CSX). Is it sufficient to use CSX 2.0 to realize auto-
matic configuration space exploration, resulting in an improvement over the
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Figure 3.17: Benchmarking results for the Gecode solver for scenario D1 with
list upper bounds varying from 100 to 1000 in which the output stack size is
half of the upper bound on lists.

pre-CSX situation?

Necessity (CSX vs. MiniZinc). Is it necessary to use CSX 2.0 instead of di-
rectly modeling printing systems in a generic constraint modeling language
such as MiniZinc?

Sufficiency. To compare CSX with the pre-CSX situation, we look at the fea-
tures that CSX introduces and the potential impact of CSX on the development
process.

The domain expert mentions that the biggest strength of CSX is that based on
a model, a solution space is derived automatically and (optimal) configurations
can be found automatically (RELEVANCE 1). The domain expert characterizes
this as leveling up automation. This was the main objective when starting the
development of CSX. In that respect, CSX is an improvement over the pre-CSX
situation.

In the pre-CSX situation, device operators do trial and error to find a
configuration and are minimally assisted by the control software. CSX’s
ability to realize and automate configuration space exploration is the biggest
advantage over the pre-CSX situation (RELEVANCE 2). For example, taking the
example of the edge stitching case, deriving automatically what the maximum
end size is that can be stitched left is something that is possible with CSX but
which was not possible with pre-CSX.

The domain expert reports that a key change in CSX with respect to pre-CSX
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is the language’s declarative nature. With CSX, modeling the printing system
only concerns thinking about the characteristics of devices, and not about how
to compute or find configurations for the devices. Given a CSX model, the
configuration space exploration becomes an independent concern that can be
fully automated (RELEVANCE 3).

In the pre-CSX situation, control software engineers develop heuristics to
automatically find (partial) configurations in order to improve the usability of
the devices. Typically, the heuristics cover many individual cases by branching
on particular input and parameter values, resulting in large decision tables.
Those decision tables typically do not cover the full configuration space and
are not composable. Therefore, the heuristics are for single devices, hindering
reusability and maintainability. With CSX, no algorithms need to be developed
for realizing the configuration space exploration, limiting the repeating work
when modeling new devices (RELEVANCE 4).

The domain expert mentions that the development time of control software
for printing systems could be greatly reduced if CSX were deployed in prac-
tice (RELEVANCE 5). The domain expert estimates the currently required
development time required for integrating a device similar to the one in our
coverage study to be four to eight man-weeks. This development time can be
reduced because repeating work for new devices is decreased with CSX. The
interactive testing facilities of CSX allow modelers to validate parts of their
models already in the IDE (GO 8), decreasing the time-costly dependency on
physical hardware for validation.

Without claiming to make a fair comparison, we have asked the domain
expert to make an estimation of lines of C# code in the pre-CSX situation
that would cover the same concerns for a similar case as in our coverage
study. The estimation was in the order of thousands of lines of code. Our CSX
model consists of less than hundreds of lines of code. Thereby, the estimation
indicates that the lines of code involved in modeling a device can be reduced
by an order of magnitude.

Necessity. Although CSX could be beneficial with respect to the pre-CSX
situation, the question remains whether it is worth it to develop a new language
instead of using a generic constraint modeling language such as MiniZinc.

The domain expert reports that using a generic constraint modeling language
for modeling printing systems could already give benefits. One could write
a constraint model that represents a configuration space, and have solvers
find solutions that correspond to configurations. However, a problem with
this approach is that domain-specific aspects in print systems need to be
modeled repeatedly in low-level constraints, as they are not available in the
language. MiniZinc does support constructs that facilitate reuse such as
functions. Recently, MiniZinc also added support for record types. Still,
MiniZinc lacks domain-specific support for, e.g., device and action modeling.
The domain expert thinks that support for domain-specific aspects in the
modeling language is required to make modeling using the language feasible
in practice (RELEVANCE 6).

The domain expert also mentions the level of abstraction as a key char-
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acteristic that makes CSX more realistic to use in practice than MiniZinc
(RELEVANCE 7). The domain expert reports that CSX is capable of abstracting
over the complexity of low-level constraint modeling, by offering high-level
language constructs.

In addition to the domain-specificity and level of abstraction of CSX, the
domain expert mentions the benefits of the CSX IDE (RELEVANCE 8). For
example, the CSX IDE provides inhabitance checking and test feedback. These
features are interactive which speeds up the development process. Also, the
configurations found in tests are reported while hovering over a test with your
mouse, making it accessible to inspect configurations.

Conclusions. We conclude the following on the relevance of CSX 2.0:

• CSX is relevant because it realizes configuration space exploration (RE-
LEVANCE 2) that is automatic (RELEVANCE 1) by only modeling device
characteristics (RELEVANCE 3) and without requiring repeating develop-
ment of algorithms for new devices (RELEVANCE 4).

• CSX is relevant because it has the potential to increase control software de-
velopment productivity by greatly reducing development and validation
time (RELEVANCE 5).

• CSX is relevant because, in contrast to a generic constraint modeling such
as MiniZinc, the language includes constructs specific to the printing
domain (RELEVANCE 6) which are on a higher level of abstraction (RE-
LEVANCE 7), accompanied with an IDE with useful features such as
inhabitance checks and interactive testing (RELEVANCE 8).

3.5 Discussion

In this section, we discuss CSX’s language design, the implications of using
constraint-based programming, and CSX’s application in practice more broadly.
If relevant, we refer to observations of the coverage study.

3.5.1 Language Design

We discuss the implications of CSX’s language design decisions and we discuss
ideas for improving the language design.

User-Defined Types. When modeling with CSX, the level of detail that is
included is an important design question. For example, when modeling the
stitches that get stitched in a stack of sheets, is it necessary to only model the
existence and number of stitches, or should the exact locations of the stitches
also be included? For some stitching devices, only the number of stitches
needs to be indicated and the device will position them automatically. For
other stitching devices, the exact position of the stitches needs to be configured.
Because CSX offers user-defined types to model objects, the modeler retains
flexibility in choosing what to include in the object representations.
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We consider that user-defined types should be used to model the objects of
printing and finishing devices as the most important language design decision
of CSX. It influences the modeling process in such a way that modeling starts
with types (GO 2) and that the modeler remains flexible by iteratively including
more detail in types (GO 3). We think that this characteristic of CSX is essential
in making sure that a simplistic approach to modeling a device also leads to a
simple model (GO 5), not polluted by irrelevant details.

Alternative to user-defined types, CSX could offer built-in constructs for
its objects (sheets, stacks, stitches, etc.). This would make the language more
domain-specific, but also less flexible, which is a typical tradeoff in language
design. Already for a simple device such as a stitcher, it would not be obvious
to use a single type definition for a stitch (as it could be necessary with and
without position information). Possibly, CSX could offer both built-in type and
user-defined types to be more domain-specific but also maintain flexibility.

From our evaluation, we cannot conclude whether the freedom in type
definitions is also effective when covering a larger and more diverse range of
printing systems. Although user-defined types give freedom in how printing
objects can be modeled, possibly specific for a particular device, the anticipated
reusability of type definitions could be hindered when a wider range of devices
are modeled.

Units & Precision. CSX 2.0 does not support units in the language. A modeler
is restricted to using integers and has to choose a precision, which also requires
manual interpretation of configurations for that precision (COVERAGE 1). We
could overcome the need for this manual interpretation by introducing units
in the type system of CSX, such that the values and their types reflect actual
measures. Potentially, this could be used to extend CSX such that a user can
experiment with varying precisions without having to update the complete
model.

Object Constructors. In Figure 3.18b we depict how the modeling of objects
could be improved in a next version of CSX. By introducing object constructors,
the test object can be specified in terms of user-defined types. If a property of
the object is not relevant, it can be ignored by using a wildcard, which means
the property could get any value. We expect extending CSX with support for
object constructors with wildcards to be relatively straightforward.

Sizes. In Figure 3.19, we compare modeling the transformation of sheet sizes
in CSX 2.0 (similar to in our evaluation case) with an alternative approach
in a hypothetical CSX 3.0. By extending the set of geometrical constructs in
CSX with sizes, size transformations can be modeled without having to model
independent cases. Additionally, by using object constructors, a map operator
can express a change over a list of items by conveniently modeling which
properties do and which do not change.

Lists. The list construct in CSX contributes to the coverage of CSX for the
printing domain (COVERAGE 5), as non-uniform stacks allow to include more
detail in the model. Realizing a variably sized non-uniform stack of sheets in
principle would be possible without the list construct, but it is cumbersome.
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1 type Sheet {
2 width: int,
3 heigth: int,
4 thickness: int
5 }
6 device MyDevice {
7 location in: Sheet
8 ...
9 }

10 test device MyDevice
11 config in.width = 210
12 config in.height = 297 {
13 ...
14 }

(a) CSX 2.0: individually specified
properties.

1 type Sheet {
2 width: int,
3 heigth: int,
4 thickness: int
5 }
6 device MyDevice {
7 location in: Sheet
8 ...
9 }

10 test device MyDevice
11 config in = Sheet(210, 297, _) {
12 ...
13
14 }

(b) Hypothetical CSX 3.0: an object term with
a wildcard.

Figure 3.18: The partial model of a sheet object in a test in CSX 2.0 and
hypothetical CSX 3.0.

Figure 3.20 demonstrates this.
Lists allow to incorporate properties such as paper type, color, and width in

the sheet model and accept stacks of sheets with variation in those properties.
Additionally, aspects such as a variable number of stitches can be modeled
properly with a list.

Note that stacks do not necessarily have to be modeled in a non-uniform
way. If it is clear for a model that a particular stack is uniform, it could be
better to model it as such. This is a more efficient representation, as it requires
the modeler to only needing to model the width and the height of the stack
once, instead of for each sheet in the stack separately. Also, if a uniform stack
would be split up into multiple stacks, the new stacks could still be considered
as uniform stacks.

CSX 2.0 supports a single point of configuration for list upper bounds
(GO 10). If it is known that a list will have a small maximum size, e.g., for a
device that can only stitch 6 stitches maximum, it would be a better and more
efficient model of the solution space if the instance of a specific list could get
its own upper bound. We expect extending CSX with upper bounds for lists
that are configurable per list instance to be relatively straightforward.

Reuse. In the coverage study, the participants did not yet make use of the
actions language construct (Section 3.2.3) (GO 6). We expect the reason for
this to be that actions are useful for factoring out common pieces of behavior
(for which they were intended), but that it only becomes useful when a wider
range of devices are modeled. To get a better understanding of the usefulness
of actions in capturing reusable parts of printing behavior, we need a study on
more devices. For a library of actions to be useful in practice, we think it is
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1 enum Color { White Red }
2 type Sheet {
3 width: int,
4 height: int,
5 color: Color
6 }
7 device Rotator {
8 location input: list<Sheet>
9 parameter o : orientation [o == rot0 or o == rot90]

10
11 [o == rot0 implies input.forall { sheet => sheet.width ==

output[index].width and sheet.height == output[index].height }]
12 [o == rot90 implies input.forall { sheet => sheet.width ==

output[index].height and sheet.height == output[index].width }]
13
14 [input.forall { sheet => sheet.color == output[index].color }]
15
16 location output: list<Sheet>
17 }

(a) CSX 2.0: low-level modeling of orientation the sizes of sheets. More cases such as
on line 12 and 13 would be needed if the device would support more orientations than
only 0 and 90 degrees. The color of sheets which is not changed by the rotation, are
mapped to the output (line 16).

1 enum Color { White Red }
2 type Sheet {
3 size: size,
4 color: Color
5 }
6 device Rotator {
7 location input: list<Sheet>
8 parameter o : orientation
9

10 [output == input.map {
11 sheet => Sheet(orientate(sheet.size, o), sheet.color)
12 }]
13
14 location output: list<Sheet>
15 }

(b) Hypothetical CSX 3.0 with two new features. First, by adding first-class support
for sizes, the orientate function can also be used for transforming sizes, removing
the need of manually writing out cases for each orientation. Second, by adding object
constructors, a single map operation can be used to express an effect on a list where
some properties do change (i.e., size) and some not (i.e., the color of sheets.)

Figure 3.19: Modeling the transformation of sheet sizes in CSX 2.0 (low-level)
and in hypothetical CSX 3.0 (high-level).
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1 type Sheet {
2 width: int, heigth: int
3 }
4 type Stack {
5 sheet1: Sheet,
6 sheet2: Sheet,
7 ...
8 sheet5: Sheet,
9 size: int,

10 [0 ≤ size and size ≤ 5]
11 }

(a) CSX 1.0: a sheet instance for each pos-
sible sheet in the stack, in which the vari-
able size indicates which sheets should
actually be considered in the tack.

1 type Sheet {
2 width: int, heigth: int
3 }
4 type Stack {
5 sheets: list<Sheet>
6 }
7
8
9

10
11

(b) CSX 2.0: using lists to represent a
non-uniform stack of sheets.

Figure 3.20: Example type definitions for modeling a non-uniform stack of
sheets in CSX 1.0 (with a workaround) and in CSX 2.0 (using the list con-
struct).

necessary that CSX also supports importing (GO 7). This would enable that
the library of actions can be defined separately and types and actions from the
library can be imported into specific device models.

Challenging Patterns. Although CSX offers various constructs that ease the
modeling of printing systems, we encountered several patterns that remained
difficult to model. Two examples are the input trays and the orientation of a
stack.

Modeling the input trays in the coverage study was considered challenging
by the study participants (GO 11). In Figure 3.15, the code for modeling input
trays is duplicated for trays a and b. Although this part could be factored out
in an action to become reusable, it still would require redundant modeling for
cases with more than two trays.

In the coverage study, the device was limited to rotating the stacks by 0 or
90 degrees. When the set of possible orientations is increased, the number of
orientations cases that need to be handled such as in Figure 3.15 (lines 48–53)
grows. Partially, this manual handling of orientations could be resolved by
supporting sizes (COVERAGE 10) and object constructors (see Figure 3.19).
However, when the orientations with flips are allowed, this is still not sufficient.
When a stack is flipped, the order of the sheets also becomes reversed.

To improve support for these patterns, CSX could be extended by adding
domain-specific constructs or generic expressive power. CSX could be extended
with additional abstraction mechanisms that support modeling common pat-
terns such as input trays or stack orientation. Alternatively, CSX could be
extended with generic abstraction mechanisms that facilitate the reuse of code.
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3.5.2 Constraint-Based Programming

Paradigm Shift. Although CSX is on a high level of abstraction, it still is a
constraint-based language. Constraint-based programming is typically not in
the skillset of an average control software engineer. Our domain expert, who
is an experienced object-oriented and functional programmer, but who had
no experience with constraint-based programming before we started working
on CSX, experienced a steep learning curve when starting with constraint
programming in either CSX or MiniZinc.

The domain expert reports that seemingly simple aspects require unintuitive
modeling in CSX. An example of this is the modeling of the tray assignment in
the case of the coverage study. Possibly, CSX could be extended with constructs
that abstract over unintuitive but common modeling patterns. Still, CSX would
remain a constraint-based language, which involves a paradigm not familiar
to programmers working with object-oriented or functional programming
languages, and we consider this as a critical risk for its applicability in practice.

Another characteristic of constraint-based programming in CSX is that also
properties that do not change between locations have to be defined as equal in
both locations. This is counterintuitive for a programmer used to functional
programming, as you do not need to specify things that do not change in
functional programming. In constraint-based programming, we could see
the need for specification of things that do not change as modeling overhead.
Possibly, CSX could be extended with constructs that ease the modeling of
non-changing properties.

The domain expert reports that interactive tests and the possibility to easily
inspect configurations for debugging help in overcoming unintuitive modeling
tasks. In the case of an unexpectedly failing test, the user can easily inspect
the found configuration under which the test fails. Also, if the test contains
multiple assertions, the IDE indicates which of the assertions fails for the found
configuration.

Level of Detail and Solving Performance. In theory, one could go as far as
modeling a sheet of paper as a set of atoms. In practice, that would not be
feasible with respect to solving performance, and it also does not have practical
utility. In our work, the question remains what the actual level of detail in a
model needs to be. In general, modeling with CSX involves a tradeoff between
including more detail on the one hand and improving performance on the
other hand. Based on our current experiences, we cannot yet conclude if CSX
would have performance that is good enough for integration in UIs for all
printing devices.

Currently, we have only evaluated CSX with two common solvers using
the default settings and default search strategy. Possibly, specific settings
or search strategies can improve solving performance for MiniZinc models
that correspond to CSX models. Also, our performance evaluation shows
that for the reported cases, the translation time was higher than the solving
time. Since we have not performed any performance engineering at all on
the transformation implementations, possibly the translation times can be
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improved as well.
Although in our evaluation we have focussed on performance for interactive

usage scenarios which have a strong demand on performance, longer solving
times could be permitted in other scenarios. For example, once it is confirmed
that an operator’s intent can be realized, it would be acceptable to wait longer
to find an optimal configuration for the intent that, e.g., minimizes paper waste.
In particular, a longer waiting time is acceptable for large-volume jobs, e.g.,
printing hundreds of books. In general, there is a balance between solving
time and job volume and execution time; the larger the job, the more solving
time can be permitted upfront.

It could occur that for a realistic model, the solving performance is not
sufficient for usage in interactive scenarios. In such cases, the model would
possibly still be useful for the validation of devices, as orders of magnitude
slower performance are still acceptable if it can be used to derive edge cases
in the configuration space for physical validation of the device. Alternatively,
the level of detail in the model could be reduced such that it can be used for
coarse-grained configuration space exploration.

CSX 2.0 currently only supports integers for modeling dimensions, not
floating point or real numbers. Although MiniZinc does support solvers that
support floating point numbers, early experiments indicated that performance
quickly drops when using them. Therefore, we have not further explored the
use of floating point numbers for modeling in CSX.

Currently, we have used SMT constraint solvers for all our experiments. For
many devices, general solvers were necessary because the configuration spaces
correspond to problem spaces that include a mix of linear, satisfiability, and
logical constraints. In practice, we could encounter printing devices for which
the configuration space corresponds to a more restricted set of problems, e.g.,
linear problems. In such cases, we could employ more specific solvers, e.g.,
linear solvers, to improve solving performance for these specific devices.

Browsing Configurations. CSX is currently limited to presenting a single con-
figuration, although multiple configurations could be possible for a scenario.
Potentially, it could be useful to visualize the space of configurations that are
found such that an operator can get insight in what flexibility in configuration
remains for a scenario.

Although CSX does support optimizing for a given objective, in practice an
operator might be interested in choosing between multiple objectives. Possibly,
existing multi-objective optimization approaches could be ported to CSX and a
user interface to assist operators in choosing between multiple objectives, e.g.,
to answer questions such as “If I can afford to waste some more paper, how
much productivity gain does that offer me?”.

Traceability. The current version of CSX only reports a single configuration
for a requested (partial) configuration or job specification, or it reports that
no configuration is possible for a job. If no configuration can be found, there
is no further indication of why no configuration can be found. In practice,
this would hinder the usability of the system for operators. Possibly, existing
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approaches for identifying minimal unsatisfiable sets [56] could help in tackling
this. Then, characterizations of minimal unsatisfiable sets should be mapped
from the constraint level back to the CSX level to make them understandable
for operators.

3.5.3 Application in Practice

We discuss aspects related to CSX’s applicability in practice at Canon Produc-
tion Printing.

Integration with Control Software and UI. CSX currently solves the problem of
modeling devices and realizing automated configuration space exploration,
but requires the realization of more of the components in the architecture of
Figure 3.6 for application in practice. Realizing these components requires a
substantial investment, but the potential software engineering productivity
gains and added functionalities can compensate for that investment. The two
most important components that currently are missing are the integration
with a user interface and code generation for instructing low-level embedded
software.

Although we have realized configuration space exploration for realistic cases
and useful scenarios, the scenarios still need to be described in a rather low-
level format (in CSX itself). For CSX to be applicable in devices, there should
be an integration with a user interface targeted at end users (print system
operators). Such an interface is typically visual in which the user can specify a
partial configuration and get feedback on it, rather than describing it in text
in an IDE. To use CSX for finding validation scenarios, the existing IDE can
already be used by control software engineers.

CSX aims to realize configuration space exploration that is automatic and
to have an effective and scalable method for integrating a large range of
finishing devices. The integration of a device comprises more than just the
modeling of the configuration space. Infrastructure is needed to — for a given
configuration — instruct low-level embedded software components to operate
under a configuration. The pre-CSX software already tackles this concern
and thus CSX can become a layer on top of pre-CSX, generating the low-level
control software components.

If CSX would be integrated in production control software, this adds de-
pendencies on external software components. Spoofax would not be required
to include in the control software, as Spoofax can generate language artifacts
for compiling CSX models and integrate those with solvers, and only those
artifacts need to be added. A solver does need to be integrated into the control
software, as it is required for configuration space exploration.

Learning Curve. To successfully apply CSX at Canon Production Printing, the
company would need to train developers to work with CSX. In particular, con-
trol software engineers need to be introduced to constraint-based programming
and then to CSX in particular.

Language Engineering. Using a DSL to develop software in a company in-
troduces a dependency on language engineering. In our work, the use of
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a language workbench has done much of the “heavy lifting”; Spoofax pro-
vided and automated a large part of the language infrastructure for free, by
generating parsers, compilers, and an IDE from language specifications.

Still, experience with language engineering — and in our case with Spoofax
in particular — is required to understand, maintain, or evolve the language
implementation. Since there are few programmers with such experience avail-
able, and because there is a significant learning curve in language engineering,
there is a risk of using a DSL without having the resources to maintain the
language. However, although the introduction of language engineering in
control software development adds external dependencies and new skills to be
learned, it has the potential to outweigh those drawbacks with the productivity
gains and complexity reductions that the approach realizes.

Besides the dependency on language engineering as a skill, our implemen-
tation of CSX in Spoofax also imposes a dependency on the Spoofax tool.
Although we found that Spoofax was effective for the implementation of CSX,
we think other state-of-the-art language workbenches [7, 57, 8] could be used
as well. If another tool for language development becomes preferred, the CSX
language implementation could be ported. CSX has textual syntax, which
eases the migration to another tool as the grammar can be ported, and existing
CSX models can be maintained. With visual syntax or projectional editing this
migration could be less straightforward.

The CSX implementation uses MiniZinc as the target language for expressing
constraint models and interfacing with constraint solvers. Because MiniZinc
is a solver-independent language and supports multiple solvers, there is no
dependency on one solver in particular. Although we found MiniZinc an
effective target language for generating constraint models, we think that CSX
could also be realized with alternative languages for expressing constraint
models and interfacing with solvers.

Domain Specificity. Although we have designed CSX specifically for the prin-
ting domain, the language only has a few features that are specific to printing.
We could see CSX as consisting of three layers in which the bottom layer con-
tains standard constraint programming and only the top layer makes it specific
to printing. For example, in the top layer, CSX supports a restricted set of eight
orientations that are specific to printing and sheets. In the middle layer, CSX’s
device, action, and location concepts make the language potentially applicable
to a broader field of flexible manufacturing systems, i.e., manufacturing sys-
tems that have no predefined set of possible products to manufacture. We can
characterize such systems as follows. First, the manufacturing systems do not
just assemble input materials, but can also modify the materials. Second, the
modifications are not fixed but are configurable and thus span a configuration
space. Especially if it is challenging to find valid or optimal configurations,
then CSX could be useful. Because CSX allows to define types in the language
for modeling materials, it could cover manufacturing systems that handle other
materials than paper.
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3.5.4 Lessons Learned

We list our most important lessons learned on applying a constraint-based
DSL in an industrial context:

1. The Spoofax language workbench and the MiniZinc constraint modeling
language (and compatible solvers) took care of much of the “heavy lifting”
in realizing CSX. This enabled us to tackle complexity and improve func-
tionality in software engineering for a complex domain by allowing us to
mostly focus on the domain and language design.

2. A systematic approach to DSL evaluation is useful for communicating about
a DSL in an industrial context. Concrete evaluation criteria for the use of
a DSL help in the discussion to explain to people who have no experience
with DSLs to understand what is required for a DSL to be applied in
practice. Finally, the evaluation criteria guide decision-making regarding
the adoption of the technique.

3. Starting to use a DSL in practice has a big impact on the software engineer-
ing process with dependencies on external tooling and having language
engineering resources available for both language development and lan-
guage maintenance. Therefore, the benefits of adopting a DSL need to be
large to outweigh the corresponding investment.

4. The conceptual power of CSX is amplified by its IDE. The CSX IDE gives
helpful insight into the behavior of models by featuring interactive vali-
dation of tests and debugging through inspection of configurations. This
helped us to try out alternative language designs, leading to an iterative
language design process.

