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Abstract

In this work, we explore the possibility of using a heterogeneous Susceptible- Infected-Sus-

ceptible SIS spreading process on an airline network to model airport congestion contagion

with the objective to reproduce airport vulnerability. We derive the vulnerability of each air-

port from the US Airport Network data as the congestion probability of each airport. In order

to capture diverse flight features between airports, e.g. frequency and duration, we construct

three types of airline networks. The infection rate of each link in the SIS spreading process

is proportional to its corresponding weight in the underlying airline network constructed. The

recovery rate of each node is also heterogeneous, dependent on its node strength in the

underlying airline network, which is the total weight of the links incident to the node. Such

heterogeneous recovery rate is motivated by the fact that large airports may recover fast

from congestion due to their well-equipped infrastructures. The nodal infection probability in

the meta-stable state is used as a prediction of the vulnerability of the corresponding airport.

We illustrate that our model could reproduce the distribution of nodal vulnerability and rank

the airports in vulnerability evidently better than the SIS model whose recovery rate is homo-

geneous. The vulnerability is the largest at airports whose strength in the airline network is

neither too large nor too small. This phenomenon can be captured by our heterogeneous

model, but not the homogeneous model where a node with a larger strength has a higher

infection probability. This explains partially the out-performance of the heterogeneous

model. This proposed congestion contagion model may shed lights on the development of

strategies to identify vulnerable airports and to mitigate global congestion by e.g. congestion

reduction at selected airports.

Introduction

Networks, ranging from social, transportation to physical contact networks, support the diffu-

sion of information, transportation of goods and spreading of epidemics. Therefore, networks

and processes that unfold on them have been investigated in a wide range of fields such as
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mathematics, engineering and social sciences [1–5]. The Susceptible-Infected-Susceptible

(SIS) epidemic spreading process is one of the most studied dynamic processes on networks

[6–14]. The classic homogeneous SIS spreading process has been defined as follows. At any

time t, a node is either susceptible S or infected I. A susceptible node can be infected by each of

its infected neighbors with an infection rate β. Each infected node recovers to be susceptible

again with a recovery rate δ. Both the infection and recovery processes are independent Pois-

son processes. For a given network upon which the SIS process is deployed, a critical epidemic

threshold τc exists. When the effective spreading rate τ = (β/δ)> τc, a non-zero fraction of

infected nodes persists in the meta-stable state. When τ< τc, the epidemic dies out. The vul-

nerability of a network to an epidemic is estimated by the prevalence, defined as the average

fraction of infected nodes in the meta-stable state. The infection probability vi1 of a node i
indicates its vulnerability to the epidemic. Recent studies have focused on the influence of the

underlying network topology and heterogeneous infection/recovery rates on the epidemic

threshold, the prevalence [15, 16] and nodal infection probabilities [17]. Epidemic spreading

processes have been developed to model e.g. the propagation of epidemic, information, failures

and computer worms.

A fundamental question is to what extent an abstract process like the epidemic spreading

process could model a generic complex system, i.e. reproduce the key properties of the system.

This question is motivated at least from the following perspective. The operating mechanisms

of many complex systems like social systems and the brain are far from well understood. A

model that could well reproduce the key properties of a complex system may unravel the possi-

ble operating mechanism. The operating mechanisms of many complex systems are possibly

known, however, too complex to derive optimization/control solutions. In this case, an

abstract model that well captures the key features of the system may possibly facilitate the

development of optimization solutions.

For airline transportation networks, initial effort has been devoted to the analysis of their

topologies, demonstrating properties such as the small-world and scale-free degree distribu-

tion [18, 19]. Topological properties of subsets of a network based on geography and airlines/

alliances have also been explored [20, 21]. Recent investigations have focused on network resil-

ience and vulnerability regarding random failures [22, 23]. The performance or state of an air-

port (e.g. congested or not and the average delay per hour) is not independent of the states of

other airports. The delay propagation between airports has been studied via e.g. the correlation

or causality measures between the time series (average delay per hour) of airports [24–28].

One of the main reasons why delay propagates is that each aircraft has a flight sequence where

it travels between possibly multiple airports a day. The congestion at an airport can be intro-

duced by local factors such as the slow boarding of passengers, the mechanical issues of an air-

craft at the airport. Beyond, delayed flights that depart from a congested airport could cause an

overcharge at the arrival airports. The Air-Traffic Flow Management systems use strategies

such as ground holding (intentionally delaying an aircraft’s takeoff) and re-routing to reduce

overload [29]. The weather condition could lead to the congestion of several nearby airports,

which may further cascade to more airports due the rescheduling or re-routing of aircraft.

