

Department of Precision and Microsystems Engineering

Compliant Remote-Center-of-Motion Mechanism
Optimized for Energy-Dispersive Spectroscopy

J.L.H.M. Janssen

Report no : 2018.028
Coach : dr. ir. N. Tolou, ir. D. Farhadi Machekposhti
Professor : prof. dr. ir. J.L. Herder
Specialisation : Mechatronic System Design
Type of report : Master Thesis
Date : 14 September 2018

Compliant Remote-Center-of-Motion Mechanism

http://repository.tudelft.nl/

Preface

Contents

1 Introduction

Sample

2 Paper: Classification of

Remote-Center-of-Motion

Mechanisms

1

Abstract—Remote-center-of-motion (RCM) mechanisms are

commonly used in applications where limited space is available

around the area where motion is required. Applications in which

RCM mechanisms have proven to be useful include minimally

invasive surgery (MIS), microelectromechanical systems (MEMS)

and micro-/nanomanipulators. To aid in the design of RCM

mechanisms a novel RCM mechanism classification is introduced

that consists of 9 classes: rolling-sliding support, instantaneous

center of rotation, circular tracking arcs, parallelograms,

synchronous belt transmission, compliant mechanisms, parallel

manipulators, spherical linkages and intersecting motion planes.

For several classes, RCM mechanism design strategies have been

developed which are listed and described. Finally, a structured

overview of the different RCM mechanism classes and design

strategies is presented to be used as a tool in the design of new

RCM mechanisms.

Index Terms—Classification, design strategy, kinematics,

remote-center-of-motion.

I. INTRODUCTION

remote-center-of-motion (RCM) mechanism is a

mechanism that is able to implement the spherical rotation

of a body around a point, which is distal from any bearing or

mechanical supports [1], [2]. The fact that the center of motion

is remote from the mechanism, makes RCM mechanisms very

useful in applications which have limited space around the area

where motion is required.

An example of such an application is the surgical tool used

in minimally invasive surgery (MIS). MIS aims to minimize the

negative effects of surgery by reducing the size of the incision.

This will reduce the wound healing time, the associated pain,

and the risk of infection. In Fig. 1 the use of a RCM mechanism

in MIS is illustrated; if the RCM of the mechanism lies on the

same location as where the surgical gripper enters the abdomen,

only a small incision is required while the surgical tool can still

be manipulated inside the body of the patient. RCM

mechanisms are commonly used in MIS because they offer a

higher degree of safety in comparison with robots that do not

have a mechanically constrained RCM and thus have a reduced

risk of tissue damage [4]. Other fields where RCM mechanisms

are used are microelectromechanical systems (MEMS) [5] and

micro-/nanomanipulators [6].

Numerous designs of RCM mechanisms have been

introduced which include RCM mechanisms based on circular

tracking arcs [5], [7], [8], parallelograms [3], [9]–[13],

synchronous belt transmission [14], parallel manipulators [1]

and spherical mechanisms [9], [15].

In this paper, a novel classification of RCM mechanisms is

introduced. The classification is accompanied by various RCM

mechanism design strategies which are described and sorted by

their RCM mechanism class. Finally, a structured overview of

the different classes and design strategies is presented to be

used as a tool in the design of new RCM mechanisms.

II. RCM MECHANISM CLASSIFICATION

The most extensive RCM mechanism classification was

introduced by Kuo and Dai [4], and the novel RCM mechanism

classification will be based upon theirs. Kuo and Dai state that

RCM mechanisms can be classified in eight classes: isocenters,

circular tracking arcs, parallelograms, synchronous belt

transmission, spherical linkages, parallel manipulators,

compliant mechanisms, and passive RCM mechanisms. In

contrast to the definition of a RCM mechanism mentioned in

the previous chapter, Kuo and Dai define a RCM mechanism as

a mechanism that can mechanically decouple rotational and

translational motions of tools at a point some distance from the

mechanical structure of the mechanism. To adapt Kuo and

Dai’s classification to the definition of a RCM mechanism

instead of the definition of a chirurgical robot, some classes are

removed, and some have to be added. The result is shown in

Fig. 2. The classification part of the overview lists the different

classes, sorted by their type of motion; planar, spherical or

spatial. For every class an example mechanism is shown. The

right side of the figure lists the different RCM mechanism

design strategies. These strategies are sorted by the RCM

mechanism class they belong to and the number of rotational

and translation degrees of freedom. The various design

strategies will be discussed in the next chapter.

Classification of Remote-Center-of-Motion

Mechanisms

Janeau L.H.M. Janssen, Davood Farhadi Machekposhti, Diederik W. Morsink, and Nima Tolou

This work was supported by DENSsolutions.

J.L.H.M. Janssen, D. Farhadi Machekposhti and N. Tolou are with the

Department of Precision and Microsystems Engineering, Delft University of

Technology, Delft 2628 CD, The Netherlands (e-mail:

janeaujanssen@gmail.com).

D.W. Morsink is with the Department of Research and Development,

DENSsolutions, Delft 2628 ZD, The Netherlands.

A

Fig. 1. An illustration of the use of a RCM mechanism in MIS. By having a

RCM at the point where the surgical tool (in this case a gripper) enters the
abdomen only a very small incision is required while the tool can still be

manipulated inside the body. Adapted from [3].

Gripper
Abdomen

RCM

mailto:janeaujanssen@gmail.com

2

Fig. 2. An overview of the novel classification and design strategies for RCM mechanisms. The different RCM classes belong to the planar, spherical or spatial
mechanisms group. For every class an example mechanism is shown, black arrows indicate movement, red arrows indicate forces. For two classes (the

parallelograms and intersecting motion planes classes) design strategies exist which are subdivided by the amount of rotational (R) and translational (T) degrees

of freedom.

3

The isocenters class [4], defined by a pin-in-ring joint, is

replaced by the rolling-sliding support class. At its core, a pin-

in-ring is identical to two rolling-sliding support mechanisms

merged (Fig. 3a). Because the rolling-sliding support class does

not have a fixed RCM (it will drift away from the contact point

between the beam and the support for higher rotation angles), a

pin-in-ring mechanism will need play to be able to rotate. A

way to get rid of the play is by using compliant elements as

shown in Fig. 3b, but then the mechanism can also be fit in the

compliant mechanisms class. So basically, the isocenters class

is further simplified into the rolling-sliding support class.

The passive RCM mechanisms class (Fig. 4) is removed from

the classification because it is identical to the rolling-sliding

support class. The example mechanism of the passive RCM

mechanisms class shown in Fig. 4 uses a robotic manipulator

arm to rotate the laparoscope, but its RCM is defined by the

abdominal wall which acts as a rolling-sliding support for the

laparoscope.

Next to the exclusion of these classes two new classes are

added; intersecting motion planes and instantaneous center of

rotation. The intersecting motion planes class, as the name

already suggests, consists of mechanisms that restrict their

motion by coupling two or more motion planes. An example is

given in Fig. 2 and a more detailed description is given when

the design strategy is discussed in the next chapter.

The instantaneous center of rotation class is based on

mechanisms that have a link that rotates around a certain point,

the instantaneous center of rotation (ICR), for a certain position

of the mechanism. The ICR of the link is only a RCM for small

rotations of the mechanism. A parasitic translation of the ICR

is induced at higher rotations. Although this is not a perfect

RCM mechanism it can be useful for high precision

mechanisms that have a low rotation range requirement.

Concluding, the novel classification of RCM mechanisms

consists of the following 9 classes: Rolling-sliding support,

instantaneous center of rotation, circular tracking arcs,

parallelograms, synchronous belt transmission, compliant

mechanisms, parallel manipulators, spherical linkages and

intersecting motion planes.

III. RCM MECHANISM DESIGN STRATEGIES

Now the analysis on RCM mechanisms has been completed

in the form of a classification it is crucial to review the various

design strategies that exist for RCM mechanisms. Six strategies

have been proposed (Fig. 2). The core idea of every RCM

mechanism is that a body rotates around a certain point, the

RCM. In its most elemental form this results in having two

points that have circular motion paths which are concentric.

Two cases can be distinguished (Fig. 5). Case I is defined by

Zong et al. [1]: If any two distinct points in a rigid body can

move along concentric circles, and the two points are not

collinear with the center, then the rigid body must accomplish

a circular motion whose center is coincident with the center of

the concentric circles. Next to the non-collinear case I, a body

can still rotate around a point when two points on it are collinear

with this point. That is, as long as the two circular motion paths

of the points have different radii. This defines case II (Fig. 5b).

Zong et al. [1] developed two RCM mechanism design

strategies. The first one is based on combining two virtual

center (VC) mechanisms (mechanisms that have a point which

describes a circular motion) into one mechanism to create a

RCM mechanism. Two RCM mechanisms created with this

strategy that are based on case I are shown in Fig. 6, two RCM

mechanisms that are based on case II are shown in Fig. 7.

Fig. 3. (a) The planar version of a pin-in-ring joint, which needs play in

between the pin and the ring to be able to rotate. (b) The compliant version of
a pin-in-ring joint that does not need play to be able to rotate and can be

considered a RCM mechanism of the compliant mechanisms class.

Fig. 4. An example of a mechanism from the passive RCM mechanisms class.

The RCM is defined by the support of the abdominal wall. [16]

Fig. 5. The two cases in which a body can rotate around a point. (a) Case I, in

which two points on a body are not collinear with the center of the concentric

circles and where the circles can have arbitrary radii and (b) case II, in which
two points on a body are collinear with the center of the concentric circles and

the radii of the circles are not equal.

Fig. 6. Two RCM mechanism based on case I, created by using two VC

mechanisms; one (a) created with two identical VC mechanisms and another

one (b) created with two different VC mechanisms. The points (hinges) that

describe circular motion are indicated in red.

Ring
Pin

(a) (b)

Case I Case II

(a) (b)

(a) (b)

4

The second strategy is based on expanding a VC mechanism

to a RCM mechanism (Fig. 8). The basis of the strategy is a VC

mechanism with its future RCM at O, which is the center of the

circular motion path described by E. An output link is added

between E and O. By grounding point O, the amount of degrees

of freedom (DOF) will not increase. Next, a link or mechanism

is connected between the input link and the output link. If the

added link or mechanism does not alter the DOF of the

mechanism, it can be converted into a RCM mechanism.

Depending on the relation between the input link and output

link (parallel, line-symmetry, center-symmetric, constant

angle) different mechanisms are used. Finally, the constraint at

O is removed and a RCM mechanism is created.

Janssen et al. [17] introduced a RCM mechanism design

strategy that uses the very common four-bar mechanism as its

starting mechanism (Fig. 9). In four steps, an arbitrary four-bar

mechanism can be converted into its RCM equivalent. Step 1:

start off with an arbitrary four-bar mechanism. The input link,

output link and the RCM location of the final RCM mechanism

are link AB, link CD and point D respectively. Step 2: the shape

of the four-bar mechanism is scaled into the corner of B. In Fig.

9 the four-bar shape is scaled down which will make sure that

the RCM will lie outside of the RCM mechanism. But scaling

up is also an option, although this makes sure that the RCM is

inside the contours of the RCM mechanism. Step 3: two links

are added that create two parallelograms; link EF connects link

AD to link A’D’ and is parallel to link AB, link GH connects

link CD to link C’D’ and is parallel to link BC. Step 4: finally,

the constraint at D is moved to F and the link between F and D

is removed. A RCM mechanism is created with input links AB

and EF, output link CD and its RCM at D. This design strategy

is different from the other ones mentioned here because it gives

the option to tune the rotation ratio between the input and output

link, while for other design strategies this ratio is always 1. This

rotation ratio is dependent on the shape of the initial four-bar

shape.

Long et al. [13] developed a design strategy that makes use

of a mechanism that mimics the 3 DOF motion of one of its

links with another link, called a rigid motion tracking

mechanism (RMTM) (Fig. 10). When the input link of a

RMTM is combined with a 1R1T mechanism, the output link

of the RMTM will show the same 1R1T behavior but without

the physical revolute joint. By combining a 1R mechanism

instead of a 1R1T mechanism with the RMTM a 1R RCM

mechanism can be created.

Another design strategy that can be used to create 1R1T

Fig. 7. Two RCM mechanism based on case II, created by using two VC
mechanisms; one (a) created with two identical VC mechanisms and another

one (b) created with two different VC mechanisms. The points (hinges) that

describe circular motion are indicated in red.

Fig. 8. A RCM mechanism design strategy that is based on the expansion of a
VC mechanism to a RCM mechanism. 1. The basis of the design strategy is a

VC mechanism with its future RCM defined as the center point (O) of the circle

described by E. 2. A link is added between E and O. 3. A link or mechanism is
added in between the input link CD and output link EO. The type of mechanism

that is added depends on the relation between the input and output link. 4. The
constraint at O is removed. The two points as described in Fig. 5 are indicated

in red. Adapted from [1].

Fig. 9. The expansion of a four-bar mechanism design strategy. 1. The basis of

the design strategy is an arbitrary four bar mechanism, with its future RCM

defined as point D. 2. The shape of the four-bar mechanism is scaled down into
the corner of B. 3. Two links are added; link EF which is parallel to link AB

that connects the scaled four bar mechanism with the original one. And link GH

which is parallel to link BC that also connects the scaled four bar mechanism
with the original one. 4. Finally the constraint at D moved to F and link FD is

removed. The two points as described in Fig. 5 are indicated in red.

Fig. 10. An illustration of the strategy of combining a 1R1T mechanism and a
RMTM to create a 1R1T RCM mechanism. By using a 1R mechanism and a

RMTM mechanism a 1R RCM mechanism can be created. Adapted from [13].

(a) (b)

A

B

D
O

EC

A

B

D
O

EC

A

B

D O

EC

F

G

A

B

D O

EC

F

G

4 3

1 2

RCM

A

B

D

CC

D

A

4

E

F

G H

A

B

D

CC

D

A

3

E

F

G H

A

B

D

C

A

B

D

CC

D

A

1 2

RCM

+ =

5

RCM mechanisms is developed by Li et al. [3], their strategy

uses a 1R RCM mechanism as the starting point and expand it

to a 1R1T mechanism (Fig. 11a). The core of this mechanism

is identical to the RCM mechanism shown in Fig. 8, but by

adding a mechanism that gives the possibility to vary link

lengths the translation functionality is added.

All the previous strategies are used to create RCM

mechanisms that fit in the parallelograms class. One other

strategy [18] is developed which can be used to create RCM

mechanisms of the intersecting motion planes class (Fig. 11b).

The strategy is based on combining two planar mechanisms that

have more than 1 DOF in such a way that their planes are not

parallel. This reduces the movement space of the mechanism

from two motion planes to the intersection of these two planes;

a line. If both motion planes are given an axis around which

they can rotate, and these two axes intersect somewhere on the

intersection line of the two planes, this intersection point

becomes a RCM. Depending on the DOF of the planar

mechanisms that are used either a 1R, 1R1T or a 2R1T RCM

mechanism can be created.

IV. CONCLUSION

Existing RCM mechanisms have been reviewed and a novel

classification of RCM mechanisms has been introduced.

Furthermore, the existing RCM mechanism design strategies

have been listed, described and sorted by the RCM mechanism

class they belong to. Finally, a schematic overview of the RCM

mechanism classification and different design strategies is

created.