5. It is a crucial language design decision to have types being defined in a
language itself — instead of embedding a fixed set of domain objects in the
language — which enables flexibility in modeling by iteratively including
more detail in models. In CSX, this enabled experimenting with different
representations of objects from the printing domain without changing CSX
itself.

6. A high level of abstraction and domain-specific constructs such as in CSX
are necessary to make constraint-based modeling accessible. Still, switching
to the constraint-based programming paradigm can be challenging for
developers who have no experience with constraint programming or with
declarative programming at all.

3.5.5 Threats to Validity

The nature of our study raises threats to validity, which we discuss below.

External Validity. We have presented an experience report that focuses on a
particular industrial context, and therefore we do not claim that our findings
are generalizable. Still, we think the outcomes of our work can be useful to
others working in an industrial context where a domain-specific interface to
constraint solving is useful. Ultimately, we need to further apply CSX on a
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wider range of printing systems and with more engineers and domain experts
to get a better understanding of the effectiveness and scalability of the method.

We have described the protocol of our coverage study to promote replica-
bility. CSX 2.0’s source, tests and benchmarks cannot be published due to
confidentiality reasons, hindering reproducibility of tests and the benchmark
results. In order to reproduce the results, others would need to manually
create a CSX implementation and set up similar studies.

Internal Validity. Two authors were also the participants in the coverage study,
which raises a concern with regard to confirmation bias, or the tendency to
search for evidence supporting prior beliefs. We have tried to mitigate the
risk of confirmation bias, by openly communicating about each step of the
evaluation, and about each observation made, with the other authors of the
work.

Construct Validity. The accuracy of the configuration space exploration that
we have studied in this chapter is dependent on the CSX language, IDE
implementation, and the CSX models. We have countered this threat to
construct validity by testing the CSX implementation and by writing tests for
the CSX models that we have written. The accuracy study relies on the tests
itself, which could test for incorrect expectations. We have countered this
threat by carefully determining the expectations for all tests manually.

The measurements of benchmarks could be influenced by many factors. We
have countered this threat to construct validity by running the benchmarks
on a computer that has most other applications disabled and is disconnected
from network access. The benchmark’s first 10 runs were considered warmup
iterations. We considered the subsequent 10 iterations for measurement. We
report the average of these 10 measurements.

3.6 Related Work

We describe related work in which high-level modeling languages interface
with constraint solvers in the backend. We focus on more general constraint-
solving approaches as our objective made us select SMT constraint solvers for
CSX and because our practical experience showed that applying CSX involves
models with various types of constraints (linear, logical, satisfiability). Whereas
other work focuses on evaluating the tools used to create DSLs [57, 6], we focus
on evaluating the DSL itself.

The work of Keshishzadeh et al. applies constraint solving in the backend
of a DSL for the domain of medical imaging equipment [47]. In particular,
they use constraint solving to validate domain-specific properties for realizing
collision prevention in the equipment. If such properties are violated, the
causes of violations can be traced through delta debugging and reported back
on the model level.

KernelF by Voelter et al. is a reusable functional language for the modular
development of DSLs [48]. KernelF features advanced error checking and
verification based on constraint solving with the Z3 solver. In a case study on
payroll calculations [49], these techniques are applied to statically check the
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completeness and overlap of domain-specific switch-like expressions. These
forms of static analysis are similar to the interactive analysis of CSX.

Although in this chapter we have focussed on CSX as a method to realize
automatic configuration space exploration, the language also has the potential
to cope with the large variety of finishers. The use of constraint solving
is common in product line engineering, and, e.g., is also used in feature
models of printing systems [17], but constraint solving in that context has a
different utility than in CSX. Feature models can be used to model systems as
compatible compositions of features or components, and constraint solving
can be used to find or check feature compositions. CSX, in contrast, is used to
find configurations at run time for a particular device.

De Roo et al. [58] present an architectural framework for realizing multi-
objective optimization for embedded control software. Additionally, they
introduce a toolchain that consists of visual editors, analysis tools, code gener-
ators, and weavers. The approach is based on domain-specific models from
which optimization code is generated automatically. Both CSX and their work
use constraint models for realizing control software and support solving for
optimization objectives. The authors evaluate their work in the context of the
industrial printing domain as well. Roo’s DSL is targeted at a different sub-
domain of printing software, namely embedded online control. Our domain
represents the configuration spaces of a product family of hardware devices,
and the configuration control software that can be derived from it. Our work
on CSX is different in the sense that it is used before the execution of print jobs
(offline) to derive configurations, whereas de Roo et al. focus on optimization
in embedded control software that runs during the execution of print jobs
(online), imposing different requirements. Finally, the aim of CSX is to involve
domain experts such as mechanical engineers in the modeling process.

Constraint solving is also used in model checking and relational model find-
ers. For example, Alloy [50] is a high-level specification language that features
finite model finding to check formal specifications. Alloy uses KodKod [51],
which is a relational model finder on problems expressed in first-order logic,
relational algebra, and transitive closures. KodKod differs from CSX in several
ways. In KodKod the nature of models is relational, where CSX considers fixed
manufacturing paths and models the objects and parameters in such paths.
KodKod does not support reasoning over data or optimization, whereas CSX
does support optimization.

Stoel et al. extend relational model finding with first-class data attributes
and optimization in AlleAlle [52]. Similar to CSX, AlleAlle includes data into
problem models and uses SMT constraint solving for model finding. CSX
and AlleAlle differ in the sense that AlleAlle is an intermediate language
that targets relational problems, while CSX is a DSL specific to the printing
domain and without first-class support for relations. AlleAlle and CSX both
lack an approach for mapping reasons for unsatisfiability that are found on
the constraint level back to the model level.

Muli [54] integrates constraint solving with the object-oriented programming
paradigm by extending the Java programming language. Muli adds support
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for symbolic values to Java, which translate to constraint variables in the
runtime. Muli features a runtime that integrates constraint solvers in a Java
virtual machine. In contrast to CSX, Muli is a general-purpose programming
language, and it does not support lists or optimization.

Although our work on CSX contains parts that are similar to other high-level
modeling approaches with constraint-solving backends, the distinctiveness of
our work is that we extensively worked out a full-stack implementation for a
specific domain and evaluated it thoroughly in an industrial context.

3.7 Conclusions

We have presented CSX 2.0, an extension of the CSX language and environ-
ment for the development of control software for digital printing systems. We
extended the language’s coverage by adding support for lists and high-level
support for geometrical constructs. To bring the constraint-based language
closer to the functional programming paradigm, we added functional-style
operators that get translated automatically into predicate-style counterparts. If
this translation requires intermediate variables, those variables are automati-
cally added.

We have qualitatively evaluated CSX by having the developer of CSX and
a domain expert model a realistic device in think-aloud co-design sessions.
We find that CSX is suitable for covering a large part of the printing systems
domain, although coverage for some parts can still be improved. A major
hurdle for the adoption of CSX is its declarative paradigm; it is hard — even
for experienced developers — to switch from more traditional programming
paradigms to the declarative programming style. Quantitative evaluation
using benchmarks confirms that CSX has reasonable runtime performance for
realistic scenarios.

3.7.1 Future work.

We plan to apply CSX on a wider range of devices to further evaluate its
effectiveness and scalability. To improve solving performance, we intend
to assist solvers in their search by providing domain-specific information.
Ultimately, we envision CSX as a language that could also be used by domain
experts such as mechanical engineers, in which, e.g., the usability of the
language and maintainability of the models would be of vital importance; we
consider evaluation of such dimensions as future work.
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4
OIL: an Industrial Case Study in Language
Engineering with Spoofax

Abstract

Domain-Specific Languages (DSLs) promise to improve the software engineer-
ing process, e.g., by reducing software development and maintenance effort
and by improving communication, and are therefore seeing increased use in
industry. To support the creation and deployment of DSLs, language work-
benches have been developed. However, little is published about the actual
added value of a language workbench in an industrial setting, compared to
not using a language workbench. In this chapter, we evaluate the productivity
of using the Spoofax language workbench by comparing two implementations
of an industrial DSL, one in Spoofax and one in Python, that already existed
before the evaluation. The subject is the Open Interaction Language (OIL): a
complex DSL for implementing control software with requirements imposed
by its industrial context at Canon Production Printing. Our findings indicate
that it is more productive to implement OIL using Spoofax compared to using
Python, especially if editor services are desired. Although Spoofax was suffi-
cient to implement OIL, we find that Spoofax should especially improve on
non-functional aspects to increase its adoptability in industry.

Based on: Olav Bunte, Jasper Denkers, Louis van Gool, Jurgen J. Vinju, Eelco Visser, Tim
Willemse, and Andy Zaidman. “OIL: an Industrial Case Study in Language Engineering
with Spoofax”. In: Software and Systems Modeling (2024). doi: 10.1007/s10270-024-
01185-x.
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4.1 Introduction

Every piece of software is written in one or more software languages. The
most common software languages are General-Purpose Languages (GPLs),
such as C++, Java, and Python. For specific purposes, it can be beneficial
to design a tailored language. Such a language is called a Domain-Specific
Language [1] (DSL). Compared to GPLs, DSLs promise to improve the software
engineering process, e.g., by reducing development and maintenance effort
when implementing (domain-specific) software. They are also considered to
be more suitable for communication between software engineers and domain
experts [59].

To support the creation and deployment of DSLs, language workbenches have
been developed [60, 7, 8]. Language workbenches are specifically designed for
the development of a DSL. This includes the DSL’s syntax, from which parsers
can be derived automatically, as well as its semantics, e.g., by means of a
translation to other languages. Language workbenches typically also generate
IDEs for the DSLs implemented in them. Examples of language workbenches
are MPS [61], Xtext [62], Rascal [23], and Spoofax [20].

Although there already is ample literature on the underlying theory of lan-
guage workbenches (e.g., [8, 28]), little is documented about the actual added
value of language workbenches compared to not using language workbenches
in an industrial setting when designing and engineering DSLs. This is relevant
for two main reasons. On the one hand there is opportunity: there exist DSL
implementations in industry which have not been developed with the potential
benefit of language workbenches. On the other hand there are still unknowns:
most language workbenches spawn from academic environments which can
have different views on software engineering effectiveness compared to a pure
industrial setting. How relevant are the benefits of language workbenches in
an industrial setting?

One of the first works that evaluates the added value of a specific language
workbench in an industrial context is the work by Van den Brand et al. [63].
In this work, the authors present some experiences with using ASF+SDF for
railway and financial domains. A more recent and extensive industrial case
study is described in the work of Voelter et al. [6]. The authors evaluate the MPS
language workbench with as case the mbeddr collection of languages under
non-trivial requirements. The work by Voelter et al. resulted in meaningful
lessons learned for the particular case study from an industrial perspective.
Still, the authors call for more studies on language workbench evaluation
to expand our knowledge of the usefulness of language workbenches for
language engineering in general. This will help industrial language engineers
decide when and how to use language workbenches.

We present such an evaluation of the Spoofax language workbench in an
industrial setting. In the original work on Spoofax [20], the authors claim
that Spoofax “enables efficient, agile development of software languages with state-of-
the-art IDE support based on concise, declarative specifications”. From this can be
derived that it should be more productive to implement a DSL with Spoofax
compared to when not using a language workbench. Although it has been
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demonstrated that Spoofax is able to deliver on its original promises for non-
industrial greenfield situations, e.g., in the area of web programming [64, 65],
or declarative data modeling [66, 67], it is unclear to what extent the original
claims of Spoofax still hold for our industrial case. This leads to the following
research question:

RQ: How does the productivity of implementing an industrial language in Spoofax
compare to the productivity when using a GPL and available libraries?

Productivity is about the amount of effort needed to implement some func-
tionality. As a proxy for effort we measure code volume, as it is the only
information available to us in this study that relates to effort and can be
measured objectively.

The industrial case with which we evaluate Spoofax is the Open Interaction
Language (OIL), a textual language for modeling control software, developed
at Canon Production Printing1. Before the implementation of OIL in Spoofax
was created, a design of OIL already existed based on XML, along with an
implementation in Python. This makes OIL a typical industrial case, in the
sense that the new implementation must fit into an existing software ecosystem
which is used to create commercial products.

The industrial context requires a number of features for the implementation
of OIL. In particular, with the migration to Spoofax, the original XML syntax
should be supported alongside a new more user-friendly syntax. OIL’s syntax
allows the user to leave out boilerplate information, which the implementation
needs to make explicit. The well-formedness, name binding, and typing of an
OIL specification should be statically checked and errors should be reported
to the user. OIL specifications depend on modules and interfaces defined
in another language called Interface Definition Language (IDL). Finally, the
Spoofax implementation of OIL should be able to generate code, both for the
execution and the verification of OIL specifications.

Based on the aforementioned requirements and earlier non-industrial evalu-
ations of Spoofax, in this chapter we evaluate how well Spoofax can cope with
the complexity and scale of the industrial OIL case study. The development of
OIL in Spoofax, executed by five developers over more than four years, allows
us to make interesting observations on language engineering, distill strengths
and weaknesses of Spoofax, derive lessons learned for future language engi-
neering efforts, and propose areas of future work to improve the language
workbench.

Outline. This chapter is structured as follows. First, we provide background
on Spoofax in Section 4.2 and on OIL in Section 4.3. We dive into the context,
research method, and setup of the case study in Section 4.4. Next, we discuss
the language engineering aspects of OIL’s implementation in Spoofax in sep-
arate sections, and we evaluate our research question for each aspect at the
end of those sections. We discuss the implementation of OIL’s concrete syntax

1https://cpp.canon
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in Section 4.5. In Section 4.6 we discuss the abstract syntax representation of
OIL. Then in Sections 4.7 and 4.8 we discuss the implementation of the static
and dynamic semantics of OIL, respectively. In Section 4.9 we summarize our
findings regarding the research question and discuss threats to validity. We
discuss experiences that are not directly related to the research question in
Section 4.10, as well as list our lessons learned and provide a research agenda
for Spoofax. We position our work with that of others in Section 4.11. We
conclude in Section 4.12.

4.2 Spoofax

In this section, we provide background information on Spoofax, which is useful
for understanding the way that OIL is implemented in Spoofax in later sections.
Spoofax2 is an open source language workbench that promises to support the
development of textual DSLs by offering meta-DSLs (DSLs for developing
DSLs) for concise, declarative specifications of languages and IDE services [31].
The idea of declarative language definition is that language developers focus
on the high-level specification of their languages rather than focusing on the
low-level implementation of, e.g., parsing or type-checking algorithms. Based
on language aspects specifications in the meta-DSLs, Spoofax automatically
generates an IDE.

Spoofax is developed at the Delft University of Technology since 2007 [20],
building on previous work on syntax definition with SDF2 [68] and program
transformation with the Stratego XT toolset [43]. Besides SDF2 and Stratego,
the first version of Spoofax offered meta-DSLs for static semantics (NaBL2 [45]),
editor services (ESV), and testing (SPT). Spoofax Core [69], implemented in
Java, integrates the meta-DSLs and provides a build system to automatically
transform language specifications into implementations. Spoofax is primarily
deployed as a plugin for the Eclipse IDE3.

Developments on Spoofax since the introduction of the language workbench
include:
• Syntax. The syntax definition formalism SDF3 [42] with support for template-

based syntax definition.

• Transformation. The program transformation language Stratego 2 with
support for gradual typing [70] and incremental builds [71].

• Static Semantics. Static semantics specification (NaBL2 and its succes-
sor Statix [72], both based on a scope graph model [44]) and support for
incremental type checking [73].

• Data-Flow. The data-flow analysis specification language FlowSpec [74].

• Incremental Builds. Interactive software development pipelines with PIE [75].

• IDE support. Static semantic code completion [76].

• Testing Language test suites with the Spoofax Testing language (SPT).

2https://spoofax.dev
3https://www.eclipse.org/ide/
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let x = 20 + 1 in 2 * x

Exp(
Let(

"x"
, Add(Int("20"), Int("1"))
, Mul(Int("2"), Ref("x"))
)

)

Figure 4.1: An example program in EXP and its corresponding abstract syntax
in ATerm.

The case study in this chapter has been performed with Spoofax version
2 [69], making use of the SDF3, NaBL2, Stratego, ESV, and SPT meta-DSLs.
Spoofax version 3 (including Stratego 2, Statix, and PIE) was under devel-
opment during the execution of this study, and could therefore not yet be
considered. In Section 4.10, we discuss how our findings relate to Spoofax 3.

In the remainder of this section, we discuss both conceptual and practical
aspects of language engineering with Spoofax, which are important for under-
standing the Spoofax implementation of OIL. Also, we will further introduce
the meta-DSLs for the language aspects that are relevant in our case study. We
use a simple expressions language EXP as a running example, which supports
integers, addition, multiplication, let bindings and references. Fig. 4.1 depicts
an example EXP program and its corresponding abstract syntax.

4.2.1 Anatomy of Spoofax Projects

A Spoofax project consists of source files and configuration files. The source
files primarily consist of specifications in the meta-DSLs. For integrating
a language implementation with external libraries, Java source files can be
included as well. The language build and dependencies are configured in
the configuration files. All sources files are textual and are therefore typically
stored in a version control system.

Based on the source files and configuration files, Spoofax generates language
artifacts such as parse tables, AST schemas, and ultimately the complete
language implementation in the form of an Eclipse plugin. During a language
build, besides the sources that the language developer writes, additional
sources are generated which can be referenced by other specifications or form
an input for a further build step. For example, signatures are generated
automatically from the SDF3 grammar and can be used in Stratego to define
transformation rules on. These generated sources are stored separately from
the main source files and are typically ignored in version control.

Projects can define a complete language, define (library) sources intended
for reuse by other language projects, or only define a transformation for an
existing language. Through dependencies between projects, different forms of
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signature
constructors

Int : INT -> Exp
Add : Exp * Exp -> Exp
Mul : Exp * Exp -> Exp
Let : ID * Exp * Exp -> Exp
Ref : ID -> Exp

Figure 4.2: A Stratego code snippet that defines an AST schema for EXP.

language composition can be realized. For example, a language project can
re-use definitions of another language by adding that project as a dependency.
Also, a project can contribute a transformation to an existing language, such
that more functionalities become available for a language, independent from
its original implementation.

4.2.2 Data Representation with ATerms

The language ATerm (Annotated Terms) [77] defines the representation of
abstract syntax trees (ASTs) and data used by most other meta-DSLs. These
ASTs and data consist of terms (often referred to as “ATerms”) that can be
annotated with additional data. A term can either be a number, a string, a
list of terms, or a constructor with zero or more subterms. The annotations
on terms are typically used to store metadata, such as static analysis results.
ATerm serves as the “glue” between the meta-DSLs. For example, the output
of an SDF3-based parser is an AST expressed in ATerm. ATerm is the object
language for the Stratego transformation meta-DSL, i.e., Stratego defines
transformation rules for terms expressed in ATerm. Also, name binding and
typing specifications in NaBL2 consist of rules that apply to ATerm patterns.

Terms must adhere to many-sorted algebraic signature [78] definitions which
are defined in Stratego. The signatures define sorts and constructors. Sorts
represent syntactic categories (also known as non-terminals, e.g., Exp) and
constructors specify instances of these sorts (e.g., Add). The snippet in Fig. 4.2
contains signature definitions for EXP. It defines unary Int and Ref construc-
tors for the sort Exp, binary Add and Mul constructors for the sort Exp, and a
ternary Let constructor. Fig. 4.1 contains an example term that conforms to
the signatures.

4.2.3 Syntax Definition with SDF3

SDF3 [42] is a syntax definition language that covers more than realizing a
parser implementation based on a grammar specification. From an SDF3
grammar, the following language implementation artifacts are generated au-
tomatically: an AST schema, a parser with error recovery, a pretty printer,
a parenthesizer, syntax highlighting, and syntactic code completion. The
SDF3 formalism extends context-free grammars [79] with high-level syntax
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definition features such as constructor declarations (used for AST schema
generation in the form of ATerm signatures), disambiguation constructs (for
disambiguation and generating a parenthesizer), and templates (for deriving
pretty printers) [80].

See Fig. 4.3 for two modules of SDF3 that define the syntax of EXP. The
second module (exp) imports the first module (lex). For example, in exp,
the rule on line 7 defines a rule for integers, using the lexical syntax for INT
defined in lex. The rules on lines 8-9 are defined to be left-associative using
the {left} disambiguation construct. The left-hand sides of grammar rules
consist of a sort (e.g., Exp) and optionally a constructor declaration (e.g., .Add).
The signatures of Fig. 4.2 are generated automatically based on the constructor
declarations in this grammar.

In addition to associativity declarations for disambiguation of an opera-
tor with itself, the context-free priorities section defines disambiguation
through priorities between operators. In the example, Exp.Mul has higher pri-
ority than Exp.Add which has higher priority than Exp.Let (line 16). Priority
declarations are transitive. When importing modules in SDF3, their disam-
biguation rules are imported with them as well. Note that this may create new
ambiguities between grammar elements of different modules, so additional
disambiguation rules may need to be defined.

SDF3-based parsing involves the process of imploding, i.e., transforming
parse trees into ASTs. Only the nodes in the parse tree that are parsed based on
grammar rules for which a constructor has been declared end up in the AST,
which filters out irrelevant details of the concrete syntax such as white space
and comments. This filtering is necessary because SDF3 uses a scannerless
parsing approach [68, 81], a foundational characteristic which makes SDF3
grammars composable.

During parsing and imploding, the created AST terms are annotated with
the origin location of the parsed syntactic element in the input program, which
is the first step of origin tracking [46]. These origins can be maintained during
transformations, which is useful for, e.g., error reporting.

To adapt the formatting of the text produced by the pretty printer that is
generated from the SDF3 grammar, one can enhance the SDF3 grammar with
templates. The example of Fig. 4.3 uses such templates for Add, Mul and Let,
which is indicated by the square brackets that are placed around the right-hand
sides of the grammar rules. Any formatting between these square brackets,
including spaces, tabs, and newlines, will be used by the pretty printer. In case
square brackets are part of the grammar definition, angular brackets can be
used instead.

4.2.4 Static Semantics with NaBL2

NaBL2 [45, 82], pronounced as “enable two”, is a static semantics definition
language which covers name binding and type systems based on the scope
graph model [44]. Given an NaBL2 specification, programs are transformed into
constraints and a scope graph which captures the binding structure and typing
of the program. Name resolution corresponds to finding a path in the graph
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1 module lex
2
3 lexical syntax
4
5 INT = "-"? [0-9]+
6 ID = [a-zA-Z] [a-zA-Z0-9\]*
7 LAYOUT = [\ \t\n\r]

1 module exp
2
3 imports lex
4
5 context-free syntax
6
7 Exp.Int = INT
8 Exp.Add = [[Exp] + [Exp]] {left}
9 Exp.Mul = [[Exp] * [Exp]] {left}

10 Exp.Let =
11 [let [ID] = [Exp] in [Exp]] {non-assoc}
12 Exp.Ref = ID
13
14 context-free priorities
15
16 Exp.Mul > Exp.Add > Exp.Let

Figure 4.3: Two SDF3 code snippets that define the syntax for EXP.

s1

s2

x

x

Figure 4.4: The scope graph that corresponds to the example EXP program of
Fig. 4.1. Scope s1 is the root scope node and corresponds to the whole program.
Scope s2 is the scope introduced for the body of the let operator, consisting of
the expression x = 20 + 1. The declaration of x is represented by the outgoing
edge from scope s1. The reference of x is represented by the incoming edge
to scope s2. The name binding in this program is valid, as there exists a path
from the reference of x to its declaration.
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from a reference to its declaration. An NaBL2 specification contains constraint
generation rules for every term in the AST schema of the language, with
conditions that specify how the term contributes to scope graph generation,
name binding, and typing.

Fig. 4.4 depicts the scope graph that corresponds to the example EXP pro-
gram of Fig. 4.1. Each term is made part of a scope, which is a node in the
scope graph. Declarations and references (e.g., of variables) are also added
as nodes in the scope graph. For declarations in a scope, we add a node for
the declaration with an edge from the scope to the declaration. For language
constructs that introduce a deeper level in the overall scoping structure, the
scope is added to the graph as a new node with an edge to the parent scope.
For a reference, a node is added with an edge from the reference node to the
node of the scope the reference is made from. Name resolution then boils down
to finding a path in the scope graph from the reference to the corresponding
declaration.

By assigning types to terms, type analysis can check or infer types. Condi-
tions in constraint rules can be extended with an error message applied to a
term. Whenever a condition fails, the error message can be displayed on the
origin of the term using origin tracking.