These perspectives imply the possible contagion of congestion between airports. Airline con-

gestion has been studied via network dynamics like queuing models [30]. Epidemic spreading

process has been recently used to model the spreading of traffic jams in urban networks,

assuming both homogeneous infection and recovery rate and homogeneous mixing approxi-

mation in network topology [31]. The possibility of modeling congestion contagion on an air-

line network using epidemic spreading process has been barely explored, not to mention how

to develop a full-fledged heterogeneous spreading model.
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In this work, we explore the possibility and limits of modelling airport congestion conta-

gion by a heterogeneous SIS spreading process on an airline network in reproducing or pre-

dicting airport vulnerability. We consider the US Airport Network data [32]. The airport

vulnerability is defined as the ratio of the duration of traffic congestion over the total operation

time and derived from data. We construct three types of airport networks to capture diverse

features such as the frequency and duration of flights. In the heterogeneous SIS model that we

proposed, the infection rate of a link is proportional to the weight of the link, as defined in

each of the three airline networks. Moreover, the recovery rate of a node is also heterogeneous,

dependent on the strength of the node in the underlying network. We use the nodal infection

probability in the meta-stable state as an estimation of the corresponding airport’s vulnerabil-

ity, which will be further compared with the airport vulnerability derived from the US Airport

dataset to evaluate our model. Specifically, our model is evaluated according to its capability to

reproduce the distribution of the vulnerability of a node and the ranking of nodes in vulnera-

bility. The modeling of airport congestion contagion by the SIS process, where the infection

rate of a link is proportional to the weight of the link and the recovery rate is homogeneous,

has been explored in [33]. That SIS process is a special case of our heterogeneous model and is

called the homogeneous SIS model in this paper to emphasize its homogeneous recovery rate.

We illustrate that the heterogeneous SIS model evidently outperforms the homogeneous

model according both aforementioned evaluation perspectives. Our further exploration of the

infection probability in relation to the node strength of an airport explains the better perfor-

mance of the heterogeneous model in reproducing the ranking of nodes in vulnerabilities.

We propose and illustrate the basic method to model a complex system by an epidemic

spreading process, via the airline system. The relatively good performance of the model does

not imply that the derived model is the precise mechanism of congestion contagion. Further

verification of the contagion mechanism is needed, e.g. regarding whether nodes with a

large strength recover faster. The derived model may inspire the development of strategies to

identify vulnerable airports and to mitigate global congestion by e.g. reducing congestion at

selected airports.

The content of this paper is arranged as follows. Firstly we define, derive and characterize

the airport vulnerability derived from data. Furthermore we introduce the heterogeneous SIS

spreading model and network construction. Afterwards, the methods to evaluate the model

are presented. In results, we compare the performance of our model with the homogeneous

model. The final section summarizes our key findings and discusses possible future work.

Materials and methods

Traffic vulnerability of an airport

Firstly, we describe the US Airport Network data. Airport vulnerability and its distribution are

further defined and derived respectively. Airport vulnerability obtained from data will be

adopted as a benchmark to evaluate the performance of our model.

Data. We obtain the U.S. airport dataset from the Bureau of Transportation Statistics

(BTS). This data set includes detailed information about the U.S. flight schedules since 1987

[32]. The computer reservation system (CRS) further distinguishes flight schedules as the

planned schedule under optimal operation conditions, and the actual schedule. In order to

demonstrate our modelling approach, we use the data spanning the high season period from

July 1st 2018 to July 14th 2018, since flight schedule and rotations periodically repeat. In total

N = 349 airports and E = 645299 flights have been considered. This data set contains as well

extra information for each flight e.g. Tail-number, Origin and Destination, Date, the actual

and scheduled Departure/Arrival Times.
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Definition and statistical properties. The vulnerability of an airport is defined as its

duration of traffic congestion over its total operation time, which is its probability of being

congested. Per hour, an airport’s declared capacity corresponds approximately to the number

of movements (the total number of departure and arrival flights) planned for that hour, such

that a reasonable level of service (LOS) can be ensured. Delay is the principal indicator of LOS.

Usually the declared capacity of an airport is up to 85–95% of its maximum throughput capac-

ity, which is the maximal number of movements per hour that the airport’s runway system

allows according to air traffic management rules and assuming continuous aircraft demands.