V. REFERENCES

[1] G. Zong, X. Pei, J. Yu, and S. Bi, “Classification and

type synthesis of 1-DOF remote center of motion

mechanisms,” Mech. Mach. Theory, vol. 43, pp. 1585–

1595, 2008.

[2] J. F. Jensen, “Remote center positioner with channel

shaped linkage element,” US 5800423, 1998.

[3] J. Li, G. Zhang, Y. Xing, H. Liu, and S. Wang, “A Class

of 2-Degree-of-Freedom Planar Remote Center-of-

Motion Mechanisms Based on Virtual Parallelograms,”

J. Mech. Robot., vol. 6, no. 3, p. 031014, Jun. 2014.

[4] C.-H. Kuo and J. S. Dai, “Robotics for Minimally

Invasive Surgery: A Historical Review from the

Perspective of Kinematics,” in International

symposium on history of machines and mechanisms,

2009, pp. 337–354.

[5] C. P. Lusk and L. L. Howell, “Spherical Bistable

Micromechanism,” J. Mech. Des., vol. 130, no. 4, p.

045001, Apr. 2008.

[6] J. Qu, W. Chen, J. Zhang, and W. Chen, “A piezo-

driven 2-DOF compliant micropositioning stage with

remote center of motion,” Sensors Actuators A Phys.,

vol. 239, pp. 114–126, Mar. 2016.

[7] J. O. Jacobsen, B. G. Winder, L. L. Howell, and S. P.

Magleby, “Lamina Emergent Mechanisms and Their

Basic Elements,” J. Mech. Robot., vol. 2, no. 1, p.

011003, Feb. 2010.

[8] H. M. Yip, P. Li, D. Navarro-Alarcon, Z. Wang, and Y.

Liu, “A new circular-guided remote center of motion

mechanism for assistive surgical robots,” in 2014 IEEE

International Conference on Robotics and Biomimetics

(ROBIO 2014), 2014, pp. 217–222.

[9] R. Baumann, W. Maeder, D. Glauser, and R. Clavel,

“The PantoScope: a spherical remote-center-of-motion

parallel manipulator for force reflection,” in

Proceedings of International Conference on Robotics

and Automation, 1997, vol. 1, pp. 718–723.

[10] M. Fontana, A. Dettori, F. Salsedo, and M.

Bergamasco, “Mechanical design of a novel Hand

Exoskeleton for accurate force displaying,” in 2009

IEEE International Conference on Robotics and

Automation, 2009, pp. 1704–1709.

[11] R. Beira, L. Santos-Carreras, G. Rognini, H. Bleuler,

and R. Clavel, “Dionis: A Novel Remote-Center-of-

Motion Parallel Manipulator for Minimally Invasive

Surgery,” Appl. Bionics Biomech., vol. 8, no. 2, pp.

191–208, 2011.

[12] C. Freschi, V. Ferrari, F. Melfi, M. Ferrari, F. Mosca,

and A. Cuschieri, “Technical review of the da Vinci

surgical telemanipulator,” Int. J. Med. Robot. Comput.

Assist. Surg., vol. 9, no. 4, pp. 396–406, Dec. 2013.

[13] H. Long, Y. Yang, X. Jingjing, and S. Peng, “Type

Synthesis of 1R1T Remote Center of Motion

Mechanisms Based on Pantograph Mechanisms,” J.

Mech. Des., vol. 138, no. 1, p. 014501, Nov. 2015.

[14] D. Stoianovici, L. L. Whitcomb, D. Mazilu, Russel H.

Taylor, and L. R. Kavoussi, “Remote center of motion

robotic system and method,” US 7021173 B2, 04-Apr-

2006.

[15] C.-B. Chng, B. Duan, and C.-K. Chui, “Modeling and

simulation of a Remote Center of Motion mechanism,”

in 2016 IEEE Region 10 Conference (TENCON), 2016,

pp. 1755–1758.

[16] J. M. Sackier and Y. Wang, “Robotically assisted

laparoscopic surgery,” Surg. Endosc., vol. 8, no. 1, pp.

63–66, Jan. 1994.

[17] J. L. H. M. Janssen, D. Farhadi Machekposhti, D.

Morsink, and N. Tolou, “Compliant Remote-Center-of-

Motion Mechanism Optimized for Energy Dispersive

Spectroscopy,” 2018.

[18] J. Li, G. Zhang, A. Müller, and S. Wang, “A Family of

Remote Center of Motion Mechanisms Based on

Intersecting Motion Planes,” J. Mech. Des., vol. 135,

no. 9, p. 091009, Jul. 2013.

Fig. 11. (a) A 1R RCM mechanism (dashed lines) that is expanded to a 1R1T
RCM mechanism. (b) A 1R RCM mechanism based on intersecting motion

planes. The output link has a parasitic translation through its RCM when it is

rotated.

(a) (b)

3 Paper: Compliant Remote-

Center-of-Motion

Mechanism Optimized for

Energy Dispersive

Spectroscopy

1

Abstract—In situ sample holders with double-tilting capabilities

are used to insert and position samples inside a transmission

electron microscope (TEM) for dynamic imaging. However, the

performance of these sample holders, regarding energy-dispersive

X-ray spectroscopy (EDS) analysis, is not on par with their single-

tilt counterparts. By analyzing the EDS influences and the tilting

mechanism of double-tilt sample holders, the need for a remote-

center-of-motion (RCM) mechanism as a tilting mechanism is

identified. Because existing RCM mechanism design strategies

limit the design flexibility, a novel design strategy is developed.

The novel strategy gives more flexibility in terms of the use of

space, design for stiffness and it gives variable input/output link

rotation ratio functionality. A compliant proof-of-principle

mechanism, which is designed using the novel RCM mechanism

design strategy, is manufactured to characterize the accuracy,

force/displacement behavior and the input/output link rotation

ratio. Analytical, numerical and experimental results are

compared, and it can be concluded that the compliant RCM

mechanism has potential to be used in double-tilt sample holders.

Index Terms—Compliant mechanisms, design strategy, energy-

dispersive X-ray spectroscopy, remote-center-of-motion, sample

holder.

I. INTRODUCTION

icroscopy has given us a better understanding of the

world around us. The electron microscope specifically,

has been invaluable to the fields of medicine, biology,

chemistry and physics for the last century. To keep on pushing

the boundaries of research using electron microscopes, new

techniques are being developed. One of the more recent

advances is in-situ transmission electron microscopy (TEM)

[1], [2]. In situ TEM allows for dynamic imaging of a sample

with atomic resolution by applying a stimulus to the sample.

The effect of the stimulus can be observed in real time, resulting

in a better understanding of the fundamental behavior of

materials at the nanoscale. The stimulus effects are enabled by

microelectromechanical systems (MEMS), and consist of, but

are not limited to, thermal and electric stimulus, gas/liquid

environment simulation and mechanical testing. Because of the

limited space inside a transmission electron microscope, the

small footprint of MEMS means that they are ideal for in situ

TEM [3].

To insert and position the sample and MEMS chip in the

TEM, a sample holder is used (Fig. 1) [4, Ch. 8]. Numerous

different designs have been developed [3], [5]–[11] that can

facilitate static or dynamic imaging and can have single- or

double-tilt motion, depending on the type of experiment and

analysis technique. The type of sample holder that is treated in

this paper is the dynamic, double-tilt variant and is developed

by DENSsolutions (Fig. 1).

The sample preparation technique that is commonly used

with this sample holder, is focused ion beam (FIB) milling [12]

because this technique has a high β-tilt requirement (±10°). The

tilting capabilities of the sample holder are used to align the

crystal structure of the sample with the incident electron beam,

this is done to optimize the quality of the sample image.

Next to the primary use of a TEM to create an image of the

sample, additional analytical techniques can be used. A

technique that is commonly used to identify the material

composition of a sample is energy-dispersive X-ray

spectroscopy (EDS). Single-tilt sample holders can get good

results using this technique, but the performance of double-tilt

sample holders using in-situ TEM is not on par. The problem of

the double-tilt sample holder is that a percentage of the EDS

signal coming from the sample is blocked from reaching the

EDS detector surfaces. The two main obstructions are the cradle

and the contact needles (Fig. 1). When only a fraction of the

EDS signal is received by the EDS detectors, the speed and/or

accuracy of the EDS analysis will be reduced. To solve this

problem, ways to optimize the EDS performance of the double-

tilt sample holder are investigated, a novel RCM mechanism

design strategy is introduced, and a compliant proof-of-

principle mechanism is tested and characterized.

Compliant Remote-Center-of-Motion Mechanism

Optimized for Energy Dispersive Spectroscopy
Janeau L.H.M. Janssen, Davood Farhadi Machekposhti, Diederik W. Morsink, and Nima Tolou

This work was supported by DENSsolutions.

J.L.H.M. Janssen, D. Farhadi Machekposhti and N. Tolou are with the

Department of Precision and Microsystems Engineering, Delft University of

Technology, Delft 2628 CD, The Netherlands (e-mail:

janeaujanssen@gmail.com).

D.W. Morsink is with the Department of Research and Development,

DENSsolutions, Delft 2628 ZD, The Netherlands.

M

Fig. 1. The DENSsolutions double-tilt sample holder. The MEMS chip with
the sample on top is placed inside the cradle. Contacts on the MEMS chip are

connected to the control hardware via the contact needles. The four circular

surfaces (Q1-Q4) are the EDS detector windows of a FEI Super X detector. The
sample holder facilitates tilt of the MEMS chip and sample around the x-axis

(α-tilt) and around the y-axis (β-tilt). Due to the low take-off angle of the

detectors (18°), the cradle and contact needles will block the EDS signal

coming from the sample, keeping it from reaching the EDS detectors. This

results in EDS shadowing on the detector surfaces (only shown for Q3 in this

figure).

Detector surface Q3

Q1

Q2

z

α

β

18°

MEMS chip + sample

Q4

2 mm

Cradle

Shadowing

α

Contact needles

β

mailto:janeaujanssen@gmail.com

2

II. EDS

All the imaging modes of an electron microscope use signals

emitted from the sample as a result of the interaction between

the incident electron beam and the atoms in the sample. The

signal that is used to identify the material composition of the

sample using EDS, consists of the characteristic X-rays. The

energy level of these X-rays is unique to the atom, so by

measuring the energy of the emitted X-ray, the element it came

from can be identified. The energy level measurement is done

by an EDS detector; for every characteristic X-ray that enters

the detector through its window, the energy is measured. The

different energy levels of the characteristic X-rays is then

counted and a spectrum is obtained that gives information about

the elements in the sample. [4], [13]

The rule of thumb for EDS analysis is that the higher the

number of counts, the more accurate the spectrum will be,

which will result in a higher accuracy of identifying the right

elements. The number of counts, driven by different influences,

is not the only factor that drives the accuracy of the EDS

analysis, therefore a detailed overview is created (Fig. 2). [4],

[14]–[16]

The six main influence groups are:

• Detector type/window (yellow)

• Detector errors (purple)

• X-ray absorption (green)

• Desired collection angle (black)

• Undesired collection angle (red)

• Background noise (blue)

In this case, all influences up to the point that the signal exits

the detector and enters the electronics and data processing part

are taken into consideration. For a more detailed description of

the EDS influences see appendix A.

Not all the influences on the EDS signal are relevant for the

design of the sample holder. Therefore, the detailed EDS

influences overview can be filtered to only include the

influences through which the sample holder design can limit the

amount and quality of the EDS signal. These influences are

indicated by the solid bubbles in Fig. 2. Only sample holder

geometry, energy scatter and sample drift are affected by the

sample holder design and sample holder angle is affected by

how the sample holder is used, so these are the “crucial”

influences that should be taken into consideration in a new

sample holder design. From those four influences, the most

important one is the sample holder geometry. Because EDS

detectors generally have low take-off angles (18°), the cradle

of the β-tilting mechanism and the MEMS chip contact needles

in the tip of the sample holder will block the EDS signal from

reaching the EDS detector (Fig. 1, Fig. 3). This “shadowing”

effect will reduce the detector illumination to less than 30

percent, dramatically reducing the effectiveness of EDS

analysis. For lower α-tilt angles, even worse illumination

percentages are observed, dropping to 13 percent illumination

at 0° of α-tilt.

III. TILTING MECHANISM

As discussed in the previous chapter, the β-tilting mechanism

and the contact needles are the main causes for the subpar EDS

performance of the DENSsolutions sample holder. The EDS

shadowing because of the contact needles can be reduced by

moving the contact points on the MEMS chip further away from

the sample location. The EDS shadowing due to the tilting

mechanism is more difficult to reduce. First, the current tilting

mechanism (Fig. 4) that is used in the DENSsolutions sample

holder is investigated.

The core requirement of the current tilting mechanism is that

Fig. 2. A detailed overview of the EDS influences up to the point that the signal

exits the detector and enters the electronics and data processing part. The
overview shows through which paths the influences in the outermost bubbles

have an effect on the performance of the EDS analysis. The influences and their

paths that are relevant for the sample holder design are indicated by the solid

bubbles.

Fig. 3. The illumination percentage of the EDS detector, which shows the

percentage of the total surface area of the detector that is used to detect
characteristic X-rays, at different α-tilt angles, and for different configurations

of active detectors. Valid for the DENSsolutions double-tilt sample holder.

Detectors Q2 and Q3 are shadowed by the cradle, detectors Q1 and Q4 are

shadowed by the contact needles.

Polepiece

location

Area of

detector (A)

Collimator

Sample holder

angle (α, β)

Sample

orientation

Sample shape

Take off

angle (α, β)
Escaping

energy

Pulse pile-up

Energy scatter

Sample drift

Energy scatter

Sample holder

angle (α, β)

Energy scatter

MEMS heating

Sample holder

angle (α, β)

Incident beam

errors

Incident beam

Internal

fluorescence

Detector type/

window

Area of

detector (A)

Direction of

detector (δ)

Collimator

System

Background

noise

Spurious

Probe location

X-rays/

electrons

X-rays/

electrons

Bremsstrahlung

/electrons

X-ray

absorption

Detector

errors

Undesired

collection angle

Desired

collection angle

Sample holder
Sample

distance (S)

EDS

Sample holder

geometry

3

it facilitates β-tilt of the sample without interfering with the

MEMS chip. This means that the mechanism should be situated

outside a certain volume; a mechanism free zone. Such a

mechanism is called a remote-center-of-motion (RCM)

mechanism and its definition is; a mechanism that is able to

implement the spherical rotation of a body around a point,

which is distal from any bearing or mechanical supports [17],

[18]. In the DENSsolutions sample holder design, the

mechanism free zone encapsulates the MEMS chip, so it fulfills

the above-mentioned core requirement. But for an EDS

optimized sample holder there is the additional requirement of

no EDS detector shadowing. This requirement adds 4 additional

mechanism free zones (detector zones) to the initial zone

defined by the MEMS chip (MEMS zone) (Fig. 4). This means

the current tilting mechanism will interfere with the detector

zones, blocking the X-rays coming from the sample.

To optimize the tilting mechanism for EDS, it should not

interfere with any of the five mechanism free zones. There are

two optimization paths that can fulfill this requirement.

