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Abstract
The goal of this paper is to formalize the Funda-
mental Group of the Circle within Coq and the Uni-
math library, as described in the paper by Mr Li-
cata and Mr Shulman.,1 and show it is isomorphic
to Z. Fundamental groups are a powerful algebraic
invariant for studying Homotopy theory, and pro-
vide deep, yet concise insights into the fundamental
properties of a space.

1 Introduction
Homotopy type theory (HoTT) is a new field within mathe-
matics and computer science (arising around 2006 with the
work of Voevodsky and the researchers Awodey and War-
ren),2 that leverages a recently discovered correspondence
between Martin-Löf dependent type theory and the mathe-
matical disciplines of category theory and homotopy theory.3
Within this framework types can be regarded as spaces in ho-
motopy theory, where each element of a type corresponds to
a point in space. We regard witnesses of a =A b of some arbi-
trary type A as paths between a and b in the space A. Paths are
said to be homotopic if these paths can be continuously de-
formed into one another. Continuous paths within a space can
be separated into distinct equivalence classes under the rela-
tion of homotopy. This combined with the Univalence axiom
which in a somewhat oversimplified manner states that ho-
motopic equivalence (an isomorphism between types) can be
regarded as being equivalent to identity,4 allows for a much
deeper notion of what constitutes equality compared to tradi-
tional type systems, or indeed mathematics more generally.

The subject of this paper is to report on the research con-
ducted to formalize the fundamental group of the circle, as
described in the research paper of Mr Licata and Shulman,5
within the Coq Unimath library. The Fundamental group
of the circle can be regarded as the homotopy-equivalence
classes of loops around a circle, and is shown to be isomor-
phic to the set of all integers Z. The central research question
to be answered is as follows:

• Does computer-checking the contents of the published
paper: ”Calculating the Fundamental Group of the Cir-
cle in Homotopy Type Theory”6 within the Unimath li-
brary of Coq, confirm the results discussed therein?

The remainder of this paper is structured as follows. In
section 2 the basic mathematical definitions and concepts re-

1. Michael Shulman Daniel R. Licata, “Calculating the Funda-
mental Group of the Circle in Homotopy Type Theory,” 2013, https:
//arxiv.org/abs/1301.3443.

2. The Univalent Foundations Program, Homotopy Type The-
ory: Univalent Foundations of Mathematics (Institute for Advanced
Study: https://homotopytypetheory.org/book, 2013).

3. Daniel R. Licata, “Calculating the Fundamental Group of the
Circle in Homotopy Type Theory.”

4. Univalent Foundations Program, Homotopy Type Theory: Uni-
valent Foundations of Mathematics.

5. Daniel R. Licata, “Calculating the Fundamental Group of the
Circle in Homotopy Type Theory.”

6. Daniel R. Licata.

quired to understand the subject of this paper are introduced,
for explanatory reasons these concepts are given in to topo-
logical or classical homotopical terms, rather then those of
HoTT. In section 3, the (type-theoretic) meaning of the fun-
damental group of the circle is elaborated upon, and in sec-
tion 4, the proofs performed utilizing the Unimath library are
explained and motivated upon.

2 Background
The goal of this paper is to demonstrate how to prove that the
fundamental group of the circle (FGoC) is isomorphic to Z
using Coq and the Unimath libary. To do this, an intuition of
these concepts is required, therefore within this section some
of the mathematical theory required is elaborated upon.

2.1 Mathematical Theory
Definition 2.1.7 Let X be a topological space with a, b ∈ X.
A path in X from a to b is a continuous function f : [0,1] ⊂ R
→ X such that f(0) = a and f(1) = b. The points a and b are
called the endpoints.

Here the domain [0,1] can be thought of as representing
moments in time, with 0 representing the starting point of f,
and f(1) the end point.89

Definition 2.2.10 A loop in a topological space X is a path f
such that f(0) = x0 = f(1) for some x0 ∈ X. The starting and
ending point, x0 ∈ X, is called the basepoint.
Definition 2.3.11 Let X be a topological space with two paths
f0 and f1 that have endpoints x0, x1 ∈ X. A homotopy from
f0 to f1 is a family of paths ft : [0,1] → X such that for all t
∈ [0,1], ft satisfies the following:

1. ft(0) = a and ft(1) = b.
2. The map F : [0,1] × [0,1] → X defined by F(s,t) = ft(s)

is continuous.

The paramater t of F(s,t) can be though of as determining
which of the paths between f0 and f1 is taken, and the pa-
rameter s specifying the moment in time. The horizontal bars
shown in the domain I × I in figure 1 correspond to different
paths in the co-domain X, thus:

• F(s,0) = f0(s)
• F(s,1) = f1(s)
• F(0,t) = x0

• F(1,t) = x1

If there exists a homotopy between two paths f0 and f1,
these two paths are called homotopic with the notation f0 ≃
f1,. The homotopy class of f, written as [f], is the equivalence

7. Samuel Dooley, “Basic algebraic topology: the fundamental
group of the circle,” August 2011, Definition 1.1. https://www.math.
uchicago.edu/∼may/VIGRE/VIGRE2011/REUPapers/Dooley.pdf.