An airport is considered congested if its actual number of movements per hour during opera-

tion is greater than its declared capacity (the planned number of movements) divided by a

parameter α, where 0.85� α� 1. We consider α = 0.9 as an example to illustrate our methods.

The state of each airport i at each hour t is derived from U.S. airport dataset as follows: the air-

port is congested (Xi(t) = 1) if the actual number of movements is larger than the number of

movement planned at time t divided by 0.9. If this condition is not satisfied, the airport is not

congested (Xi(t) = 0). Airport i’s vulnerability �i ¼
1

m

Pm
t¼1

XiðtÞ is the fraction of time that air-

port i is congested. We considered all hours in the previously specified two week’s interval

(excluding hours between 0 and 6 of each day due to their low number of movements). The

hours considered are indexed as [1, 2, . . ., m], where m = 18 � 14 = 252.

In this work, we confine ourselves to this limited definition of airport vulnerability to start and

to illustrate our method. The definition could be further generalized to capture the level of con-

gestion per hour. The declared capacity can also also be better estimated based on airport charac-

teristics (e.g. active runways, taxiways, etc.) and weather conditions, beyond flight schedule.

Fig 1 shows the distribution of airport vulnerability, whose average is 0.15 and variance is

0.01. The vulnerabilities of all the airports are within the range [0, 0.4].

Heterogeneous SIS spreading model on airline networks

We model the contagion of airport congestion as a heterogeneous SIS spreading process on an

airline network. Firstly we introduce how to construct the three types of airline networks.

Fig 1. Probability density function fϕ(x) of the vulnerability ϕ of an airport. The average vulnerability is E[ϕ] = 0.15

and the variance is Var[ϕ] = 0.01. In total 45 bins are split within the interval [0, 1] with the same bin size. The

probability density fϕ(x) at a given bin x eqals the percentage of the airports whose vulnerability falls within the bin

normalized by the bin size 1/45.

https://doi.org/10.1371/journal.pone.0245043.g001
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Secondly, we propose the heterogeneous SIS spreading model. The last subsection illustrates

the individual-based mean-field approximation to compute nodal infection probabilities in

the meta-stable state, given the underlying network and the model parameters.

Network construction and properties. We derive three types of undirected networks

from the U.S. Airport Network data over the two weeks’ period in order to capture various

flight properties. This is motivated by the fact that the SIS spreading process unfolds differently

on different underlying networks. Network G1 is unweighted: two nodes (airports) are con-

nected if at least one direct flight exists in between. Each existing link has a weight wij = 1. Net-

work G2 and G3 are both weighted and have the same network topology as network G1. It is

assumed that the infection rate along a link is proportional to the link’s weight. In G2, the link

which connects node i and j has weight w�ij ¼ Fij þ Fji, which is the sum of the total number Fij
of flights from i to j and the number Fji of flights from j to i in the two weeks’ period. We moti-

vate this weight definition by the assumption that frequent flights between two airports corre-

spond to a high chance that congestion spreads from one airport to the other. Furthermore,

congestion propagation may be affected also by the duration of flights between airports. An

airplane that has departed with a delay in time, in fact, can adapt its speed to respect its sched-

uled arrival time at the destination airport. In order to capture these effects we introduce Net-

work G3. This network is defined by assigning to each link (i, j) the weight w�ij ¼
1

E½Tij�
, which is

the inverse of the average flight time between airport i and j. We adopt the convention that the

flight time between airports not connected by any direct flights is infinite: this ensures that the

weight of non-existing links is always null. A smaller average flight time may result in a higher

chance that flights delayed at the departure airport would affect the arrival time at the destina-

tion airport. This situation may be less likely in the case of a larger average flight time, when

there is more room for airplanes to re-optimize the flight velocity.

Finally, the weights in Networks G2 and G3 are respectively normalized as

wij ¼
w�ij

max
k;l

w�k;l

0

@

1

A:

The normalization by the maximum link weight max
k;l

w�k;l in each network leads to the normal-

ized link weights within the range (0, 1]. Since there is no self-loop, wii = 0 8i.
Heterogeneous infection rate and recovery rate (link weight) have been shown to influence

the nodal infection probabilities [11, 17]. Since the infection rate of a link and the recovery

rate will later be defined as a function of the link weight and node strength of a node respec-

tively, we examine the distribution of the link weight and node strength (the total weight of the

links incident to a node) in Fig 2. Network G2 and G3 manifest different link weight and node

strength distributions, which motivate again the consideration of the three types of networks

that capture different features of the airline system.