Optimization path I is changing the current tilting mechanism

or reducing its footprint to make sure it does not interfere with

the detector zones anymore (Fig. 5a). Optimization path II is

using another type of RCM mechanism that is easier to position

outside of the mechanism free zones. An example of another

RCM mechanism that can be used, in this case a goniometer

mechanism, is shown in Fig. 5b. In recent years optimization

path I has been followed, with minor improvements in EDS

performance as a result, therefore, in the rest of this paper, the

focus will be on optimization path II and the development of an

alternative RCM mechanism for the double-tilt sample holder.

Next to the EDS optimization, the tilting mechanism also has

requirements for standard use. The critical requirements are

listed in Table 1. Next to the fact that the tilting mechanism

should be able to operate in a very high vacuum, the small

workspace, low sample drift and very high stability

requirements are challenging to meet.

TABLE 1

CRITICAL REQUIREMENTS
Requirement Value

Workspace Ø 6.5 mm x 17 mm

β rotation range > ±10°

Sample drift < ±50 μm

MEMS chip stability < 1 nm/min

Vacuum compatibility < 10-6 Pa

IV. NOVEL RCM MECHANISM DESIGN STRATEGY

Using the RCM mechanism classification [19] and various

RCM mechanism design strategies [18], [20]–[23], concepts for

the sample holder tiling mechanism have been developed. Exact

details and evaluation of these concepts can be found in

Fig. 4. An illustration of the RCM mechanism that facilitates the β-tilt in the
DENSsolutions double-tilt sample holder. The mechanism does not interfere

with the MEMS zone, but it does interfere with the detector zones, blocking X-

rays from reaching the EDS detector. For clarity only three out of four EDS

detectors are illustrated.

Fig. 5. (a) Optimization path I; reducing or changing the footprint of the current

mechanism to make sure the tilting mechanism does not interfere with both the
MEMS zone and the detector zones. (b) Optimization path II; using another

type of RCM mechanism that does not interfere with the MEMS zone and the

detector zones. A goniometer mechanism is shown here. For clarity only three

out of four EDS detectors are illustrated.

Fig. 6. Tilting mechanism concepts. The concepts can be divided into two groups; (left) concepts that replace the conventional revolute joints in the DENSsolutions

sample holder with flexures so that the MEMS chip is supported from the side, or (right) concepts that support the MEMS chip from the back, creating more space
around the MEMS chip. The first group consists of RCM mechanisms from the spherical linkages class and the second group consists of RCM mechanisms from

the parallelograms class.

z

α

β

X-rays
blocked

MEMS zone

Detector
zone

Shadowing

Fixed Flexurez α β

Supported from the side
Spherical linkages class

Supported from the back
Parallelograms class

Chip

1 2 3

Actuation Rotation axis

4

appendix B. The concepts that have the highest potential are

shown in Fig. 6 and can be split into two groups; concepts that

support the MEMS chip from the side and concepts that support

the MEMS chip from the back. The concepts in the second

group are preferred because a back support leaves more space

around the MEMS chip and thus more flexibility for its design.

More space around the MEMS chip also means that higher α-

tilt angles can be reached. The benefit of concept 1 is its small

footprint and simplicity but its design is suboptimal.

What all concepts have in common is that they have identical

EDS performance, and this performance is a big improvement

in comparison with the current sample holder design (Fig. 7).

At 0° α-tilt the detector illumination is 100%, which is a more

than sevenfold increase in comparison with the current sample

holder design. For larger α-tilt angles the illumination drops

down to 60%, but this is still a twofold increase in EDS

illumination.

The drawback of concepts like concept 2 and 3 are that they

are difficult to fit into the limited space available. They consist

of multiple links and hinges, and those links have constraints on

them that limit the design flexibility. If a look is taken at the

double parallelogram RCM mechanism in Fig. 8a, which is also

used for the concepts in group 2, it can be seen that its input

links (in blue) and output link (in red) are parallel and of equal

length. These two constraints need to stay intact to have a

mechanism with the RCM property. If the output link is not

parallel or of equal length to the input links (Fig. 8b), the

parallelogram shape of CEGF is lost and thus also the RCM

property of the mechanism. Because of these two constraints

the flexibility to design the RCM mechanism for a certain shape

or stiffness direction is lowered. All design strategies for

parallelogram-based RCM mechanisms suffer from this same

drawback, therefore a novel RCM mechanism design strategy

is developed.

A RCM mechanism that does not have the parallel and equal

length constraint on its input and output links is developed by

Liu et al. [24] (Fig. 9). Based on this mechanism a novel RCM

mechanism design strategy is developed (Fig. 10). In four steps,

an arbitrary four-bar mechanism can be converted into its RCM

equivalent. Step 1: start off with an arbitrary four-bar

mechanism. The input link, output link and the RCM location

of the final RCM mechanism are link AB, link CD and point D

respectively. Step 2: the shape of the four-bar mechanism is

scaled into the corner of B. In Fig. 10 the four-bar shape is

scaled down which will make sure that the RCM will lie outside

of the RCM mechanism. But scaling up is also an option,

although this makes sure that the RCM is inside the contours of

the mechanism. Step 3: two links are added that create two

parallelograms; link EF connects link AD to link A’D’ and is

parallel to link AB, link GH connects link CD to link C’D’ and

is parallel to link BC. Step 4: finally, the constraint at D is

moved to F and the link between F and D is removed. A RCM

mechanism is created with input links AB and EF, output link

CD and its RCM at D.

Fig. 7. The detector illumination as a function of α-tilt for concept 1, 2 and 3.

At 0° of α-tilt the illumination goes up to 100%, which is a sevenfold increase
in comparison with the current sample holder design. For larger α-tilt angles

this number drops down to a twofold increase in EDS illumination.

Fig. 8. Two variations on the standard double-parallelogram RCM mechanism
with its input links in blue and its output link in red. (a) The standard mechanism

which has the RCM property and (b) a mechanism with a rotated output link

with respect to its input links which has lost its RCM property.

Fig. 9. A RCM mechanism that has input (in blue) and output links (in red)

whose lengths are non-equal, and which are non-parallel. Two configurations

are shown; (a) the initial and (b) the rotated configuration. Adapted from [24].

Fig. 10. The novel RCM mechanism design strategy. 1. The basis of the design

strategy is an arbitrary four-bar mechanism, with its future RCM defined as
point D. 2. The shape of the four-bar mechanism is scaled down into the corner

of B. 3. Two links are added; link EF which is parallel to link AB that connects

link AD with link A’D’. And link GH which is parallel to link BC that connects
link CD with link C’D’. 4. Finally the constraint at D is moved to F and link

FD is removed.

A

B

D
O

E

C

F

G
A

B

D

O

C

F

E

G

(a) (b)

E

H
G

C

A

B

D O

F

(a) (b)

A

B

D

CC

D

A

4

E

F

G H

A

B

D

CC

D

A

3

E

F

G H

A

B

D

C

A

B

D

CC

D

A

1 2

RCM

5

Of course, this mechanism still has input and output links that

are parallel and of equal length, but this is no longer a

constraint. If a four-bar mechanism with a different shape is

converted into its RCM mechanism equivalent (Fig. 11) it can

be seen that the parallel and equality constraints are no longer

required for the RCM property of the mechanism.

While the rotation angle of the input and output links are

equal for RCM mechanisms created by existing RCM

mechanism design strategies, the ratio between the output and

input rotation angle (Φout/Φin) for the novel design strategy

depends on the initial four-bar shape. In the case of the RCM

mechanism in Fig. 10 this ratio is 1, while the RCM mechanism

in Fig. 11 has a reduction of the rotation angle from input to

output link. The fact that the novel RCM mechanism design

strategy has control over the Φout/Φin ratio gives an additional

degree of flexibility during mechanism design.

 A last use for the novel RCM mechanism design strategy is

that every newly created RCM mechanism can be converted

back into a virtual center (VC) mechanism. For the mechanism

shown in Fig. 10 this can be done by removing link CD and link

GH, for the mechanism of Fig. 11, link CD and link D’H have

to be removed. These VC mechanisms can then be used to

design alternative RCM mechanisms using existing design

strategies that are based on VC mechanisms [23].

V. COMPLIANT PROOF-OF-PRINCIPLE MECHANISM

If a RCM mechanism created with the novel RCM

mechanism design strategy should be used in the sample holder

(Fig. 12), it has to be compliant because of the manufacturing

and assembly problems that currently exist with the very small

revolute joints in the DENSsolutions double-tilt sample holder.

A compliant RCM mechanism will bring benefits like ease of

manufacturing, zero play and no need for lubrication but it will

also introduce negative effects that influence the accuracy of

the mechanism. A lower accuracy will result in higher sample

drift of the sample holder, this can cause two problems for the

user of the microscope; the image will defocus, or the area of

interest might move outside of the viewing area of the

microscope. To investigate these effects and to characterize and

validate a RCM mechanism created with the novel RCM

mechanism design strategy, a large-scale proof-of-principle

mechanism is manufactured from acrylic links and spring steel

flexures (Fig. 13).

A. Influences on Accuracy

Three effects that are inherent to compliant mechanism

influence the accuracy of the RCM of the mechanism. First of

all, a compliant hinge does not behave as a perfect hinge. The

instantaneous center of rotation (ICR) of a flexure is not

stationary; it will shift when the flexure is deflected [25]. This

influences the drift of the RCM but not the offset because for

Fig. 11. The novel RCM mechanism design strategy with a more complex four-
bar mechanism as its starting point. In this case the hinge points E and G of Fig.

10 are merged with D’.

Fig. 12. An illustration of how a compliant RCM mechanism created with the

novel RCM mechanism design strategy can be used in the sample holder. The

mechanism is fixed at the top and actuated from the left.

Fig. 13. (a) The large-scale proof-of-principle mechanism used to characterize

the novel RCM mechanism design strategy and to validate the COMSOL

results. Dimensions (w x h); 245 mm x 197 mm. (b) The rigid-body equivalent
of the proof-of-principle mechanism in two different configurations. The black

initial configuration is equal to the undeformed proof-of-principle mechanism

as shown in (a). The red configuration is the rotated configuration when the
input link is rotated counter-clockwise with input link rotation Φin and output

link rotation Φout.

Fig. 14. (a) The orientations of the flexure hinges in the proof-of-principle

mechanism. The four red flexures of parallelogram 1 and four green flexures of

parallelogram 2 are oriented in the same direction to keep the parallelogram
shape of both parallelograms intact when the ICR of the flexure hinges will

shift. The two black flexures F1 and F2 are oriented in such a way that the

scaled down four-bar shape has minimal change during actuation. (b) The
parasitic rotations (green arrows) induced in the links due to the stiffness in the

hinges when the mechanism is actuated in the direction of the actuation force.
Red arrows show the actuation force and its resulting moment to compensate

for these parasitic moments/rotations.

A

B

D

C

C

D A

A

B

D

C

C

D A

H

F

A

B

D

C

A

B

D

C

C

D A

H

F

4 3

1 2

RCM

z α β

Electron
beam

Pole piece

Chip

Fixed

Flexure

(a) (b)

F

(a) (b)
Parallelogram 2

F1
F2

Parallel-
ogram 1

6

very small rotation angles a flexure can be considered as a

perfect hinge without ICR shift. The orientations of the flexure

hinges in the proof-of-principle mechanism (Fig. 14a) are

defined in such a way that the amount of RCM drift because of

hinge shift is minimized. For parallelogram 1 and 2, the

orientations of the four flexure hinges are equal to keep the

parallelogram shape intact even when hinge shift is introduced.

The orientations of the two remaining hinges F1 and F2 of the

scaled down four-bar mechanism shape are chosen in such a

way that the shape of the four-bar mechanism undergoes

minimal change during mechanism actuation. The proof-of-

principle mechanism with the hinges in this configuration is

analyzed using its kinematic- and hinge shift model and the

optimal hinge shift orientations were verified. The rigid-body

kinematics and the hinge shift model are discussed in detail in

appendix C.

The second effect that influences the accuracy of the

mechanism is the non-zero stiffness in the flexure hinges. When

a hinge is deflected it will induce moments on the neighboring

links because it has a certain bending stiffness. These links will

then undergo parasitic rotation because the stiffness of the

hinges in transverse direction is not high (Fig. 14b). Parasitic

rotation of the links influences the offset and drift of the RCM.

Next to the stiffness in the hinges, the actuation force and

location will also induce moments and parasitic rotations in the

mechanism. But because the location of the actuation can be

controlled the induced moments can be put to good use. If the

mechanism is actuated at a location such that the resulting

moment counteracts the moments induced by the stiffness in the

hinges, the amount of parasitic link rotation can be reduced.

This also explains why the mechanism is actuated on the

extended bottom link.

B. Testing Methodology

The proof-of-principle mechanism will be tested on four

aspects:

• Force/displacement

• Rotation ratio Φout/Φin

• RCM offset and drift

• Sample drift

The experimental results will be compared to results obtained

via analytical and numerical methods. An overview of the

measurement setup is shown in Fig. 15, it consists of the proof-

of-principle mechanism that is actuated on the left side using a

micro positioning stage connected via a load cell, there is no

load on the output link. A webcam tracks two dots on the input

link and a microscope tracks 4 dots on the output link. The

actuation force will be measured by the load cell and the

displacement is obtained through the position of the stage. For

the rotation ratio, two tracked dots on the input link and two

tracked dots on the output link are used to calculate the input

and output link rotation and their ratio. For the RCM offset and

drift and the sample drift four dots are tracked on the output

link, using the coordinates of the dots the RCM and sample

location can be calculated.

C. Results

In Fig. 16 three force/displacement curves are shown (for

±13° of input link rotation) which are obtained via analytical,

numerical or experimental methods. The analytical curve is

created using the pseudo-rigid-body model of the compliant

proof-of-principle mechanism (appendix C). For the numerical

results COMSOL Multiphysics software is used.

What first can be noticed is that the force/displacement

curves are non-linear while the flexures in the proof-of-

principle mechanism behave linear. However, the individual

hinge rotations are not equal and are non-linear with respect to

Fig. 15. An overview of the measurement setup with its different components.

The proof-of-principle mechanism is actuated on the left side using a micro

positioning stage. A webcam and a microscope are used to track dots on the

mechanism and obtain the required data.

Fig. 16. Three force/displacement curves obtained by analytical, numerical or

experimental analysis. The displacement range corresponds to a rotation of the

input link of ±13°.

Fig. 17. The individual hinge rotations when the input link of the proof-of-

principle mechanism is rotated over a range of ±13°. For identification of the

hinges see Fig. 14a.

Output link

Input link

Actuation

Webcam

Microscope

Load cell

y

z

x

7

the input link rotation (Fig. 17), therefore, the sum of all

flexures results in non-linear force/displacement behavior.

The experimental results in Fig. 16 are similar to the

analytical results, but they both show higher actuation forces

than the numerical results. The higher actuation forces of the

analytical model in comparison with the numerical model can

be explained by the infinite transverse stiffness of the hinges in

the analytical model. In reality, the transverse stiffness in the

hinges is relatively low, so when moments are induced on the

links, the mechanism can move to a lower energy state by

moving the ends of the links in the transverse directions of the

neighboring hinges. This means less energy is stored in the

mechanism and thus lower actuation forces are required.