See Fig. 4.5 for an NaBL2 snippet that specifies name and typing rules for
EXP. Four rules are defined, identified in double square brackets (lines 2, 4,
9 and 17). The rule for term Int (line 2) assigns the type TInt to the term.
The rule for Add recursively specifies the semantics for its sub-expressions by
calling constraint rules on exp1 and exp2 using double square brackets (lines
5-6). Note that no rule references are used: the rule that needs to be applied
depends on the outermost constructor of the sub-expressions. Afterwards
it is defined that their types should be the same (line 7). For more complex
type systems, it is possible to define relations between types. This enables, for
instance, the addition of an integer with a float and the computation of the
resulting type. The rule for Mul has been omitted as it is similar to the rule for
Add.

The rule for let bindings (line 9) introduces a new scope s’ (line 10), sets s
as the parent scope of s’ (line 11) and attaches a declaration node Var{x} for
name x in the namespace Var to scope s’ using an arrow pointing towards the
declaration node (<-, line 12). It then analyses the first expression within scope
s (line 13) and assigns the derived type ty1 to the declaration node (line 14).
Lastly, it continues the analysis with the second expression within scope s’
(line 15). The rule for variable references (line 17) first attaches a reference node
Var{v} for name v in the namespace Var on scope s using an arrow pointing
away from the reference node (->, line 18). Afterwards it is checked whether
some declaration d exists for reference Var{v} using operator |-> (line 19),
effectively checking whether there exists a path through the scope graph from
the reference node to a declaration node with the same name and namespace.
We then require that this declaration d has type ty (line 20), which is the same
type as the Ref term that the rule is defined on (line 17).
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1 rules
2 [[ Int(_) ^ (s) : TInt() ]].
3
4 [[ Add(exp1, exp2) ^ (s) : ty1 ]] :=
5 [[ exp1 ^ (s) : ty1 ]],
6 [[ exp2 ^ (s) : ty2 ]],
7 ty1 == ty2 | error $[Type mismatch: cannot add [ty2] to [ty1]].
8
9 [[ Let(x, exp1, exp2) ^ (s) : ty2 ]] :=

10 new s',
11 s' ---> s,
12 Var{x} <- s',
13 [[ exp1 ^ (s) : ty1 ]],
14 Var{x} : ty1,
15 [[ exp2 ^ (s') : ty2 ]].
16
17 [[ Ref(v) ^ (s) : ty ]] :=
18 Var{v} -> s,
19 Var{v} |-> d | error $[Cannot resolve [v]] @ v,
20 d : ty.

Figure 4.5: An NaBL2 code snippet that declares name binding and typing for
EXP.

4.2.5 Transformation with Stratego

Stratego [83, 43] is a transformation language based on term rewriting and
programmable rewriting strategies. Rewrite rules specify how a single input
term transforms into an output term. These rules can be combined by putting
them in sequence (e.g., r1 ; r2), by non-deterministically choosing between
them (e.g., r1 + r2), or they can be passed to pre- or self-defined AST traversal
strategies such as topdown(r1) or bottomup(r1).

See Fig. 4.6 for an example Stratego transformation for EXP. Strategy sim-
plify0 simplifies expressions that contain zeroes by performing a bottom
up traversal through the AST and trying to apply rule simplify0-term on
every AST node. The rule simplify0-term is defined four times, each for
a different type of expression that can be simplified. Each simplify0-term
rule is tried until the AST node matches with the left hand side of the rule,
after which the transformation is applied. The order in which the rules are
tried is chosen non-deterministically during runtime. The try rule allows each
simplify0-term rule to fail, which can happen for instance when the AST
node is an Int term, after which it simply continues with the traversal.

Transformations with Stratego are generally model-to-model, which can be
both endogenous (source and target are the same language) and exogenous
(source and target are different languages) [84]. Fig. 4.6 is an example of an
endogenous model-to-model transformation. It is also possible with Stratego
to define model-to-text transformations, since a string is a valid term too.
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strategies

simplify0 = bottomup(try(simplify0-term))

rules

simplify0-term: Add(Integer("0"), x) -> x
simplify0-term: Add(x, Integer("0")) -> x
simplify0-term: Mul(_, Integer("0")) -> Integer("0")
simplify0-term: Mul(Integer("0"), _) -> Integer("0")

Figure 4.6: A Stratego code snippet that defines transformations on EXP for
simplifying expressions.

strategies

print-exp = bottomup(print-term)

rules

print-term: Int(x) -> x
print-term: Ref(v) -> v
print-term: Add(x, y) -> $[[x] + [y]]
print-term: Mul(x, y) -> $[[x] * [y]]
print-term: Let(v, x, y) -> $[let [v] = [x] in [y]]

Figure 4.7: A Stratego code snippet that defines a printer for EXP.
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menus
menu: "Simplifications" (openeditor)

action: "Simplify zeroes" = editor-simplify0

Figure 4.8: An ESV code snippet that adds an editor action to simplify expres-
sions with zeroes in an EXP specification.

1 language EXP
2
3 test simplify addition with zero [[
4 3 * x + 0
5 ]] transform "Simplifications / Simplify zeroes" to EXP [[
6 3 * x
7 ]]

Figure 4.9: An SPT code snippet that defines a test for simplify0.

Stratego supports such transformations with templates, denoted with $[..].
A template defines a string in which variables and transformation rules can
be used to create substrings. See Fig. 4.7 for a transformation that prints an
EXP AST. Note that given the syntax definition of EXP, such a pretty printer is
generated automatically.

4.2.6 Editor Services with ESV

ESV is a language for defining editor services. An ESV specification can,
e.g., customize syntax highlighting coloring and configure editor actions. See
Fig. 4.8 for an ESV snippet that adds an editor action for EXP. This snippet
defines a new menu called Simplifications, consisting of an action Simplify
zeroes. This action is mapped to the transformation editor-simplify0 (defi-
nition not explicitly shown), which applies simplify0 to an EXP specification.
These actions can be invoked in the IDE via the menu Simplifications /
Simplify zeroes whenever an EXP file is in focus.

4.2.7 Testing with SPT

SPT [85] is a language testing framework for languages implemented in
Spoofax. In SPT, test programs can be written and tested for errors and
expected outputs. For testing static analysis, one can, e.g., provide an incorrect
program where some elements have been marked. Then in the test expectation
one can specify at which of these markers an error should occur. For testing
transformations, one can provide an input program, an editor action to execute,
and an expected output program. Such a test compares the AST that results
from the editor action to the AST that results from parsing the expected
specification, so the formatting of the provided specifications does not influence
the test.
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See Fig. 4.9 for an SPT snippet that defines a test for the simplify0 transfor-
mation. Line 4 defines the input specification, line 5 defines the editor action
to apply, and line 6 defines the expected output specification.

4.3 OIL

We first give an overview of OIL. Afterwards, we define a number of features
that should be realized by the implementation of OIL in Spoofax.

4.3.1 History of OIL

OIL, which stands for Open Interaction Language, is a language developed by
Van Gool (co-author) to model the behavior of control-software systems. In its
early stages, OIL was designed to model the intended communication behavior
between a group of components, known as a protocol. Later, OIL was adapted
to also enable the modeling of individual components. Although OIL is
developed at Canon Production Printing, it is not limited to modeling systems
within the printing domain. The original syntax of OIL is XML based, but a
more user-friendly DSL variant was created using Spoofax [36]. Though OIL is
a textual language, it was designed to allow for an unambiguous visualization,
as this is indispensable for communication between engineers.

With the development of OIL also came dedicated tooling. This tooling,
implemented in Python, is able to parse and validate OIL specifications. It is
a web-based environment in which OIL specifications can be inspected but
not edited; editing happens inside a separate IDE, typically Visual Studio.
The tooling also supports the visualization of OIL specifications, as well as
simulation of traces over this visualization. For OIL component specifications
it can generate executable code, which has been used to implement several
complex software components for printers developed at Canon Production
Printing. In this web-based tooling, OIL specifications can be pretty printed and
editor services such as syntax highlighting and error reporting are available.
In the rest of this document, we refer to this implementation of OIL as “the
Python implementation”.

4.3.2 Overview of OIL

OIL is a state machine language that uses variables to store the current state.
These variables and their values can be represented by areas, which are con-
nected with transitions that can specify updates of variables, triggered by the
occurrence of events. In this section, we give an informal description of the
concepts of an OIL component specification and their semantics that are rele-
vant for this chapter. For a more in depth description of OIL and a definition
of its formal semantics, see [86].

We use the OIL component specification in Fig. 4.10 as running example.
This OIL specification models a printer that, after a client has registered, can
be turned on and off. When it is on, jobs of at most three sheets can be sent to
the printer that are immediately processed. The printer also keeps track of its
temperature and must be cooled down if it becomes too hot. See Fig. 4.11 for a
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1 component heat2c {
2 import heat2ci
3 provides heat2ci.server
4 requires heat2ci.client
5
6 enum power {off, on}
7
8 var power : power
9 var client : heat2ci.client

10 var tmp : int32 = 20
11 var sheets : int32 = 0
12
13 state init
14 state active {
15 region power [this.power] {
16 state off ['off']
17 state on ['on']
18 }
19
20 zone power_on [this.power == 'on'] {
21 region job {
22 state idle
23 state busy
24 }
25 }
26
27 zone heat [this.tmp < 45]
28 }
29
30 concern REGISTRATION {
31 in init on register_client() assign this.client := client go active end
32 }
33
34 concern POWER {
35 in off on turn_on() go on end
36 in on on turn_off() go off end
37 }
38
39 concern JOB {
40 in idle on add_job(nrsheets) if nrsheets > 0 and nrsheets <= 3 assign

this.sheets := nrsheets go busy end
41 in busy if this.sheets == 0 do [silent] job_printed() go idle end
42 in busy if this.sheets > 0 at this.client do sheet_printed(sheetnr =

this.sheets) assign this.sheets := this.sheets - 1 go busy end
43 }
44
45 concern HEAT {
46 in heat on turn_on() assign this.tmp := this.tmp + 5 go heat end
47 in heat if this.tmp > 20 on cool_down() assign this.tmp := 20 go heat end
48 }
49 }

Figure 4.10: The OIL specification for an overheating printer (in the newer DSL
notation).
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Figure 4.11: A visualisation of the example OIL specification of Fig. 4.10. States
that are filled with a color correspond to the initial state.
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1 module heat2ci
2 {
3 interface server
4 {
5 register_client(client: heat2ci.client)
6 turn_on()
7 turn_off()
8 add_job(nrsheets: int32)
9 cool_down()

10 }
11
12 interface client
13 {
14 sheet_printed(sheetnr: int32)
15 }
16 }

Figure 4.12: The IDL specification on which the OIL specification of Fig. 4.10
depends.

visualization of the running example.
Each OIL component specification defines a number of instance variables

(lines 9-12), which store the state that the modeled component is in. Four types
of instance variables are supported: boolean, enum, integer and component
instance reference. Enum types can be defined within the specification itself
(line 7).

There are three types of areas: regions, states and zones (lines 14-33). A region
always refers to an enum variable and contains a number of states. These
states each represent a value that the variable of its region can have. A zone
has a boolean expression over variables and is used to restrict behavior.

The change of values for instance variables is triggered by the occurrence of
events. Each event has an operation, which refers to the function being called.
This operation may have parameters, which make it possible to transfer data
between components. In the context of a component, the cause of an event can
be either reactive or proactive. Reactive events are initiated by the environment,
whereas proactive events are produced by the component itself, either sent to
the environment or kept internally, the latter are also known as silent events.

Operations are declared in separate specifications in a language called IDL,
short for Interface Definition Language (very similar to, but not to be confused
with Microsoft’s IDL4). Each IDL specification defines a number of modules,
which contain interfaces, which in turn contain declarations of operations,
possibly with parameters. A module may also contain enum type definitions,
which can be used to define the type of a parameter. If one wants to refer to
operations within an OIL component specification, the IDL modules in which
they are defined must be imported (line 3, Fig. 4.10). Interfaces in the imported

4https://learn.microsoft.com/en-us/windows/win32/midl/midl-start-page
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1 component heat2c
2 {
3 import heat2ci
4 provides heat2ci.server
5 requires heat2ci.client
6
7 enum power {off, on}
8 enum t_root_region {init, active}
9 enum t_job {idle, busy}

10
11 var power : power = 'off'
12 var client : heat2ci.client
13 var tmp : int32 = 20
14 var sheets : int32 = 0
15 var v_root_region : t_root_region = 'init'
16 var v_job : t_job = 'idle'
17
18 region root_region [this.v_root_region]
19 {
20 state init ['init']
21 state active ['active']
22 {
23 region power [this.power]
24 {
25 state off ['off']
26 state on ['on']
27 }
28
29 zone power_on [this.power == 'on']
30 {
31 region job [this.v_job]
32 {
33 state idle ['idle']
34 state busy ['busy']
35 }
36 }
37
38 zone heat [this.tmp < 45]
39 }
40 }
41 ...
42 }

Figure 4.13: The first half of the OIL specification of Fig. 4.10 after desugaring.
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module can then be provided or required by the component (lines 4-5). The
operation of a reactive event must be part of a provided interface and the
operation of a proactive event must be part of a required interface.

The occurrence of an event corresponds to the firing of transitions labeled
with that event (lines 35-57). Each transition has a source area (in), an event
label (on/do), a target state (go) and a concern (concern), and optionally a
guard (if), assignments (assign), an assertion (assert, not in example) and
arguments for parameters (line 50, within parentheses).

4.3.3 Implementation Features

The desired implementation of OIL in Spoofax is required to realize a number
of features. Though these features may not be complex to implement individ-
ually, the realization of the combination of these features can be. Below, we
elaborate on each OIL feature (OF).

OF1: Multiple Syntaxes. OIL and IDL both offer an XML-based and a custom
DSL syntax. Both syntaxes should be implemented; the XML syntax for
backwards compatibility and because it is easier to parse for external tools, and
the DSL syntax for a better user experience. It should be possible to transform
a specification in one syntax into the other and all transformations to other
targets should be available for both syntaxes.

OF2: Desugaring. OIL specifications allow some syntactic sugar, mainly in the
form of leaving OIL concepts implicit, which reduces how much a user needs
to write. For instance, in the running example, for region job (line 25) the
variable reference is left implicit and for states init, active, idle and busy
(lines 14, 15, 27 and 28) the values are left implicit, as well as corresponding
enum types definitions. Also, the region for states init and active is left out.
See Fig. 4.13 for how the first half of the running example would look like after
desugaring. The implementation should be able to automatically desugar this
and make the implicit information explicit.

OF3: Input Correctness. Not every specification is a correct OIL specification
in terms of syntax or static semantics. Checking the static semantics of an
OIL specification involves three types of analysis: structural checks, name
resolution and type checking. The implementation should be able to check
whether a specification meets all syntax and static semantics requirements and
report useful errors to the user if it does not.

OF4: Language Interaction. IDL is a standalone language that can be used
for other purposes than the context of OIL. OIL on the other hand should
depend on IDL, both syntactically and semantically. Syntactically, because
both languages use expressions and we want to minimize duplicate grammar
definitions. Semantically, because module, interface, operation and parameter
names in OIL specifications should refer to declarations in IDL specifications.
The implementation should reflect this: IDL should be implemented separately
and the implementation of OIL should depend on the implementation of
IDL. This involves several forms of language composition [87] and language
modularity [88, Sec. 4.6].
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OF5: Multiple Targets. To represent the dynamic semantics of an OIL specifi-
cation, it should be possible to translate OIL into other languages for which
such semantics exists. For the formal verification of an OIL specification, the
implementation should support a translation to mCRL2 [89]. For the execution
of an OIL specification, the implementation should support a translation to
GPL code.

4.4 Case Study Context and Method

In this section, we first describe the context of our case study. Next, we
elaborate on our method for investigating the research question. Lastly, we
describe the setup of our case study.

4.4.1 Context

Our evaluation focuses on two implementations of OIL, the Python imple-
mentation and the Spoofax implementation. The Python implementation was
initially developed around 2011 by the third author and is still maintained
by the third author to this day. The first author also worked on the Python
implementation for a few months in 2016 as part of an internship within Canon
Production Printing. The second author initiated the Spoofax implementation
in 2018. A few months later, the first author also joined on the Spoofax im-
plementation and both first and second author have been maintaining this
implementation ever since. During this time, the third author was involved in
the design decisions for the Spoofax implementation and some master students
have contributed as well [90, 91, 92].

Before the Spoofax implementation was created, the second author was
already familiar with language development in Spoofax. The second author
has also been a contributor to Spoofax since before this study. The first author
had limited experience in language development and no experience with
Spoofax, but had some previous experience on rewriting and formal semantics.
During the development of the Spoofax implementation, the developers had
a close connection to the Spoofax development team for any questions and
advice. All involved master students had no experience with Spoofax before
they joined.

The third author is the creator of OIL, inspired by his prior research in the
field of the specification of behavior [93]. The first author got experience with
OIL during the internship, in which the goal was to understand and formalize
the semantics of OIL by means of a(n) (initial) translation to mCRL2, on which
the current translation to mCRL2 in Spoofax is based [94]. Prior to that, the
first author had experience with behavior specification languages, specifically
mCRL2. The second author had little experience with behavior specification
languages before the development of OIL. All involved master students had
no experience with OIL before they joined, but most had some experience with
behavior specification languages.
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4.4.2 Research Method

Productivity is about the amount of effort needed to implement some func-
tionality. As proxy for effort we use code volume, as it is the only information
available to us in this study that relates to effort. To represent functionality, we
collect software artifacts relevant to language engineering that an implementa-
tion produces, such as parsers or transformations.

We compare the implementation of OIL in Spoofax with the implementation
of OIL in Python. We do this by first gathering all artifacts relevant to language
engineering. Then, for each artifact implemented in both implementations with
similar functionality, we measure the code volume that is used to implement it
and compare the measured code volume between the two implementations. In
case parts of the code volume are reused for multiple artifacts or other projects,
we measure it separately. Any dissimilarities between implementations of a
language engineering artifact are discussed.

We use the Source Lines of Code [95] (SLOC) metric for measuring code
volume, which excludes blank lines, comments, and lines only containing
brackets from counting. In particular, we use the Physical SLOC metric [95],
which considers each non-excluded line as a single line. This is in contrast
to the Logical SLOC metric [95], which counts executable statements of which
there could be multiple on a single physical line. Since the Spoofax meta-DSLs
are declarative and the code written in these meta-DSLs do not necessarily
correspond directly to statements or units of execution, we cannot measure
Logical SLOC for both implementations. In the rest of this chapter, we use
“SLOC” to refer to Physical SLOC.

We are aware that using code volume, quantified using a variant of the
Lines of Code metric, is controversial and comes with advantages and disad-
vantages [96, 97, 95, 98]. However, an important motivation for using code
volume per artifact as proxy for productivity is that it is an objective and re-
peatable measure and that it is applicable to both the Python and the Spoofax
implementation.

Comparing code volume of the two implementations is only sensible when
the volumes correspond to code that implements the same functionality. Since
the two implementations do not always implement the exact same functionality,
we first identify commonalities and differences before measuring volume. Then,
in each implementation’s code volume measurement, we subtract lines for
features or language constructs that are not in the other implementation to
end up with a comparison of code that implements the same functionality. We
do these measurements separately for artifacts in both implementations. We
analyze where differences in code volumes originate from and to what extent
parts of the implementations are reusable. We consider code to be reusable
if it is generic enough such that it can be reused for other purposes, such as
other language implementation, or for purposes outside of OIL altogether.

Depending on the artifact that is being compared, the relevant code consists
of whole files or parts of files. When measuring code volume of whole files, we
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use the cloc tool5 for the measurements, which counts SLOC and has builtin
support for Python. To use this tool on measuring code written in Spoofax
meta-DSLs, we manually add language definitions to cloc such that the tool
can properly detect which lines need to be excluded from counting, such as
lines with a single square bracket. When measuring code volume in parts of
files, we count lines of code by hand. With the code measurements that we
give, we also go into more detail on how we came to these measurements.

4.4.3 Setup

We answer the research question for the implementation aspects of language
engineering separately. These are concrete syntax, abstract syntax, static
semantics, dynamic semantics and design environment [3]. Since the design
environment, which is about tool support for the language, is claimed to be
(mostly) automatically derived by Spoofax, we do not consider this aspect
separately, but as part of the other four aspects instead. Since the Python
implementation does not have a dedicated text editor, this will only concern
editor services such as syntax highlighting. Thus, we consider the following
four aspects:
• Concrete syntax (Section 4.5): the textual representation of a language.

• Abstract syntax (Section 4.6): the internal representation of a language,
including desugaring transformations defined on it.

• Static semantics (Section 4.7): the validity of specifications in a language.

• Dynamic semantics (Section 4.8): the execution of specifications in a lan-
guage.

In each of these four sections we first highlight parts of the implementation
that are relevant to the aspect. Afterwards, we evaluate Spoofax by answering
the research question in the context of the aspect on a number of parts of the
implementation, which we call evaluation points. For each evaluation point we
structure the evaluation in the following parts:
• Question: what do we want to evaluate?

• Method: how are we going to evaluate this?

• Results: what is the information from the implementation(s) that is relevant
for this evaluation point?

• Analysis: what does this information mean and how does it answer our
question?

• Conclusion: what does the analysis give as answer to the question?

• Discussion: what else is relevant for this evaluation point?
We combine and summarize the findings of the evaluation points in Sec-

tion 4.9.1. Since code volume per artifact does not exactly correspond to
productivity [96, 97, 95, 98], our measurements are not directly representative
for the research question. Therefore, in Section 4.9.2, we discuss the threats to

5https://github.com/AlDanial/cloc
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the validity of our findings and how we have tried to counter them.
While our evaluation is mostly based on drawing conclusions from a quanti-

tative analysis, we also make various observations on qualitative aspects. In
Section 4.10 we discuss those observations on qualitative aspects. We discuss
the strengths and weaknesses of Spoofax that we experienced and list the
lessons we learned. We also propose an agenda of future work for Spoofax
and discuss how some of the limitations that we encounter are already fixed in
the next version of Spoofax.

4.5 Concrete Syntax

The Spoofax implementation of OIL comprises multiple syntactical (sub)languages
for which the grammar is defined with SDF3. It supports the original XML
syntax of OIL and IDL as supported by the Python implementation, as well as
a newly designed custom syntax, resulting in a total of four input languages
and realizing OF1 (Multiple Syntaxes). These input languages share common
grammar rules for expressions, which touches on OF4 (Language Interaction).

In this section, we describe the design of the existing and new syntaxes in
Spoofax, their modular implementation, and the reuse of shared expression
grammar rules and its implications on disambiguation. Also, we describe
concrete syntax in the Python implementation and indicate how it differs
from the Spoofax implementation. These descriptions form the sources of
information for the evaluation that follows, where we answer the research
question on productivity for the concrete syntax aspect of OIL’s implementation
in Spoofax.

4.5.1 From XML to Custom Syntax

Implementing a language with concrete syntax in Spoofax requires a gram-
mar written in SDF3. The grammar specific for the OILXML subset of XML
consists of a grammar rule for each XML element, with, if applicable, a list
of specific attributes of the element and, if applicable, a list of child elements.
Fig. 4.14 shows an excerpt of the SDF3 grammar of OILXML for the transi-
tion concept (see Section 4.3.2). Fig. 4.16a contains an example transition in
OILXML and Fig. 4.16c contains the corresponding abstract syntax, expressed
in ATerm (see Section 4.2.2).

The original Python implementation uses XML as its syntax because of two
reasons. First, other projects at Canon Production Printing already used XML
and thus engineers are familiar with it. Second, for XML an off-the-shelf parser
could easily be used. However, writing XML specifications by hand is not
user friendly [2, p. 101]. Although a custom syntax was desired already in the
Python implementation to improve usability, implementing it was considered
too much work. With Spoofax’s language-oriented programming view [99], re-
implementing OIL in Spoofax made it much more feasible to design a custom
syntax for OIL, dubbed “OILDSL”.

The most prominent problem of XML syntax is the syntactic noise of XML
elements and attributes. Still, the same high-level structure of OIL’s concepts
from OILXML was used as a basis for designing the new syntax. By doing
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1 context-free syntax
2
3 Transition.XMLTransitionSimple = [
4 <transition[{TransitionAttr ""}+]/>
5 ]
6
7 Transition.XMLTransitionComplex = [
8 <transition[{TransitionAttr ""}*]>
9 [TransitionSelf?]