We explore relation between the strength of a node and other centrality metrics that

describe varies topological properties of a node via the linear correlation coefficient. The fol-

lowing centrality metrics have been considered:

• Clustering Coefficient. In an unweighted network, the clustering coefficient is the probability

that two random neighbors of a node are connected. In a weighted network, a generalized

definition for clustering coefficient has been introduced by [34]. The intensity of a triangle

among node i, j and k is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwijwjkwki

3
p

. The clustering coefficient of a node i is then

defined as the sum of the intensities of the triangles that i resides in, normalized by the
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maximum possible number of triangles that i could reside in, i.e. 1

2
diðdi � 1Þ, where di is the

degree of node i.

• Betweenness Centality. The betweenness centrality of a node is the fraction of the shortest

paths between all possible node pairs that pass through the node. To compute the shortest

path between a node pair, we define the distance of each link in the underlying network as

the reciprocal of its link weight [35].

• Closeness Centrality. The closeness centrality is the average hopcount of a node to any other

node. The hopcount between two nodes is the number of links of the shortest path, which is

computed as described in betweenness.

• Principal Eigenvector Component The principal eigenvector component of a node is its corre-

sponding component in the principal eigenvector of the weighted adjacency matrix. The

principal eigenvector is the one corresponding to the largest eigenvalue.

The linear correlation coefficient between node strength and each of centrality metric in

the three networks constructed are shown in Table 1.

Node strength is strongly correlated with all the centrality metrics that describe a given

importance of node in the whole network except for the clustering coefficient, a nodal property

derived from local network connections. Hence, node strength that will be used to define the

nodal recovery rate in the epidemic spreading model, captures as well nodal properties like

betweenness, closeness and principal eigenvector component.

Fig 2. The probability density functions fWðxÞ of the weight W of a link (a) and fS(x) of the strength S of a node (b) in network G2 (blue points)

and G3 (red points). Horizontal and vertical axes are presented in logarithmic scale. The horizontal axis is split into 20 bins, each with the same bin size

in the linear scale. The probability density fWðxÞ (fS(x)) at a given bin x is equal to the fraction of the links (nodes) whose weight (strength) falls within

the bin normalized by the bin size. Both link weight and node strength have, respectively, a higher average in G3 and higher coefficient of variation (the

ratio of standard deviation over the average) in G2.

https://doi.org/10.1371/journal.pone.0245043.g002

Table 1. The linear correlation coefficient of node strength with clustering coefficient, betweenness, closeness and eigenvector centrality respectively in network G1,

G2 and G3.

Network Clustering Betweenness Closeness Eigenvector

G1 -0.09 0.80 0.81 0.95

G2 0.00 0.81 0.54 0.98

G3 -0.17 0.81 0.44 0.92

https://doi.org/10.1371/journal.pone.0245043.t001
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Furthermore, we study the relation between the vulnerability ϕ of an airport and a given

centrality metric of the corresponding node in each of the three underlying networks. This

helps us to evaluate the possibility of using a nodal centrality measure to estimate nodal vulner-

ability. In the scatter plot in Fig 3, we do not observe any monotonic trend between the vulner-

ability ϕ of an airport and the centrality metric of the corresponding node. This implies that

centrality metrics can not be used as a good estimation of airport vulnerability. Our previous

work [33] illustrated as well the worse performance of vulnerability prediction via centrality

metrics than that via the homogeneous SIS model. Hence, we will compare performance of the

heterogeneous SIS model with that of the homogeneous SIS model but not of the centrality

metrics.

The networks we constructed have not taken the geographical locations of the airports

explicitly into account. One may wonder whether the vulnerability of an airport may strongly

correlate with its location, thus can be possibly estimated by its location. Fig 4 shows that vul-

nerable airports are scattered in location and no evident relation between vulnerability and

location.

The heterogeneous SIS model. We model the airport congestion dynamics as a heteroge-

neous SIS spreading process, where both the infection rate per link and the recovery rate per

node are heterogeneous. The infection rate of a link with weight wij is βij = βwij. In network G1,

which is unweighted, the infection rate is homogeneous. The heterogeneous recovery rate is

motivated by the fact that airports with a larger declared capacity may recovery faster i.e. are

more capable to deal with operational delay and congestion due to their better infrastructure.