The difference in actuation force between the numerical and

experimental results can come from a discrepancy between the

Young’s modulus used in the numerical model and the actual

Young’s modulus of the hinge material. Another cause can be

glue residue on the hinges. The flexure hinges are glued into the

acrylic links and glue residue at this connection can give higher

stiffness to the flexures or reduce the length of the working part

of the flexure, which increases the hinge stiffness and results in

higher actuation forces.

Fig. 18 shows the rotation ratio Φout/Φin as a function of the

actuation x-displacement (for ±13° of input link rotation). The

difference between the analytical and numerical results is less

than 5%, while the experimental results match even better with

the analytical and numerical results except for the large errors

around zero actuation x-displacement. Those errors can be

explained by the bigger influence of the measurement error

when rotation angles are small. The proof-of-principle

mechanism was designed to have a rotation ratio of about 0.6,

just like a standard four bar mechanism this ratio is dependent

on its current state, but in this case the sensitivity of the rotation

ratio to the actuation is relatively low.

The results of the last two measurements, the locations of the

RCM and the sample, are shown in Fig. 19. The negative effects

of a compliant mechanism are shown clearly in the RCM point

measurements. In the ideal case of a rigid body mechanism that

has no play in its hinges, the RCM is stationary and has no offset

from the theoretically expected RCM location. For the

compliant version we see that at zero degrees of rotation the

RCM lies at an offset of the theoretically expected RCM

location. Next to this, when the mechanism is actuated, the

RCM will drift because of induced moments on the links and

hinge shift.

Looking at Fig. 19 it can be seen that the numerical and

experimental sample drift show similar behavior but different

amounts of drift for positive and negative rotation of the

mechanism. The sample drift is dependent on the location of the

RCM and thus the variation in sample drift can be explained by

the difference in shift between the numerical and experimental

RCM curve. The experimental RCM curve is shifted to the left

with respect to the numerical RCM curve and is thus more

centered around the sample location. This will make the amount

of drift of the sample during positive and negative rotation of

the mechanism more equal, resulting in a reduction of the drift

during positive rotation and an increase in drift during negative

Fig. 18. The rotation ratio Φout/Φin as a function of the actuation x displacement.

Obtained by analytical, numerical or experimental analysis. The displacement

range corresponds to a rotation of the input link of ±13°.

Fig. 19. The offset and drift of the RCM and the sample, for an input link rotation range of ±13°. The sample drift as a result of positive and negative rotation are

indicated. For the RCM drift curves, the part to the left of the 0° rotation point is a result of negative rotation and to the right is a result of positive rotation.

- rot

+ rot

- +

8

rotation.

The shift of the experimental RCM curve can be attributed to

a variation in hinge length due to manufacturing errors. The

experimental RCM drift curve also has a higher curvature than

its numerical counterpart. During experimentation a high

sensitivity of the RCM location to actuation forces in z-

direction (Fig. 15) was noticed. This can cause the experimental

RCM drift curve to drop down more when the minimum and

maximum rotation is reached, resulting in a higher curvature.

Concluding, the sample drift is about 0.55 mm. Because the

RCM and sample drift scale 1:1 with the size of the mechanism

(appendix C), if the mechanism would be scaled down 10 times

to get to the size that would match the sample holder, the sample

drift for that mechanism will be around 55 μm, which is just

above the accuracy requirement of the sample holder of ±50

μm. Of course, scaling down the proof-of-principle mechanism

will bring additional challenges, but it can be concluded that

this RCM mechanism is a contender (although with some

optimization) to be used in the sample holder when it comes to

accuracy.

VI. CONCLUSION

By analyzing the EDS influences and the tilting mechanism

of double-tilt sample holders, the need for a RCM mechanism

as a tilting mechanism was identified. Based on the RCM

mechanism classification and various RCM mechanism design

strategies two concept groups were developed; RCM

mechanisms that support the MEMS chip from the side and

RCM mechanisms that support the MEMS chip from the back.

Although these concepts already show a more than sevenfold

improvement in EDS performance, for an optimal design a

novel RCM mechanism design strategy has been developed that

gives more design flexibility in terms of the use of space, design

for stiffness and a variable input/output link rotation ratio in

comparison with existing strategies. Using this design strategy,

a compliant proof-of-principle mechanism was created which is

used to characterize the RCM mechanism in terms of accuracy,

force/displacement behavior and the input/output link rotation

ratio. The results show potential for further investigation of a

RCM mechanism based on the novel RCM mechanism design

strategy as a tilting mechanism for double-tilt in-situ TEM

sample holders.

VII. RECOMMENDATIONS

If a version of the proof-of-principle mechanism would be

used for the double-tilt sample holder it needs to be scaled

down. To still meet the tilting range requirement, the flexures

need to be thinner or longer. Making thinner (<150 μm) flexures

is challenging and implementing longer flexures will also be a

challenge. Other linear elastic materials can be used, like

titanium or beryllium copper, but a better solution to this

problem might be using Nitinol [26]–[29]. Nitinol is a shape

memory alloy which behaves superelastic above a material

specific temperature (the Austenite finish temperature) and

when stresses are induced. Therefore, it is an ideal material for

compliant mechanisms that have lumped compliance, like the

RCM mechanisms in this paper. Nitinol shows nonlinear elastic

stress-strain behavior and the influence of this behavior on the

accuracy of a compliant RCM mechanism is unknown.

Furthermore, the mechanical properties of Nitinol are sensitive

to changes in temperature which also influences the

performance. Finally, the thermal and mechanical of stability of

such mechanisms can be investigated.

VIII. REFERENCES

[1] P. J. Ferreira, K. Mitsuishi, and E. A. Stach, “In Situ

Transmission Electron Microscopy,” MRS Bull., vol.

33, no. 02, pp. 83–90, Feb. 2008.

[2] M. L. Taheri et al., “Current status and future directions

for in situ transmission electron microscopy,”

Ultramicroscopy, vol. 170, pp. 86–95, Nov. 2016.

[3] R. A. Bernal, R. Ramachandramoorthy, and H. D.

Espinosa, “Double-tilt in situ TEM holder with

multiple electrical contacts and its application in

MEMS-based mechanical testing of nanomaterials,”

Ultramicroscopy, vol. 156, pp. 23–28, 2015.

[4] D. B. Williams and C. B. Carter, Transmission Electron

Microscopy: A Textbook for Materials Science, vol. 1–

4. Boston, MA: Springer US, 2009.

[5] A. Mikajiri, “Specimen tilting device for an electron

optical device,” US3778621 A, 1973.

[6] J. S. Jones and P. R. Swann, “Specimen heating holder

for electron microscopes,” US4996433 A, 1991.

[7] G. Unter, M. Obus, R. C. Doole, and B. J. Inkson,

“Spectroscopic electron tomography,”

Ultramicroscopy, vol. 965980, no. 61, pp. 433–45146,

2003.

[8] M. A. Verheijen et al., “Transmission electron

microscopy specimen holder for simultaneous in situ

heating and electrical resistance measurements,” Rev.

Sci. Instrum., vol. 75, no. 2, pp. 426–429, 2004.

[9] H. Miyazaki and S. Hata, “Sample holder,” US

7705324 B2, 2010.

[10] X. Han et al., “Double tilt transmission electron

microscope sample holder for in-situ measurement of

microstructures,” US8569714 B2, 2011.

[11] T. Sato, E. Tochigi, T. Mizoguchi, Y. Ikuhara, and H.

Fujita, “An experimental system combined with a

micromachine and double-tilt TEM holder,” MEE, vol.

164, pp. 43–47, 2016.

[12] R. M. Langford and A. K. Petford-Long, “Preparation

of transmission electron microscopy cross-section

specimens using focused ion beam milling,” J. Vac. Sci.

Technol. A Vacuum, Surfaces, Film., vol. 19, no. 5, pp.

2186–2193, Sep. 2001.

[13] W. Zhou and Z. L. Wang, Eds., Scanning Microscopy

for Nanotechnology. New York, NY: Springer New

York, 2007.

[14] T. Slater, Y. Chen, G. Auton, N. Zaluzec, and S. Haigh,

“X-Ray Absorption Correction for Quantitative

Scanning Transmission Electron Microscopic Energy-

Dispersive X-Ray Spectroscopy of Spherical

Nanoparticles,” Microsc. Microanal., vol. 22, pp. 440–

447, 2016.

[15] C. E. Lyman, J. I. Goldstein, D. B. Williams, D. W.

Ackland, S. Von Harrach, and A. W. NICHOLLSt,

“High-performance X-ray detection in a new analytical

electron microscope,” J. Microsc., vol. 176, no. 2, pp.

85–98, 1994.

[16] T. J. A. Slater, P. H. C. Camargo, M. G. Burke, N. J.

Zaluzec, and S. J. Haigh, “Understanding the

limitations of the Super-X energy dispersive x-ray

spectrometer as a function of specimen tilt angle for

9

tomographic data acquisition in the S/TEM,” J. Phys.

Conf. Ser., vol. 522, no. 1, p. 012025, Jun. 2014.

[17] J. F. Jensen, “Remote center positioner with channel

shaped linkage element,” US 5800423, 1998.

[18] G. Zong, X. Pei, J. Yu, and S. Bi, “Classification and

type synthesis of 1-DOF remote center of motion

mechanisms,” Mech. Mach. Theory, vol. 43, pp. 1585–

1595, 2008.

[19] J. L. H. M. Janssen, D. Farhadi Machekposhti, D.

Morsink, and N. Tolou, “Classification of Remote-

Center-of-Motion Mechanisms,” 2018.

[20] J. Li, G. Zhang, A. Müller, and S. Wang, “A Family of

Remote Center of Motion Mechanisms Based on

Intersecting Motion Planes,” J. Mech. Des., vol. 135,

no. 9, p. 091009, Jul. 2013.

[21] Y. He, P. Zhang, H. Jin, Y. Hu, and J. Zhang, “Type

Synthesis for Remote Center of Motion Mechanisms

Based on Coupled Motion of Two Degrees-of-

Freedom,” J. Mech. Des., vol. 138, no. 12, p. 122301,

Sep. 2016.

[22] J. Li, G. Zhang, Y. Xing, H. Liu, and S. Wang, “A Class

of 2-Degree-of-Freedom Planar Remote Center-of-

Motion Mechanisms Based on Virtual Parallelograms,”

J. Mech. Robot., vol. 6, no. 3, p. 031014, Jun. 2014.

[23] H. Long, Y. Yang, X. Jingjing, and S. Peng, “Type

Synthesis of 1R1T Remote Center of Motion

Mechanisms Based on Pantograph Mechanisms,” J.

Mech. Des., vol. 138, no. 1, p. 014501, Nov. 2015.

[24] S. Liu, C. Chen, B. Chen, and L. Harewood, “Novel

Linkage with Remote Centre of Motion,” in

Proceeding of the 14th IFToMM World Congress,

2015, pp. 338–343.

[25] M. Verotti, “Analysis of the center of rotation in

primitive flexures: Uniform cantilever beams with

constant curvature,” MAMT, vol. 97, pp. 29–50, 2016.

[26] E. Henderson, D. H. Nash, and W. M. Dempster, “On

the experimental testing of fine Nitinol wires for

medical devices,” J. Mech. Behav. Biomed. Mater., vol.

4, no. 2, pp. 261–268, 2011.

[27] J. Eaton-Evans, J. M. Dulieu-Barton, E. G. Little, and

I. A. Brown, “Observations during mechanical testing

of Nitinol,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng.

Sci., vol. 222, no. 2, pp. 97–105, 2008.

[28] Y. Liu, “On the Detwinning Mechanism in Shape

Memory Alloys,” in IUTAM Symposium on Mechanics

of Martensitic Phase Transformation in Solids, 2002,

pp. 37–44.

[29] J. Liu, “Compliant Mechanisms using Superelastic

NiTiNOL,” Pennsylvania State University, 2012.

4 Conclusion

5 Recommendations

A EDS Influences

•

•

•

•

•

•

A.1. Detector Type/Window

Si

1000 V

Characteristic

X-ray

Detector window 20 nm Au electrodeIce/contamination

Polepiece

location

Area of

detector (A)

Collimator

Sample holder

angle (α, β)

Sample

orientation

Sample shape

Take off

angle (α, β)
Escaping

energy

Pulse pile-up

Energy scatter

Sample drift

Energy scatter

Sample holder

angle (α, β)

Energy scatter

MEMS heating

Sample holder

angle (α, β)

Incident beam

errors

Incident beam

Internal

fluorescence

Detector type/

window

Area of

detector (A)

Direction of

detector (δ)

Collimator

System

Background

noise

Spurious

Probe location

X-rays/

electrons

X-rays/

electrons
Bremsstrahlung

/electrons

X-ray

absorption

Detector

errors

Undesired

collection angle

Desired

collection angle

Sample holder
Sample

distance (S)

EDS

Sample holder

geometry

A.2. Detector Errors

20 µm

A.3. X-Ray Absorption

≈

A.4. Desired Collection Angle

Incident

electron beam

Absorption

distance

Absorption

distance

Incident

electron beam

Absorption

distance

Absorption

distance

(a) (b)

Sample

Sample

𝛺 =
𝐴𝑐𝑜𝑠 𝛿

𝑆2

A.5. Undesired Collection Angle

A.6. Background Noise

Transmitted

electrons

Lower

pole

piece

Upper

pole

piece

Incident electron beam

Undesired X-ray

collection angle

Sample

Si detector

Collimator

B Concepts

B.1. Requirements

6
.5

5
.4

6
.5

5

5.4

z

x
y

y

x
z

Available workspace Pole piece

α

Incident

electrons

Atoms in

sample

Projection

(a) (b)

B.2. Concept Evaluation

Xin

TEM

column

Vibration

isolating spring

Viewing screen

Incident electron beam

Sample

Fixed Flexurez α β

Supported from the side

Spherical linkages class

Supported from the back

Instantaneous center of rotation/parallelograms class

Chip

4

3

2

1

7

5

10

9

8

Actuation

6

A

B

D O

EC

F

G

7

8

9

10

B.3. Nitinol

B.3.1 Theory

Austenite Twinned martensite Detwinned martensite

Stress Strain

Stress release

Atom

Strain

Elastic deformation

Transformation

Superelastic

behavior (εtr)

S
tr

e
s
s
/t

e
m

p
e
ra

tu
re

Unloading

Af
As

Mf

Ms

≈

B.3.2 Modeling

C Analytical Modeling

C.1. Rigid-Body Kinematics

𝒉𝒐𝒖𝒕(𝒉𝟏, 𝒉𝟐, 𝑙1, 𝑙2, 𝒉𝟑) = 𝒉𝟏 + [
𝑙1 𝑐𝑜𝑠(𝛼 ± 𝛽)

𝑙1 𝑠𝑖𝑛(𝛼 ± 𝛽)
]

𝑤𝑖𝑡ℎ: 𝒉𝒊 = [
𝑥𝑖

𝑦𝑖
] , 𝑖 = 1,… ,3

𝑎𝑛𝑑: 𝛼 = 𝑎𝑡𝑎𝑛2
𝑦2 − 𝑦1

𝑥2 − 𝑥1
 𝛽 = 𝑎𝑐𝑜𝑠

𝑙1
2 − 𝑙2

2 + 𝑙3
2

2𝑙1𝑙3
 𝑙3 = √(𝑥2 − 𝑥1)