10 [{TransitionParameter "\n"}*]
11 [TransitionReturn?]
12 [TransitionGuard?]
13 [TransitionAssignments?]
14 [TransitionAssert?]
15 </transition>
16 ]
17
18 TransitionAttr.XMLMessageCauseAttr = [cause="[Cause]"]
19 TransitionAttr.XMLMessageOperationAttr = [operation="[ID]"]
20 TransitionAttr.XMLSourceAttr = [source="[AreaReference]"]
21 TransitionAttr.XMLTargetAttr = [target="[AreaReference]"]

Figure 4.14: An SDF3 code snippet of the grammar of transitions in OILXML.

1 context-free syntax // Transitions
2
3 Transition.DSLTransition =
4 [[{TransitionElement " "}+] end]
5
6 TransitionElement.DSLMessage =
7 [[MessageCause] [MessageEventType?] [MessageOperation?]]
8
9 MessageCause.DSLMessageCause = Cause

10 Cause.DSLReactive = [on]
11 Cause.DSLProactive = [do]
12
13 TransitionElement.DSLSource =
14 [in [AreaReference]]
15 TransitionElement.DSLTarget =
16 [go [AreaReference]]

Figure 4.15: An SDF3 code snippet of the grammar of transitions in OILDSL.
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<transition cause="reactive" operation="turn_on"
source="off" target="on"/>

(a) Example transition in OILXML.

in off on turn_on() go on end

(b) The transition of (a) translated to OILDSL.

XMLTransitionSimple(
[ XMLMessageCauseAttr(XMLReactive())
, XMLMessageOperationAttr("turn_on")
, XMLSourceAttr(AreaReference(["off"]))
, XMLTargetAttr(AreaReference(["on"]))
]

)

(c) The OILXML AST that corresponds to (a).

DSLTransition(
[ DSLSource(AreaReference(["off"]))
, DSLMessage(

DSLMessageCause(DSLReactive())
, None()
, Some(DSLMessageOperation("turn_on", [], None()))

)
, DSLTarget(AreaReference(["on"]))
]

)

(d) The OILDSL AST that corresponds to (b).

Figure 4.16: An example transition in OILXML and OILDSL with the corre-
sponding ASTs.
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idl/shared/exp

idl/shared/lexical

oil/shared/exp

idl/xml/exp idl/dsl/exp

oil/xml/exp oil/dsl/exp

Figure 4.17: A (simplified) import graph of IDL’s and OIL’s expression gram-
mars, that depicts how modules are reused. Node labels correspond the SDF3
module names. Arrows mean “imports”.

so, the abstract syntax of both syntaxes are similar, which eases forward
and backward migration between both syntaxes. Without the noise of XML
elements in OILDSL, the syntax for transitions becomes simpler; XML open
and closing elements are replaced with simple keywords and brackets. Fig. 4.15
shows an excerpt of the SDF3 grammar for transitions in OILDSL. Fig. 4.16b
shows the concrete syntax in OILDSL that corresponds to the OILXML variant
in Fig. 4.16a, and Fig. 4.16d depicts the corresponding AST.

4.5.2 Composed Grammars and Disambiguation

The four input languages (IDLXML, IDLDSL, OILXML and OILDSL) share
parts of their grammars, especially in the context of expressions: the expression
grammar of OIL extends the expression grammar of IDL, and the XML and
DSL expression grammars only differ in a few operators. To prevent the
definition of duplicate grammar rules across the SDF3 grammar definitions of
the input languages, the grammar definitions are split up into several reusable
modules.

See Fig. 4.17 for all SDF3 modules that define grammar rules for expres-
sions. Modules idl/xml/exp, idl/dsl/exp, oil/xml/exp and oil/dsl/exp
define the expression grammar for IDLXML, IDLDSL, OILXML and OILDSL
respectively. Shared grammar is defined in separate modules and reused for
multiple grammars by means of import statements. As an example, Fig. 4.18
shows the composition of the IDLXML expression grammar with the shared
OIL expression grammar (module oil/shared/exp) to obtain the OILDSL ex-
pression grammar in SDF3. The XML specific grammar rules are defined once
for IDLXML in module idl/xml/exp and are reused for OILXML by importing
them in module oil/xml/exp. Also, the OIL-specific grammar rules, used
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1 module idl/xml/exp
2
3 imports idl/shared/exp
4
5 context-free syntax
6 Exp.XMLLt = [[Exp] &lt; [Exp]] {left}
7 Exp.XMLLeq = [[Exp] &lt;= [Exp]] {left}
8 Exp.XMLGt = [[Exp] &gt; [Exp]] {left}
9 Exp.XMLGeq = [[Exp] &gt;= [Exp]] {left}

10
11 context-free priorities
12 { left: Exp.Plus Exp.Minus } >
13 { left: Exp.XMLLt Exp.XMLLeq Exp.XMLGt Exp.XMLGeq } >
14 { left: Exp.Eq Exp.Neq }

1 module oil/shared/exp
2
3 imports idl/shared/Lexical
4 imports idl/shared/exp
5
6 context-free syntax
7 // OIL-specific expressions
8 Exp.Reference = ID
9 Exp.Old = [[Exp]']

10
11 context-free priorities
12 Exp.Has >
13 Exp.Old >
14 { left: Exp.Not Exp.Length }

1 module oil/xml/exp
2
3 imports idl/xml/exp
4 imports oil/shared/exp

Figure 4.18: SDF3 modules that define the expressions syntax for OILXML
(simplified). The Exp.Reference constructor defines a variable reference using
the lexical ID sort. The Exp.Old constructor defines a suffix operator for
referencing old values of a variable, which can be used in assertions.

122



653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers
Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024 PDF page: 137PDF page: 137PDF page: 137PDF page: 137

for both OILDSL and OILXML, are imported from module oil/shared/exp.
Together, both imported modules form the expression grammar of OILXML.

Module idl/xml/exp has emerging ambiguities between the XML-specific
operators and other operators. Syntactical ambiguity is when a single input
program can be parsed to multiple different trees using the same grammar. For
example, 1 + 2 &gt;= 3 could be parsed in two ways: (1 + 2) &gt;= 3 and
1 + (2 &gt;= 3). With priorities in SDF3, one can define the relative prece-
dence of expression operators. Since priorities are transitive, only priorities
with respect to direct neighbors in the priority order (operators Plus/Minus
and Eq/Neq) are required for the new operators. Because Plus gets a higher
priority than XMLGeq, the previous example will be parsed as (1 + 2) &gt;=
3. In module oil/xml/exp, no additional disambiguation is required, as no
more new combinations of expression operators arise and no other syntactical
ambiguities emerge.

4.5.3 The Python Implementation

The Python implementation only supports IDLXML and OILXML. The
parser for these languages consists of two stages. First, the XML structure
is parsed using the Minidom library6. Second, the expressions inside XML
elements are parsed using the Pyparsing library7. For both stages, the im-
plementation uses a custom layer on top of the libraries to support grammar
specification and parser implementation. For example, the Python implemen-
tation uses a metamodel expressed in a custom XML subset that defines the
restrictions of OILXML with respect to generic XML.

Fig. 4.19 shows an excerpt of this metamodel. Lines 2–4 define a regular
expression for identifiers that can be referred to in other parts (see, e.g., line
10). Lines 6–33 define expressions, in which the order of levels of operators
indicate the precedence between operators. Lines 35–47 define the transition
concept. A Python script parses this metamodel and checks for an input
OIL program, parsed using Minidom, whether it conforms to the metamodel.
Helper functions on top of Pyparsing ease the definition of expression grammar
rules, e.g., by automatically allowing whitespace around operators. The levels
of operators are used to define precedence in Pyparsing. The custom layer is
not specific to OIL and can be reused for other XML languages with embedded
expressions.

In Section 4.3.1 we have described the Python implementation’s environ-
ment for viewing and editing OIL specifications. Several editor services related
to viewing and editing concrete syntax similar to those in regular IDEs are
available, which we detail below. For viewing OIL specifications, the Python
implementation supports pretty printing and origin tracking (for error report-
ing; see Section 4.2.3), which are implemented manually. Both pretty printing
and origin tracking are implemented in Python based on the data structures
that result from the parsers.

For editing OIL specifications, the Python implementation has limited cus-

6https://docs.python.org/3/library/xml.dom.minidom.html
7https://pypi.org/project/pyparsing/
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<metamodel name="oil">
<regexp name="identifier" pattern="[_A-Za-z][_0-9A-Za-z]*">

<documentation>A standard programming identifier.</documentation>
</regexp>
...
<parexp name="expression">

<level>
<operator symbol="number" pattern="0|[1-9][0-9]*"/>
<operator symbol="new" pattern="new {qualified_identifier}"/>
<operator symbol="identifier" pattern="{identifier}"/>
...

</level>
...
<level>

<operator symbol="_+_"/>
<operator symbol="_-_"/>

</level>
<level>

<operator symbol="_==_"/>
<operator symbol="_!=_"/>
<operator symbol="_&lt;=_"/>
<operator symbol="_&gt;=_"/>
<operator symbol="_&lt;_"/>
<operator symbol="_&gt;_"/>

</level>
<level>

<operator symbol="_and_"/>
</level>
<level>

<operator symbol="_or_"/>
</level>
...

</parexp>
...
<entity name="transition">

<documentation>A transition specifies a rule that indicates for a certain
action when and how variables change.</documentation>

<generalization entity="actionable"/>
<generalization entity="compositional"/>
<generalization entity="concernable"/>
<child entity="self" lower="0" upper="1"/>
<child entity="argument" lower="0" upper="inf"/>
<child entity="result" lower="0" upper="1"/>
<child entity="guard" lower="0" upper="1"/>
<child entity="assignment" lower="0" upper="inf"/>
<child entity="assertion" lower="0" upper="1"/>

</entity>
...

</metamodel>

Figure 4.19: An excerpt of the Python implementation’s metamodel for OIL,
expressed in a custom chosen subset of XML. OIL specifications are checked to
conform with this metamodel using a handwritten but generic Python script.
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tom support. The web-based Python implementation does not include an
editor, so external tools are used instead for editing OIL specifications, typi-
cally the Visual Studio IDE. To support the editing of OIL specifications, an
XSD (XML Schema Definition Language8) file is generated from the metamodel
using a handwritten script. XSD schemas define a subset of the XML language.
A generic IDE plugin for XML uses this XSD file to provide syntactic code
completion and error recovery. Although XSD could also be used for realizing
a parser, it was only used for realizing limited editor support because XSD
was found not to be expressive enough to cover all syntactical aspects of OIL.

4.5.4 Evaluation

To evaluate the productivity of implementing concrete syntax, we look at
a single evaluation point: the complete implementation of concrete syntax
in OIL’s implementations in Spoofax and in Python. We consider seven
concrete syntax artifacts: the grammar, the parser, and the editor services pretty
printing, origin tracking, syntax highlighting, error recovery and syntactic code
completion.

Question. Does it cost less code volume to implement the artifacts for OIL’s
concrete syntax in Spoofax compared to Python?

Method. First we identify for each of the seven artifacts related to concrete
syntax to what extent they are realized in the SDF3 and Python implementa-
tions of OIL. Then, per artifact, we measure and compare the code volume (in
terms of SLOC [95]) related to the artifact in each implementation.

For the sake of comparability, we want to compare the lines of code of the
implementations where they implement the exact same syntax. The Python im-
plementation only contains OILXML and not OILDSL. Thus, in the Spoofax im-
plementation we consider the grammar except those parts specific to OILDSL,
i.e., we consider the OILXML-specific parts and the parts shared between
OILXML and OILDSL. Since the syntactic languages of both implementations
are not exactly the same, we subtract lines from our measurements that con-
cern syntactical elements not present in the other implementation. In the
Python implementation’s metamodel, we manually exclude tags that are spe-
cific for documentation from the counting, as we consider them as comments
in the definition of SLOC. Since XML and expression parsing are separately
implemented in Python, we measure and analyze those separately.

Both the Python as well as the Spoofax implementation of OIL could be
seen as consisting of OIL-specific code and more generic, reusable code. We
consider code to be reusable if it is generic enough such that it can be reused
in the implementation of a language other than OIL. In the Spoofax imple-
mentation, we reuse code from the standard library of Spoofax, and we do
not include it or the implementation of the language workbench itself in the
measurements. In the Python implementation, both OIL-specific and reusable
code are implemented manually, which we therefore both measure. We count
OIL-specific code separately from reusable code. For the reusable code, we
analyze to what extent it can be reused.

8https://www.w3.org/XML/Schema
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Syntax impl. artifact Spoofax Python

Grammar (excl. expressions)∗ 274 161
Grammar (expressions)∗ 91 41
Parser generator (excl. expressions) 0 344
Parser generator (expressions) 0 298
Pretty printing 0 90
Origin tracking 0 205
Syntax highlighting 0 0
Error recovery
Syntactic code completion 0 121
Total (OIL-specific)∗ 365 202
Total (All) 365 1260

Table 4.1: Code volume (in SLOC) for the Spoofax and Python implementations
of OILXML’s concrete syntax, counted per implementation artifact. ∗ indicates
OIL-specific artifacts. = implemented; = partially implemented (only
for XML, not for expressions).

Results. Table 4.1 gives an overview of which syntax artifacts are available
in each implementation and states the SLOC per artifact. The Spoofax syntax
implementation of OILXML comprises 365 SLOC of SDF3 grammar and the
Python implementation comprises 1260 SLOC. Spoofax realizes all artifacts in
full from this grammar: a parser, a pretty printer, origin tracking, and editor
services such as syntax highlighting, error recovery, and code completion.
The Python implementation contains a parser and origin tracking for the full
language. Other artifacts are only implemented for XML and not for the
expressions inside XML: pretty printing, syntax highlighting, error recovery,
and code completion. To ensure that our comparison is on two implementations
that cover the same syntactic language, in the Spoofax source we have withheld
the syntactical elements that are not in Python from counting (31 out of 396
SLOC deducted from original source; 7.8%) and in the Python source we have
withheld elements that are not in the Spoofax implementation from counting
(46 out of 1306 SLOC deducted from original source; 3.5%). Of the Python
implementation, only the grammar (202 out of 1260 SLOC) is specific to OIL,
which relates to the metamodel.

Analysis. We analyze our results by first comparing the total code volumes
of both implementations and then compare per syntax implementation artifact.

The results show that the syntax implementation artifacts of OIL are realized
in the Spoofax implementation with a factor of 0.29 SLOC compared to the
Python implementation. All 365 Spoofax SLOC are OIL-specific. In the Python
implementation, only 202 SLOC is specific to OIL, namely for defining the
metamodel; the rest is reusable for XML-based languages with embedded
expressions. The Spoofax implementation realizes all syntax artifacts for the
full language, whereas the Python implementation only realizes the parser
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and origin tracking for the full language; the other artifacts produced by
the Python implementation do not provide support for expressions. The
Spoofax implementation consists of SDF3 only, i.e., the grammar, from which
all other six artifacts are derived. In the Python implementation, most code is
attributed to realizing the parser. For the other artifacts, additional code was
needed (90 + 205 + 121 = 416 SLOC). In the Python implementation, syntax
highlighting for XML was the only editor service that was available without
manual implementation by using an existing XML plugin in Visual Studio.

The Python implementation uses a custom layer on top of existing libraries
for XML parsing (Minidom) and expressions parsing (Pyparsing). First, the
Python implementation uses a metamodel (202 SLOC) and a script that checks
whether OIL models conform to the metamodel (344 SLOC). Second, the
Python implementation adds helpers on top of Pyparsing that prevent repeat-
ing low-level grammar patterns (298 SLOC). Although the custom layer for
expressions is reusable, it is more restrictive than SDF3 as, e.g., it only supports
left associativity. The SDF3 implementation did not use code in addition to the
grammar, which is the main reason why the Spoofax implementation contains
fewer SLOC.

In Spoofax, the OILXML grammar is defined with a total of 21 SDF3 modules.
Out of the 365 SLOC used to define these modules, about 28% exists purely to
compose these modules. This consists almost only of module name definitions
and import statements. For some grammar modules, such as those that define
the expression grammar, the split up into smaller modules is beneficial, because
it enables reuse of grammar rules for the other input languages as described
in Section 4.5.2. A third of the grammar modules however are only used
once. These modules could have been merged with the modules that use
them instead, which would have saved a few SLOC. We see this difference
as negligible, as this only saves on import statements, which do not directly
define the grammar of the language. In Python, the grammar is defined in a
single metamodel, so no SLOC is used for composition.

Pretty printing is implemented manually in the Python implementation (90
SLOC). This is a generic XML pretty printer, not specific to OILXML. For ex-
pressions, it simply copies the textual representations of expressions to output
programs. In the Spoofax implementation, pretty printing is automatically
derived based on the formatting of the grammar rules in SDF3. For example,
lines 7–16 of Figure 4.14 define the pretty printing of transitions to be spread
over multiple lines and with indented child elements. These templates increase
the number of SLOC used for defining the grammar rule, as without formatting
the complete rule could be at a single line.

Origin tracking (see Section 4.2.3), is generated automatically from the SDF3
grammar. In the Python implementation, origin tracking is only provided
without requiring additional implementation by the Pyparsing library used
for parsing expressions. For parsing XML, a manual implementation was
needed to realize origin tracking (196 SLOC). The origins returned by the
Pyparsing library used for expressions are relative. Absolute source locations
for expressions are calculated by adding the relative offsets of expressions to
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the parent XML tag content’s source location (9 SLOC, reported under “Origin
tracking” in Table 4.1).

Syntax highlighting is the only editor service in Python that is realized
without additional effort, using Visual Studio’s default XML plugin. Note,
however, that this only supports syntax highlighting for the XML part of OIL.
For the expressions inside XML tags, it does not support syntax highlighting.
The Spoofax implementation does support syntax highlighting for the complete
language.

The Python implementation realizes error recovery and code completion
for the XML part of the language by generating an XSD schema from the
metamodel. The script that generates the XSD schema (121 SLOC) is reusable,
not specific to OIL. Given the XSD schema, the editor’s default XML plugin
provides error reporting on invalid XML tags and it provides code completion.
The Spoofax implementation supports error recovery and code completion for
the complete language without additional implementation, by automatically
generating the editor services based on the SDF3 grammar.

Conclusion. The Python implementation uses less OIL-specific code to
implement OIL’s concrete syntax (metamodel of 202 SLOC) than Spoofax
(SDF3 grammar of 365 SLOC). However, whereas Spoofax does not require
code in addition to the grammar to fully implement a range of editor services,
the Python implementation requires additional code for implementing a parser
and other editor services. This is in spite of the Python implementation
making use of existing libraries for XML parsing and expression parsing and
the Python implementation realizing some editor services not for the full OIL
language. The code in the Python implementation, apart from the metamodel,
is reusable in the sense that it is not specific to OIL. The reusable parts of the
Python implementation can be reused for implementing other languages with
XML syntax with a restricted form of embedded expressions.

Comparing the implementations, including the reusable parts, the Spoofax
implementation realizes all editor services for the full OIL language using
less than one third of SLOC. Therefore, the results show that it costs less
code volume to implement the artifacts for OIL’s concrete syntax compared to
Python. This is especially the case when, in addition to only a parser, editor
services are required for interactive use in IDEs.

Discussion. The Python implementation uses, on top of the existing parsing
libraries, a custom layer to support the implementation of OILXML’s syntax.
This custom layer enables the use of the metamodel and prevents repeating low-
level grammar patterns. Alternatively, OILXML’s syntax could also have been
implemented directly using the existing libraries. On one hand, the custom
layer is reusable and costs extra code. On the other hand, the custom layer
saves code by preventing the need to repeat low-level implementation patterns.
Although we cannot make a comparison with a Python implementation that
does not include the custom layer, we expect that such an implementation
could be smaller than the current Python implementation. An implementation
without reusable parts could be more specific to OIL and therefore possibly
smaller. In the Spoofax implementation, SDF3 was sufficient to implement
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OILXML and OILDSL.
Implementing the parser for OILXML in Python takes about twice the

SLOC as using SDF3. When editor support is not relevant, one could argue
whether the factor two fewer SLOC is reason enough to start using a language
workbench. However, we expect that the factor is relatively low because XML
syntax is used. By using XML, the existing Minidom library could be used,
but this also imposes the restriction of only supporting subsets of XML. For
custom syntax, e.g., for OILDSL, we expect that a Python implementation
using Pyparsing would cost relatively more SLOC than in SDF3, as a complete
grammar needs to be implemented in more detail. The use of another parser
generator library in Python could bring this closer to SDF3. In Spoofax, the
code volume specific to the OILDSL grammar is actually smaller than the code
volume specific to the OILXML grammar due to OILDSL being more concise:
the Spoofax implementation contains 219 OILXML specific SDF3 SLOC and
168 OILDSL specific SDF3 SLOC.

The grammar of OILXML imposes a few restrictions on the order of attributes
or child elements of an XML element. This was originally done so that the
structure of the derived AST can be made slightly simpler, resulting in slightly
simpler transformations from this AST. To lift these restrictions, we believe
that about 10 SDF3 SLOC would be necessary. The Python implementation
does not have such restrictions.

Part of the Python implementation’s editor services, e.g., origin tracking, are
implemented only for the web-based tooling which only statically displays
specifications and errors and does not support editing specifications. Therefore,
the editor services are only used in a static way, in contrast to the interactive
way in IDEs. We expect that extending the editor services in the Python
implementation to have support for interactive use would cost more code.

4.6 Abstract Syntax

The abstract syntax of a language defines how a language is represented
internally. For textual languages, such as OIL, this is done by means of
AST schemas. Given an SDF3 grammar definition, a corresponding AST
schema is generated automatically. To structure the Spoofax implementation
of OIL, additional intermediate representations have been defined, which we
discuss here. We also describe the transformation architecture that is shaped
around these intermediate representations, specifically focusing on desugaring
transformations and on the resilient staging framework that serves as the basis
of this architecture, which realize OF2 (Desugaring). Afterwards, we discuss
how OIL is internally represented in the Python implementation. Lastly, we
evaluate Spoofax on productivity in the context of abstract syntax.

4.6.1 Intermediate Representations

In addition to the AST schemas that are automatically generated by SDF3 for
OILDSL and OILXML, three intermediate representations (IRs) are defined for
OIL:
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OILXML

OILDSL
normalized IR desugared IR semantic IR

mCRL2

GPL

well-formedness
and desugaring name and type analysis

Figure 4.20: An overview of the transformation architecture of the imple-
mentation of OIL in Spoofax. Boxes correspond to AST schemas and arrows
correspond to transformations.

• Normalized IR A representation that acts as a middle ground between
OILDSL and OILXML while still containing as many syntactic details from
both languages as possible.

• Desugared IR A simplified representation where syntactical details are
removed and implicit details are made explicit to enable concise specification
of static semantics.

• Semantic IR A representation that restructures an OIL specification to ease
the implementation of dynamic semantics (code generation) of OIL.

The use of IRs provides separation of concerns: each IR is related to a
different language implementation aspect. See Fig. 4.20 for how the IRs fit
in the transformation architecture. Transformations are defined between the
normalized IR and both the OILXML and OILDSL AST schemas in both
directions so that one can easily switch between OILXML and OILDSL [36].
Any transformations that follow are independent of the concrete syntax used.

To illustrate some differences between IRs, we use the same transition as
the example in Fig. 4.16. See Fig. 4.21 for this transition in the normalized,
desugared and semantic IR. One notable change from OILDSL and OILXML
to the normalized IR is that the transition term in the normalized IR now has
fixed subterms instead of a list of terms, which was done to make it easier
to define transformations on it. When moving to the desugared IR, some
optionality is removed by removing Some wrapper terms and by replacing
None terms with information made explicit, such as Call. When moving to
the semantic IR, transitions are now grouped per event. This is useful for
code generation, as an OIL specification is executed by means of sending or
receiving events. Also, the source and target are used to define the transition
pre- and postconditions (with ConditionReference) and the transition update
(with UpdateReference).