8. David Ran, “An introduction to the funamental group,”
September 2015, Definition 3.1. http://math.uchicago.edu/∼may/
REU2015/REUPapers/Ran.pdf.

9. Univalent Foundations Program, Homotopy Type Theory: Uni-
valent Foundations of Mathematics, p. 55.

10. Dooley, “Basic algebraic topology: the fundamental group of
the circle,” Definition 1.6.

11. Dooley, Definition 1.3.

https://arxiv.org/abs/1301.3443
https://arxiv.org/abs/1301.3443
https://homotopytypetheory.org/book
https://www.math.uchicago.edu/~may/VIGRE/VIGRE2011/REUPapers/Dooley.pdf
https://www.math.uchicago.edu/~may/VIGRE/VIGRE2011/REUPapers/Dooley.pdf
http://math.uchicago.edu/~may/REU2015/REUPapers/Ran.pdf
http://math.uchicago.edu/~may/REU2015/REUPapers/Ran.pdf


Figure 1: A path homotopy.15 The paths shown in the codomain can
be continuously deformed into one another and thus belong to the
same equivalence class. If the space of X were to contain a hole
(for example in the center), such that deforming the paths unto each
other would cause their continuity property to be violated, the paths
would belong to at least two distinct equivalence classes.

class of a path f under the homotopy equivalence relation .12

Recall that an equivalence relation is a binary relation that is
reflexive, symmetric and transitive, it is a means to partition
an underlying set into disjoint equivalence classes. The el-
ements of these classes are related under the binary relation
given, and do not share this property with elements of other
equivalence classes.13

Definition 2.4.1415A group is a set G combined with a binary
operator ◦ : G×G → G satisfying:

• (closure) for any two elements a and b in G, the result of
their operation a ◦ b, is also in G.

• (associativity) for all a, b, c ∈ G,

(a ◦ b) ◦ c = a ◦ (b ◦ c).

• (existence of identity element) there exists an element
e ∈ G such that,

a ◦ e = a = e ◦ a

• (existence of inverses) for each a ∈ G, there exists an
a′ ∈ G such that,

a ◦ a′ = e = a′ ◦ a.

The fundamental group of a space is the group of equiv-
alence classes under the relation of homotopy of the loops
contained in the space relative to some basepoint x0 with
path composition as the as the group operation, denoted as
π1(X,x0).1617 Thus the Group laws as defined in definition
2.4 are fulfilled by path composition as follows:

12. Dooley, “Basic algebraic topology: the fundamental group of
the circle,” Definition 1.3.

13. Mary Radcliffe, “Math 127: Equivalence Relations”: p. 2, ht
tps : / / www . math . cmu . edu / ∼mradclif / teaching / 127S19 / Notes /
EquivalenceRelations.pdf.

14. “Group Fundamentals,” https://faculty.math.illinois.edu/∼r-
ash/Algebra/Chapter1.pdf.

15. Ran, “An introduction to the funamental group,” P. 6.
16. Dooley, “Basic algebraic topology: the fundamental group of

the circle,” Theorem 1.9.
17. Daniel R. Licata, “Calculating the Fundamental Group of the

Circle in Homotopy Type Theory,” p. 6.

• Closure - Given two loops in a space f, g: [0, 1] → X
such that f(1) = g(0), their concatenation f · g can be
defined by the formula:18

f · g(s) =
{
f(2s), 0 ≤ s ≤ 1

2 ,

g(2s− 1), 1
2 ≤ s ≤ 1

• Associativity - Path concatenation is associative, (α ◦
β) ◦ γ = α ◦ (β ◦ γ).

• Identity element - The identity element is the constant
loop (also called the trivial path), i.e. given f : [0, 1] →
X and f(0) = x0 = f(1) then for it to be a constant loop
f is required stay fixed at x0 during the entire [0,1] ⊂ R
interval)

• Inverses - Every loop a has an inverse loop a−1 that can
be concatenated, and simply represents the same loop in
the opposite direction.19

The fundamental group of a space records information
about that space, and can be used to tell spaces apart as well
as give information about the basic shape, or holes, of the
space.20

Definition 2.5.21 Let (G, ∗) and (H, ◦) be groups, then:
• A group homomorphism f : G → H is a function such

that for all x, y ∈ G we have:

f(x ∗ y) = f(x) ◦ f(y)
• A group isomorphism is a group homomorphism which

is a bijection.
An isomorphism can be regarded as an invertible homo-

morphism, because of this the mapping preserves informa-
tion, i.e. you can revert the map and go back (a homomor-
phism however may lose information).
Definition 2.6. A topological space X is path-connected if
for every x, y ∈ X, there exists a continuous path f such that
f(0) = x and f(1) = y.
Theorem 2.1. Let X be a path-connected topological space
and consider some x0, x1 ∈ X . Then there exists an isomor-
phism between π1(X,x1) and π1(X,x0).