2 + (𝑦2 − 𝑦1)
2

H12

H13

H24

H34

H26
H45

H56

H57

H68

H78

H88

H66
F

L21

Φ

L1

L3

L42
L63

L61

L62

L81

L82

L7

L22

L52

L51

𝜃(𝒍𝒗𝟏, 𝒍𝒗𝟐) = 𝑎𝑡𝑎𝑛2
𝑥1𝑦2 − 𝑦1𝑥2

𝑥1𝑥2 + 𝑦1𝑦2

𝑤𝑖𝑡ℎ: 𝒍𝒗𝒊 = [
𝑥𝑖

𝑦𝑖
] , 𝑖 = 1,2

𝑹(𝑙𝑣1, 𝑙𝑣2) = [
𝑐𝑜𝑠(𝜃(𝑙𝑣1, 𝑙𝑣2)) − 𝑠𝑖𝑛(𝜃(𝑙𝑣1, 𝑙𝑣2))

𝑠𝑖𝑛(𝜃(𝑙𝑣1, 𝑙𝑣2)) 𝑐𝑜𝑠(𝜃(𝑙𝑣1, 𝑙𝑣2))
]

𝑯𝟏𝟐 = [
−164.545

95.000
] , 𝑯𝟏𝟑 = [

−164.545

95.000
] , 𝑯𝟐𝟒 = [

−164.545

95.000
] ,𝑯𝟐𝟔 = [

−164.545

95.000
]

𝑯𝟑𝟒 = [
−164.545

95.000
] , 𝑯𝟒𝟓 = [

−164.545

95.000
] , 𝑯𝟓𝟔 = [

−164.545

95.000
] ,𝑯𝟓𝟕 = [

−164.545

95.000
]

𝑯𝟔𝟖 = [
−164.545

95.000
] , 𝑯𝟕𝟖 = [

−164.545

95.000
] , 𝑯𝟖𝟖 = [

−164.545

95.000
] ,𝑯𝟔𝟔 = [

−164.545

95.000
]

𝑳𝑽 =

[

𝑳𝑽𝟏

𝑳𝑽𝟐𝟏

𝑳𝑽𝟐𝟐

𝑳𝑽𝟑

𝑳𝑽𝟒𝟏

𝑳𝑽𝟒𝟐

𝑳𝑽𝟓

𝑳𝑽𝟓𝟏

𝑳𝑽𝟓𝟐

𝑳𝑽𝟔𝟏

𝑳𝑽𝟔𝟐

𝑳𝑽𝟕

𝑳𝑽𝟖𝟏

𝑳𝑽𝟖𝟐

𝑳𝑽𝟔𝟑]

=

[

𝑯𝟏𝟑 − 𝑯𝟏𝟐

𝑯𝟏𝟐 − 𝑯𝟐𝟒

𝑯𝟐𝟒 − 𝑯𝟐𝟔

𝑯𝟏𝟑 − 𝑯𝟑𝟒

𝑯𝟑𝟒 − 𝑯𝟐𝟒

𝑯𝟒𝟓 − 𝑯𝟑𝟒

𝑯𝟒𝟓 − 𝑯𝟓𝟔

𝑯𝟒𝟓 − 𝑯𝟓𝟕

𝑯𝟓𝟕 − 𝑯𝟓𝟔

𝑯𝟓𝟔 − 𝑯𝟐𝟔

𝑯𝟔𝟖 − 𝑯𝟓𝟔

𝑯𝟕𝟖 − 𝑯𝟓𝟕

𝑯𝟕𝟖 − 𝑯𝟔𝟖

𝑯𝟖𝟖 − 𝑯𝟕𝟖

𝑯𝟔𝟔 − 𝑯𝟐𝟔]

𝑨𝑯 =

[

𝐴𝐻12

𝐴𝐻13

𝐴𝐻24

𝐴𝐻26

𝐴𝐻34

𝐴𝐻45

𝐴𝐻56

𝐴𝐻57

𝐴𝐻68

𝐴𝐻78]

=

[

𝜃(𝑳𝑽𝟏, 𝑳𝑽𝟐𝟏)

𝜃(𝑳𝑽𝟏, 𝑳𝑽𝟑)

𝜃(𝑳𝑽𝟐𝟏, 𝑳𝑽𝟒𝟏)

𝜃(𝑳𝑽𝟐𝟏, 𝑳𝑽𝟔𝟏)

𝜃(𝑳𝑽𝟑, 𝑳𝑽𝟒𝟏)

𝜃(𝑳𝑽𝟒𝟏, 𝑳𝑽𝟓)

𝜃(𝑳𝑽𝟓, 𝑳𝑽𝟔𝟏)

𝜃(𝑳𝑽𝟓, 𝑳𝑽𝟕)

𝜃(𝑳𝑽𝟔𝟏, 𝑳𝑽𝟖𝟏)

𝜃(𝑳𝑽𝟕, 𝑳𝑽𝟖𝟏)]

𝒉 =

[

𝒉𝟏𝟐

𝒉𝟏𝟑

𝒉𝟐𝟒

𝒉𝟐𝟔

𝒉𝟑𝟒

𝒉𝟒𝟓

𝒉𝟓𝟔

𝒉𝟓𝟕

𝒉𝟔𝟖

𝒉𝟕𝟖

𝒉𝟖𝟖

𝒉𝟔𝟔]

=

[

𝑯𝟏𝟐

𝑯𝟏𝟑

𝒉𝟏𝟐 − [
𝑐𝑜𝑠 𝛷 − 𝑠𝑖𝑛 𝛷
𝑠𝑖𝑛 𝛷 𝑐𝑜𝑠 𝛷

] 𝑳𝑽𝟐𝟏

𝒉𝟐𝟒 − [
𝑐𝑜𝑠 𝛷 − 𝑠𝑖𝑛 𝛷
𝑠𝑖𝑛 𝛷 𝑐𝑜𝑠 𝛷

] 𝑳𝑽𝟐𝟐

𝒉𝒐𝒖𝒕(𝒉𝟏𝟑, 𝒉𝟐𝟒, ‖𝑳𝑽𝟑‖, ‖𝑳𝑽𝟒𝟏‖,𝑯𝟑𝟒)

𝒉𝟑𝟒 + 𝑹(𝑳𝑽𝟒𝟏, 𝒉𝟑𝟒 − 𝒉𝟐𝟒)𝑳𝑽𝟒𝟐

𝒉𝒐𝒖𝒕(𝒉𝟐𝟔 , 𝒉𝟒𝟓, ‖𝑳𝟔𝟏‖, ‖𝑳𝟓‖,𝑯𝟓𝟔)

𝒉𝟒𝟓 + 𝑹(𝑳𝑽𝟓, 𝒉𝟒𝟓 − 𝒉𝟓𝟔)𝑳𝑽𝟓𝟏

𝒉𝟒𝟓 + 𝑹(𝑳𝑽𝟔𝟏, 𝒉𝟓𝟔 − 𝒉𝟐𝟔)𝑳𝑽𝟔𝟐

𝒉𝒐𝒖𝒕(𝒉𝟓𝟕 , 𝒉𝟔𝟖, ‖𝑳𝟕‖, ‖𝑳𝟖𝟏‖,𝑯𝟕𝟖)

𝒉𝟕𝟖 + 𝑹(𝑳𝑽𝟖𝟏, 𝒉𝟕𝟖 − 𝒉𝟔𝟖)𝑳𝑽𝟖𝟐

𝒉𝟐𝟔 + 𝑹(𝑳𝑽𝟔𝟏, 𝒉𝟓𝟔 − 𝒉𝟐𝟔)𝑳𝑽𝟔𝟑]

𝒍𝒗 =

[

𝒍𝒗𝟏

𝒍𝒗𝟐𝟏

𝒍𝒗𝟐𝟐

𝒍𝒗𝟑

𝒍𝒗𝟒𝟏

𝒍𝒗𝟒𝟐

𝒍𝒗𝟓

𝒍𝒗𝟓𝟏

𝒍𝒗𝟓𝟐

𝒍𝒗𝟔𝟏

𝒍𝒗𝟔𝟐

𝒍𝒗𝟕

𝒍𝒗𝟖𝟏

𝒍𝒗𝟖𝟐

𝒍𝒗𝟔𝟑]

=

[

𝒉𝟏𝟑 − 𝒉𝟏𝟐

𝒉𝟏𝟐 − 𝒉𝟐𝟒

𝒉𝟐𝟒 − 𝒉𝟐𝟔

𝒉𝟏𝟑 − 𝒉𝟑𝟒

𝒉𝟑𝟒 − 𝒉𝟐𝟒

𝒉𝟒𝟓 − 𝒉𝟑𝟒

𝒉𝟒𝟓 − 𝒉𝟓𝟔

𝒉𝟒𝟓 − 𝒉𝟓𝟕

𝒉𝟓𝟕 − 𝒉𝟓𝟔

𝒉𝟓𝟔 − 𝒉𝟐𝟔

𝒉𝟔𝟖 − 𝒉𝟓𝟔

𝒉𝟕𝟖 − 𝒉𝟓𝟕

𝒉𝟕𝟖 − 𝒉𝟔𝟖

𝒉𝟖𝟖 − 𝒉𝟕𝟖

𝒉𝟔𝟔 − 𝒉𝟐𝟔]

𝒂𝒉 =

[

𝑎ℎ12

𝑎ℎ13

𝑎ℎ24

𝑎ℎ26

𝑎ℎ34

𝑎ℎ45

𝑎ℎ56

𝑎ℎ57

𝑎ℎ68

𝑎ℎ78]

=

[

𝜃(𝒍𝒗𝟏, 𝒍𝒗𝟐𝟏)

𝜃(𝒍𝒗𝟏, 𝒍𝒗𝟑)

𝜃(𝒍𝒗𝟐𝟏, 𝒍𝒗𝟒𝟏)

𝜃(𝒍𝒗𝟐𝟏, 𝒍𝒗𝟔𝟏)

𝜃(𝒍𝒗𝟑, 𝒍𝒗𝟒𝟏)

𝜃(𝒍𝒗𝟒𝟏, 𝒍𝒗𝟓)

𝜃(𝒍𝒗𝟓, 𝒍𝒗𝟔𝟏)

𝜃(𝒍𝒗𝟓, 𝒍𝒗𝟕)

𝜃(𝒍𝒗𝟔𝟏, 𝒍𝒗𝟖𝟏)

𝜃(𝒍𝒗𝟕, 𝒍𝒗𝟖𝟏)]

𝒓𝒉 = 𝒂𝒉 − 𝑨𝑯

C.2. Hinge Shift Model

ICR 2

45° deflection

ICR 1

ICR 3

0° deflection

135° deflection

C.3. Pseudo-Rigid-Body Model

𝑈 =
1

2
𝑘𝑟𝑜𝑡𝜃

2

𝑊 =
𝐹𝑚𝑎𝑥

2
𝑥𝑎𝑐𝑡

C.4. Scaling of Proof-of-Principle Mechanism

C.4.1 Hinge Shift

C.4.2 Stiffness in Hinges and Actuation

𝑀𝑟𝑜𝑡 = 2𝑘𝑟𝑜𝑡𝜃

𝑤𝑖𝑡ℎ: 𝑘𝑟𝑜𝑡 =
𝐸𝑤ℎ3

12𝑙

𝑀𝑡𝑟 = 𝐹𝑙

𝑤𝑖𝑡ℎ: 𝐹 = 𝑘𝑡𝑟𝑢

𝑤𝑖𝑡ℎ: 𝑘𝑡𝑟 =
𝐸𝑤ℎ3

𝑙3

𝑀𝑟𝑜𝑡 = 𝑀𝑡𝑟

2𝜃𝐸𝑤ℎ3

12𝑙
=

𝐸𝑤ℎ3𝑙

𝑙3
𝑢

𝑢 =
𝜃

6
𝑙

u
krot/ktr

krot/ktr

D Matlab Code

f_linkintersect

f_vrot2

f_mechanismkinemat-

ics

f_linkintersect

f_vrot2

f_mechanismkinemat-

ics

f_ICRflexure

f_RCManalytical f_hingeshift

f_nohingeshift

f_RCMcalculator

f_RCMcalculator

f_fourbar

f_RCMnumerical

f_image_processing_

webcam

f_image_processing_

micro

f_RCMcalculatorgrid

f_vrot2

f_lineintersect

f_RCMexper imenta l

RCM_error

Image_acquisition

D.1. RCM_error
clear all
close all
clc

global i c1 c2 c3 c4 c5 c6 c7 c8 pc dataset plots
i = 0;
c1 = [192 0 0]/255;
c2 = [0 176 80]/255;
c4 = [0 166 214]/255;
c3 = [142 48 160]/255;
c5 = [0 0 0]/255;
c6 = [234 112 14]/255;
c7 = [255 192 0]/255;
c8 = [0 255 204]/255;

%% Controls
pc = 1;
plots = 1;
solutions = 1;
titlecolor = 'w';

%% Load figures
figure(1)
set(gcf,'Position',[0 600 480 400])
hold on

figure(2)
set(gcf,'Position',[480 600 480 400])
hold on

figure(3)
set(gcf,'Position',[960 600 480 400])
hold on

figure(4)
set(gcf,'Position',[1440 600 480 400])
hold on

figure(5)
set(gcf,'Position',[0 50 480 400])
hold on

%% Inputs
%hinge coordinates
h12 = [-164.545 95]';
h13 = [-125.574 72.500]';
h24 = [-177.371 59.762]';
h26 = [-190.196 24.523]';
h34 = [-138.399 37.262]';
h45 = [-95.098 12.262]';
h56 = [-147.261 -17.388]';
h57 = [-121.179 -2.563]';
h68 = [-104.325 -59.299]';
h78 = [-78.244 -44.474]';
h88 = [0 0]';
h66 = [-248.196 105.523]';
ihingecoordinates = [h12 h13 h24 h26 h34 h45 h56 h57 h68 h78 h88 h66];
ihingeorientations = [-20 -20 160 192.84 160 0.2 225.69 225.69 45.69 45.69]'; %hinge
orientations four bar 7/8

%% Analytical
[drift, magnitude] = f_RCManalytical(ihingecoordinates,ihingeorientations); %run analytical
model

%% Numerical data 1
coordinates = csvread('RCMdata25.csv',5,1); %load coordinates of measured points
rotation = csvread('Rotation25.csv',5,1); %load rotations of links
force = csvread('Force25.csv',5,0); %load force
[offset, drift] = f_RCMnumerical(ihingecoordinates, coordinates, rotation, force) %run
numerical model %run RCM plotter function

%% Numerical data 2
if solutions == 2
i = 0;
coordinates = csvread('RCMdata26.csv',5,1); %load coordinates of measured points
rotation = csvread('Rotation26.csv',5,1); %load rotations of links
force = csvread('Force26.csv',5,0); %load force
[offset, drift] = f_RCMnumerical(ihingecoordinates, coordinates, rotation, force) %run
numerical model %run RCM plotter function
end