4.6.2 Desugaring

Before the normalized IR can be transformed to the desugared IR, a number of
desugaring transformations are applied first. There are a total of 14 desugaring
transformations defined which all use the normalized IR both as input and
output. Most of the desugaring transformations are explications, which make
implicit information explicit. These are necessary to be able to remove the
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Transition(
Some(

Message(
Some(MessageCause(Reactive()))

, None()
, Some(MessageMethod("turn_on", []))
)

)
, Some(Source(AreaReference(["off"])))
, Some(Target(AreaReference(["on"])))
, ...
)

DESTransition(
DESMessage(

Some(Reactive())
, Call()
, DESMessageMethod("turn_on", [])
)

, "off"
, "on"
, ...
)

SEMEvent(
"heat2ci_server_turn_on_call_reactive"

, Reactive()
, Call()
, "heat2ci"
, "server"
, SEMMethod("turn_on", [])
, [ SEMTransition(

...
, ConditionReference("off")
, [UpdateReference("on")]
, ConditionReference("on")
)

, ...
]

)

Figure 4.21: The transition of Fig. 4.16 in the normalised, desugared and
semantic IR respectively.
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1 oil-auto-value = topdown(try(oil-auto-value-term))
2
3 oil-auto-value-term:
4 State(name, None(), supers, areas) ->
5 State(name, <oil-auto-value-new> name, supers, areas)
6
7 oil-auto-value-new = newname ; !Some(StateValue(EnumLiteral(<id>)))

Figure 4.22: The Stratego implementation of the auto-value desugaring transfor-
mation.

optionality of terms when transforming to the desugared IR.
See Fig. 4.22 for the implementation of one of the (simpler) explication

transformations defined in the Stratego implementation. This transformation,
called auto-value, gives every state a value if it does not (explicitly) have one.
The rule defined on line 1 traverses top-down over the AST to try and apply
the rule oil-auto-value-term on every node. This rule, defined on lines 3-5,
does the actual explication: if a state without a value is found (line 4), the
value is added (line 5). It uses the rule defined on line 7, which creates a fresh
name for the state value given the name of the state.

4.6.3 Resilient Staging

To keep the desugaring transformations simple, they each have expectations on
the input. For instance, desugaring transformation auto-type that derives new
types from the areas of an OIL specification expects that each state has a value.
Most of these expectations are ensured by other desugaring transformations.
For instance, auto-value ensures that every state has a value, which matches the
expectation of auto-type.

To help us structure the desugaring transformations, as well as the transfor-
mation architecture as a whole, a framework that we call resilient staging is used.
This framework is based on stages, which are equipped with a precondition, a
transformation, and a postcondition. Each stage should only have one specific
transformation purpose to keep them well maintainable and reusable. Stages
can be concatenated to create larger transformations, which we call pipelines.

The precondition represents requirements on the input of the stage, such as
the presence or absence of specific terms or term patterns. When executing a
stage, the precondition is checked first. If the precondition is met, the actual
transformation will be executed. Otherwise, the pipelines stops and reports the
errors from the precondition. For some stages, checking the precondition may
require work that is useful for the transformation itself too, such as collecting
specific terms. To prevent duplicate work, the precondition may also pass data
to the transformation if the precondition is met.

After the transformation has been executed, the postcondition is checked.
This postcondition represents requirements on the output of the stage, effec-
tively testing whether the transformation was successful. If the postcondition is
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stage(pre, trans, post):
StageSuccess(ast) -> result

where
//check preconditions
(pc-data, errors) := <pre> ast;
if (<?[]> errors) then

//do the transformation
ast' := <trans> (pc-data, ast);

//check postconditions
errors' := <post> ast';
if (<?[]> errors') then

result := StageSuccess(ast')
else

result := StageFailure(ast', errors')
end

else
result := StageFailure(ast, errors)

end

Figure 4.23: The Stratego transformation rule to define a stage (simplified).

not met, the pipeline is aborted and errors are returned. Ideally, postconditions
checking should only be enabled during development, since stages should be
correct when used in production.

In a sense, the pre- and postcondition provide a contract over the trans-
formation: they define what is required by the transformation and what can
be expected from the transformation. A clear contract and transformation
purpose indicate how and where transformations should be embedded into
pipelines, also promoting reusability. When a transformation is used or defined
incorrectly, the stage conditions will show what and where the issue is, hence
“resilient” in resilient staging.

In Stratego, stages are defined using the transformation rule stage shown
in Fig. 4.23. The three parameters pre, trans and post are the precondition,
transformation and postcondition respectively. The precondition and postcon-
dition are transformations too, which return a list of errors, given an input AST.
More on this in Section 4.7.1. Whenever a condition returns errors, the pipeline
is abandoned and the errors are returned. See Fig. 4.24 for the instantiation of
the stage of auto-value.

4.6.4 The Python Implementation

In the Python implementation no intermediate representations are used. The
representation that results from parsing OILXML is used directly for checks
and transformations. See Fig. 4.25 for the general transformation architecture.
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1 oil-auto-value-stage =
2 stage(
3 stage-preconditions-true,
4 oil-auto-value,
5 all-states-value
6 )

Figure 4.24: The creation of the stage for auto-value in Stratego, using a generic
rule stage-preconditions-true, the transformation from Fig. 4.22 and a
postcondition rule all-states-value.

OILXML mCRL2/GPL code

well-formedness, desugaring,
name and type analysis

Figure 4.25: An overview of the transformation architecture of the implemen-
tation of OIL in Python. The rectangular box is an AST schema, the wavy box
is text, and the arrows are transformations.

This representation consists of two parts: the AST representation generated by
the Minidom parser and the AST representation generated by the expression
parser. For the Minidom AST representation, many helper functions have been
defined that hide the use of Minidom, mainly for the access or derivation of
information from it. Many of such information is cached so that the Minidom
AST does not need to be accessed too frequently. For the expression AST
representation, a custom Expression class is defined that is used to represent
any expression term.

Desugaring transformations are defined as Python functions that traverse
the AST and apply the changes where necessary. See Fig. 4.26 for the imple-
mentation of auto-value in Python. It traverses the AST to find all states (line 3).
Then if this state does not have a value (line 4), a new value name is created
based on the name of the state (lines 5 and 7), a new AST element is created
that holds this value (lines 6 and 8), which is then added to the state (line 9).

The Python implementation does not explicitly define pre- and postcondi-
tions per transformation like resilient staging does, but it does define transfor-
mations and conditions on the AST as separate functions, which are called in a
specific (interleaving) order.

4.6.5 Evaluation

To evaluate the productivity of implementing abstract syntax, we look at two
evaluation points: AST representations and desugaring transformations.

AST representations. Question. Does it cost less code volume to define AST
representations for OIL in Spoofax compared to Python?
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def addAutoStateValues(spec):
dom = spec.getDom()
for state in spec.getElements('state'):

if len(Children(state, ['value'])) == 0:
stateName = state.getAttribute('name')
autoValue = dom.createElement('value')
literalName = spec.createUniqueLiteralName(stateName)
_setExpressionText(spec, autoValue, f"'{literalName}'")
state.insertBefore(autoValue, state.firstChild)
state.hasAutoTerm = True

spec.initElementCache()

Figure 4.26: The Python implementation of the auto-value desugaring transfor-
mation.

Method. We collect all AST representations that are used in the transforma-
tion architecture of an OIL specification in both the Spoofax and the Python
implementation and measure the SLOC used to define them.

Results. As was shown in Fig. 4.20, the Spoofax implementation defines
seven AST schemas for OIL: OILXML AST, OILDSL AST, the three IRs, mCRL2
AST and GPL AST. As was shown in Fig. 4.25, the Python implementation
defines one AST representation. This AST representation is split into two parts:
a Minidom AST representation and an expression AST representation.

In the Spoofax implementation, all AST schemas, apart from the normalized
and desugared IR, are automatically derived from their grammar defined in
SDF3. The normalized and desugared IR do not have their own grammar and
have their constructors defined in Stratego instead. Their AST schemas are
defined with 43 SLOC and 23 SLOC respectively, with a shared expression AST
schema defined with 33 Stratego SLOC. In the Python implementation, the
constructors for the Minidom AST representation are automatically derived
from the Minidom parser. The Expression class used for the expression AST
representation is defined with 9 Python SLOC.

Analysis. If a grammar already exists, the Spoofax implementation does not
need any SLOC to define the AST schemas as they are generated automatically.
This is also the case in the Python implementation for the Minidom AST repre-
sentation. If the grammar is not available, an AST schema can be defined in
Spoofax with 1 Stratego SLOC per constructor, as is the case for the normalized
and desugared IRs. In Python, the expression AST representation only consists
of one constructor, namely a general Expression constructor with 7 children,
defined with 9 SLOC. Due to this constructor, the expression AST representa-
tion in Python is more general than the expression AST schema in Spoofax, as
the latter explicitly defines a constructor for each type of expression. This is
also the reason why the expression AST schema in Spoofax uses more SLOC
than the expression AST representation in the Python implementation.

Conclusion. Due to the differences in available AST representations, we
cannot give a conclusion on the definition of AST representations. For the

Chapter 4. OIL 135



653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers
Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024 PDF page: 150PDF page: 150PDF page: 150PDF page: 150

AST representation that is available in both implementations, namely that for
expressions, we cannot draw a conclusion either, due to the different approach
for constructors and the small size.

Discussion. The difference between the Spoofax and Python implementa-
tions in the use of IRs is partially due to the mutability of ASTs. ATerm terms
are immutable, so any desired change to the definition of an AST requires
the definition of new constructors. In the Python implementation, the AST is
mutable, so the AST can be changed dynamically. This does have the downside
that it is more difficult to know exactly what information is available at any
point in the transformation architecture. Due to the mutability of the AST
in the Python implementation, it was found during its development that the
definition of explicit IRs would not be worth the effort for the benefits it could
bring over using the single mutable AST.

An interesting observation is the difference in the approach of defining the
expression AST schema between Spoofax and Python. In Spoofax each type
of expression is defined with an explicit constructor, while the Python imple-
mentation uses one generic constructor. This is related to the transformation
language available that operates on the ASTs. In Spoofax, Stratego is used for
transformations, where the terms and their constructors are part of the data
language. Having concisely represented terms therefore also helps keeping
transformations concise. In Python, it is more common to reason in terms
of classes with attributes. Since all expression types have similar attributes,
such as a list of subexpressions, it makes more sense to define one generic
constructor.

Though the Minidom AST representation in the Python implementation
is automatically generated, thanks to the Minidom library, this library can
only be used for XML-based languages. It can be expected that for non-XML
languages much more effort is needed to define an AST representation, which
is also the reason why the implementation does not define IRs. In Spoofax,
AST schemas can be defined for any textual language in an equally productive
way.

Desugaring transformations. Question. Does it cost less code volume to
define the desugaring transformations for OIL in Stratego compared to Python?

Method. We collect all desugaring transformations that are implemented in
both the Spoofax and Python implementation and measure the SLOC used to
implement them. Any SLOC called by the desugaring transformations, such
as helper functions, are counted too.

Results. Table 4.2 shows the SLOC used to implement the desugaring
transformations in both implementations. Any SLOC that are used for more
purposes than one desugaring transformation are captured in the “Reused”
row. The body of reused code in the Python implementation mainly consists
of helper functions for traversal through the Minidom AST representation
or for general simple transformations. The Stratego implementation has less
reused code, because most of such traversals or simple transformations can be
compactly expressed with the Stratego language and its standard library.
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Artifact Stratego Python
distribute-groups 41 41
auto-region 16 31
auto-super 31 37
auto-state 127 94
auto-value 5 34
auto-variable 39 52
auto-type 26 31
auto-init 15 38
auto-silent 9 18
Reused 42 251
Total (Without reused) 309 376
Total (All) 351 627

Table 4.2: SLOC for the implementation of desugaring transformations that
are defined in both the Spoofax and Python implementation of OIL.

Not every desugaring transformation in this table corresponds to one trans-
formation in Stratego and one function in Python. Desugaring transformation
distribute groups corresponds to two Stratego transformations and one Python
function, auto-region, auto-variable, auto-type and auto-init correspond to one
Stratego transformation and two Python functions, and auto-state corresponds
to two Stratego transformations and three Python functions.

Analysis. In total, the desugaring transformations are implemented with
Stratego with a factor of 0.56 SLOC compared to Python. On average, not
counting reused SLOC, a desugaring transformation is implemented with
Stratego with a factor of 0.82 SLOC compared to Python. This difference is
mainly due to the fact that Stratego is specifically tailored for transformations,
it allows one to define transformations in a more compact way. Stratego does
this with ATerm as the main data format and with the core support for pattern
matching.

We take the implementation of auto-value as an example. Due to ATerm as
data format, one can create the resulting state node by writing the resulting
term as the right-hand side of a transformation rule (Fig. 4.22 line 5), instead of
creating the new node and text fields step by step (Fig. 4.26 lines 6-9). Due to
the core support for pattern matching, checking whether the state has no value
and assigning the name of the state to a variable can be done by just writing
the State term with required subterms (such as None()) and variables (such
as name) as the left-hand side of a transformation (Fig. 4.22 line 4), whereas in
the Python implementation this is done in separate steps (Fig. 4.26 lines 4-5).
For this example, the default support in Stratego for creating a fresh name
(newname in Fig. 4.22 line 7) also helps significantly, as this is implemented
explicitly in the Python implementation with a (not reused) function of 23
SLOC (called in Fig. 4.26 line 7).

Deviations from the average SLOC ratio that are more in favor of the Python
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implementation are typically in case of transformations that require less lo-
cal changes, such as auto-region, auto-super, auto-state and auto-variable, which
introduce regions, zones, states and variables respectively, based on multiple
sources of information in the AST. This is for a few reasons. First of all, it is
not possible in Stratego to access the parent of a term directly. To access such
information, a top-down traversal is needed that keeps track of previously
encountered terms. Secondly, it is not straightforward in Stratego to store infor-
mation globally to reuse later, which is for instance necessary to make sure that
all names created are distinct. It is possible to use dynamic rules [100] for this,
but the dynamic transformation behavior that these rules add makes it more
difficult to understand how Stratego code executes when reading it. Lastly, the
immutability of ATerm makes it impossible to store references to parts of the
AST. First collecting information and then transforming this information does
not have an effect on the resulting AST; instead, the information needs to be
mapped back to the AST to then transform it, or information collection and
transformation should be intertwined. In Python, these three restrictions of
Stratego are less of a concern due to the freedom one has in a general-purpose
programming language.

An example type of operation used in desugaring that is affected by the
restrictions of Stratego above is finding the least common ancestor (LCA) of
two areas. In the Python implementation, this is done by walking up the AST
from the two areas using parent pointers until both paths cross. In Stratego,
such a walk along parent pointers is not possible. Instead, the complete
AST is traversed bottom-up in a recursive fashion, where for each area in the
tree all descendant areas are collected. If the two areas for which the LCA
needs to be found are in this collection for the first time, the LCA is found.
An implementation for finding the LCA has similar SLOC between Stratego
and Python, but the implementation in Python is reused between multiple
transformations, while the implementation in Stratego is not as it is part of the
basis of the desugaring transformation.

The only difference in functionality between the two implementations are
some naming conventions for newly introduced elements. For instance, in
auto-value, the Stratego implementation creates a name that is different from
any name in the OIL specification, whereas the Python implementation creates
a name that is different only from all literals in the OIL specification. This
choice is sufficient, but requires one to specifically collect all literals, which
contributes to 21 SLOC of auto-value in the Python implementation.

Conclusion. Although there are some restrictions to Stratego that hinder
the conciseness of transformations defined in it compared to Python, on
average Stratego requires less code volume compared to Python to define the
desugaring transformations.

Discussion. As mentioned in the analysis, there are some restrictions to
Stratego due to limitations on what it supports when compared to Python, such
as not being able to directly access the parent of a term. We do not necessarily
see these restrictions as points of improvement however. For instance, while
the immutability of the AST may make it impossible to store references to

138



653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers
Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024 PDF page: 153PDF page: 153PDF page: 153PDF page: 153

terms in the AST, which restricts the design of transformations, this does make
sure that an AST cannot be transformed indirectly, which is beneficial for the
understanding of Stratego code.

The measurements only consider the SLOC used to implement the func-
tionality of the desugaring transformations, not the composition of them. In
the Spoofax implementation, they are composed using the resilient staging
framework. This framework is defined with 63 SLOC, which can be reused
for any language and any transformation architecture. Creating a stage from
a desugaring transformation then costs one stage transformation rule call,
as shown in Fig. 4.23. The stages are then sequentially composed. Since the
Python implementation does not implement resilient staging explicitly, it does
not have this overhead.

4.7 Static Semantics

In this section, we discuss the implementation of static semantics of OIL in
Spoofax, which we consider to consist of name binding, typing and other well-
formedness aspects, which together realize OF3 (Input Correctness). Name
binding and typing are implemented using NaBL2. Well-formedness is mostly
implemented with a collection of Stratego transformations that produce errors
if the constraints are violated. In the transformation architecture of OIL, well-
formedness checking occurs on the normalized IR, while name binding and
typing occur on the desugared IR (see Fig. 4.20).

We describe how transformations and origin tracking are used to realize
well-formedness checking and how cross-file and cross-language analysis over
a collection of IDL and OIL files is realized, which relates to OF4 (Language
Interaction). Afterwards, we discuss how static semantics is realized in the
Python implementation. We then evaluate Spoofax on productivity in the
context of static semantics.

4.7.1 Well-formedness Checking

OIL specifications need to conform to well-formedness constraints. For ex-
ample, each region should have at least one state. Although this particular
example could have been enforced in the grammar, not all well-formedness
constraints can be enforced in a grammar, or they lead to messy grammars.
Also, by implementing these constraints manually, it is possible to generate
better error messages than generic errors generated by the parser.

For some well-formedness constraints, such as illegal variable names and
name distinctness, there is core support in SDF3 and NaBL2 respectively. Other
constraints are checked by means of Stratego transformations, which transform
an AST to a list of errors. Fig. 4.27 depicts a Stratego rule that implements a
well-formedness constraint that says that every state must have a value. This
check is used as the postcondition of the stage of desugaring transformation
auto-value, see Fig. 4.24. If the check fails, the rule returns a list of errors, one
for each state for which the check fails. Each error is a tuple that contains both
the state term as well as the error message.

Although the constraint is defined on an IR — and thus not on the original
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1 all-states-value =
2 collect-all(\
3 s @ State(_, None(), _, _) ->
4 (s, "State does not have a value")
5 \)

Figure 4.27: A Stratego code snippet that checks whether all states have a
value.

1 init ^ (s) :=
2 ...
3 new s,
4 distinct/name D(s)/Module | error "Duplicate module" @NAMES.
5
6 [[ IDLModule(m, imps, defs) ^ (s) ]] :=
7 Module{m} <- s,
8 ...

Figure 4.28: A NaBL2 code snippet that checks duplication of module names.

parsed AST — Spoofax can associate the error with the original input syntax.
This is thanks to origin tracking. The origin information of a term, that
is created when a specification is parsed, is passed on when this term is
transformed into another term. This makes the origin information directly
accessible from the term within an error tuple. Spoofax can then use these
error tuples to show the error to the user on the correct syntactical element in
the editor.

4.7.2 Cross-file and Cross-language Analysis

The implementation of OIL and IDL in Spoofax involves static analysis that
spans both multiple files and multiple languages. For instance, for a collection
of multiple IDL files it should be checked whether there are no modules
defined with the same name (cross-file analysis, within the same language).
As mentioned in Section 4.3.2, transitions in OIL refer to operations defined in
IDL files (cross-language analysis). We discuss how both forms of analysis are
implemented using NaBL2.

Fig. 4.28 depicts an NaBL2 code snippet that enforces the cross-file constraint
that no modules with duplicate names may exist across IDL files. Line 1 defines
the init rule, which is where the analysis starts. NaBL2 is configured such
that the scope s that is created in the init rule (line 3) is used as the initial
scope for each IDL file. For IDL files, this scope is supplied to the rule for
IDLModule (line 6), which adds a declaration of the module to this scope. By
attaching the scopes of all IDL files to the single root node, all IDL modules
are part of a single scope graph. The restriction that all module names are
distinct is defined on line 4, where D(s)/Module defines the collection of all
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1 [[ DESImportModule(m) ^ (s) ]] :=
2 Module{m} -> s,
3 Module{m} |-> decl | error "Module not found" @ m,
4 Module{m} <=== s.

Figure 4.29: A NaBL2 code snippet that imports IDL modules into OIL.

sR sO

IM1 IM2 O

Figure 4.30: An abstract representation of a merged scope graph of an OIL
specification (O) and two IDL modules (IMi). Rectangles indicate declarations,
circles indicate scopes. SR is the root scope. The scope associated with the
OIL specification (SO), indicated with the dotted arrow, has the root scope
as its parent scope, thereby making the IDL modules visible from the OIL
specification.

Module elements reachable from scope s and distinct/name defines that no
two elements in this set may have the same name.

Fig. 4.29 depicts an NaBL2 code snippet that specifies the cross-language
importing of IDL modules into OIL specifications. First a reference to the
module is added to the scope (line 2), after which it is checked whether
the referenced module can be found (line 3), that is, whether a path from
the reference to the declaration exists in the scope graph. Then in line 4 all
declarations in the module are imported. More precisely, Module{m} <=== s
makes all declarations that are visible in the scope on which Module{m} was
declared visible in s.

Similar to how multiple IDL files share a single scope graph, the scope
graphs of OIL files could conceptually be connected with those of IDL files to
import the analysis for importing of Fig. 4.29. Fig. 4.30 depicts this. However,
in Spoofax it is not possible to implement this directly. Spoofax only supports
configuring NaBL2 to have analysis span multiple files of a single language,
but not the files of multiple languages. This has been worked around by
instantiating a single language artifact that accepts both IDL and OIL files.
Although the implementation sources of IDL and OIL are organized in separate
projects, there is no distinction anymore between an IDL and OIL language
artifact; for IDL modules to be usable in OIL specifications, they have to be in
files with the same .oil extension.

4.7.3 The Python Implementation

In the Python implementation, typing of expressions is implemented with a
bottom-up recursive algorithm with a case distinction on the type of operator.
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1 def extractModules(spec):
2 idlInfo = spec.generator.getIDLInfo()
3
4 rootModules = OrderedSet()
5 for _import in spec.getElements('import'):
6 moduleName = _import.getAttribute('module')
7 if moduleName in idlInfo:
8 rootModules.add(moduleName)
9 else:

10 spec.addAttributeValueError(_import, 'module', None, 'Module not
found in "idl_specs.txt" nor in the additional IDL include directory.')

11 spec.rootModules = rootModules

Figure 4.31: A Python code snippet that imports IDL modules into OIL.

For some operators, such as equality, the process is repeated but with an
expected type. Name resolution is partly done by the type checker and partly
by separate functions. Well-formedness constraints are defined with separate
functions.

See Fig. 4.31 for how name resolution of import statements is done in the
Python implementation. On line 2, information on the IDL files is retrieved.
This loads the relevant IDL files and creates a dictionary representing them,
if this was not done already. Then on lines 5-7 the function iterates over all
module names that appear in import statements. It checks on line 7 if this
module name exists and if not, it reports an error (line 10). On line 11, the list
of imported modules is stored in the OIL specification object for easy access.

Whereas the Spoofax implementation aborts the pipeline for any stage pre-
and postcondition that fails, the Python implementation can do multiple steps
before aborting. When to abort in case of errors is decided manually, by
means of conditional return statements throughout the sequence of desugaring
transformations and well-formedness checks. Errors can be shown in the web
interface of the Python implementation on a textual representation of the OIL
specification thanks to origin tracking. Syntactical elements with errors are
highlighted in red and hovering over them shows an error message.

4.7.4 Evaluation

To evaluate the productivity of implementing static semantics, we look at
a single evaluation point: the implementation of static semantics in OIL’s
implementations in Spoofax and in Python. We consider five static semantics
artifacts: name binding, typing, well-formedness, error handling and error
reporting.

Question. Does it cost less code volume to define the static semantics
artifacts for OIL in Spoofax compared to Python?

Method. For the name binding, typing and well-formedness artifacts that
are implemented in both Spoofax and Python, we measure how many SLOC
were used to implement them. We also measure the SLOC used to abort
when errors are found (error handling) and the SLOC used to show the errors
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Artifact Spoofax Python
Name binding 128 233
Typing 81 257
Well-formedness 24 57
Error handling 15 29
Error reporting 19 37
Reused 208 298
Total (Without reused) 267 613
Total (All) 475 911

Table 4.3: SLOC for the implementation of name binding, typing and other
well-formedness over the syntactic constructs that are defined in both the OIL
and Python implementation.

to the user (error reporting). Any code called by name binding, typing and
well-formedness definitions, such as helper functions, are counted too.