For reasons of brevity, the proof for this theorem has been
omitted, however it may be found at the following refer-
ence.22 Because of the preceding theorem, the fundamental
group π1(X,x0) is often simply denoted as π1(X), provided
the space is path-connected.
Definition 2.7. A topological space X is simply-connected if
it is path-connected and has a trivial fundamental group.

18. Dooley, “Basic algebraic topology: the fundamental group of
the circle,” Definition 1.7.

19. “Homotopy Theory in Homotopy Type Theory: Introduction,”
2013, https : / / homotopytypetheory . org / 2013 / 03 / 08 / homotopy -
theory-in-homotopy-type-theory-introduction/.

20. Univalent Foundations Program, Homotopy Type Theory: Uni-
valent Foundations of Mathematics, p. 242.

21. “4.8 Homomorphisms and isomorphisms,” https://www.ucl.
ac.uk/∼ucahmto/0007/ book/4-8-homomorphisms-and-isomorphis
ms.html.

22. Dooley, “Basic algebraic topology: the fundamental group of
the circle,” Theorem 1.11.
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This means that, provided X is path-connected, then for
some x0 ∈ X,π1(X,x0) there is only one equivalence class
of loops (under the relation of homotopy), and thus the funda-
mental group is the trivial group with one element [ex0

]. This
occurs when a space has no holes that would prevent some
loops from being deformed continuously into a single point.
A simply-connected space has a strong connection to that of
a contractible in HoTT, with it’s fundamental group similarly
being the trivial group.

Definition 2.8.23The n-dimensional sphere, or simply n-
sphere, is the toplogical space given by the subset of the
(n+1)-dimensional cartesian space Rn+1 consisting of of all
points x of radius r from the distance

Sn
r = {x : Rn+1 | ||x|| = r}.

For the purposes of this paper the radius of the of the n-
sphere is irrelevant, so long as the ”center” of the n-sphere
contains a hole that violates continuity, as such it’s notation
is omitted within this paper. As an example, the n-sphere S1

can be viewed as a circle in two-dimensional space, and S2

as a sphere in three dimensional space, and so on.

2.2 Higher homotopy groups
The fundamental group of a space π1(X,x0), is the first in
a series of homotopy groups that provide additional informa-
tion about a space. For, example π2(X,x0) provides infor-
mation about the two-dimensional structure of a space, and
π3(X,x0) about the 3-dimensional structure and so on.2425

One way to visualize this is as follows: if we take πk(X,x0)
with k=1 and some two-dimensional space X, you can regard
this as one-dimensional loops on a 2D grid, where the loops
can be deformed in any direction provided continuity is not
violated. Similarly, k=2 with X being a 3-dimensional space,
captures the 2-dimensional loops or spheres in X with base-
point x0, provided it is understood that the ”spheres” in this
context are not spheres in the geometric sense, but rather can
be deformed into any number of arbitrary shapes so long as
they remain continuous.

In figure 2, it is shown that the homotopy groups of
n-spheres are, in certain instances, isomorphic to the additive
group of integers Z. As an example, of an instance where this
is not the case is for π1(S

2), visually this can be regarded
as follows: if you take a 1-dimensional loop fixed at some
basepoint x0 you can deform the loop ”around the sphere
S2” and contract it back to the basepoint, thus there is only
one equivalence class of loops and the fundamental group is
the trivial group of [ex0 ].26

In the remainder of this paper, the results of the research
project to show, utilizing the Unimath library, that the funda-
mental group of the circle π1(S

1) is isomorphic to Z is given.

23. “Sphere,” https://ncatlab.org/nlab/show/sphere.
24. Univalent Foundations Program, Homotopy Type Theory: Uni-

valent Foundations of Mathematics, ch 8.
25. “Homotopy Theory in Homotopy Type Theory: Introduction.”
26. Univalent Foundations Program, Homotopy Type Theory: Uni-

valent Foundations of Mathematics, p. 242.

Figure 2: ”Homotopy groups of spheres. The kth homotopy group
πk of the n-dimensional sphere Sn is isomorphic to the group listed
in each entry, where Z is the additive group of integers, and Zm is
the cyclic group of order m”.28

3 The Fundamental Group of the Circle
The mathematical theory given in the preceding section
mostly originated from Topology and classical homotopy the-
ory, however in the following sections the theory, code and
terminology will be derived from HoTT and the lexicon of
the Unimath library and Coq programming language.