The declared capacity of an airport is affected by the number and geometric layout of the run-

ways, type and location of taxiway exits from the runway and the ATM system. The primary

factor in determining the capacity is the number of simultaneous active runways. The selection

of runways to be operated depends on demand, weather conditions (visibility, wind speed/

direction) and noise restrictions. During periods of high congestion, a large airport can decide

to keep more runways active to match the demand, however, a small airport does not have that

option. Furthermore, a large airport with several runways will have even more runway config-

urations, which is a combination of simultaneous active runways, weather conditions and

assignment of aircraft types and movements (arrival/departures). This makes larger airports

more suitable to handle congestion [29]. Similarly, recent studies showed that large airports

are less likely to propagate delay [27, 28]. In the three networks we constructed, the node

strength tends to be a good proxy of the declared capacity and it is strongly correlated with sev-

eral other nodal centrality metrics. Hence, we define the recovery rate δi of a node as a function

of its node strength:

di ¼ d cþ
si
smax

� �y
 !

ð1Þ

where node i’s strength is si = ∑j wij and smax ¼ max 1�i�Nfsig. In the unweighted network

topology G1, the strength si of a node i corresponds to its degree. The parameter c is a constant.

The scaling factor θ� 0 regulates to what extent the recovery rate of a node depends on the

normalized node strength
si

smax
. A large c results in a more homogeneous recovery rate, whereas

a large θ leads to a high heterogeneity in recovery rate. When θ> 0 a node with a higher

strength has a larger recovery rate. The heterogeneous SIS model coincides with the homoge-

neous one when θ = 0. The definition of the heterogeneous recovery rate Eq (1) is generic in

the sense that it is a polynomial function of the node strength where the extent of homogeneity

or heterogeneity can be tuned via parameter c and θ. The parameter set (δ, c, θ) will be cali-

brated or identified as the set that best reproduced the properties of the vulnerability of
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Fig 3. Airport vulnerability versus a nodal centrality metric. The scatter plot of airport vulnerability ϕ versus node strength (a,b,c),

clustering coefficient (d,e,f), betweenness (g,h,i), closeness (j,k,l) and eigenvector (m,n,o) centrality in network G1 (first column, blue color),

G2 (second column, red color) and G3 respectively.

https://doi.org/10.1371/journal.pone.0245043.g003
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airports, as described in subsection Experiment description. The normalization by smax in Eq

(1) has no influence on the performance of the model but may ease the choice of the search

space of c when we calibrate the parameters.

Individual-based mean-field approximation of the heterogeneous SIS model. We

derive nodal infection probabilities via mean-field approximation instead of simulating the SIS

stochastic process for computational efficiency. The N-Intertwined Mean-Field Approxima-

tion (NIMFA) is one of the most precise individual-based mean-field approximations [9]. Dif-

ferent from homogeneous or degree-based mean-field approximations where only the degree

of a node is taken into account, NIMFA preserves the whole network topology in its governing

equations, coupling the infection probability of neighboring nodes. It further assumes that the

states of neighboring nodes are uncorrelated. Under NIMFA, the governing equation for a

node i in our heterogeneous SIS spreading model is

dviðtÞ
dt
¼ � diviðtÞ þ ð1 � viðtÞÞ

XN

j¼1

bijvjðtÞ ð2Þ

where vi(t) is the infection probability of node i at time t, and βij = βwij is the infection rate

associated to the link (i, j). In the meta-stable state,
dVðtÞ
dt ¼ 0, where V(t) = [v1(t) v2(t) � � �

vN(t)]T, limt!1 vi(t) = vi1 and limt!1 V(t) = V1. The infection probability of each node V1
in the meta-stable state can be derived. The trivial all-zero solution corresponds to the absorb-

ing state where all nodes are susceptible. The non-zero solution of V1, if exists, indicates the

existence of a meta-stable state with a non-zero fraction of infected nodes. Or else, the meta-

stable state is 0 or not-existent. Given θ, c and the underlying network, the infection

Fig 4. Geographic location and vulnerability of U.S. airports. The geographic location and vulnerability of an airport in U.S. mainland (a), Alaska (b), Hawaii Islands

(c), Puerto Rico (d), American Samoa and Guam (e). The nodes/airports are color-coded according to their airport vulnerability ϕ. We show the names of the top 30

most vulnerable airports.

https://doi.org/10.1371/journal.pone.0245043.g004
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probability of each node remains the same if b
d

does not change. Without loosing the generality,

we consider β = 1.