Results. Table 4.3 shows the SLOC used to implement name binding, typing
and other well-formedness, as well as error handling and error reporting
in both Spoofax and Python. Only name binding and typing over syntactic
elements that are defined in both the Spoofax and the Python implementation
are considered. Any SLOC that are relevant for more artifacts than just one
out of name binding, typing and well-formedness are captured in the “Reused”
row. All SLOC under Spoofax name binding, typing and reused are written
in NaBL2. More specifically, NaBL2 code that only relates to creating and
querying the scope graph corresponds to name binding and NaBL2 code that
only relates to type definitions and type checking corresponds to typing; the
rest corresponds to “Reused”. Well-formedness in Spoofax is a combination of
SDF3, NaBL2 and Stratego. Error handling and error reporting are defined in
Stratego.

To create a fair comparison, we have not counted any SLOC that produces
functionality that is not in the other implementation. For the name binding and
typing in Spoofax written in NaBL2 this meant that 88 SLOC was not counted.
This 88 SLOC includes analysis of syntactic elements not implemented in
Python and typing of elements that is not done in Python, such as areas and
operations. For the name binding and typing by the type checker of the Python
implementation 101 SLOC was not counted, which consists of analysis of
syntactic elements and other checks not done in the Spoofax implementation.
Since the well-formedness constraints are implemented as separate rules in
Spoofax or functions in Python, we can measure them separately. Only a
few well-formedness constraints have been measured, since many do not
correspond well to any constraint in the other implementation.

Analysis. As Table 4.3 shows, name binding, typing and other well-
formedness are implemented in Python in about double the SLOC compared
to Spoofax. In general, the lower SLOC for Spoofax can be explained by the
fact that the meta-DSLs that are used, especially NaBL2, are specifically made
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for the implementation of these aspects.
Only looking at SLOC specific to name binding, the Spoofax implementation

uses a factor of 0.55 SLOC compared to the Python implementation. In NaBL2,
SLOC specific to name binding consist of creating and querying the scope
graph. In Python, this involves reading in IDL files, creating classes for
easy access to information in IDL files, checking name binding by querying
this information and that of the OIL specification, and adding name binding
information to the AST. The last two cause the main difference in SLOC
between NaBL2 and Python. Checking name binding in NaBL2 is done by
adding the reference to the scope graph and then checking for a path to the
declaration as shown in lines 2-3 in Fig. 4.29. How this declaration is found
does not need to be implemented explicitly, while in Python all declarations
are retrieved manually to explicitly check whether the relevant declaration
exists. Adding name binding information to the AST also needs to be explicitly
implemented in Python, while this implicitly happens in NaBL2 by having a
constraint rule for every term.

Looking only at typing-specific SLOC, the Spoofax implementation uses
a factor of 0.32 SLOC compared to the Python implementation. For both
implementations, most of the SLOC are in the typing of expressions. One of
the main reasons that the Python SLOC is higher than the NaBL2 SLOC is that
in Python there are some binary operators, such as equality and assignment,
for which many case distinctions are defined based on the types of operands
they can have. In NaBL2 these case distinctions are not necessary as they
happen implicitly.

Looking only at well-formedness-specific SLOC, the Spoofax implementation
uses a factor of 0.42 SLOC compared to the Python implementation. This is
partly due to core support for some specific forms of well-formedness in
Spoofax, such as rejecting specific variable names and checking for distinctness
of names within a scope. Such checks only take 1 SLOC in SDF3 and NaBL2
respectively, see Fig. 4.28 for an example, whereas in Python these require
explicit traversal of the AST. Other well-formedness constraints in Spoofax are
implemented in Stratego, for which the same productivity conclusions hold as
for desugaring transformations (Section 4.6.5).

For error reporting and error handling, the Spoofax implementation uses
about half the SLOC compared to the Python implementation. The difference
in error handling SLOC is because the Spoofax implementation has a generic
way of aborting pipelines built into the resilient staging framework, while in
the Python implementation abort points are placed manually, which produces
code duplication.

Both implementations support two types of error reporting: by means of
highlights on the original specification or by means of a list of errors. For
the first, the Spoofax implementation only needs minor general configuration,
while the Python implementation explicitly locates and colors the syntactical
elements in an HTML generator specific for XML-based languages. For the
second, both implementations support a generic way of displaying the list of
errors.
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For both implementations, a large portion of the SLOC are reused. The
reused SLOC in Spoofax is only relevant for static analysis: 174 SLOC consists
of constraint rule declarations that define how name binding and typing
information is related between a term and its subterms, and 34 SLOC is
related to naming and importing modules. The reused SLOC in Python
consists mainly of parts of the type checker that also involve variable reference
resolution, as well as helper functions that retrieve information from the OIL
and IDL specifications, which are also used for more purposes than only static
semantics.

Conclusion. For static semantics, the Python implementation uses about
twice the amount of SLOC compared to the Spoofax implementation, for the
same functionality, with or without considering reused SLOC. This is mostly
due to the fact that NaBL2 is specialized for name binding and typing and
because of core support for specific types of well-formedness. Error handling
and reporting can also be defined in a more concise and generic way. This
shows that it costs less code volume to implement the static semantics artifacts
for OIL in Spoofax compared to Python.

Discussion. Like with the concrete syntax definition, the name binding
and type checking of IDL and OIL in the Spoofax implementation is split up
into multiple NaBL2 modules, 21 in total. Unlike with the concrete syntax
definition, NaBL2 files do not need import statements to compose them. All
NaBL2 files in a project are deemed relevant and are collected automatically,
so no SLOC is needed to compose NaBL2 modules. An exception to this is the
composition of OIL-specific analysis with IDL analysis, which costs about 12
SLOC. This includes project configurations to export the IDL NaBL2 definitions
as well as imports of IDL type signatures and files generated from the IDL
NaBL2 definitions.

The workaround to make it possible to do name resolution between IDL
and OIL files did not cost any extra NaBL2 SLOC. It did however cost 26 extra
Stratego SLOC (not in Table 4.3) to define transformation rules that check
whether the given AST is an IDL or OIL specification, which are needed at the
beginning of end-to-end transformations.

A big reason for the conciseness of NaBL2 is that it is a declarative language,
which means that one does not implement how the program executes. This
can however also make it unpredictable how the NaBL2 analysis is executed.
For example, when a reference of an integer type is used at a location where a
boolean is expected, the type error could be reported on the declaration of the
integer variable, while the error is expected on the reference. Although NaBL2
specifications can be annotated to indicate a preference for reporting the error
on the declaration, this does not cover all cases.

The implementation of name binding and typing in Spoofax also automati-
cally provides some editor services. When hovering over a syntactical element
in the editor, its type is shown in a small text box. Also, navigating through a
reference moves the cursor to the corresponding declaration, even if both are
in different files. The Python implementation does not provide these editor
services.
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4.8 Dynamic Semantics

OIL is a language for defining the behavior of control software. What the
actual behavior is of an OIL specification is described by its dynamic semantics,
which is formally defined in [94]. This semantics is implemented in Spoofax
using Stratego with two code generators: one for verification (mCRL2) and
one for execution (C++). These together realize OF5 (Multiple Targets).

Like OIL, mCRL2 is a language for describing system behavior, except that it
is based on process algebra [89]. It also comes with a toolset [101], containing
all kinds of model checking functionalities, such as checking properties and
checking behavioral equivalence, as well as tools to simulate and visualize
the behavior of an mCRL2 specification. With this translation from OIL to
mCRL2, the functionality of the mCRL2 toolset can be indirectly used for OIL
specifications as well. Some early results of this were already presented in [94].

To actually use an OIL specification to implement a software system, exe-
cutable code needs to be generated. For that reason, a translation from OIL
to C++ was implemented. This translation is inspired by the C++ generator
in the Python implementation, which was already used for some systems in
development at Canon Production Printing.

We highlight three parts of the implementation of these two translations in
Spoofax: how the implementation of dynamic semantics is split into many
projects, how static analysis results are queried for use in transformations and
how configurability of a translation is handled. Afterwards, we discuss the
implementation of these translations in the Python implementation. We then
evaluate Spoofax on productivity in the context of dynamic semantics.

4.8.1 Division into Projects

As was already discussed in Section 4.6 and shown in Fig. 4.20, an OIL specifi-
cation is first transformed to the semantic IR in the Spoofax implementation
before it is transformed into mCRL2 or GPL code. For the sake of extensibility,
the semantic IR, mCRL2 and GPL are all defined in separate projects, as well
as the transformations between them. See Fig. 4.32 for the hierarchy of these
projects, where the SEM project defines the semantic IR. All projects in this
hierarchy are part of the Spoofax implementation except for the mCRL2 project,
which already existed for other purposes.

The translation to GPL defined in OIL2GPL does not translate directly to
C++, but to an intermediate representation called the GPL IR first instead.
The GPL IR is a pseudo code representation defined in the GPL project with
basic object-oriented imperative programming language constructs such as
classes, methods, basic statements and expressions. The GPL project then
defines a translation from the GPL IR to C++ files. The reasoning behind the
creation of the GPL IR is to make it relatively simple to add translations to
other general-purpose programming languages: only a transformation from
the GPL IR to that programming language needs to be implemented.

See Fig. 4.33 and 4.34 for how the GPL IR splits up the transformation
of an enum declaration to C++. In Fig. 4.33, an enum type declaration of
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OIL

SEM OIL2SEM

GPL

mCRL2

OIL2GPL

OIL2mCRL2

Figure 4.32: A project extension graph of projects used for code generation
in the Spoofax implementation. Boxes correspond to projects. Arrows mean
“extends”.

oil-sem2gpl-spec-enumdef(|specName):
SEMEnumDef(type, items) ->
GPLEnumDef(<SCOPEDTYPE(|specName, type)>, items)

Figure 4.33: The Stratego transformation of enum declarations from the seman-
tic IR to the GPL IR.

1 gpl2h: GPLProgram(_, ..., enumDefs, ...) ->
2 $[...
3 [<join-strings(|"\n\n")> <map(gpl2h-enumDef)> enumDefs]
4 ...
5 ]
6
7 gpl2h-enumDef: GPLEnumDef(name, items) ->
8 $[enum class [name] {
9 [<indent-text(|2)> <join-strings(|",\n")> items]

10 };]

Figure 4.34: The Stratego transformation of enum declarations from the GPL
IR to C++.
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oil2mcrl2-type =
nabl2-get-ast-type ; oil2mcrl2-map-type

oil2mcrl2-map-type : TInteger -> Int()
oil2mcrl2-map-type : TBool -> Bool()

Figure 4.35: A Stratego transformation rule that transforms a term to one that
represents its type in mCRL2.

the semantic IR is transformed to an enum type declaration of the GPL IR,
which changes the type name using the name of the OIL specification and
the original type name. In Fig. 4.34, for every enum type declaration (line
3), a C++ enum class is created (line 8-10). While most transformations in
the Spoofax implementation of OIL are model-to-model transformations, the
transformation from the GPL IR to C++ is a model-to-text transformation, as
can be seen by the use of templates. This way, it is not necessary to define the
C++ syntax in Spoofax.

4.8.2 Using Static Analysis Results

When NaBL2 name binding and typing have been applied on an AST, all
terms in the AST are annotated with information that stores the results of the
analysis. This information can then be used in Stratego transformations by
means of specific transformation rules. For instance, the type of a term can
be extracted with the rule nabl2-get-ast-type. See Fig. 4.35 for a (partial)
definition of a transformation rule that uses this rule. Given a term with type
information, such as a variable reference term, it returns a term that represents
its type in the mCRL2 AST schema. The terms starting with T correspond to
the type as annotated by NaBL2.

It is possible in NaBL2 to annotate the AST with more information than the
default name binding and typing results. Scope graph nodes can be given
properties, which can store any term. We use this for instance for retrieving
the declaration of an enum type, defined in an IDL specification, when we
generate code for an OIL specification that has a reference to this enum type.
See Fig. 4.36 for an example, where the declaration of an enum type in an IDL
specification is stored in its scope graph declaration node Type{name} with a
property decl (line 3). This declaration node is then stored within the TEnum
type enum_ty of the enum (line 4). Whenever a reference to this enum type in
the OIL specification is encountered (line 8), we add a reference node to the
scope graph (line 9) and try to resolve it (line 10) like discussed in Section 4.7.2.
If successful, the TEnum type ty of the enum type reference (line 8) is inferred
from the enum type declaration d by requiring that d also has type ty (line 11).
Since property decl is stored within this TEnum type, the property becomes
available in the context of the enum type reference in the OIL specification.

See Fig. 4.37 for a Stratego transformation in which the property is retrieved
from an enum type reference, which is part of the translation from an OIL
specification to mCRL2. First the type of the type reference is extracted (line 5),
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1 [[ e@EnumDef(name, literals, ...) ^ (s) ]] :=
2 Type{name} <- s,
3 Type{name}.decl := e,
4 enum_ty == TEnum(Type{name}),
5 Type{name} : enum_ty !,
6 ... ]]
7
8 TypeRef [[ TypeReference(x) ^ (s) : ty ]] :=
9 Type{x} -> s,

10 Type{x} |-> d | error $[Type [x] not found] @ x,
11 d : ty.

Figure 4.36: Two NaBL2 code snippets: one that stores the declaration of an
enum type inside its type (simplified) and one that defines type inference for
type references.

1 sem2mcrl2-imported-enum-typedef:
2 ref -> ...
3 where
4 a := <nabl2-get-ast-analysis> ref;
5 TEnum(occ) := <nabl2-get-ast-type> ref;
6 EnumDef(type, items, _) := <nabl2-get-property(|a, "decl")> occ;

Figure 4.37: A Stratego transformation rule that uses the scope graph node
stored in the type of an enum variable reference to obtain the declaration of
the corresponding enum type.
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oil2mcrl2-dyn-options(aux-vars) =
(aux-vars < rules(mcrl2-aux-vars : t -> t) + rules(mcrl2-aux-vars : _

-> <false>))

Figure 4.38: The creation of dynamic rules in Stratego for the auxiliary variables
configuration.

sem2mcrl2-process-trans-pre =
if mcrl2-aux-vars then sem2mcrl2-firedvar else sem2mcrl2-trans-pre end

Figure 4.39: An example Stratego transformation rule where the dynamic rule
mcrl2-aux-vars is used.

after which the decl property is queried on the node within the type, which
provides the enum type declaration (line 6). This enum type declaration can
then be translated to one in mCRL2 (line 2, details not shown).

4.8.3 Configurability of the mCRL2 Generator

The translation to mCRL2 has a number of configuration options. Some of these
options are mainly useful for debugging the translation during development,
but other options result in a significantly different output. For instance, one
option mainly used for debugging is whether to use auxiliary variables in
the generated mCRL2 specification that help enhance its readability. Since
these options change how the mCRL2 specification should look like, they
configure the transformation that generates mCRL2. One way to implement
this in Stratego is by passing the configuration information on as parameters
of transformation rules. However, the more complex a transformation becomes
and the more deeply nested this information is used, the more cluttered with
such configuration parameters the transformation becomes. A solution in
many languages would be to define global variables that hold this information,
but Stratego does not support global variables.

Instead, dynamic rules [100] are used. A dynamic rule is a transformation
rule that is created during transformation time, whose behavior can depend
on the status of the transformation at that time. Such rules are used for
configuration by creating a dynamic rule for each value of a configuration
option, which always succeeds if the value was chosen, otherwise it always
fails. For boolean configuration options one dynamic rule suffices. These rules
can then be used wherever the differences between configurations have effect
on the transformation, without having to pass anything on explicitly.

See Fig. 4.38 for a Stratego rule that creates the dynamic rule mcrl2-aux-
vars for the auxiliary variables configuration, which is done just before the
transformation from the semantic IR to mCRL2 is applied. The parameter
aux-vars stores whether the user has chosen to introduce auxiliary variables.
This parameter is then used in a ternary operator of the shape s1 < s2 +
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localEnumTypes = spec.getLocalEnumTypes()
for tName in localEnumTypes:

tgt.nl()
tgt <<= f'enum class {Camel(tName)}'
tgt <<= '{'
tgt.indent()
tgt <<= (f',{tgt.eol}{tgt.ind}').join(localEnumTypes[tName])
tgt.dedent()
tgt <<= '};'

Figure 4.40: The Python transformation for enum declarations.

s3, which acts similarly to an if-then-else. If aux-vars is true, the dynamic
rule mcrl2-aux-vars is defined as a rule that always succeeds (t -> t), else
as one that always fails (_ -> <false>). See Fig. 4.39 for an example where
this dynamic rule is used during the transformation to mCRL2. If the user
chose for the introduction of auxiliary variables, the precondition of a tran-
sition in the mCRL2 process should be represented with an auxiliary vari-
able (sem2mcrl2-firedvar), otherwise the full transition precondition is used
(sem2mcrl2-trans-pre).

4.8.4 The Python Implementation

The Python implementation also defines a translation to mCRL2 and a trans-
lation to C++. The translation to mCRL2 in the Python implementation was
created during an exploratory study on the semantics of OIL and is therefore
only a prototype. Compared to the Spoofax mCRL2 generator, the Python
mCRL2 generator supports slightly fewer OIL language constructs and it can
only generate mCRL2 code for single components, whereas the Spoofax mCRL2
generator can also generate mCRL2 for systems of components. On the other
hand, the Python C++ generator has been maintained and refined for years and
has been used to generate C++ for systems used in production. Compared to
the Spoofax C++ generator, the Python C++ generator supports slightly more
OIL language constructs and it is built to fit into Canon Production Printing’s
software base. This includes adherence to coding standards and a higher level
of configurability of the generated C++ code, such as allowing multiple types of
schedulers to execute the specification, which is not supported in the Spoofax
C++ generator.

Both the Python mCRL2 generator and the Python C++ generator are defined
in their own files in the Python implementation. Since the Python implemen-
tation does not have any explicit IRs, both generators directly transform the
(desugared) OIL specification to the desired target. See Fig. 4.40 for an excerpt
of the Python C++ generator that transforms an enum declaration to C++. First
all declared enum types are collected from the desugared OIL specification
(line 1), after which a C++ enum class is printed line by line for each enum
type (lines 2-9).
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Artifact Spoofax Python
mCRL2 generator 689 531
C++ generator 705 1321
Reused 508 369
Total (Without reused) 1394 1852
Total (All) 1902 2221

Table 4.4: SLOC for the implementation of the mCRL2 and C++ generator in
both the Spoofax and Python implementation of OIL.

The code generators in Python also support the use of static analysis results
and configurability. Static analysis results and properties are stored by dynam-
ically adding new fields to the classes that represent terms. This information
can then be accessed directly when needed. Configuration options are stored
globally, which can be directly accessed from anywhere in the translation.

4.8.5 Evaluation

To evaluate the productivity of implementing dynamic semantics, we look
at a single evaluation point: the implementation of code generation. More
specifically, we look at the mCRL2 and C++ generators that are available in the
Spoofax and Python implementation.

Question. Does it cost less code volume to define code generation for OIL
in Spoofax compared to in Python?

Method. We measure the SLOC of the code generators used to transform a
desugared and analyzed OIL specification to mCRL2 and to C++. Any SLOC
called by the code generators, such as helper functions, are counted too.

Results. Table 4.4 shows the SLOC used to implement the mCRL2 and the
C++ generator in both Stratego and Python. Any SLOC that are used for more
purposes than one code generator are captured in the “Reused” row.

Because the exact differences in functionality (of generated code) between
the two implementations and what SLOC attributes to these differences is very
complex to measure, we decided to measure the SLOC of the code generators
in full. This complexity is due to multiple factors. One is that structure of
the code generators is very different: the code generators in Spoofax are split
up into multiple transformations between IRs, while the code generators in
Python do a direct translation from a (desugared) OIL specification to the
target. Another is that code generators do not almost only differ in syntactic
OIL constructs they support, as is the case for concrete syntax and static
semantics, but also what they support in the functionality of the generated
code, which is much more difficult to compare accurately.

The Spoofax implementation of the mCRL2 generator consists mainly of
Stratego code from the OIL2mCRL2 project (689 SLOC). This code generator
also uses the mCRL2 project (373 SDF3 SLOC), but since this project already
existed outside the scope of our project, we do not include the SLOC mea-
surements of this project in our results. The Spoofax implementation of the
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C++ generator consists mainly of Stratego code from the OIL2GPL and GPL
projects (389+151 SLOC) and SDF3 code for defining the grammar of the se-
mantic IR from the GPL project (165 SLOC). The reused code in the Spoofax
implementation consists mainly of SDF3 code for defining the grammar of the
semantic IR from the SEM project (164 SLOC) and Stratego code for various
helper transformations used by more than one code generator. The mCRL2
and C++ generators in the Python implementation are both implemented in
separate files. The shared Python code consists of helper functions that are
used for both code generators.

Analysis. The Spoofax mCRL2 generator uses a factor of 1.3 SLOC compared
to the Python mCRL2 generator. The Spoofax C++ generator uses a factor
of 0.39 SLOC compared to the Python C++ generator. A big reason for the
difference in SLOC ratio of the two code generators is the difference in maturity.
The Python mCRL2 generator and the Stratego C++ generator are prototypes
that only implement basic code generation. The Stratego mCRL2 generator and
the Python C++ generator have more functionality and have been maintained
extensively compared to their prototype counterpart.

Diving deeper into the code generators shows that a big difference between
the Stratego and the Python implementation is in the use of IRs. In the
Spoofax implementation the code generator consists mainly of model-to-model
transformations. The actual target syntax is created using the pretty printer that
is automatically generated from the syntax in case of the mCRL2 generator, and
using a model-to-text transformation from GPL in case of the C++ generator
(see Fig. 4.34). In Python, no IRs are used: the target code is printed line by
line while using the (desugared) Minidom AST of the OIL specification to
collect information (see Fig. 4.40).

The use of IRs does come with the overhead of defining the IRs. Both IRs
have been defined by means of SDF3 grammars; the semantic IR uses 164
SLOC and the GPL IR uses 165 SLOC. These could have been implemented
with fewer SLOC if implemented with signatures in Stratego like with the
normalized and desugared IR, as only these signatures are necessary for the
transformation. With 52 constructors for the semantic IR and 44 constructors
for the GPL IR, the signatures could be implemented with 1 SLOC per con-
structor. The difference in SLOC compared to SDF3 is mainly due to the syntax
needing lexical elements, needing priority definitions and the definition of
some constructors in SDF3 being spread over multiple lines for better pretty
printing. However, using SDF3 for this does give the benefit of having a
readable syntax and the automatic generation of a pretty printer, which has
been proven useful when debugging transformations.

Concerning the comparison of using Stratego over Python for the actual
transformation, the same benefits and downsides as for desugaring transfor-
mations hold here. Stratego’s use of ATerm as data format and its core support
for pattern matching helps writing transformations in a concise way, but its not
possible to directly access the parent of a term and the immutability of ASTs
makes it impossible to create (global) references to parts of an AST. Given the
structure of the transformations for the code generators, where the input AST
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is only used to collect information and the target AST is built up from scratch,
these downsides have less of an effect here compared to desugaring, where
information collection and transformation is done in the same AST. Specifically
for code generators, there is another small downside of using Stratego over
Python in the form of the use of properties. In the Python implementation,
due to the mutability of the AST, properties can be added and extracted with
a single operation. In the Spoofax implementation, as shown in Section 4.8.2,
Fig. 4.37, multiple operations are necessary to retrieve the declaration of an
enum type.

The reused Python code mainly consists of general helpers for information
collection, AST traversal and code generation. The reused Stratego code mainly
consists of transformations to and on the semantic IR, which include calcula-
tion steps necessary for the semantics of OIL, such as computing transition
pre/postconditions. In the Python implementation, these calculation steps are
done separately in both code generators, resulting in some code duplication.
This code duplication could have been avoided by creating more shared helper
functions, reducing the total amount of SLOC.

The modularity that comes with splitting up the code generators in the
Spoofax implementation into multiple projects, as shown in Fig. 4.32, also
comes with a cost in SLOC. To configure the projects such that they extend each
other, 31 SLOC is used. Since the code generators in the Python implementation
are defined in a single file, no SLOC is needed for anything similar.

Conclusion. To implement an mCRL2 and a C++ generator, the Spoofax
implementation uses a factor of 0.86 SLOC compared to the Python implemen-
tation (a factor of 0.75 when not counting reused SLOC). With the differences
in functionality between the Spoofax and Python code generators in mind, we
cannot not draw a conclusion on the definition of code generators.

Discussion. The use of annotated information was one of the things that
was most difficult to get working correctly. Because the information is stored
on scope graph nodes instead of the terms itself, the information is not easily
retrievable. With the NaBL2 interface for Stratego, it was not possible to extract
the scope graph nodes that belong to a term directly from this term. Some
ideas for NaBL2 properties, such as whether a variable reference refers to
one declared in an OIL specification or an operation parameter, were never
implemented due to this. The idea to put the scope graph node inside a type
as described in Section 4.8.2 is actually more of a workaround, as the type of a
term is easily retrievable with the NaBL2 interface. We are not sure whether
this is an issue of the NaBL2 interface or of the lack of documentation on it. In
Statix, the successor of NaBL2, properties are directly associated with terms
instead of scope graph nodes, which alleviates this issue.