In HoTT, types are interpreted as a space, an element of
some type as a point within that space, and an identity proof
is regarded as a path between the corresponding points.27

Therefore a Path is defined inductively with one constructor,
an element of this type is regarded as a proof (or witness in
Type theory) of propositional equality.28 A path between two
elements of a type can be constructed by writing either (a =
b) or (paths a b) with a and b belonging to some arbitrary type.

As was stated previously, the fundamental group of a space
X with some basepoint x0, denoted as π1(X,x0), is the group
of equivalence classes under the relation of homotopy of
loops from x0 to itself, with path composition as the group
operator.29 In other words the elements of the group are the
equivalence classes, with each equivalence class represent-
ing a distinct homotopy class of loops. ”In type theory, this
corresponds to the type ((paths x0 x0) : X), except for one
caveat: for π1(X), the group has a set of elements, which
are paths quotiented by homotopy. This means that any two
paths that are homotopic are equal, but any non-trivial struc-
ture of paths between paths has been collapsed by quotient-
ing.”30 However, in HoTT there may be paths between paths,
i.e. (paths a b: (paths x0 x0)). Therefore, the type theoretic
version of a loop, denoded by (paths x0 x0), has a closer cor-

27. “Just Kidding: Understanding Identity Elimination in Homo-
topy Type Theory,” https://homotopytypetheory.org/2011/04/10/
just - kidding - understanding - identity - elimination - in - homotopy -
type-theory/.

28. Univalent Foundations Program, Homotopy Type Theory: Uni-
valent Foundations of Mathematics.

29. Daniel R. Licata, “Calculating the Fundamental Group of the
Circle in Homotopy Type Theory,” p. 6.

30. Daniel R. Licata, p. 6.
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https://homotopytypetheory.org/2011/04/10/just-kidding-understanding-identity-elimination-in-homotopy-type-theory/
https://homotopytypetheory.org/2011/04/10/just-kidding-understanding-identity-elimination-in-homotopy-type-theory/


respondence to the loop space Ω1(X,x0), which is the space
of loops of X with basepoint x0. In other words, when talk-
ing of a loop space Ω1(X) of some arbitrary space X, loops
can be interpreted as points. The loop space Ω1(X) of some
arbitrary space X, can be reduced to the fundamental group
of X through a process called truncation. Therefore a proof
that Ω1(X) is isomorphic to Z, automatically also shows that
π1(X) is Z.31

Thus there exists an isomorphism between the equivalence
classes of Ω1(X) and the integers. Visually, this can be best
represented using the universal cover of the circle which is
depicted as a helix above the circle, see figure 3. In this
representation the winding number of loops, referring to the
number of times a loop is taken in a particular direction, cor-
responds to a level on the helix above it. A negative inte-
ger corresponds to a clockwise winding and a positive integer
with a counterclockwise winding. This correspondence can
be shown to be an isomorphic mapping with the group oper-
ation in Ω1(S

1) being concatenation of loops and the group
operation in Z being addition of integers.3233

Figure 3: Universal cover of the circle can be represented as a helix
projecting down to the circle. The map w : R → S1 sends ev-
ery point on the helix to the point of the circle that is above it.33

Note, that in the type-theoretic proof done in this paper the circle is
mapped to the helix and not the other way around.

In homotopy theory, there is a standard proof of Ω1(S
1) be-

ing isomorphic to Z using universal covering spaces as shown
above, and the proof this paper follows can be seen as the
type-theoretic version of this, using fibrations to represent
the path lifting that is done in the classical proof.34 Figure
3, shows the map w that maps the helix to the circle; the map
w is a fibration, and the fiber over each point is isomorphic
to the integers. This fibration is the universal cover of the
circle35

The type-theoretic goal that the proofs given in the fol-
lowing sections built towards is to show that paths base =
base is equivalent to Cover base, which as will be shown
later is by definition Int.

4 Computer-checked proofs
In the following sections the formalization, utilizing the Coq
Unimath library, of Mr Licata and Mr Shulman’s paper36 that

31. Daniel R. Licata, “Calculating the Fundamental Group of the
Circle in Homotopy Type Theory,” p. 6.

32. Daniel R. Licata, p. 7.
33. Univalent Foundations Program, Homotopy Type Theory: Uni-

valent Foundations of Mathematics, P. 243.
34. Daniel R. Licata, “Calculating the Fundamental Group of the

Circle in Homotopy Type Theory,” p. 7.
35. Daniel R. Licata, p. 7.
36. Daniel R. Licata.

was performed as part of the research project is given.

4.1 Defining the circle
It would be tempting to use Coq’s regular inductive types to
formulate the circle, however this is not possible. The reason
for this is due to how the circle is defined37 in homotopy the-
ory, which in (erroneous) Coq notation would be as follows:

Inductive S1 : Type :=
| base : S1
| loop : base = base.