In a heterogeneous SIS model, the condition for the epidemic to spread out on a given net-

work G is Reðl1ð
�AÞ > 0 where Reðl1ð

�AÞÞ is the real part of the largest eigenvalue of the matrix

�A, with its elements �aij ¼ bij if i 6¼ j and �aij ¼ � di [36]. In particular, in our model βij = wij,

hence �A ¼W � diagðdiÞ. δi is defined according to Eq (1). Furthermore, the three network

topologies G1, G2 and G3 are undirected: thus �A is real and symmetric and l1ð
�AÞ is real. The

condition Reðl1ð
�AÞÞ > 0 becomes

l1

1

d
W � diag

si
smax

� �y
 !

> c ð3Þ

Evaluation methods

We evaluate our model via its capacity to capture: (a) the probability distribution of airport

vulnerability and (b) the rank of airports in vulnerability.

Similarity of vulnerability and infection probability distribution. We firstly quantify

the similarity of the probability distribution of nodal infection probability obtained from the

heterogeneous SIS model with that of airport vulnerability via the Jensen Shannon divergence

JSD. Given two discrete probability distributions P = (p1, p2, . . ., pK) and Q = (q1, q2, . . ., qK)

where K� 2, the Jensen-Shannon divergence(JSD) [37] measures the similarity of P and Q.

We define the mixture of P and Q as M = (m1, m2, . . ., mK) where mi ¼
piþqi

2
, i 2 {1, 2, . . ., K}.

The Shannon’s entropy of of a distribution e.g. P is denoted as HðPÞ ¼ �
PK

j¼1
pj log 2pj. Jen-

sen Shannon divergence measures the difference between the Shannon entropy of the mixture

M ¼ 1

2
ðP þ QÞ and the average Shannon entropy of P and Q, i.e.

JSDðP;QÞ ¼ HðMÞ �
1

2
ðHðPÞ þ HðQÞÞ ð4Þ

The Jensen-Shannon divergence is symmetric 0� JSD(P, Q)� 1. A smaller JSD(P, Q) indi-

cates a high similarity between the two distribution P and Q.

Airport ranking in vulnerability. From the application perspective, the identification of

the most vulnerable airports is crucial. We can evaluate the quality of using nodal infection

probability to rank airports in vulnerability as follows. A node with a high infection probability

is supposed to correspond to an airport with a high vulnerability. We rank the nodes (airports)

according to their infection probability and vulnerability respectively. These two rankings are

recorded by two vectors Rv ¼ ½Rv
ð1Þ
;Rv
ð2Þ
; . . . ;Rv

ðNÞ� and R� ¼ ½R�ð1Þ;R
�

ð2Þ; . . . ;R�ðNÞ� where Rv
ðiÞ is

the index of the i-th highest node in infection probability and R�ðiÞ is the index of the i-th most

vulnerable airport. The performance of using nodal infection probability to identify the top f
fraction most vulnerable airports can be quantified by the top f recognition rate

r�vðf Þ ¼
jR�f \ Rv

f j

jR�f j
ð5Þ

where R�f and RV
f are, respectively, the sets of nodes ranked in the top f fraction according to

vulnerability and infection probability. jR�f j ¼ fN is the number of nodes in R�f . A higher rec-

ognition rate indicates a higher precision of using nodal infection probability to identify the

top f fraction most vulnerable nodes.
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We define the overall recognition quality ξ as the area under the rϕv(f) function:

x ¼

Z 1

0

r�vðf Þdf ð6Þ

The recognition quality 0� ξ� 1 measures the overall performance of using infection proba-

bility to rank airports in vulnerability. The quality x ¼ 1

2
is obtained by the random ranking,

which selects uniformly at random f fraction of nodes as the top f fraction most vulnerable

ones. The maximum ξ corresponds to the case when rϕv(f) = 1 8f, which means that Rv = Rϕ.

Results and discussion

Experiment description

Our heterogeneous SIS model has three control parameters δ, c and θ. In order to understand

the influence of the parameters on the performance of the model, we consider all possible com-

binations of the parameters. We consider for c all possible values within [0, 2] and with step

size 0.02. Similarly, θ can be any value within [0, 2] and with step size 0.1. The smaller step size

of c is motivated by the high sensitivity of the model’s performances (especially the recognition

quality ξ) on c. This is because the term
si

smax

� �y
in the recovery rate of a node can be small,

when θ is large, especially in view of the heterogeneous node strength distribution (see Fig 2).

Given the underlying network G1, G2 or G3, and given the parameter c and θ, the prevalence

in the meta-stable state that can be derived via NIMFA is an increasing function of 1/δ.