A benefit of the model-to-model approach with IRs is reusability of trans-
formations. A good example of this is the definition of C++ methods. In the
Stratego implementation, C++ methods are created by defining GPL methods
first. Only a single transformation rule needs to be defined to translate a GPL
method to a C++ method. In the Python implementation, the syntactical details
of each method are repeated every time a new method is defined.
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Another benefit of using IRs is that it is good for the extensibility of the
implementation. Adding a Java generator to the Stratego implementation only
requires a translation from GPL to Java in the GPL IR project, which reuses the
transformation to the semantic IR and the transformation from the semantic
IR to the GPL IR (389 out of 540 SLOC of the C++ generator in Table 4.4).
In the Python implementation, a new transformation from a desugared OIL
specification would need to be defined. This is assuming that the GPL IR is
capable of representing all Java constructs that are necessary for the resulting
output. If that is not the case, adjustments need to be made to the GPL IR and
any transformation to and on it.

4.9 Evaluation

In this section we summarize the main findings for our research question and
we discuss their threats to validity.

4.9.1 Summary

RQ: How does the productivity of implementing an industrial language in Spoofax
compare to the productivity when using a GPL and available libraries?

To answer this, we have measured and compared the code volume used to
implement language engineering artifacts in the Spoofax and Python imple-
mentations of OIL. Both evaluated implementations are complete, in the sense
that all five desired OIL features as described in Section 4.3.3 are realized,
except for OF1 (Multiple Syntaxes). OF1 is not implemented in the Python
implementation, which is why we only compared SLOC for OILXML. For
concrete syntax, abstract syntax, and static semantics we compared artifacts
produced by both implementations with similar functionality. For dynamic
semantics we could not make a clear comparison between the Spoofax and the
Python implementation due to the large difference of maturity of the mCRL2
and C++ generators of the two implementations.

For concrete syntax the Spoofax implementation uses a factor of 0.29 SLOC
compared to the Python implementation. This difference is mainly caused by
the fact that most concrete syntax artifacts are automatically generated from
the SDF3 grammar definition in Spoofax, while in Python they are manually
implemented, though reusable for other XML-based languages. When not
counting these reusable parts, the Spoofax implementation uses a factor of 1.81
SLOC instead compared to the Python implementation.

For abstract syntax we considered AST representations and desugaring
transformations. Since the ASTs are represented very differently in both imple-
mentations, we could not derive an insight. Comparing the code volume for
desugaring transformations, we found that the Spoofax implementation using
Stratego uses a factor of 0.56 SLOC compared to the Python implementation
(a factor of 0.82 SLOC when not counting reused SLOC). The difference is
mainly due to Stratego’s core support for pattern matching on ASTs, although
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the immutability of ASTs in Spoofax can be inconvenient when specifying
transformations.

For static semantics the Spoofax implementation uses a factor of 0.49 SLOC
compared to the Python implementation. Especially NaBL2’s declarative na-
ture, where name binding and typing are defined by means of scope graph and
constraint generation rules, helps with keeping the implementation concise.

In summary, for concrete syntax, desugaring transformations and static
semantics, the code volume used in Spoofax was about a factor 0.5 or less
compared to Python. This is mainly due to the availability of meta-DSLs that
are tailored to implementing language development aspects and to generating
editor services. When not counting reused SLOC, the results are somewhat
more favorable for the Python implementation. Since the comparison is on two
implementations covering similar functionality, the results are an indication
that it is more productive to implement OIL in Spoofax than in Python.

4.9.2 Threats to Validity

We discuss threats to our study’s construct, internal, and external validity. We
discuss using code volume as proxy for productivity both as construct- and
internal validity.

Construct Validity

Construct validity concerns to which extent our code volume measurements
actually assess productivity. As threats to construct validity, we discuss using
code volume per artifact as proxy for productivity and bias in artifact selection.

Code volume per artifact as proxy for productivity. Using code volume per artifact
as a proxy for measuring productivity is a controversial measure [96, 97, 95, 98]
and a threat to construct validity. Especially for measuring absolute productiv-
ity the measure is controversial, as many other factors could have influenced
the effort it took to create an implementation. For example, developers can
spend the majority of their time on program comprehension and only a small
portion on writing code [102]. In general, to mitigate the threat of using code
volume per artifact as a proxy, we use the code volume measurements to
compare two implementations, not to derive absolute productivity numbers.
Second, both implementations already existed before the evaluation, which
counters the threat that one implementation could have been optimized in
terms of code volume to get better evaluation results. Third, in each evalua-
tion we aim to compare parts of both implementations that cover the same
functionality.

A threat that remains is that implementing a DSL is not just about writing
lines of code, but also about the time needed to understand how to do so
with the implementation language(s) available. The average time per SLOC
is influenced by the experience of the developer and the language that is
used, e.g., Python is more commonly known than Spoofax and its meta-DSLs.
Also, earlier experience with language engineering or compiler construction is
beneficial. From our experience, especially NaBL2 requires considerable time
to learn. The Master students that contributed to the project seemed to pick
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up Stratego rather quickly.
We will now discuss using code volume as proxy for productivity in more de-

tail for specific language aspect evaluations. In the concrete syntax evaluation,
the original Spoofax and Python implementations did not cover the exact same
syntactic languages. For example, this is due to the Spoofax implementation
still containing some language constructs that have been removed from the
Python implementation. To increase the fairness of our comparison, we have
subtracted the lines of code for syntactical elements that are not present in the
other implementation. In the Spoofax implementation, this was 31 out of 396
SLOC (7.8%). In the Python implementation, this was 46 out of 1306 SLOC
(3.5%). Compared to the productivity comparison outcomes, these differences
are inconsequential.

From the abstract syntax evaluation we take Fig. 4.26 as an example. The
desugaring rule auto-value in the Python implementation could have been
implemented using list comprehension to do multiple steps on the same line
of code. This would reduce the lines of code but would also make the code
more complex to understand. These threats are mitigated by the fact that both
implementations have been created without the goal of evaluating them, let
alone optimizing the lines of code, rather than with the goal of being correct
and well-maintainable.

Bias in artifact selection. In our evaluations, we measure code volume for a
selection of artifacts; our selection of artifacts could be biased. This raises the
question how representative the selected artifacts are for the whole implemen-
tations and thereby is a threat to construct validity. Since for every language
aspect the selected artifacts cover almost the whole implementation, we think
this threat is negligible.

Next to the implementation of OIL in Spoofax’s meta-DSLs and in Python,
an implementation of a DSL also contains other code for, e.g., configuration
and the build system. We have not included these in the measurements, which
could make our measurements less representative for the whole implemen-
tations. From our experience, the code spent on configuration and build
specification is so little that we do not expect the outcomes of our study to be
different if they were included.

Both implementations contain code that is specific to some artifact and code
that is reused for multiple artifacts. Some reusable code can even be used
beyond OIL, which is especially the case for the implementation of concrete
syntax in Python. Since reusability of code impacts productivity, we measure
reused code separately and discuss how reusable the code is. When comparing
both implementations, we compare both with and without reusable code.

Internal validity

Internal validity concerns to which extent our measurements actually represent
the effect on productivity, and cannot be caused by other factors. For internal
validity, we discuss using code volume per artifact as proxy for productivity,
design decisions, confirmation bias, and experience of developers.
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Code volume per artifact as proxy for productivity. In the static semantics evalu-
ation, not much SLOC has been measured for well-formedness compared to
name binding and typing, because not many well-formedness constraints were
implemented in Spoofax and most of those that are, do not correspond well
with constraints in the Python implementation. One of the main reasons for
this is that well-formedness was not a high priority during the development of
OIL in Spoofax. Therefore, we cannot give a strong indication regarding the
productivity of implementing well-formedness.

Interdependence of implementations. Both implementations were not created
entirely independently from each other. The Python implementation was
already well maintained when we started with the Spoofax implementation.
When developing the Spoofax implementation, the Python implementation
was used to determine what should be implemented, for instance, which
desugaring transformations are necessary and what the code resulting from
the C++ code generator should look like. However, the Python implementation
was not used to determine how things should be implemented in the Spoofax
implementation. The meta-DSLs of Spoofax differ from Python so much
that there is no clear translation from Python to a meta-DSL, or vice versa.
Therefore, we believe that the SLOC measured in one implementation are
independent of the SLOC measured in the other implementation.

Design decisions. During the implementation of a DSL, several design decisions
are made that influence the implementation. Therefore, particular design
decisions can have influenced the outcomes of our study. We have countered
this threat by taking two implementations of the same language that are
realized independent of our evaluation, i.e., the implementations already
existed before this evaluation was started.

The question remains whether the conclusions could have been different
given totally different design decisions. For the Spoofax implementation, we
think different design decisions would not lead to very different conclusions, as
Spoofax and its meta-DSLs steer design decisions, leaving little design decisions
to the language engineer. Also, several design decisions that were made in
the Spoofax implementation, such as using language composition and many
modules for code organization, came with overhead increasing the counted
SLOC. For the Python implementation, we think many design decisions could
have been made very different, which can steer the implementation to use more
or less lines of code, which is a threat to internal validity. Given the nature of
our study, where we focus on a complex industrial case, we think this threat is
justified. Although all the services of Spoofax could be re-implemented using
Python and offered as reusable code, that is not what typically happens as it
would be over-design from the perspective of developing a single language.

Confirmation bias. Some of the authors have contributed to the Spoofax and
Python implementations of OIL, which raises a concern regarding confirmation
bias. We have mitigated the risk of confirmation bias in the following ways,
which prevents the possibility for authors to, during the study, change the
implementations or steer evidence in a way that supports prior beliefs. First,
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we have chosen a fixed version of the Spoofax and Python implementations
of OIL from a moment before the SLOC measurements started. Second,
while code measurements are conducted by a single author, at least one
other author has checked these measurements. Third, the authors involved
in the implementations of OIL had many discussions to ensure that code
measurements cover those parts of the implementation to make comparisons
as fair as possible.

Experience. Not all developers who worked on the Spoofax implementation
were familiar with Spoofax and its meta-DSLs. Therefore, it could be that the
meta-DSLs were not used optimally, and code is unnecessarily large at some
points in the implementation. We do not expect this to have large impact on the
outcomes of our study. For the Python implementation this is not much of an
issue as it is a language (paradigm) that the developers were more experienced
with.

External Validity

External validity concerns to which extent our findings are generalizable to
other language workbenches, comparison to other GPLs, other DSLs, and other
contexts. Our study focuses on a particular language workbench (Spoofax),
a comparison with a particular GPL (Python), a particular DSL (OIL), and
a particular context (the industrial context of Canon Production Printing).
Therefore, it is unclear to what extent our findings also hold for other language
workbenches, comparison to other GPLs, other DSL cases, and other contexts,
as a specific case study is not easy to generalize. OIL’s implementations in
Spoofax and Python cannot be published due to confidentiality reasons, which
hinders the reproducibility of our study.

Generalizability of Python. The Python implementation heavily relies on object-
oriented programming and the availability of, e.g., parsing libraries. These
aspects are not uncommon for other GPLs and therefore we expect that our
findings can be similar for comparisons to other GPLs. Features that are more
specific to Python, such as list comprehension, are rarely used in the Python
implementation.

Generalizability of OIL. We do think our case is representative of industrial
DSL development because OIL is a complex DSL with requirements specific
to the industrial context. Still, OIL has specific characteristics that could be
very different from other DSLs. Many DSLs only have one syntax, while OF1
required support for multiple syntaxes. Also, OIL is dependent on another
language, IDL, following OF4, while DSLs are often self-contained. On the
other hand, relating to OF3, OIL has rather simple typing and name-binding
rules. We think that desugaring transformations (OF2) and code generation
(OF5) are rather common for DSLs, though the structure of the transformations
and generators may differ, and some DSLs may be interpreted instead.
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4.10 Discussion

While our evaluation in the previous section is based on conclusions drawn
from our quantitative analyses, in this section we discuss aspects of our
case study that are of a qualitative nature. First, we discuss the strengths
and weaknesses of Spoofax that we have experienced. Second, we list the
lessons learned from our study. Finally, we suggest an engineering agenda for
Spoofax. In the engineering agenda for Spoofax, we also discuss if and how
the weaknesses of Spoofax we have encountered are improved upon in the
next version of Spoofax.

4.10.1 Spoofax’s Strengths

We list several aspects that worked out well in using Spoofax.

Meta-languages suitable for OIL. The meta-languages that are used (SDF3,
NaBL2 and Stratego) all offered sufficient support for implementing OIL’s
concepts. SDF3 was sufficient for the implementation of OILXML’s grammar
and enabled rapid prototyping of OILDSL. The name binding and typing
features of OIL and IDL could be specified in NaBL2 using the scope graph
model. OIL’s transformations and code generators could be implemented
using Stratego.

Modular language implementation. All meta-languages supported modular
language implementation in the sense that implementations could be split up in
modules that could be composed or reused. This was beneficial to the Spoofax
implementation in many ways. For example, reusing SDF3 modules for shared
expression grammar prevented the need to define duplicate grammar rules
for the four input languages (see Section 4.5.2). Stratego allows modular and
composable definitions of transformations. In particular, Stratego enabled us
to implement additional AST schemas and the resilient staging framework,
which helped in creating a modular transformation architecture. Lastly, there
is little overhead in creating new (composed) languages, which enabled us to
easily add an extra language (IDL-OIL-TEST-DSL) specific for testing scenarios
of multiple IDL and OIL specifications in isolation.

IDE support. Spoofax derives several editor services automatically for lan-
guage implementations: parsing, AST inspection, syntax highlighting, syntax
error recovery, showing type information, reference resolution, execution of
analysis and transformations on file changes, execution of transformations on
user request, and marking errors on the specifications. This made it feasible
for us to realize an IDE for OIL. The ability to offer a DSL with a user-friendly
IDE is beneficial for the adoption of DSLs in an industrial environment such
as Canon Production Printing.

Language testing. SPT was useful for testing the implementations of IDL and
OIL and to maintain implementation correctness while evolving the languages.
SPT supports testing of several (isolated) aspects of the languages such as
parsing, name resolution, and typing, as well as end-to-end tests for testing the
translations to C++ and mCRL2. Testing helps in obtaining a reliable language
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implementation and validation during language evolution. For example, when
adding or changing functionality to OIL, tests help to ensure other functionality
is maintained.

Integration support. Spoofax contains three features for integrating a language
implementation within a software ecosystem. First, Stratego offers a Java API
which makes it possible to manually implement a transformation rule in the
general-purpose language Java, which also enables integration of external
tools. This Java API has been used to integrate the SAT solver Z3 for static
analysis to optimize generated C++ code [91]. This could also enable automated
integration with the mCRL2 toolset, i.e., by automatically calling mCRL2 in a
transformation. Second, Spoofax languages can be built outside Eclipse using
the Maven or Gradle build systems. This should make it possible to integrate
OIL in larger software builds such as continuous integration (CI) or production
builds, which is relevant for software development at, e.g., Canon Production
Printing. Third, Spoofax offers a Java API (named Spoofax Core) which enables
to integrate parts of a Spoofax language implementation such as the parser
or transformations within the Java ecosystem. Potentially, these features in
combination can enable the integration into an existing industrial software
ecosystem.

4.10.2 Spoofax’s Weaknesses

We list several aspects that did not work out well in using Spoofax.

Limited portability. Portability concerns to what extent software can be used
in different environments. Spoofax currently only provides full support in
Eclipse as the IDE for language development and limited support for IntelliJ
IDEA. This lack of portability limits the practical applicability opportunities of
the language workbench. For example, at Canon Production Printing, software
engineers mainly use the Visual Studio IDE, which is currently not supported
by Spoofax. Although Spoofax does support integrating parts of a language
implementation outside Eclipse using the Java API, the meta-DSLs are not
available as independent libraries, hindering integration with other tooling.

Building and runtime performance. The language development experience in
Spoofax is hindered by long build times and long response times after changes,
sometimes blocking you for minutes. Although it is workable, it does not
conform to the response times expected from interactive systems. The editing
experience is non-concurrent, e.g., while a build is busy and one changes a file,
the build first has to finish before the changed file gets reanalyzed. If a project
consists of multiple subprojects, all subprojects have to be built manually one
by one in the correct order, because automatic derivation of the correct build
order is lacking. This especially becomes cumbersome in a project such as OIL
that consists of 14 subprojects, which together take about 16 minutes to build
on a company-provided laptop. When changes are made, the projects that are
affected by the changes need to be rebuilt. Especially in an industrial context
this is a problem, as costly time of engineers is spent on building projects
rather than actual development.
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Cross-language static analysis. Spoofax with NaBL2 does not offer native sup-
port for merging scope graphs of languages to realize language composition
on the static semantics level. Conceptually, language composition on the static
semantics level using scope graphs boils down to merging the root node of two
languages’ scope graphs. In practice, this required a workaround by merging
the language definitions of IDL and OIL in one language project which accepts
both IDL and OIL specifications (see Section 4.7.2). This is a workaround
that could be resolved if Spoofax would offer coupling separately-defined
languages by merging their scope graphs. The languages could then live next
to each other, with their own file extensions, and only interact on scope graphs
during static analysis.

Lack of static checking and debugging in NaBL2 and Stratego. The language
development experience in NaBL2 and Stratego sometimes was hindered by
the limited static checking of specifications in the meta-DSLs. As a result, it
often occurs that errors made in a specification are only encountered during
execution. For example, a Stratego strategy can fail on getting an incompatible
type of term as input which could have been statically checked if strategies were
typed. Also, no interactive debugging support for transformations is available.
When transformations fail, stack traces are reported without references to the
source code with line numbers. This is problematic in an industrial context as
it makes engineers spend more time on debugging.

Using static analysis in transformations. Using the NaBL2 analysis results in
transformations is cumbersome because low-level querying of the scope graph
is required for general operations such as finding a declaration given a reference
(see Section 4.8.2). The API is also sparsely documented, which makes it
unclear how the API should be used. Spoofax could improve here by offering
abstractions for common static analysis querying patterns.

Language evolution and refactoring. Evolving a language implementation in
Spoofax can lead to cumbersome situations. For example, when IDL and OIL
change, all specifications written in IDL and OIL have to be migrated manually.
If the signature of a term changes, many Stratego transformations may need to
be migrated as well. This has occurred in practice, for instance when area type
“scope” was renamed to “zone”. Applying the change of a name throughout the
implementation involves intensive searching and replacing. Spoofax could be
improved by adding support for cross-project and cross-meta-DSL refactorings
in language definitions, similar to how modern IDEs support this.

Fine-grained testing. SPT mostly supports end-to-end testing of language
implementations, whereas it was often desired to test individual parts of the
implementation in a more fine-grained manner. For example, it was only
possible to test desugaring transformations with SPT by defining tests that,
given an OIL specification, generate the normalized IR, apply the desugaring
transformation on it, and then transform it back to the original syntax. The
success of this test does not only depend on the desugaring transformation,
but also on the transformations between the textual OIL specification and
the normalized IR. It would be useful if, in SPT, one could write a test for
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a particular transformation rule or strategy for an input directly written as
ATerm, essentially unit testing a small part of a transformation.

Editor actions for configurable code generators. As discussed in Section 4.8.3,
some code generators have a number of configuration options. A user can
pick values for these configuration options when selecting a code generator
in editor action menus, which are defined using ESV (Spoofax’s meta-DSL
for defining editor services, see Section 4.2.6). However, it is not possible in
ESV to reuse (sub)menus; every (sub)menu and menu item must be defined
explicitly. When adding a new configuration option with n possible values, n
times more editor actions need to be defined, which makes the size of the ESV
file exponential in the number of configuration options.

4.10.3 Lessons Learned

We list our most important lessons learned from implementing OIL in the
industrial context of Canon Production Printing both using Python and using
Spoofax 2:

1. The meta-DSLs in Spoofax are just like DSLs limited to a certain domain, and
it is not unheard of that we end up at the edges of this domain. For us, the
meta-DSLs in Spoofax have been sufficient in the industrial context. Except
for a few practical workarounds, we have experienced no limitations in
implementing concrete syntax (with SDF3), abstract syntax (with Stratego),
static semantics (with NaBL2 for typing and name binding and with Stratego
for well-formedness checking), and dynamic semantics (with Stratego).

2. The biggest limitations of Spoofax 2 are not in the functional aspects of
meta-DSLs, but in their non-functional characteristics, e.g., slow build and
response times, limited documentation, limited portability, and limited
static checking of meta-DSL specifications.

3. Choosing XML and Python is a viable engineering choice in the absence of a
language workbench. XML is a good choice for an effective implementation
of concrete syntax for a DSL if dependence on external tools is undesired.
Therefore, this is a simple alternative to using a language workbench with
a penalty of roughly twice the code size and half of the editor features, as
well as a penalty in the user-friendliness of the language.

4. A main benefit of DSLs is the multiplicative factor: from a single specifica-
tion in a DSL, multiple backends can be targeted or multiple artifacts can
be generated. This multiplicative factor is essential for the effectiveness of
meta-DSLs used to implement DSLs: a single specification in a meta-DSL
can generate multiple language processing artifacts and editor services. For
instance, from an SDF3 grammar, not only a parser is generated, but also
an AST schema, a pretty printer, origin tracking and editor services.

5. Separate meta-DSLs for separate language implementation aspects lead to a
clear separation of concerns, making it effective to define and maintain lan-
guage aspects within those concerns. From our experience, the fundamental
design decision of Spoofax to have clearly separated meta-DSLs seems to be
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working well.

6. Specifications written in Spoofax’s meta-DSLs can have high reusability
and extensibility, by decomposition into modules, but this can come with
a considerable cost in terms of code to compose the modules. However,
since this code almost only consists of declaring and importing modules,
we recommend to use Spoofax’s meta-DSLs in a modular way.

4.10.4 Spoofax Engineering Agenda

Based on our experiences from implementing OIL with Spoofax 2, we suggest
the following improvements to make on the language workbench to increase
its adoptability in industry. We have presented these items to the Spoofax
development team and incorporated their responses with respect to if and how
these items have improved upon in Spoofax 3.

Portability. By making Spoofax available to more IDEs, more developers could
make use of it in their IDE of choice. When companies have a policy on which
IDEs engineers should use, not supporting such IDEs can block Spoofax from
being adopted. Potentially, adding Language Server Protocol (LSP) support can
help in improving Spoofax’s portability; in principle the support needs to be
implemented once but will make Spoofax available to all IDEs that support LSP.
Although Spoofax 3 is not more portable out of the box (it supports Eclipse,
Gradle, and a command line interface), it features a fundamentally different
architecture than Spoofax 2. By supporting static rather than dynamic loading
of languages, it is easier to extend Spoofax 3 with support for other IDEs
or LSP. Custom language integrations are also easier to make, as languages
can be packaged as Java libraries. In addition to languages developed with
Spoofax, it would also be useful to offer the meta-DSLs as libraries, as that
would ease integration with other tooling and allows the meta-DSLs to reach
wider audiences.

Language build system. Several improvements can be made to the language
build system provided by Spoofax to improve the development experience:
improving build times (e.g., by further incrementalizing builds), automatically
building a project that consists of multiple subprojects in the right order based
on dependencies, and automatically checking whether exports and imports of
files between projects are valid such that errors are detected early and do not
require trial and error to debug. Spoofax 3 improves on all these aspects with
the introduction of the PIE (Pipelines for Interactive Environments) [75] build
system which features fully incremental builds for implementing both Spoofax
3 itself as well as languages developed with Spoofax 3. This is also relevant to
debugging Stratego 2 code: with quick enough compilation round-trip, print
debugging becomes much more viable.

Runtime performance. Improving the response times after changes in Spoofax
would improve the development experience, such that less time during devel-
opment is spent on waiting. In Spoofax in Eclipse, concurrent editor actions
would improve the development experience; currently, e.g., when a build is
busy, changes to other files are only picked up after the build finishes. Spoofax
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3 with incrementalization using PIE improves runtime performance of both
language builds as well as responsiveness of interactions in the IDE. With the
introduction of PIE, runtime performance is not better for all implementation
aspects as, e.g., the same SDF3 parser generation is used which itself is not
incrementalized.