In other words a circle in Homotopy theory is defined as some
point base, and a path from base to base (a loop).3839 No-
tice how the loop constructor has type ’base = base’ which
is an element of the identity type, however in Coq construc-
tors of an inductive type should always output terms of that
type. This is how Martin-Lof Type Theory (MLTT) is typ-
ically defined and is also how Coq (and most other depen-
dent programming languages) are constructed. To circumvent
this problem a more expansive version of inductive types are
needed called Higher Inductive Types (HIT). In HoTT ele-
ments of a type can be thought of as points in a space and
are what normal inductive types generate; however now we
would like to also be able to construct a path (identity) and
paths between paths within that space, which is what HIT
allows us to do.40 Unfortunately, Coq does not support the
creation of HIT and thus a workaround is needed, as follows:

Private Inductive S1 : Type :=
| base : S1.

Axiom loop : base = base.

Here, loop is given as an axiom and not defined as a con-
structor of S1. Axioms are statements that are assumed to be
true without any accompanying proof and can lead to incon-
sistencies or contradictory statements if used improperly, but
are a necessity here due to Coq’s limitations. This also re-
quires us to define our own elimination rules and take care to
include their behaviour for both base and loop. However be-
fore these can be defined, we need to first define the functions
maponpaths and transportf which state that functions and de-
pendent functions respect equality (or more accurately paths
retain their continuous property when (dependent) functions
are applied to them).

4.2 Functions act functorially
Within HoTT functions act functorially on paths, meaning
that applying functions to paths (identities) preserves their
continuous property.41 This is captured by the maponpaths
definition located in Foundations.PartA.v:

37. Univalent Foundations Program, Homotopy Type Theory: Uni-
valent Foundations of Mathematics, p. 174.

38. Univalent Foundations Program, p. 174.
39. Kajetan Sohnen, “Higher Inductive types in Homotopy Type

Theory,” July 2018, p.41, https : / / www . math . lmu . de /∼petrakis /
Soehnen.pdf.

40. Univalent Foundations Program, Homotopy Type Theory: Uni-
valent Foundations of Mathematics, p. 167.

41. Univalent Foundations Program, p. 66.

https://www.math.lmu.de/~petrakis/Soehnen.pdf
https://www.math.lmu.de/~petrakis/Soehnen.pdf


Definition maponpaths {T1 T2 : UU} (f : T1 -> T2)
{t1 t2 : T1} (e: t1 = t2) : f t1 = f t2.

Which state that given a function f between two types
(spaces) T1 and T2 and a path (identity) between two points,
then applying f to these points causes their identity to be re-
tained.

4.3 Dependent types as Fibrations
We still need to show that identity is preserved when the el-
ements of this identity are applied to a dependent function.
This is captured by the transportf definition in the Unimath li-
brary (variable names were changed for explanatory reasons).

Definition transportf {A : Type} (P : A -> Type)
{x y : A} (e : x = y) : P x -> P y

This function states that given some dependent function P :
A → Type and two elements of A with a path between them,
if the predicate P holds for one element then it also holds
for the other, in fact it can be shown that P(x) and P(y) are
equivalent.42

Topologically, the transportf function captures the notion of a
”path lifting” operation in a fibration. With the example given
above, the dependent function P : A → Type is a fibration
with base space A, P(x) is the fiber over x, and

∑
x:A P (x) is

the total space of the fibration, as shown in figure 4.43

Figure 4: A fibration

In short, when a dependent function is applied to a path, this
path is ”lifted” to a different space P(x) and the continuity
property of the paths is retained. In this paper the use of fi-
brations are typically referred to as transporting.

4.4 Elimination rules of the circle
We are now ready to define the elimination rules of the circle,
for the terms base and loop of S1 as was defined in 4.1. The
elimination rules for the circle express that it is the initial
type with a point called base and a path from base to base
(a loop), and given any other type with a point and a loop,
the circle can be mapped onto it.44 Recall, that in MLTT the

42. Univalent Foundations Program, Homotopy Type Theory: Uni-
valent Foundations of Mathematics, p. 67.

43. Univalent Foundations Program, p. 67.
44. “HoTTEST Summer School 2022: Agda Lecture 4,” 2022,

55:00, https://www.youtube.com/watch?v=5JT3rhI Pv0.

recursor is just the non-dependent eliminator, and induction
the dependent eliminator.45

Definition S1_recursion (A : Type) (b : A)
(l : b = b) : S1 -> A.

The recursor for S1 states that given:

1. A type A that values of S1 are to be mapped to.
2. An element ’b’ of type ’A’ to which base is to be mapped

to.
3. A proof ’l’ of a path from b to b, i.e. a witness that a

loop exists within the space A.

then the circle can be mapped to this other arbitrary type A.

The induction rule for S1 is defined follows:

Definition S1_ind (P : S1 -> Type)
(b : P base) (l : (transportf P loop b) = b)
: forall x : S1, P x.