We consider the optimal value of δ, which is denoted as δo, as the one that minimizes

E½�� � 1

N

PN
i¼1

vi
� �2

, i.e. when the average nodal infection probability is the closest to the aver-

age airport vulnerability. We obtained it via Brent optimization algorithm [38, 39]. For each

possible c, θ and the underlying network G1, G2 or G3, which together determine the δo, we

derive the infection probability for each node via the NIMFA. The performance of the corre-

sponding model is evaluated in comparison with the airport vulnerabilities via the Jansen-

Shannon divergence JSD and the recognition quality ξ. We compare the performance of the

heterogeneous SIS model on each network with the corresponding homogeneous model. In

the baseline homogeneous SIS model on a given network, the infection rate of a link is βij = wij,

while the homogeneous recovery rate δ(c + 1) is tuned effectively as one parameter so that the

average infection probability is the closest to the average vulnerability.

Performance of the heterogeneous SIS model

The Jensen Shannon divergence JSD evaluates the similarity between nodal infection and vul-

nerability distribution, whereas the recognition quality ξ assesses the capability of identifying

the most vulnerable airports according to their corresponding infection probabilities. In this

section we explore the performance of the heterogeneous SIS model in comparison with the

baseline homogeneous SIS model. If we aim to develop a model to reproduce the vulnerability

distribution alone (to minimize the JSD) or the ranking of nodal vulnerability (to maximize ξ),
but not both at the same time, the heterogeneous SIS model evidently outperforms the homo-

geneous one. As shown in Fig 5, the minimal possible JSD and the maximal ξ achieved by the

heterogeneous model are far lower and higher respectively than those obtained by the homo-

geneous model. The minimal JSD and the maximal ξ are not obtained by the heterogeneous

model at the same time, i.e. via the same parameter set θ and c.
Furthermore, the data points on the top-left panel in each sub-figure of Fig 5 correspond to

the parameter sets with which the heterogeneous model outperforms the homogeneous one in
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Fig 5. The scatter plot of the recognition quality ξ versus Jansen-Shannon divergence JSD for both heterogeneous and homogeneous SIS model with diverse

parameter sets. The scatter plot is obtained in network G1 (figure a1, a2), G2 (b1, b2) and G3 (c1, c2). Points correspond to the heterogeneous model, where θ 2 [0, 2]

with step size 0.1 and c 2 (0, 2] with step size 0.02. The points are colored according to parameter c in a1, b1, c1 and according to θ in a2, b2, c2. The dash lines

correspond to the baseline homogeneous model.

https://doi.org/10.1371/journal.pone.0245043.g005
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reproducing both the vulnerability distribution and ranking the airports in vulnerability.

Among those points, those that lead to an evidently high recognition quality are within the

parameter range θ> 1 and c = 0.02, when the recovery rate is highly heterogeneous. The het-

erogeneous SIS model on the unweighted network G1 could possibly achieve slightly better

recognition quality than the model on G2 and G3. The homogeneous model on network G1

however, performs worse than that on G2 and G3 in recognition quality. The network G1,

which contains less information than the other two networks, is sufficient for the heteroge-

neous model to perform well. When c = 0.02, the heterogeneous model achieves the best per-

formance in ξ. This suggests that a fine tuning of the c within the range (0, 0.02) may further

improve the performance of the model. The parameter sets that we have considered are suffi-

cient for us to illustrate that the heterogeneous SIS model could perform better than the homo-

geneous one.

The infection probability versus the node strength of a node

Identifying the most vulnerable airports is crucial for operations. In this section, we aim to

understand why the heterogeneous SIS model better recognizes vulnerable airports, i.e. is

higher in recognition quality than the homogeneous model. In the homogeneous SIS model, a

node with a large strength tends to have a high infection probability. In the heterogeneous SIS

model, a node with a large strength has high rates of getting infected by its neighbors, contrib-

uting to a high infection probability. On the other hand, a node with a large strength could

have a large recovery rate when θ> 0. These two factors imply that a node with a large node

strength does not necessarily have a high infection probability. In this section, we explore

whether the better performance of our heterogeneous SIS model in recognition quality corre-

sponds to its better capability to reproducing the relationship between the vulnerability and

strength of a node if compared to the homogeneous SIS model.