Cross-Language Static Analysis. Spoofax could be improved by supporting
cross-language static analysis by making it possible to merge the scope graphs
of two separately defined languages, as also described by Zwaan [103]. In
Spoofax 2 this was deemed virtually impossible to implement. Thanks to
the new architecture of Spoofax 3, it supports the implementation of cross-
language static analysis, which should support the OIL and IDL case. Cross-
meta-language static analysis was one of the goals of Zwaan [103], but have
not yet been materialized.

Static Checking in meta-DSLs. Improved static checking in Spoofax’s meta-
DSLs would enhance the language development experience by reducing the
need for trial and error. The next version of Spoofax partly improves on these
aspects, in the meta-DSLs Stratego 2 and Statix (successor to NaBL2). Stratego
2 introduces gradual typing [70] and Statix comes with static checks on its
specifications.

Stratego Debugging. Spoofax only supports debugging of Stratego transfor-
mations by adding debug transformation rules that print information to the
console. It would be beneficial for development with Stratego to be able to
step through a transformation interactively, while showing the values of local
variables and the term that the transformation is applied on. Spoofax 3 and
Stratego 2 do not yet support debugging of transformations.

Integrating Static Analysis with Transformations. An improved API for using
static analysis results in transformations can make transformation definitions
more simple. In NaBL2’s successor, Statix [72], some issues are alleviated
already. For instance, in Statix properties are defined on terms directly instead
of on scope graph nodes, which makes querying them straightforward.

Documentation. Improved documentation will help engineers new to Spoofax
to learn and adopt the tool, without having to learn from experiences from
others or by experimentation.

Unit Testing Stratego. It would be desired to have core support for unit-testing
Stratego transformation rules in SPT, by supplying an input term, a trans-
formation, and an expected result term. Especially for large and modular
transformation architectures, the restriction of only testing end-to-end trans-
formations makes it difficult and cumbersome to test individual parts of the
transformation architecture.

ESV-Stratego integration. A better integration between ESV and Stratego could
make the definition of editors services more simple. For example, support-
ing parameterized Stratego transformations in ESV would avoid redundant
definitions. In the current state of ESV, the size of an ESV specification grows
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exponentially in the number of configuration options available for an end-to-
end transformation.

4.11 Related Work

We discuss related work on evaluating language workbenches (and tools to
develop DSLs in general) and other process languages such as OIL.

Most research on Spoofax focuses on the language workbench’s fundamen-
tals, with artificial languages as examples. An exception of this is Visser’s
case study on the development of WebDSL [33], which discusses language
design and implementation for a DSL in the domain of web programming.
The paper highlights the DSL development process and how the different
aspects of this process can be covered by the meta-DSLs of Spoofax. This study
uses Spoofax version 1, the predecessor of the Spoofax version used in our
study. Several discussion sections cover DSL engineering evaluation criteria
focusing on the process and the language that is produced, not on the tools for
developing the language (SDF + Stratego), language engineering paradigms,
or language engineering challenges. Therefore, this work does not evaluate
Spoofax itself or how it compares to not using a language workbench. Hamey
and Goldrei [104] reported on their experiences of using SDF and Stratego
compared to using traditional techniques. They found that the Stratego toolset
enabled easy implementation with opportunity of enhancing the language and
improving performance of generated code, compared to the implementation
using traditional techniques.

Canon Production Printing uses modeling languages across various engi-
neering disciplines [17]. Schindler et al. describe how the company envisions
the use of models during the complete life cycle of printers to address the chal-
lenges of efficiently performing continuous innovation with sustainable quality.
The MPS language workbench is selected as one of the core technologies to
develop custom DSLs that can interconnect the models from different engineer-
ing disciplines and tools. The authors find that using modeling approaches
has advantages: users only have to learn a single tool, multiple models can be
generated from a single tool, and one point of maintenance is needed instead of
multiple. They also encountered challenges in using MPS: steep learning curve,
lack of full-fledged DSL models in MPS for commodity languages such as C++,
existing parsers or grammars are not immediately reusable, and performance
can be undesirably low.

Voelter et al. [6] report on their experiences on using MPS for the develop-
ment of mbeddr, a large set of languages and extensions of the C language
that targets embedded software development. This work is, to our knowledge,
the largest evaluation of a language workbench, spanning a case that involved
around 10 person years of development effort in an industrial setting. Whereas
our work is centered around evaluating productivity, the paper by Voelter
et al. is centered around five topics concerning the use of MPS: language
modularity, notational freedom and projectional editing, mechanisms for man-
aging complexity, performance and scalability issues, and consequences for
the development process. The authors draw generally positive conclusions and
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indicate various places for improvement as well.
Broccia et al. [105] state that although the quantitative aspects of language

workbenches are often discussed in literature (e.g., the evaluations and com-
parisons by Erdweg et al. [8]), the evaluation of comprehensibility of the
meta-languages used in language workbenches are typically neglected. The
authors evaluate the Neverlang [26] language workbench on four aspects. First,
the comprehensibility of programs in Neverlang in terms of users’ effectiveness
and efficiency in code comprehension tasks. Second, the relationship between
comprehensibility and users’ working memory capacity. Third, to which extent
users consider the language workbench acceptable in terms of perceived ease
of use, usefulness, and intention to use. Fourth, how comprehensibility relates
to the degree of acceptance of the language. The study suggests that users’
working memory capacity may be related to the ability to comprehend Never-
lang programs. Effectiveness and efficiency do not appear to be related to an
increase of users’ acceptance variables. We believe more studies like these can
be useful for getting a better understanding of how language workbenches are
perceived and what influences their adoption.

Klint et al. [57] found that using DSL tools (ANTLR, OMeta, Microsoft
“M”) improve the maintainability of language implementations by comparing
several implementations of the same DSL both with and without the use of
DSL tools; the implementations without DSL tools use GPLs (Java, JavaScript,
C#). The evaluation considers parsing, static analysis, and transformation. The
results suggest that DSL tools increase maintainability of DSL implementation
compared to using GPLs. The work is similar to our work by comparing
implementations of a DSL using GPLs to implementations using tools specific
for DSL development. The work by Klint et al. differs from our work in the
sense that they compare six implementations instead of two, the DSL tools
do not cover aspects of language engineering such as deriving IDEs, and they
focus on maintainability instead of productivity.

Åkesson et al. [106] report on their experiences on the implementation of a
Modelica compiler using JastAdd [107] compiler tool. In particular, an aim is
to achieve extensibility of the compiler, which led to the choice of using the
declarative attribute grammar approach provided by JastAdd. They illustrate
how existing design strategies for a Java compiler implemented using JastAdd
could be reused for advanced features of the Modelica compiler. The authors
show complex semantic rules can be implemented in a compact and modular
manner. Given the 9 man-months of development time that was spent on
creating the implementation, they find that JastAdd is very well suited for
rapid compiler development.

Basten et al. present a language engineering case study on a Rascal im-
plementation of Oberon-0 [108], focusing on how the language can be imple-
mented in a modular way. Oberon-0 consists of four language levels where
each succeeding level is implemented as an extension of the preceding level,
supported by Rascal’s modularity features. The implementation used less than
1500 SLOC which includes the implementation of parsing, name and type
analysis, desugaring, transformation, and compilation to C. Additionally, they
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found directions for improvement for Rascal.
Zarrin et al. [109] report on their experiences of introducing a DSL for ma-

terial flow analysis using Microsoft DSL tools. Their motivation for using
the DSL is to enable domain experts to evolve existing software to fulfill new
requirements. The authors report that the DSL tools were mature enough to
develop a complete DSL. Drawbacks include redundantly having to define se-
mantics for simulation and code generation, the visualization of the metamodel
is difficult to understand, and being limited to graphical notation.

Other implementations exist of DSLs like OIL for the specification of behavior.
For instance, the language Dezyne developed by the company Verum9 can be
used to define system behavior and its implementation in Guile10 includes
multiple code generators [110]. The Comma framework11 contains a collection
of languages and tools to define and analyze the signatures and behavior
of interfaces and is implemented using Xtext, which also supports many
code generators [111]. BPMN12 is a UML-like graphical language for modeling
business processes maintained by the Object Management Group, implemented
using MOF (Meta Object Family), with XSD for static semantics and XSLT13

for dynamic semantics [112]. SystemC14 is a language for simulating event-
driven concurrent processes, defined as a subset of C++ with predefined classes
and functions, which makes it possible to reuse much of the already existing
analysis and editor services for C++.

4.12 Conclusions

In this chapter, we have presented an industrial case study on language engi-
neering with the Spoofax language workbench. In summary, the contributions
of this chapter are:

• An evaluation of whether Spoofax’s original claims — on making language
development, compared to not using a language workbench, more produc-
tive — stand when realizing the implementation of a complex industrial
language such as OIL.

• Lessons learned on implementing OIL using Spoofax in the industrial con-
text of Canon Production Printing.

• Strengths, weaknesses, and an agenda for future engineering on Spoofax.

We found that Spoofax and its meta-DSLs SDF3, NaBL2 and Stratego were
adequate for implementing OIL. It was possible to implement every OIL
feature using the meta-DSLs. Several workarounds were needed, such as for
the interaction between IDL and OIL when it comes to static analysis, but these
could still be implemented within Spoofax.

9https://www.verum.com/
10https://www.gnu.org/software/guile/
11https://comma.esi.nl/
12https://www.bpmn.org/
13https://www.w3.org/TR/xslt-30/
14https://systemc.org/
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In our evaluation, we found indications that it is more productive to imple-
ment a complex DSL with a language workbench compared to not using a
language workbench. We did this by comparing the code volume (in SLOC) of
two implementations of OIL, one using Spoofax and one using Python, which
both already existed before the evaluation. The evaluation shows that the
Spoofax implementation used fewer SLOC compared to the Python implemen-
tation, while offering more editor features. This is relevant in an industrial
setting because it enables to develop a full-featured IDE with less code.

Naturally, our evaluation is not without threats to its validity. The use of
SLOC as metric for productivity is contested. For instance, there can be much
variance in what a line of code defines. We do feel that the results on code
volume per artifact are an indication for higher productivity with Spoofax
compared to Python, as the analyses show considerable differences in SLOC
for artifacts with the same functionality and because both implementations
were created before we had the intent to evaluate them. Since our evaluation
is done for a single use case, it is difficult to generalize our findings to other
workbenches, languages and contexts. Therefore, we call for more studies on
applications of language workbenches in practice. This is relevant because it
will help industrial language engineers decide when and how to use language
workbenches.

In our study, we have primarily focused on evaluating and comparing pro-
ductivity. Still, we were able to make several observations for other concerns
such as modularity and maintainability of language implementations, both
positive and negative. For example, the ability to easily extend SDF3 definitions
and Spoofax projects benefits modularity and the ability to generate multiple
artifacts from a single source benefits maintainability. On the other hand, the
inability to merge scope graphs of different languages hinders modularity and
the steep learning curve of NaBL2 hinders maintainability. Since concerns such
as the modularity and maintainability of language implementations are impor-
tant for developing DSLs in industry, we encourage more studies that evaluate
language workbenches in detail on dimensions other than productivity.

Although Spoofax was suitable for implementing OIL, we see several areas
of improvements. These are mainly in the practical use of the language
workbench, such as limited portability, slow build and response times, and
limited documentation. For the meta-DSLs we see the following opportunities
for improvement: supporting cross-language static analysis, improving the
API for using static analysis results in transformations, supporting unit testing,
and improving the integration of Stratego in the definition of editor services.
Several of these improvements have been included in the next version of
Spoofax.

Based on our study, we provide the following advise.
• For industrial language engineers: Use a language workbench for developing

DSLs especially if a user-friendly editor for the languages is desired; not
doing so leads to “reinventing the wheel”, which can cost considerable
effort.

• For industrial language engineers: When IDE support is not required, using,
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e.g., off-the-shelf parser generators and a GPL could be a valid engineering
choice for implementing the concrete syntax of a DSL, as the drawbacks of a
language workbench may outweigh the benefits.

• For language workbench developers: Focus on the practical aspects of language
workbenches such as portability, usability, and documentation to improve
adoptability.
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5
Conclusion

The underlying goal of this dissertation is to improve our understanding of how
DSLs developed with language workbenches can impact industrial software
engineering. Rather than taking a broad perspective, we took a deep dive into
two idiosyncratic cases of DSL development at Canon Production Printing
using the Spoofax language workbench. On the one hand, it is inherent to
this approach that threats to external validity remain for our findings. On the
other hand, the approach allowed us to extensively account for internal threats
to validity, enabling us to produce valuable contributions to the language
engineering community in both academia as well as industry. We summarize
these contributions as follows:

DSL Creation We have designed and implemented two external DSLs in the
context of Canon Production Printing using Spoofax: CSX and OIL. CSX is
a DSL for the domain of configuration space exploration of digital printing
systems, for which the development of a DSL was motivated by tackling
complexity in a way that was found to be infeasible using traditional techniques.
OIL is a DSL for modeling and implementing control software behavior. Its
development using Spoofax was motivated by an existing implementation of
OIL in XML and Python being difficult to advance and involving “reinventing
the wheel”.

Industrial Evaluation We have evaluated both DSLs in the industrial context
of Canon Production Printing. We evaluated CSX in terms of domain coverage,
accuracy, and performance. For OIL, we evaluated how the productivity of
implementing a DSL in Spoofax compares to the productivity when using a
GPL and available libraries.

Lessons Learned We have collected lessons learned on developing a DSL with
a constraint-solving backend and on developing OIL using both Python and
Spoofax.

In the rest of this final chapter, we discuss our answers to the research
questions, reiterate our lessons learned, and provide directions for future
work.

5.1 Research Questions

We answer the overarching research question by answering the sub-questions.

RQ-CSX: How does a DSL with a constraint-solving backend impact the devel-
opment of control software for digital printing systems with respect to domain
coverage, accuracy, and performance?
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We have investigated this research question using the CSX case study (Chap-
ter 2 and Chapter 3). In this case study, we have developed a DSL with a
constraint-solving backend for the development of control software for digital
printing systems.

We have evaluated the domain coverage of CSX using think-aloud co-design
sessions, in which the developer of CSX and a domain expert from Canon
Production Printing together modeled a realistic printing system. We found
that CSX was suitable for covering such a realistic digital printing system,
although coverage for aspects such as grouping and ordering of sheets can still
be improved.

We have evaluated the accuracy of CSX by testing for correctness and
completeness. For correctness, we test that the configurations that are found
for a device correspond to the device’s limitations. For completeness, we test
that all configurations that are possible in a device are found. The tests build
confidence in the accuracy of CSX by testing all features and a subset of feature
interactions at least once. Still, there can be untested feature interactions that
are not handled correctly.

We have evaluated the performance of CSX using benchmarking on realistic
scenarios of configuration space exploration, measuring translation and solving
times. We have observed that the performance is acceptable for interactive
usage (within the order of seconds) in several scenarios. However, performance
is unpredictable, because for seemingly similar scenarios the solving can also
time out.

CSX impacts the development of control software fundamentally in the sense
that a DSL is used instead of a GPL. This enables the use of constraint solving,
which in turn enables the realization of environments for configuration space
exploration that are automatic and accurate. Given our positive evaluation
of CSX’s domain coverage, accuracy, and performance, CSX can provide its
benefits for realistic printing systems.

Achieving configuration space exploration that is automatic and complete
is an improvement over the existing development approach at Canon Pro-
duction Printing. This existing approach was based on heuristics for finding
configurations. Due to the complexity of control software, the heuristics-based
implementations were not always accurate and they were difficult to maintain
for a large variety of printing systems. Therefore, the CSX approach improves
the quality of the printing systems by tackling the complexity that hinders
improving quality in the existing development approach. This is emphasized
by the additional value that CSX brings with its support for finding optimal
configurations. The industrial value of CSX has been confirmed by the patent
that records the underlying invention.

Our evaluation built confidence that CSX is useful for application in practice.
Evaluation on a wider range of printing systems and scenarios of configuration
space exploration could reveal limitations in the domain coverage and perfor-
mance of the current version of CSX. We provided several ideas for improving
domain coverage and performance to counter such limitations.
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RQ-OIL: How does the productivity of implementing an industrial language in
Spoofax compare to the productivity when using a GPL and available libraries?

We have investigated this research question using the OIL case study (Chap-
ter 4). In this case study, we compared an implementation of OIL in Spoofax
with an implementation of OIL in Python with XML syntax. We compared
the two implementations on four language implementation aspects: concrete
syntax, abstract syntax, static semantics, and dynamic semantics. For the
comparison, we used lines of code as a proxy for productivity. For concrete
syntax, abstract syntax, and static semantics, we found that the Spoofax im-
plementation used about half of the lines of code compared to the Python
implementation. Since the comparison is on two implementations covering
similar functionality, the results are an indication that it is more productive to
implement OIL in Spoofax than in Python. This is mainly due to the availability
of meta-DSLs in Spoofax that are tailored to implementing these aspects and to
generating editor services. For dynamic semantics, the difference in maturity
between the two implementations was too large to draw any conclusions.

Our findings are relevant for Canon and comparable high-tech industries
because they provide insight into the productivity of implementing a DSL
using language workbenches. We showed how Spoofax was suitable for imple-
menting a complex industrial language, and how the Spoofax implementation
realized more features with less code compared to the Python implementation.
These findings are important for industrial language engineers in deciding
when and how to use language workbenches. Based on our analysis we ex-
pect that DSLs developed with language workbenches can improve language
engineering productivity, which can reduce the cost of developing a DSL
and thereby also improve the opportunity of DSLs for a positive return on
investment.

Our evaluation considered a single language workbench, a single DSL, and
a single dimension of software engineering (productivity), within a particular
industrial context. The threats to the validity of our findings are in particular
related to the generalizability to other language workbenches, DSLs, dimen-
sions of software engineering (e.g., maintainability), and industrial contexts.
Therefore, we call for more studies on the application of language workbenches
in practice. This is relevant because it will further help industrial language
engineers decide when and how to use language workbenches.

5.2 Lessons Learned

In the CSX case study, we collected the following lessons learned on developing
and applying a constraint-based DSL in an industrial context:

1. The Spoofax language workbench and the MiniZinc constraint modeling
language (and compatible solvers) took care of much of the “heavy lifting”
in realizing CSX. This enabled us to tackle complexity and improve func-
tionality in software engineering for a complex domain by allowing us to
mostly focus on the domain and language design.

Chapter 5. Conclusion 173



653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers653788-L-bw-Denkers
Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024Processed on: 10-9-2024 PDF page: 188PDF page: 188PDF page: 188PDF page: 188

2. A systematic approach to DSL evaluation is useful for communicating about
a DSL in an industrial context. Concrete evaluation criteria for the use of
a DSL help in the discussion to explain to people who have no experience
with DSLs to understand what is required for a DSL to be applied in
practice. Finally, the evaluation criteria guide decision-making regarding
the adoption of the technique.

3. Starting to use a DSL in practice has a big impact on the software engineer-
ing process with dependencies on external tooling and having language
engineering resources available for both language development and lan-
guage maintenance. Therefore, the benefits of adopting a DSL need to be
large to outweigh the corresponding investment.

4. The conceptual power of CSX is amplified by its IDE. The CSX IDE gives
helpful insight into the behavior of models by featuring interactive vali-
dation of tests and debugging through inspection of configurations. This
helped us to try out alternative language designs, leading to an iterative
language design process.

5. It is a crucial language design decision to have types being defined in a
language itself — instead of embedding a fixed set of domain objects in the
language — which enables flexibility in modeling by iteratively including
more detail in models. In CSX, this enabled experimenting with different
representations of objects from the printing domain without changing CSX
itself.

6. A high level of abstraction and domain-specific constructs such as in CSX
are necessary to make constraint-based modeling accessible. Still, switching
to the constraint-based programming paradigm can be challenging for
developers who have no experience with constraint programming or with
declarative programming at all.

We collected the following lessons learned from developing OIL in the in-
dustrial context of Canon Production Printing using both Python and Spoofax:

1. The meta-DSLs in Spoofax are just like DSLs limited to a certain domain, and
it is not unheard of that we end up at the edges of this domain. For us, the
meta-DSLs in Spoofax have been sufficient in the industrial context. Except
for a few practical workarounds, we have experienced no limitations in
implementing concrete syntax (with SDF3), abstract syntax (with Stratego),
static semantics (with NaBL2 for typing and name binding and with Stratego
for well-formedness checking), and dynamic semantics (with Stratego).

2. The biggest limitations of Spoofax 2 are not in the functional aspects of
meta-DSLs, but in their non-functional characteristics, e.g., slow build and
response times, limited documentation, limited portability, and limited
static checking of meta-DSL specifications.

3. Choosing XML and Python is a viable engineering choice in the absence of a
language workbench. XML is a good choice for an effective implementation
of concrete syntax for a DSL if dependence on external tools is undesired.
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Therefore, this is a simple alternative to using a language workbench with
a penalty of roughly twice the code size and half of the editor features, as
well as a penalty in the user-friendliness of the language.

4. A main benefit of DSLs is the multiplicative factor: from a single specifica-
tion in a DSL, multiple backends can be targeted or multiple artifacts can
be generated. This multiplicative factor is essential for the effectiveness of
meta-DSLs used to implement DSLs: a single specification in a meta-DSL
can generate multiple language processing artifacts and editor services. For
instance, from an SDF3 grammar, not only a parser is generated, but also
an AST schema, a pretty printer, origin tracking and editor services.

5. Separate meta-DSLs for separate language implementation aspects lead to a
clear separation of concerns, making it effective to define and maintain lan-
guage aspects within those concerns. From our experience, the fundamental
design decision of Spoofax to have clearly separated meta-DSLs seems to be
working well.

6. Specifications written in Spoofax’s meta-DSLs can have high reusability
and extensibility, by decomposition into modules, but this can come with
a considerable cost in terms of code to compose the modules. However,
since this code almost only consists of declaring and importing modules,
we recommend to use Spoofax’s meta-DSLs in a modular way.

5.3 Implications & Future Work

For software language engineering researchers. Together with the work by Voelter
et al. on the evaluation of the MPS language workbench [6], our evaluation
provides empirical evidence on the application of DSLs and language work-
benches in practice. However, these evaluations are limited in scope. We
discuss three implications of this limitation. First, our work on evaluating
Spoofax has been limited to productivity. Other claims made on Spoofax such
as supporting a high degree of modularity are relevant to evaluate as well
within industrial contexts, as modularity can enable reuse and extensibility and
thereby improve language engineering. Furthermore, it is relevant to assess
the usability of the usage environments generated by Spoofax, e.g., in terms
of performance (providing feedback quick enough for interactive usage) and
whether the provided editor services are on par with state-of-the-art usage
environments for GPLs. Second, our evaluation of Spoofax focused on two par-
ticular cases in a specific industrial context. Validation of our results on a larger
corpus of DSLs and in more industrial contexts is needed. Third, all available
language workbenches vary in characteristics, and therefore evaluation of a
wider range of language workbenches is needed.

For industrial language engineers. Industrial language engineers can use our
findings to decide when to apply DSLs developed with language workbenches.
At Canon Production Printing, there are several possibilities for bringing the
work on CSX and OIL further into practice. For CSX, evaluation of domain
coverage on a wider range of printing systems is needed to get a better
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understanding of the DSL’s effectiveness and scalability. Performance could
potentially be improved by, e.g., using domain-specific information from CSX
to instruct solvers in their search for solutions. Ultimately, we envision CSX
as a language that could also be used by domain experts such as mechanical
engineers, in which, e.g., the usability of the language and maintainability of
the models would be of vital importance. This requires evaluating and possibly
improving the usability of the CSX usage environment for domain experts. For
OIL, the Spoofax implementation demonstrates several improvements to the
existing implementation using Python, but it remains future work how these
improvements can find their way into practice. As adopting a new language
workbench for production usage is non-trivial in an industrial setting, CSX
and OIL might not find their way into practice through Spoofax. In that case,
the underlying ideas and improvements of CSX and OIL could be ported to a
different implementation.

For language workbench developers. For Spoofax we found that the theory and
concepts underlying the language workbench are more than adequate for
creating industrial DSLs such as CSX and OIL. We found that Spoofax should
especially improve on non-functional characteristics to increase its usability
in industry. Based on the OIL case study, we provided a detailed engineering
agenda for Spoofax. Many of our suggestions involve engineering that does
not necessarily contribute to research. As Spoofax is currently developed and
maintained primarily by researchers, it would be useful to have dedicated
engineers working on the non-functional aspects of Spoofax. Individual lan-
guage engineering components such as parser generation with SDF3 could
be made available as, e.g., libraries to improve the practical applicability of
these components. We believe that Spoofax and other language workbenches
are valuable tools that can positively impact software engineering, and we
encourage efforts that bring their value further into practice.
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