The induction principle for the natural numbers states that to
prove a property (some predicate) of natural numbers, you
need to show that it holds for zero (base case) and is pre-
served by the successor of an arbitrary natural number (in-
ductive case). Similarly, to prove a property of points for S1,
it suffices to prove that it holds for base and is maintained by
going around the loop.46 Thus S1 ind can be interpreted as
follows, given:

1. A dependent type ’P’ (a predicate) that represents the
property to prove.

2. A proof that P holds for base.

3. A proof ’l’ that asserts that the transport or lifting of S1
along the path ’loop’ results in (b : P base).

then the circle can be mapped to a given arbitrary type (space)
given by the fibration P.

4.5 Computation rules
The β-reduction rules, more commonly referred to as the
computation rules, state how an eliminator acts on a con-
structor, and generally replaces more complicated expres-
sions with simpler ones.4748 The β-reduction rules, as de-
scribed in the paper by Mr Licata and Shulman49, are given
as axioms and are similarly implemented in this paper.

Axiom S1_rec_beta_loop : forall (A : Type)
(b : A) (l : b = b),
maponpaths (S1_rec A b l) loop = l.

The β-reduction rule of the recursor states that given some
type A and a point ’b’ and loop ’l’ with basepoint ’b’ within

45. Univalent Foundations Program, Homotopy Type Theory: Uni-
valent Foundations of Mathematics, p. 29.

46. Daniel R. Licata, “Calculating the Fundamental Group of the
Circle in Homotopy Type Theory,” p. 6.

47. Univalent Foundations Program, Homotopy Type Theory: Uni-
valent Foundations of Mathematics, p. 26.

48. “nLab beta-reduction,” 2016, https://ncatlab.org/nlab/show/
beta-reduction.

49. Daniel R. Licata, “Calculating the Fundamental Group of the
Circle in Homotopy Type Theory,” p. 6.
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this space, then mapping loop (of the circle) to the recursor
of S1 is equal to the loop in the arbitrary type A.

Analogously, the β-reduction rule for the dependent elimi-
nator as given below:

Axiom S1_ind_beta_loop : forall (P : S1 -> Type)
(b : P base) (l : transportf P loop b = b),
transport_section (S1_ind P b l) loop = l.

states that given:

• Some dependent function P, which assigns a type to each
element of S1.

• A proof ’b’ which states that the predicate ’P’ holds for
the basepoint of S1.

• An equality proof ’l’ which states that the lifting of the
loop of S1, with the fibration given by P, preserves the
proof (b : P base).

then lifting loop (of the circle) with the dependent eliminator
of S1 is equal to ’l’. the function transport section used above
is defined as follows:

Definition transport_section {X : UU} {P:X -> UU}
(f : forall x, P x) {x : X} {y : X} (e : x = y):
transportf P e (f x) = f y.

and states that given a proof that P holds for all elements x,
then tranporting a path ’e’ in X, along fibration P retains their
continuity (their identity).

4.6 Homotopy Equivalence

Up to now paths existed within a space, however within HoTT
there is also a notion of equality between different types if
it can be proven that the types have the same fundamental
structure; allowing for the creation of a path between types.
This is captured by Voevodsky’s univalence axiom:

Univalence Axiom: (A = B) ≃ (A ≃ B)50

which in a somewhat oversimplified manner says that
isomorphic types are equal, with equal meaning a path,
and isomorphic a homotopy equivalence.51 A homotopy
equivalence can be defined as follows: a function f : A → B
is an isomorphism if there is a function g : B → A such that
both composites f ◦ g and g ◦ f are pointwise equal to the
identitiy, i.e. such that f ◦ g ∼ idB and g ◦ f ∼ idA.52

In the proofs that are to follow the encode function cor-
responds to ’f’, decode to ’g’, decode encode to f ◦ g and
encode intToLoop to g ◦ f establishing that the loop space
of the circle is equivalent to Int, the functions mentioned are
given in sections: 4.8, 4.9, 4.10, 4.11 respectively.

50. Univalent Foundations Program, Homotopy Type Theory: Uni-
valent Foundations of Mathematics, p. 4.

51. Daniel R. Licata, “Calculating the Fundamental Group of the
Circle in Homotopy Type Theory,” p. 3.

52. Univalent Foundations Program, Homotopy Type Theory: Uni-
valent Foundations of Mathematics, p. 72.

4.6.1 Homotopic equivalence integers
For the proof, S1 needs to be mapped to the integers, this
requires there to be a basepoint x0 and a loop with x0 as it’s
starting and ending point. To do this a homotopy equivalence
between int and itself is required, which can be shown by
adding and subtracting 1 and showing that these operations
are the mutual inverse of each other5354, which is captured by
the following proofs:

Lemma succ_pred (z : Int): (succ (pred z)) = z.

Lemma pred_succ (z : Int): (pred (succ z)) = z.

Which can be proved by simple induction.