%% Experimental data
numberofsteps = 100; %number of steps taken during measurement
numberofimages = 10; %number of images per step

dataset = '7'; %measurement number

nametemplate1 = strcat(dataset,'_m_0%d.tif'); %name pattern microscope images
nametemplate2 = strcat(dataset,'_w_0%d.tif'); %name pattern webcam images
filename = strcat(dataset,'.xlsx'); %filename of force deflection xlsx
f_RCMexperimental(numberofsteps,numberofimages,nametemplate1,nametemplate2,filename) %run
experimental calculations

%% Figure properties
figure(2)
title('Location of RCM (13 deg)')
xlabel('x [mm]')
ylabel('y [mm]')
h = findobj(gca,'Type','line');
L = length(h);
legend([h(L+1-1) h(L+1-4) h(L+1-2) h(L+1-8) h(L+1-11) h(L+1-19) h(L+1-20) h(L+1-21) h(L+1-
22)],{'Theoretical RCM location','0\circ rotation points', 'Numerical coordinates', 'Numerical
RCM line', 'Experimental coordinates', 'Experimental RCM line 1', 'Experimental RCM line 2',
'Experimental RCM line 3', 'Experimental RCM line 4'},'Location','NorthWest');
grid on
axis equal
axis([-5 10 -8 15])

figure(3)
title('Hingeshift in mechanism')
xlabel('x [mm]')
ylabel('y [mm]')
legend('Initial coordinates of mechanism','Rotated mechanism without parasitic
motion','Rotated mechanism with parasitic motion','Location','north')
grid on
axis([-300 50 -100 200])
set(gca,'DataAspectRatio',[1 1 1])

figure(4)
title('Force displacement (13 deg)')
xlabel('Actuation x-displacement [mm]')
ylabel('Actuation force [N]')
h = findobj(gca,'Type','line');
L = length(h);
legend([h(L+1-1) h(L+1-3) h(L+1-
5)],{'Analytical','Numerical','Experimental'},'Location','NorthWest')
grid on

figure(5)
title('Rotation ratio (13 deg)')
xlabel('Actuation x-displacement [mm]')
ylabel('Rotation ratio \theta_o_u_t/\theta_i_n')
legend('Theoretical','Theoretical','COMSOL','Experimental')
h = findobj(gca,'Type','line');
L = length(h);
legend([h(L+1-1) h(L+1-3) h(L+1-4)],{'Analytical','Numerical','Experimental'})
grid on
axis([-30 30 0.5 0.7])

%% Print figures

fh=findobj(0,'type','figure');
for n=2:length(fh)-3
 figure(n)
 fig = gcf;
 ax = gca;
 lines = get(ax, 'Children');
 set(lines, 'LineWidth', 1);
 set(fig, 'InvertHardCopy', 'off');
 set(fig,'color','w');
 T = get(gca,'Title');
 T.Color = titlecolor;
 set(ax, 'FontName', 'Arial')
 set(ax, 'fontsize', 8)
 set(ax, 'LooseInset', get(ax, 'TightInset'));
 L = get(gca,'Legend');
 L.FontSize = 6;
 box on
 fig.PaperUnits = 'centimeters';
 fig.PaperPosition = [0 0 8.9 7]; %paper 1 column
% fig.PaperPosition = [1.4129 0 13 10]; %report block
% fig.PaperPosition = [0 0 15.8258 7]; %report wide
% fig.PaperPosition = [0 0 10 7]; %Powerpoint
 print('-dpng','-r500',get(get(gca,'title'),'string'))
end

D.2. image_acquisition
close all
clear all

clc

%% Settings
folder = 'C:\Users\Janeau\Google Drive\Master Thesis\Matlab\Proof of principle measurements';
%the folder
nametemplate1 = '11_w_0%d.tif'; %name pattern
nametemplate2 = '11_m_0%d.tif'; %name pattern
intervaltime = 11;
waittime = 6;
numberofsteps = 30;
numberofimages = 5;

%% Webcam

% Connect to webcam
c1 = webcam('Logitech HD Webcam C525');
c1.Resolution = '1600x896';
% c1.AvailableResolutions
c1.Brightness = 128; %default
c1.Contrast = 32; %default
c1.Saturation = 32; %default
c1.Exposure = -4;
% c1.Focus = 0; %default
c1.Focus = 50;
c1

% Setup preview window
fig = figure('NumberTitle', 'off', 'MenuBar', 'none');
fig.Name = 'Webcam';
ax = axes(fig);
frame = snapshot(c1);
im = image(ax, zeros(size(frame), 'uint8'));
axis(ax, 'image');

% Start preview
preview(c1, im);
setappdata(fig, 'cam', c1);
fig.CloseRequestFcn = @closePreviewWindow_Callback;
set(gcf,'Position',[0 500 960 500])

%% Microscope

% Connect to microscope
c2 = webcam('Digital Microscope');
c2.Resolution = '2592x1944';
% c2.AvailableResolutions

% Default settings
% c2.Saturation = 64; %0-128
% c2.Hue = 0; %-40-40
% c2.Contrast = 64; %0-64
% c2.Brightness = 0; %-64-64
% c2.Sharpness = 6; %1-6
% c2.Gamma = 100; %48-500
% c2.BacklightCompensation = 1; %0-2

% Setup preview window
fig = figure('NumberTitle', 'off', 'MenuBar', 'none');
fig.Name = 'Microscope';
ax = axes(fig);
frame = snapshot(c2);
im = image(ax, zeros(size(frame), 'uint8'));
axis(ax, 'image');

% Start preview
preview(c2, im);
setappdata(fig, 'cam', c2);
fig.CloseRequestFcn = @closePreviewWindow_Callback;
set(gcf,'Position',[960 300 960 700])

%% Take images
imnum = 0; %starting image number
waitforbuttonpress
pause(waittime)
for K = 1 : numberofsteps+1 %if you want to do this 50 times
 tic
 disp('Pictures start')
 for i = 1:numberofimages
 imnum = imnum + 1;
 YourImage1 = snapshot(c1); %capture the image
 YourImage2 = snapshot(c2); %capture the image
 thisfile1 = sprintf(nametemplate1, imnum); %create filename
 thisfile2 = sprintf(nametemplate2, imnum); %create filename
 fullname1 = fullfile(folder, thisfile1); %folder
 fullname2 = fullfile(folder, thisfile2); %folder
 imwrite(YourImage1, fullname1); %write the image there as tif
 imwrite(YourImage2, fullname2); %write the image there as tif

 i
 end
 disp('Pictures taken')
 time = toc;
 K
 pause(intervaltime-time)
end

%% Local functions
function closePreviewWindow_Callback(obj, ~)
c = getappdata(obj, 'cam');
closePreview(c)
delete(obj)
end

D.3. f_RCManalytical
function [drift,offset] = f_RCManalytical(ihingecoordinates,ihingeorientations)
%This function calculates and plots the analytical RCM line, the force
%deflection and the rotation ratio. Two subfunctions, no hingeshift and
%hingeshift are run; the kinematics without and with parasitic hingeshift.

global c1 c2 c3 c4 c5 c6 force1 force2 forcetotal1 forcetotal2 rotationratio1 rotationratio2

%% Inputs
number = 30; %number of steps
stepsize = 13/number; %rotation per step
hingelength = 200; %length of hinges [mm]

%% Run hingeshift and calculate RCM
[outputcoordinates1] =
f_hingeshift(ihingecoordinates,number,stepsize,hingelength,ihingeorientations); %positive
rotation
[arcmx1, arcmy1] = f_RCMcalculator(outputcoordinates1);

[outputcoordinates2] = f_hingeshift(ihingecoordinates,number,-
stepsize,hingelength,ihingeorientations); %negative rotation
[arcmx2, arcmy2] = f_RCMcalculator(outputcoordinates2);

% Save rcm curve data to base workspace
assignin('base','arcmx1',arcmx1);
assignin('base','arcmy1',arcmy1);
assignin('base','arcmx2',arcmx2);
assignin('base','arcmy2',arcmy2);

%% Run nohingeshift and calculate force and rotation ratio
[outputcoordinates, force1, forcetotal1, rotationratio1] =
f_nohingeshift(ihingecoordinates,number,stepsize,hingelength,ihingeorientations); %positive
rotation

[outputcoordinates, force2, forcetotal2, rotationratio2] =
f_nohingeshift(ihingecoordinates,number,-stepsize,hingelength,ihingeorientations); %negative
rotation

%% Calculate drift and offset
drift = norm([arcmx2(length(arcmx2)); arcmy2(length(arcmy2))] - [arcmx1(length(arcmx1));
arcmy1(length(arcmy1))]);
for m = 1 : length(arcmx1)-1
 off1(m) = norm([arcmx1(m+1)-arcmx1(m); arcmy1(m+1)-arcmy1(m)]);
 off2(m) = norm([arcmx2(m+1)-arcmx2(m); arcmy2(m+1)-arcmy2(m)]);
end
offset = sum(off1)+sum(off2);

%% Plots
% RCM
figure(2)
plot(0, 0, '+','markers',5,'Color',c5) %plot theoretical rcm
plot(outputcoordinates1(:,1),outputcoordinates1(:,3),'.-
',outputcoordinates1(:,2),outputcoordinates1(:,4),'.-','Color',c3) %plot measured points
lines
plot(arcmx1,arcmy1,'.-','Color',c3)
scatter(arcmx1,arcmy1,5,linspace(1,10,length(arcmx1)))

plot(outputcoordinates2(:,1),outputcoordinates2(:,3),'.-
',outputcoordinates2(:,2),outputcoordinates2(:,4),'.-','Color',c4) %plot measured points
lines
plot(arcmx2,arcmy2,'.-','Color',c4)
scatter(arcmx2,arcmy2,5,linspace(1,10,length(arcmx2)))
end

D.4. f_RCMnumerical
function [offset, drift] = f_RCMnumerical(ihingecoordinates, coordinates,rotation,force)
% This function adjusts the dataset to the range of +-13 degrees, runs f_RCMcalculator,
% calculates the offset and drift of the RCM and plots this together with the force deflection
behavior
% annd the rotation ratio.

global i c1 c2 c3 c4 c5 c6 c7 c8 force1 force2 forcetotal1 forcetotal2 rotationratio1
rotationratio2

%% Adjust the datasets
keep = find(rotation(:,1) >= -13.2 & rotation(:,1) <= 13.2); %find the row numbers of the
rotations from -13 to 13 degrees
maxrotation = max(rotation(keep,1)) %calculate max rotation of input link
minrotation = min(rotation(keep,1)) %calculate min rotation of input link
if maxrotation <= 13 || minrotation >= -13 %show warning when rotation not reached
 msgbox('Input rotation of 13 degrees not reached');
 return
end
coordinates = coordinates(keep,:); %adjust the dataset to only contain -12 to 12 degrees of
motion
coordinatesend = find(rotation(keep,1) == minrotation(1)); %find the end of the first part of

the dataset
coordinatesstart = coordinatesend + 1;

rotation = rotation(keep,:); %adjust rotation dataset
force = force(keep,:); %adjust force dataset
minactuation = min(force(:,1))
maxactuation = max(force(:,1))

% Assign numerical coordinates data in workspace
assignin('base','coordinates',coordinates);
assignin('base','coordinatesend',coordinatesend);
assignin('base','coordinatesstart',coordinatesstart);

%% Run RCMcalculator
[nrcmx1, nrcmy1] = f_RCMcalculator(coordinates(1:coordinatesend,:));
[nrcmx2, nrcmy2] = f_RCMcalculator(coordinates(coordinatesstart:length(coordinates),:));

% Assign numerical RCM curve to workspace
assignin('base','nrcmx1',nrcmx1);
assignin('base','nrcmy1',nrcmy1);
assignin('base','nrcmx2',nrcmx2);
assignin('base','nrcmy2',nrcmy2);

%% Calculate errors
% Offset
offsetoptions(1,1) = (nrcmx1(1)^2 + nrcmy1(1)^2)^0.5;
offsetoptions(1,2) = (nrcmx2(1)^2 + nrcmy2(1)^2)^0.5;
offset = max(offsetoptions);

% Drift
RCMmax1 = [nrcmx1(length(nrcmx1)); nrcmy1(length(nrcmy1))];
RCMmax2 = [nrcmx2(length(nrcmx2)); nrcmy2(length(nrcmy2))];
drift = norm(RCMmax1 - RCMmax2)/2;

%% Calculate rotation ratio
ratio = rotation(:,7)./rotation(:,1);

%% Path of center point
distancetocenter1 = norm(coordinates(1,[1 3]));
distancetocenter2 = norm(coordinates(1,[2 4]));
prevcenter = [0; 0];
for k = 1 : length(coordinates)
 center(k,:) = f_linkintersect(coordinates(k,[1 3]),coordinates(k,[2
4]),distancetocenter1,distancetocenter2,prevcenter);
 prevcenter = center(k,:)';
end

assignin('base','centerN',center);

%% Plot coordinates and RCM line
figure(2)
hold on
rectangle('Position',[-20 -15 40 30]) %plot end link body

plot(coordinates(1:coordinatesend,1),coordinates(1:coordinatesend,3),'.-','Color',c1) %plot
measured points lines
plot(coordinates(coordinatesstart:length(coordinates),1),coordinates(coordinatesstart:length(c
oordinates),3),'.-','Color',c1)
plot(coordinates(1,1),coordinates(1,3),'.','Color',c8) %plot center point

plot(coordinates(1:coordinatesend,2),coordinates(1:coordinatesend,4),'.-','Color',c1) %plot
measured points lines

plot(coordinates(coordinatesstart:length(coordinates),2),coordinates(coordinatesstart:length(c
oordinates),4),'.-','Color',c1)
plot(coordinates(1,2),coordinates(1,4),'.','Color',c8) %plot center point

plot(nrcmx1,nrcmy1,'.-','Color',c2) %plot rcm locations line 1
plot(nrcmx2,nrcmy2,'.-','Color',c2) %plot rcm locations line 2
plot((nrcmx1(1)+nrcmx2(1))/2,(nrcmy1(1)+ nrcmy2(1))/2,'.','Color',c8) %plot center point
plot(center(1:coordinatesend,1),center(1:coordinatesend,2),'.-','Color',c6)
plot(center(coordinatesstart:end,1),center(coordinatesstart:end,2),'.-','Color',c7)

%% Run fourbar and calculate and plot theoretical angles
figure(1)
i = i + 1;
if i == 1
 theta1max = rotation(length(rotation),1);
 [rotationpoints] = imread('Rotation points.png');
 image(rotationpoints)
 axis ij
end

% Hinge coordinates
h12 = ihingecoordinates(:,1);
h24 = ihingecoordinates(:,4);
h34 = ihingecoordinates(:,9);
h13 = [0 0]';

hingecoordinates = [h12 h13 h24 h34];
theta = theta1max;