We take network G1 as an example. The heterogeneous SIS model on G1 achieves the high-

est recognition quality ξ when c = 0.02 and θ = 1.5. We consider the SIS model when c = 0.02

whereas θ varies and when θ = 1.5 whereas c varies. We plot the vulnerability ϕ and the meta-

stable infection probability v (derived by the heterogeneous SIS model or the homogeneous

SIS baseline model) of a node versus the strength of the node in Fig 6a. When θ< 1, and

c = 0.02, the infection probability increases monotonically with the strength of a node

Fig 6. Airport vulnerability and nodal infection probability versus normalized node strength. The scatter plot of the vulnerability ϕ (points) and infection

probability v (lines) of a node versus the normalized node strength
si

smax
of the node on the underlying network topology G1. The black dashed line corresponds to the

baseline homogeneous model (θ = 0). Solid lines correspond to the heterogeneous model with θ = 1.50, colored according to the parameter c (figure a) or with c = 0.02,

colored according to the parameter θ (figure b).

https://doi.org/10.1371/journal.pone.0245043.g006
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(see Fig 6a). When θ> 1, the new phenomena unfolds: high nodal infection probability is

obtained by nodes with an intermediate strength, but not those having a small nor large

strength. A large θ attributes to the heterogeneity of the recovery rates, allowing nodes with a

large strength to have a small infection probability. Given the θ = 1.5, Fig 6b shows that the

nodal infection probability increases monotonically with the node strength when c is large, e.g.

c> 1. A large c reduces the heterogeneity of the recovery rate. When c is small, the maximal

vulnerability has also been obtained by nodes with an intermediate node strength.

The node strength that leads to the maximal infection probability increases as c increases

because a larger c makes the recovery rate more homogeneous. In the extreme case, the most

heterogeneous case, when θ> 1 and c = 0, v decreases monotonically as the node strength

increases, which can be seen in Fig 6a. In this special case, a larger θ> 1 corresponds to a

steeper decrease. The relative magnitude of the constant term c with respect to the node

strength dependant term
si

smax

� �y
of δi decides when the phenomena occurs that the infection

probability increases first and decreases afterward as the node strength increases. Fig 7 illus-

trates the cumulative distribution Pr S
smax

� �y
� x

� �

of the term
si

smax

� �y
. The model on G1 that

maximizes the recognition quality is obtained when θ = 1.5 and c = 0.02 (observed within the

range we have searched for). In this case, the constant c is larger than the term
si

smax

� �y
of δi in

less than 70% of the nodes. The model where
si

smax

� �y
� c in most nodes (e.g. when c = 0.1 and

θ = 1.5) is not optimal. These observations motivate that we may identify the optimal parame-

ter set more efficiently by better choosing the search space.

Conclusion

We model airport traffic congestion contagion as a heterogeneous SIS spreading process on an

airport transportation network, aiming to identify airport’s vulnerability, i.e. probability of

being congested, using nodal infection probabilities derived from our model. Three airline net-

works are constructed to capture diverse information e.g. flight frequency and duration and

the infection rate of each link is assumed to be proportional to its link weight. Per node, we

Fig 7. Cumulative distribution of S
smax

� �y
in each network when θ = 1.5.

https://doi.org/10.1371/journal.pone.0245043.g007
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introduce an heterogeneous recovery rate which is a function of its node strength. The model

is evaluated via its capability to reproduce the distribution of nodal vulnerability and to rank

airports in vulnerability. Our model evidently outperforms the SIS model with a homogeneous

recovery rate in ranking airports from both perspectives. One explanation of the better perfor-

mance of our heterogeneous model in reproducing the ranking of airports in vulnerability is

that: the phenomena that the vulnerability is the largest at airports whose strength in the airline

network is neither too large nor too small can be only captured by the heterogeneous model.

In particular, a node with a large strength has high rates (link weights) of getting infected by its

neighbors, whereas its large recovery rate could reduce its infection probability. Finally, the

simplest airline network that represents which airports have direct flight(s) in between already

allows the heterogeneous model to evidently outperform the homogeneous one.

The identification of vulnerable airports is crucial for airport operations. Beyond, our

model may facilitate the development and evaluation of optimization strategies. The optimiza-

tion problem can be, e.g. which airports should be invested in improving their capacity thus

reducing their vulnerability or in improving their recovery rates in order to minimize the

global vulnerability. The derived model that describes how congestion at one airport spreads

to other airports could be used to evaluate optimization solutions as a starting point. Such

questions require as well further improvement and validation of the model, accounting for e.g.

other operational factors and the time varying nature of airport vulnerability. The definition of

airport vulnerability can also be generalized by considering e.g. the extent of congestion at an

airport.
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