4.7 Universal Cover of the Circle
The lifting of the circle to the universal cover, see figure 3, is
performed using the S1 rec eliminator, using the Cover func-
tion as given below:

Definition Cover : S1 -> Type :=
fun x => S1_rec Type Int (weqtopaths (make_weq
succ (isweq_iso succ pred pred_succ succ_pred)))
x.

To map the circle to some other space by circle recursion, a
point and a loop within that space has to be found. In this
instance the ’space’ is Type, the point is Int, and the loop is
the successor/predecessor isomorphism on Int, which corre-
sponds to a path from Int to Int.55 The successor/predecessor
isomorphism, utilizing the two lemmas proven in section
4.6.1, is implemented using the isweq iso and make weq
functions, with successor indicating the forward direction of
the (weak) equivalence that is created. The weqtopaths func-
tion constructs an actual path between spaces from the equiv-
alence. It should be clear that Cover base is by definition
Int.

To show that: tranporting along the cover one way corre-
sponds to the successor operation (ascending a level in the
helix); and transporting the other way, using the inverse loop,
represents the predecessor operation (descending a level in
the helix), the following proofs are performed:

Definition succEquivLoop (z: Int):
(transportf Cover loop) z = succ z.

Definition predEquivInvLoop (z: Int):
(transportf Cover (! loop)) z = pred z.

Both definitions are proved utilizing the functtransportf
lemma:

Lemma functtransportf {X Y : UU} (f : X -> Y)
(P : Y -> UU) {x x’ : X}
(e : x = x’) (p : P (f x)):
transportf (λ x, P (f x)) e p = transportf P
(maponpaths f e) p.

53. Daniel R. Licata, “Calculating the Fundamental Group of the
Circle in Homotopy Type Theory,” p. 4.

54. Daniel R. Licata, p. 7.
55. Daniel R. Licata, p. 7.



taking Cover, the identity function, loop and ’z’ as the
corresponding arguments and showing that the result-
ing path can be concatenated to succ z or pred z. This
is proven utilizing the S1 rec beta loop β-reduction
rule showing that: maponpaths (λ x:S1, S1 rec
Type Int (weqtopaths (Int ≃ Int)) x) loop =
(weqtopaths (Int ≃ Int)), i.e. that loop can be
mapped unto the integers. Then finally, that transporting
with the identity function and a path from Int to Int applies
the forward direction of the equivalence. In the case of the
pred succ Lemma, some basic additional reasoning about the
inverses of equivalences is needed.

Next, the ”encode” and ”decode” functions are defined,
which show that there is a correspondence between loops on
the circle and the corresponding winding paths on the helix.

4.8 Encoding
The encode function transports some concatenation of loops
on the circle to a level on the helix that corresponds to the
loop composition that was supplied, e.g. loop ◦ (! loop) ◦
loop will be transported to the second level on the helix. The
starting point needs to be an element of Cover base, for which
Zero is a natural candidate.
Definition encode {x : S1} :
(base = x) -> Cover x :=
(fun a => transportf Cover a Zero).

4.9 Decoding
Decoding does the reverse of the encoding step of the previ-
ous section, i.e. it computes the concatenation of loops that
corresponds to a level on the helix. However, before the de-
code function can be defined, a function that returns the com-
position of loop concatenations for a particular Integer is re-
quired as follows:
Fixpoint posToLoopConcat (p : base = base)
(n : Positive) : (base = base) :=

match n with
| One => p
| S n => posToLoopConcat p n @ p

end.

Definition intToLoop (z : Int) : (base = base)
:= match z with

| Neg n => posToLoopConcat (! loop) n
| Zero => idpath base
| Pos n => posToLoopConcat (loop) n

end.

In addition, the following Lemma’s are needed:
Definition transportf_arrow {A : Type}
{B C : A -> Type} {a a’ : A} (p : a = a’)
(f : B a -> C a) (y : B a’):
(transportf (fun x => B x -> C x) p f) y =
transportf C p (f (transportf B (! p) y)).

transportf_id1 : forall (A : UU) (a x1 x2 : A)
(p : x1 = x2) (q : a = x1),
transportf (λ x : A, a = x) p q = q @ p

The former states that transporting with the family of (fun
x => B x -> C x) is equivalent to pre-composing with
transport at B (with the inverse path) and post-composing
with transport at C. The latter states that transporting with
the family of (paths M ) along the path p is equivalent to
the composition of q @ p.56 Both of which are easily proved
using simple induction on the path hypotheses.

Finally, the actual decode function can be defined, which
is the inverse of the encode function defined in section 4.8:

Definition decode {x : S1} : Cover x -> base = x.