[hingecoordinates, linkrotations] = f_fourbar(hingecoordinates,theta);

figure(1)
text(52,1048+100*(i-1), strcat(num2str(rotation(length(rotation),1)),'\circ'))
text(1723,884+100*(i-1), strcat(num2str(rotation(length(rotation),2)),'\circ'))
text(1605+220*(i-1),1271, strcat(num2str(rotation(length(rotation),3)),'\circ'))
text(439,1663+100*(i-1), strcat(num2str(rotation(length(rotation),4)),'\circ'))
text(1384+220*(i-1),715, strcat(num2str(rotation(length(rotation),5)),'\circ'))
text(1530+220*(i-1),1345, strcat(num2str(rotation(length(rotation),6)),'\circ'))
text(2090,1506+100*(i-1), strcat(num2str(rotation(length(rotation),7)),'\circ'))

figure(1)
text(52, 100,strcat('Theoretical:\newlinetheta1 = ',num2str(linkrotations(2)),'\circ'))
text(52, 100,strcat('\newline\newline\newlinetheta2 = ',num2str(linkrotations(3)),'\circ'))
text(52, 100,strcat('\newline\newline\newline\newline\newlinegamma = -
',num2str(linkrotations(4)),'\circ'))

%% Plot force deflection
figure(4)
deadzone = 6;

% Stretched analytical data force
force1 = interp1(linspace(0, 1, length(force1)), force1, linspace(0,1,length(force)-
coordinatesend-deadzone)); %scale data
force2 = interp1(linspace(0, 1, length(force2)), force2, linspace(0,1,coordinatesend-
deadzone)); %scale data

plot(force(deadzone+1:coordinatesend,1),force2,'.-
',force(coordinatesstart+deadzone:length(force),1),force1,'.-','Color',c1)

% Numerical data
plot(force(1:coordinatesend,1),force(1:coordinatesend,2),'.-
',force(coordinatesstart:length(force),1),force(coordinatesstart:length(force),2),'.-
','Color',c2)

%% Plot rotation ratio
figure(5)
% Stretched analytical data
middleforce = round(length(force)/2);
rotationratio1 = interp1(linspace(0, 1, length(rotationratio1)), rotationratio1,
linspace(0,1,length(force)-middleforce-deadzone)); %scale data
rotationratio2 = interp1(linspace(0, 1, length(rotationratio2)), rotationratio2,
linspace(0,1,middleforce-deadzone)); %scale data

plot(force(deadzone+1:middleforce,1),rotationratio2,'.-
',force(deadzone+middleforce+1:end,1),rotationratio1,'.-','Color',c1)

% Numerical data
plot(force(:,1),ratio(:,1),'.-','Color',c2)

end

D.5. f_RCMexperimental
function [output] =
f_RCMexperimental(numberofsteps,numberofimages,nametemplate1,nametemplate2,filename)

%Analyzes the images from the microscope and the webcam and plots the RCM
%offset and drift which is calculated using f_RCMcalculatorgrid.
global c1 c2 c3 c4 c5 c6 c7 c8 pc dataset plots

if pc == 1
 addpath('C:\Users\User\Google Drive\Master Thesis\Matlab\Proof of principle
measurements');
 addpath('C:\Users\User\Google Drive\Master Thesis\Matlab\Proof of principle
measurements\Concept 1 measurements');
 folder = 'C:\Users\User\Google Drive\Master Thesis\Matlab\Proof of principle
measurements'; %the folder
else
 addpath('C:\Users\Janeau\Google Drive\Master Thesis\Matlab\Proof of principle
measurements');
 addpath('C:\Users\Janeau\Google Drive\Master Thesis\Matlab\Proof of principle
measurements\Concept 1 measurements');
 folder = 'C:\Users\Janeau\Google Drive\Master Thesis\Matlab\Proof of principle
measurements'; %the folder
end

%% 0 degree images

imnum = 1; %image number at middle
nametemplate = strcat(dataset,'overview0%d.tif'); %name pattern webcam images
thisfile = sprintf(nametemplate, imnum); %create filename
fullname = fullfile(folder, thisfile); %folder and all
RGB = imread(fullname); %Read first image
RGB = flipud(RGB); %change image data to correct axis
figure(6)
imshow(RGB);
axis xy

imnum = 1; %image number at middle
nametemplate = strcat(dataset,'closeup0%d.tif'); %name pattern microscope images
thisfile = sprintf(nametemplate, imnum); %create filename
fullname = fullfile(folder, thisfile); %folder and all
RGB = imread(fullname); %Read first image
RGB = flipud(RGB); %change image data to correct axis
figure(7)
imshow(RGB);
axis xy

%% Force deflection
fullname = fullfile(folder, filename);
dispforce = xlsread(fullname); %load force deflection data
dispforce(:,2) = dispforce(:,2)./1000-24; % m to mm and set from -24 to +26 mm
dispforce(:,4) = dispforce(:,4)*-1;

%% Image processing webcam

% Coordinates needed for scale and shift
pointexperiment = [811 729]; %fixed world
pointinventor = [-114.545 76.428]; %coordinates of same point in inventor
centerexperiment = [1573 228]; % left bottom corner of square
centerinventor = [-1,-1];
scale1 = [348 820];
scale2 = [196 461];
lengthexperiment = norm(scale2 - scale1); %length of link 7
lengthinventor = 61.211; %mm
scalefactor = lengthinventor/lengthexperiment;
shift = pointinventor - pointexperiment.*scalefactor; %shift to get 0,0 at 0,0 of inventor
centershift = (centerexperiment.*scalefactor + shift) - centerinventor %additional error
created by production/alignment inaccuraccy

centershift = [0 0];

imnum = 0;
for k = 1 : (numberofsteps+1)*numberofimages
 imnum = imnum + 1;
 thisfile = sprintf(nametemplate2, imnum); %create filename
 fullname = fullfile(folder, thisfile); %folder and all
 RGB = imread(fullname); %Read image
 RGB = flipud(RGB); %change image data to correct axis
 [input1(k,:),input2(k,:),input1scale(k,:),input2scale(k,:)] =
f_image_processing_webcam(RGB, shift, scalefactor, k);
 if plots == 1
 figure(7)
 plot(input1(:,1),input1(:,2),'k.-')
 figure(8)
 plot(input2(:,1),input2(:,2),'k.-')
 end
end

% Average images
input1scale = reshape(mean(reshape(input1scale,numberofimages,[]),1),[],2);
input2scale = reshape(mean(reshape(input2scale,numberofimages,[]),1),[],2);
inputvec = input2scale - input1scale;

%% Image processing microscope

% Coordinates needed for scale and shift
if dataset == '1'
 pointexperiment = [1058 662]; %point in image
 scale2 = [1592 665];
end
if dataset == '2'
 pointexperiment = [680 662]; %point in image
 scale2 = [1190 665];
end
if dataset == '3'
 pointexperiment = [695 833]; %point in image
 scale2 = [941 830];
end
if dataset == '4'
 pointexperiment = [695 833]; %point in image
 scale2 = [941 830];
end
if dataset == '5'
 pointexperiment = [695 833]; %point in image
 scale2 = [929 833];
end
if dataset == '6'
 pointexperiment = [683 848]; %point in image
 scale2 = [929 842];
end
if dataset == '7'
 pointexperiment = [686 848]; %point in image
 scale2 = [932 842];
end
if dataset == '8'
 pointexperiment = [929 779]; %point in image
 scale2 = [1121 779];
end
if dataset == '9'
 pointexperiment = [839 836]; %point in image
 scale2 = [1031 833];
end
if dataset == '10'
 pointexperiment = [839 836]; %point in image
 scale2 = [1031 833];
end
if dataset == '11'
 pointexperiment = [938 755]; %point in image
 scale2 = [1133 755];
end

pointinventor = [-1 -1]; %coordinates of same point in inventor
scale1 = pointexperiment;
lengthexperiment = norm(scale2 - scale1); %width of center square
lengthinventor = 2; %mm
scalefactor = lengthinventor/lengthexperiment;
shift = pointinventor - pointexperiment.*scalefactor; %shift to get 0,0 at 0,0 of inventor

% Red color
color = 'r';
imnum = 0;
for k = 1 : (numberofsteps+1)*numberofimages
 imnum = imnum + 1;
 thisfile = sprintf(nametemplate1, imnum); %create filename
 fullname = fullfile(folder, thisfile); %folder and all
 RGB = imread(fullname); %Read image
 RGB = flipud(RGB); %change image data to correct axis
 [output1(k,:),output2(k,:),output1scale(k,:),output2scale(k,:)] =
f_image_processing_micro(RGB, shift, centershift, scalefactor, color, k);
 if plots == 1
 figure(7)
 plot(output1(:,1),output1(:,2),'k.-')
 figure(8)
 plot(output2(:,1),output2(:,2),'k.-')
 end
end

% Blue color
color = 'b';
imnum = 0;
for k = 1 : (numberofsteps+1)*numberofimages
 imnum = imnum + 1;
 thisfile = sprintf(nametemplate1, imnum); %create filename
 fullname = fullfile(folder, thisfile); %folder and all
 RGB = imread(fullname); %Read image
 RGB = flipud(RGB); %change image data to correct axis
 [output3(k,:),output4(k,:),output3scale(k,:),output4scale(k,:)] =
f_image_processing_micro(RGB, shift, centershift, scalefactor, color, k);
 if plots == 1

 figure(7)
 plot(output3(:,1),output3(:,2),'k.-')
 figure(8)
 plot(output4(:,1),output4(:,2),'k.-')
 end
end

% Average over multiple images
output1scale = reshape(mean(reshape(output1scale,numberofimages,[]),1),[],2);
output2scale = reshape(mean(reshape(output2scale,numberofimages,[]),1),[],2);
output3scale = reshape(mean(reshape(output3scale,numberofimages,[]),1),[],2);
output4scale = reshape(mean(reshape(output4scale,numberofimages,[]),1),[],2);
outputvec = output2scale - output1scale;

% Path of center
distancetocenter1 = norm(output1scale(numberofsteps/2+1,:));
distancetocenter2 = norm(output2scale(numberofsteps/2+1,:));
prevcenter = [0; 0];
for k = 1 : numberofsteps+1
 center(k,:) =
f_linkintersect(output1scale(k,:),output2scale(k,:),distancetocenter1,distancetocenter2,prevce
nter);
 prevcenter = center(k,:)';
end

% Assign locations of tracked points and center in workspace
assignin('base','output1scale',output1scale);
assignin('base','output2scale',output2scale);
assignin('base','output3scale',output3scale);
assignin('base','output4scale',output4scale);
assignin('base','centershift',centershift);
assignin('base','centerE',center);

% Save locations of tracked points
filename = strcat(dataset,'trackedpoints.xlsx');
trackedpoints = [output1scale output2scale output3scale output4scale];
xlswrite(filename,trackedpoints)

%% RCM line calculation
coordinates1 = [output1scale(:,1) output2scale(:,1) output1scale(:,2) output2scale(:,2)];
coordinates2 = [output3scale(:,1) output4scale(:,1) output3scale(:,2) output4scale(:,2)];
coordinates3 = [output1scale(:,1) output3scale(:,1) output1scale(:,2) output3scale(:,2)];
coordinates4 = [output2scale(:,1) output4scale(:,1) output2scale(:,2) output4scale(:,2)];

[rcmx1, rcmy1] = f_RCMcalculatorgrid(coordinates1); % RCM line
[rcmx2, rcmy2] = f_RCMcalculatorgrid(coordinates2); % RCM line
[rcmx3, rcmy3] = f_RCMcalculatorgrid(coordinates3); % RCM line
[rcmx4, rcmy4] = f_RCMcalculatorgrid(coordinates4); % RCM line

%% Rotation ratio
for k = 1 : numberofsteps+1
 inoutputvec = output2scale(numberofsteps/2+1,:) - output1scale(numberofsteps/2+1,:);
 outputangle(k,:) = abs(f_vrot2(inoutputvec, outputvec(k,:)));

 ininputvec = input2scale(numberofsteps/2+1,:) - input1scale(numberofsteps/2+1,:);
 inputangle(k,:) = abs(f_vrot2(ininputvec, inputvec(k,:)));

 ratio(k) = outputangle(k,:)/inputangle(k,:);
end
ratio = ratio(1,2:end);

%% Plots
figure(2)
rectangle('Position',[centershift(1)-1 centershift(2)-1 2 2])

% Point data
plot(output1scale(:,1),output1scale(:,2),'.-','Color',c3)
plot(output2scale(:,1),output2scale(:,2),'.-','Color',c3)
plot(output3scale(:,1),output3scale(:,2),'.-','Color',c3)
plot(output4scale(:,1),output4scale(:,2),'.-','Color',c3)

% Point center
pcenter = round(length(output1scale)/2);
plot(output1scale(pcenter,1),output1scale(pcenter,2),'.','Color',c8)
plot(output2scale(pcenter,1),output2scale(pcenter,2),'.','Color',c8)
plot(output3scale(pcenter,1),output3scale(pcenter,2),'.','Color',c8)
plot(output4scale(pcenter,1),output4scale(pcenter,2),'.','Color',c8)

% RCM data
plot(rcmx1,rcmy1,'.-','Color',c4)
plot(rcmx2,rcmy2,'.-','Color',c5)
plot(rcmx3,rcmy3,'.-','Color',c6)
plot(rcmx4,rcmy4,'.-','Color',c7)

% RCM center
rcmcenter = round(length(rcmx1)/2);
plot(rcmx1(rcmcenter),rcmy1(rcmcenter),'.','Color',c8)

plot(rcmx2(rcmcenter),rcmy2(rcmcenter),'.','Color',c8)
plot(rcmx3(rcmcenter),rcmy3(rcmcenter),'.','Color',c8)
plot(rcmx4(rcmcenter),rcmy4(rcmcenter),'.','Color',c8)

plot(centershift(1),centershift(2),'+','Color',c5)
plot(center(:,1),center(:,2),'.-','Color',c6)

% plot(rcmx1,rcmy1,'r.-')

figure(4)
plot(dispforce(:,2),dispforce(:,4),'.-','Color',c3)

figure(5)
plot(dispforce(:,2),ratio(1,:),'.-','Color',c3)
end

D.6. f_nohingeshift
function [outputcoordinates, force, forcetotal, rotationratio] =
f_nohingeshift(ihingecoordinates,number,stepsize,hingelength,ihingeorientations)
%This functiom calculates the rotated mechanism when hinge shift is not taken into
%consideration. Number is the number of iterations, stepsize the size of
%each iteration in degrees.

global c1 c2 c3 c4 c5 c6
%% Plot coordinates without parasitic motion and get initial hinge orientation
th = number*stepsize;
[nphingecoordinates, nphingeangles, ilinkvectors] =
f_mechanismkinematics(ihingecoordinates,th);

o1 = ihingeorientations(1,1); %hinge orientation angles
o2 = ihingeorientations(2,1);
o3 = ihingeorientations(3,1);
o4 = ihingeorientations(4,1);
o5 = ihingeorientations(5,1);
o6 = ihingeorientations(6,1);
o7 = ihingeorientations(7,1);
o8 = ihingeorientations(8,1);
o9 = ihingeorientations(9,1);
o10 = ihingeorientations(10,1);