To prove this, we proceed by circle induction taking S1 ind
(fun x’ => Cover x’ -> base = x’) intToLoop
x as the arguments, which state if we want to prove that the
property Cover x’ -> base = x’ holds for all x’ element
of S1, we take intToLoop as the base case and a proof that
transportf (fun (x’ : S1) => Cover x’ → base
= x’) loop intToLoop = intToLoop holds. To prove
the latter we use function extensionality to retrieve a third ar-
gument and applying the transportf arrow the transportf id1
lemma’s, as well as predEqualsInvLoop defined in section
4.7. Reducing the goal term to intToLoop (pred n) @
loop = intToLoop n which can be proved by simple
induction on n, and using the associativity, inverse and unit
groupoid laws of paths.

In the next two sections, we establish that encode and de-
code are the mutual inverse of each other.

4.10 Encoding after Decoding
To show encode ◦ intToLoop can be done with the following
definition:

Definition encode_intToLoop (z : Cover base):
encode (intToLoop z) = z.

which can be proved using simple induction on ’z’, using
the succEquivLoop lemma and the functoriality of transport
captured by the following identity for the positive case of ’z’
(the negative case is analogous):

transportf Cover (intToLoop (Pos p) @ loop)
Zero) =
(transportf Cover loop
(transportf Cover (intToLoop (Pos p)) Zero)))

4.11 Decoding after encoding
The (decode ◦ encode) composition can be shown as follows:

Definition decode_encode {x : S1} (a : base = x):
(decode (encode a)) = a.

and is a comparatively very simple proof relying on
path induction, and a fuction that states that trans-
porting a value along the trivial path retains it’s re-
flexivity, i.e. (P : X → UU) (x : X) (p : P x),
transportf P (idpath x) p = p.

56. Daniel R. Licata, “Calculating the Fundamental Group of the
Circle in Homotopy Type Theory,” p. 3.



4.12 Establishing the equivalence
Putting is all together, the proofs performed are all that is
needed to construct a homotopy equivalence between paths
base base and Int, establishing that Ω1(S

1) is equivalent
to Int with the following definition:

Definition S1 equivalentToInt : (paths base
base) ≃ Int := (make weq encode (isweq iso
encode decode decode encode encode intToLoop)).

5 Future work
Although, the proofs performed are sufficient to establish the
equivalence of Ω1(S

1) and Int,57 two proofs given in the pa-
per of Mr Licata and Mr Shulman remain unformalized due
to time constraints encountered during the project. Namely,
the encode-decode and preserves-composition proofs
are uncompleted. The former establishes an equivalence be-
tween (paths base x) and (Cover x) for general (x : S1), and
the latter establishes the fundamental group of S1 with Int as
a group, and shows that the equivalence is a group homomor-
phism taking concatenation to addition as the operators.58

6 Responsible Research
Although, the topic of my research has little ethical or so-
cial considerations as such, given that it is a known theo-
rem that the fundamental group of the circle is isomorphic
to Z, and formalized in proof-assistants multiple times.5960

It is still imperative to ensure the reproducibility of the re-
sults given in this paper. To that end the code base that was
described within this paper will be published on a publicly
available Unimath repository for inspection by third-parties.
Peer-review of the code is also made easier by the fact that it
builds upon a professionally constructed library, and a widely
used proof-assistant. The truly critical pieces of code that
are to be inspected are the 3 axioms that are included, which
only represent three lines of code, and the type signatures of
the proofs made.

7 Conclusions
The primary goal of the research paper is to formalize the
fundamental group of the circle and show it is isomorphic
to Z, within the Coq programming language and Unimath
library. The fact that the fundamental group of the cirlce
is isomorphic to Z is a proven theorem in algebraic topol-
ogy, and has been formalized within multiple proof assis-
tants.6162 The steps taken within this research project lay

57. Daniel R. Licata, “Calculating the Fundamental Group of the
Circle in Homotopy Type Theory,” p. 9.

58. Daniel R. Licata, p. 9.
59. Univalent Foundations Program, Homotopy Type Theory: Uni-
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60. Univalent Foundations Program, P. 283.
61. Mike Shulman, “A formal proof that π(S¹)=Z,” 2011, https :

//homotopytypetheory.org/2011/04/29/a-formal-proof-that-pi1s1-
is-z/.

62. Dan Licata, “A Simpler Proof that π(S¹) is Z,” 2012, https :
/ / homotopytypetheory . org / 2012 / 06 / 07 / a - simpler - proof - that -
%cf%80%e2%82%81s%c2%b9-is-z/.

the foundation for the formal verification of the above men-
tioned theorem utilizing the Unimath library, however a
complete formalization was not completed within the du-
ration of this research project, as the encode decode and
preservers composition proofs are still to be completed.

Secondly, due to various known limitations of the Coq pro-
gramming languages, certain steps had to be added as ax-
ioms, mainly due to Coq’s lack of support of Higher Inductive
Types.

The research and proofs performed during the research
project can be expanded upon in numerous ways, most ob-
viously by including homotopy groups of higher dimensions.
In addition, the utilization of covering spaces as a means to
prove the FGoC isomorphism to Z is one of many approaches,
and different means of proving this may be worthwhile.
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