R1 = [cosd(o1) -sind(o1) ;sind(o1) cosd(o1)];
R2 = [cosd(o2) -sind(o2) ;sind(o2) cosd(o2)];
R3 = [cosd(o3) -sind(o3) ;sind(o3) cosd(o3)];
R4 = [cosd(o4) -sind(o4) ;sind(o4) cosd(o4)];
R5 = [cosd(o5) -sind(o5) ;sind(o5) cosd(o5)];
R6 = [cosd(o6) -sind(o6) ;sind(o6) cosd(o6)];
R7 = [cosd(o7) -sind(o7) ;sind(o7) cosd(o7)];
R8 = [cosd(o8) -sind(o8) ;sind(o8) cosd(o8)];
R9 = [cosd(o9) -sind(o9) ;sind(o9) cosd(o9)];
R10 = [cosd(o10) -sind(o10) ;sind(o10) cosd(o10)];

ioh12 = R1*[1; 0]; %initial hinge orientation
ioh13 = R2*[1; 0];
ioh24 = R3*[1; 0];
ioh26 = R4*[1; 0];
ioh34 = R5*[1; 0];
ioh45 = R6*[1; 0];
ioh56 = R7*[1; 0];
ioh57 = R8*[1; 0];
ioh68 = R9*[1; 0];
ioh78 = R10*[1; 0];

ihingeorientation = [ioh12 ioh13 ioh24 ioh26 ioh34 ioh45 ioh56 ioh57 ioh68 ioh78];
ihingeorientation = ihingeorientation./vecnorm(ihingeorientation);

%For negative rotation
if stepsize <= 0
 ihingeorientation = ihingeorientation*-1;
end

% Plot initial hinge coordinates and rotated coordinates without parasitic motion
figure(3)
% plot(ihingecoordinates(1,[5 2 1 3 5 6 8 7 9 10 11 10 8 7 4 12 4 3]),ihingecoordinates(2,[5 2
1 3 5 6 8 7 9 10 11 10 8 7 4 12 4 3]),'.-','Color',c1)
hold on
% plot(nphingecoordinates(1,[5 2 1 3 5 6 8 7 9 10 11 10 8 7 4 12 4 3]),nphingecoordinates(2,[5
2 1 3 5 6 8 7 9 10 11 10 8 7 4 12 4 3]),'.-','Color',c2)

%% Loop
prevhingerotation = zeros(1,length(ihingeorientation)); %set initial hinge rotations to zero
prevrotpoint = zeros(2,length(ihingeorientation)); %set initial rotation points to zero
motionvsave = zeros(2,length(ihingeorientation)); %reset initial parasitic motion save vector
starthingecoordinates = ihingecoordinates; %rename initial hinge coordiantes for loop

for j = 1:number %number of steps
%% Calculate initial hinge angles
th = 0; %rotation angle
[starthingecoordinates, ihingeangles] = f_mechanismkinematics(starthingecoordinates,th);

%% Calculate hinge coordinates and hinge angles of rotated mechanism
th = stepsize; %angle stepsize
[hingecoordinates, hingeangles, ilinkvectorsstep, linkvectors] =
f_mechanismkinematics(starthingecoordinates,th);

% plot(ihingecoordinates(1,:),ihingecoordinates(2,:),'.')
% plot(hingecoordinates(1,:),hingecoordinates(2,:),'.')

%% Calculate hinge rotation
rotationstep = abs(hingeangles - ihingeangles)
hingerotation = prevhingerotation + rotationstep

%% Calculate input and output link rotation
inputrot(j) = f_vrot2(ilinkvectors(:,2),linkvectors(:,2));
outputrot(j) = f_vrot2(ilinkvectors(:,13),linkvectors(:,13));

%% Calculate parasitic motion of icr
for k = 1:length(ihingeorientation) %calculate motion vector for every hinge
[motion(k), rotpoint(:,k)] =
f_ICRflexure(prevrotpoint(:,k),prevhingerotation(k),hingerotation(k),hingelength); %calculate
motion along symmetric axis of hinge
rot = prevhingerotation(k)/2; %rotation of symmetric axis
R = [cosd(rot) -sind(rot) ;sind(rot) cosd(rot)] ; %rotation matrix
hingeorientation(:,k) = R*ihingeorientation(:,k); %current hinge orientation
motionv(:,k) = motion(k).*hingeorientation(:,k); %parasitic motion of hinge
end

motionvsave(2*j-1:2*j,:) = motionv; %save all parasitic displacements

xsum68 = sum(motionvsave(1:2:end,9));
ysum68 = sum(motionvsave(2:2:end,9));
xsum78 = sum(motionvsave(1:2:end,10));
ysum78 = sum(motionvsave(2:2:end,10));
totalparmotion = [xsum68 xsum78; ysum68 ysum78];

shiftedstarthingecoordinates = starthingecoordinates;
shiftedstarthingecoordinates(:,1:10) = starthingecoordinates(:,1:10); %calculate new hinge
coordinates (with parasitic motion)
outputcoordinates(j,[1 2]) = shiftedstarthingecoordinates(1,[9 10]) - totalparmotion(1,:); %x
values
outputcoordinates(j,[3 4]) = shiftedstarthingecoordinates(2,[9 10]) - totalparmotion(2,:); %y
values

% plot(shiftedstarthingecoordinates(1,:),shiftedstarthingecoordinates(2,:),'.','Color',[0/255,
100/255, 100/255])

%% Run shifted coordinates of rotated mechanism
[rotatedhingecoordinates, hingeangles] =
f_mechanismkinematics(shiftedstarthingecoordinates,th);
% plot(rotatedhingecoordinates(1,:),rotatedhingecoordinates(2,:),'.','Color',[142/255, 48/255,
160/255])

% outputcoordinates(j,[1 2]) = rotatedhingecoordinates(1,[9 10]) - totalparmotion(1,:); %x
values
% outputcoordinates(j,[3 4]) = rotatedhingecoordinates(2,[9 10]) - totalparmotion(2,:); %y
values

%% Calculate potential energy in mechanism and actuation force

% Leaf sprinng characteristics
w = 8*10^-3; %mm*10^-3
h = 0.15*10^-3;
Iy = 1/12*w*h^3;
E = 183*10^9;
l = 12*10^-3;

stiff = E*Iy/l;
dxactuator(j) = rotatedhingecoordinates(1,12)-starthingecoordinates(1,12); %%mm
xactuator(j) = rotatedhingecoordinates(1,12)-ihingecoordinates(1,12); %%mm

forcestep(j) = 2*sum(1/2*stiff.*(deg2rad(rotationstep)).^2)/(dxactuator(j)/1000);
force(j) = sum(forcestep);

forcetotal(j) =
2*sum(stiff*1/2*deg2rad(hingerotation).*deg2rad(hingerotation))/(xactuator(j)/1000);

% potenergystep(j) = sum(stiff*deg2rad(hingerotation).*deg2rad(rotationstep));
% forcetotalstep(j) = 2*potenergystep(j)/(dxactuator(j)/1000)
% forcetotal(j) = sum(forcetotalstep);

%% Update values for new loop

prevrotpoint = rotpoint;
prevhingerotation = hingerotation;
starthingecoordinates = rotatedhingecoordinates;

end
rotationratio = outputrot./inputrot;

%% Plot rotated mechanism with parasitic motion
figure(3)
% plot(outputcoordinates(:,1),outputcoordinates(:,3),'g.')
% plot(rotatedhingecoordinates(1,[5 2 1 3 5 6 8 7 9 10 11 10 8 7 4 12 4
3]),rotatedhingecoordinates(2,[5 2 1 3 5 6 8 7 9 10 11 10 8 7 4 12 4 3]),'.-','Color',c3)
end

D.7. f_hingeshift
function [outputcoordinates, force, dxactuatormiddle, xactuator, rotationratio] =
f_hingeshift(ihingecoordinates,number,stepsize,hingelength,ihingeorientations)
%This functiom calculates the rotated mechanism when hinge shift is taken into
%consideration. Number is the number of iterations, stepsize the size of
%each iteration in degrees.

global c1 c2 c3 c4 c5 c6
%% Plot coordinates without parasitic motion and get initial hinge orientation
th = number*stepsize;
[nphingecoordinates, nphingeangles, ilinkvectors] =
f_mechanismkinematics(ihingecoordinates,th);

o1 = ihingeorientations(1,1); %hinge orientation angles
o2 = ihingeorientations(2,1);
o3 = ihingeorientations(3,1);
o4 = ihingeorientations(4,1);
o5 = ihingeorientations(5,1);
o6 = ihingeorientations(6,1);
o7 = ihingeorientations(7,1);
o8 = ihingeorientations(8,1);
o9 = ihingeorientations(9,1);
o10 = ihingeorientations(10,1);

R1 = [cosd(o1) -sind(o1) ;sind(o1) cosd(o1)];
R2 = [cosd(o2) -sind(o2) ;sind(o2) cosd(o2)];
R3 = [cosd(o3) -sind(o3) ;sind(o3) cosd(o3)];
R4 = [cosd(o4) -sind(o4) ;sind(o4) cosd(o4)];
R5 = [cosd(o5) -sind(o5) ;sind(o5) cosd(o5)];
R6 = [cosd(o6) -sind(o6) ;sind(o6) cosd(o6)];
R7 = [cosd(o7) -sind(o7) ;sind(o7) cosd(o7)];
R8 = [cosd(o8) -sind(o8) ;sind(o8) cosd(o8)];
R9 = [cosd(o9) -sind(o9) ;sind(o9) cosd(o9)];
R10 = [cosd(o10) -sind(o10) ;sind(o10) cosd(o10)];

ioh12 = R1*[1; 0]; %initial hinge orientation
ioh13 = R2*[1; 0];
ioh24 = R3*[1; 0];
ioh26 = R4*[1; 0];
ioh34 = R5*[1; 0];
ioh45 = R6*[1; 0];
ioh56 = R7*[1; 0];
ioh57 = R8*[1; 0];
ioh68 = R9*[1; 0];
ioh78 = R10*[1; 0];

ihingeorientation = [ioh12 ioh13 ioh24 ioh26 ioh34 ioh45 ioh56 ioh57 ioh68 ioh78];
ihingeorientation = ihingeorientation./vecnorm(ihingeorientation);

% For negative rotation
if stepsize <= 0
 ihingeorientation = ihingeorientation*-1;
end

% Plot initial hinge coordinates and rotated coordinates without parasitic motion
figure(3)
plot(ihingecoordinates(1,[5 2 1 3 5 6 8 7 9 10 11 10 8 7 4 12 4 3]),ihingecoordinates(2,[5 2 1
3 5 6 8 7 9 10 11 10 8 7 4 12 4 3]),'.-','Color',c1)
hold on
plot(nphingecoordinates(1,[5 2 1 3 5 6 8 7 9 10 11 10 8 7 4 12 4 3]),nphingecoordinates(2,[5 2
1 3 5 6 8 7 9 10 11 10 8 7 4 12 4 3]),'.-','Color',c2)

%% Loop
prevhingerotation = zeros(1,length(ihingeorientation)); %set initial hinge rotations to zero
prevrotpoint = zeros(2,length(ihingeorientation)); %set initial rotation points to zero
motionvsave = zeros(2,length(ihingeorientation)); %reset initial parasitic motion save vector
starthingecoordinates = ihingecoordinates; %rename initial hinge coordiantes for loop

for j = 1:number %number of steps
%% Calculate initial hinge angles

th = 0; %rotation angle
[starthingecoordinates, ihingeangles] = f_mechanismkinematics(starthingecoordinates,th);

%% Calculate hinge coordinates and hinge angles of rotated mechanism
th = stepsize; %angle stepsize
[hingecoordinates, hingeangles, ilinkvectorsstep, linkvectors] =
f_mechanismkinematics(starthingecoordinates,th);

% plot(ihingecoordinates(1,:),ihingecoordinates(2,:),'.')
% plot(hingecoordinates(1,:),hingecoordinates(2,:),'.')

%% Calculate hinge rotation
hingerotation = prevhingerotation + abs(hingeangles - ihingeangles);

%% Calculate input and output link rotation
inputrot(j) = f_vrot2(ilinkvectors(:,2),linkvectors(:,2));
outputrot(j) = f_vrot2(ilinkvectors(:,13),linkvectors(:,13));

%% Calculate parasitic motion of icr
for k = 1:length(ihingeorientation) %calculate motion vector for every hinge
[motion(k), rotpoint(:,k)] =
f_ICRflexure(prevrotpoint(:,k),prevhingerotation(k),hingerotation(k),hingelength); %calculate

motion along symmetric axis of hinge
rot = prevhingerotation(k)/2; %rotation of symmetric axis
R = [cosd(rot) -sind(rot) ;sind(rot) cosd(rot)] ; %rotation matrix
hingeorientation(:,k) = R*ihingeorientation(:,k); %current hinge orientation
motionv(:,k) = motion(k).*hingeorientation(:,k); %parasitic motion of hinge
end

motionvsave(2*j-1:2*j,:) = motionv; %save all parasitic displacements

xsum68 = sum(motionvsave(1:2:end,9));
ysum68 = sum(motionvsave(2:2:end,9));
xsum78 = sum(motionvsave(1:2:end,10));
ysum78 = sum(motionvsave(2:2:end,10));
totalparmotion = [xsum68 xsum78; ysum68 ysum78];

shiftedstarthingecoordinates = starthingecoordinates;
shiftedstarthingecoordinates(:,1:10) = starthingecoordinates(:,1:10) + motionv; %calculate new
hinge coordinates (with parasitic motion)
outputcoordinates(j,[1 2]) = shiftedstarthingecoordinates(1,[9 10]) - totalparmotion(1,:); %x
values
outputcoordinates(j,[3 4]) = shiftedstarthingecoordinates(2,[9 10]) - totalparmotion(2,:); %y
values

% plot(shiftedstarthingecoordinates(1,:),shiftedstarthingecoordinates(2,:),'.','Color',[0/255,
100/255, 100/255])

%% Run shifted coordinates of rotated mechanism
[rotatedhingecoordinates, hingeangles] =
f_mechanismkinematics(shiftedstarthingecoordinates,th);
% plot(rotatedhingecoordinates(1,:),rotatedhingecoordinates(2,:),'.','Color',[142/255, 48/255,
160/255])

% outputcoordinates(j,[1 2]) = rotatedhingecoordinates(1,[9 10]) - totalparmotion(1,:); %x
values
% outputcoordinates(j,[3 4]) = rotatedhingecoordinates(2,[9 10]) - totalparmotion(2,:); %y
values

%% Calculate potential energy in mechanism and actuation force

% Leaf spring characteristics
w = 8*10^-3; %mm*10^-3
h = 0.15*10^-3;
Iy = 1/12*w*h^3;
E = 183*10^9;
l = 12*10^-3;

stiff = E*Iy/l;
potenergyincrease = sum(0.5*stiff.*(deg2rad(hingeangles - ihingeangles)).^2); %potential
energy of step
totalpotenergy = sum(0.5*stiff.*(deg2rad(hingeangles)).^2); %total potential energy

dxactuator(j) = rotatedhingecoordinates(1,12)-starthingecoordinates(1,12); %%mm
xactuator(j) = rotatedhingecoordinates(1,12)-ihingecoordinates(1,12); %%mm
dxactuatormiddle(j) = xactuator(j) - dxactuator(j)/2; %mm

forceincrease(j) = potenergyincrease/(dxactuator(j)/1000);
force(j) = sum(forceincrease);
forcetotal(j) = totalpotenergy/(xactuator(j)/1000);
forcetotal1 = stiff.*deg2rad(hingeangles).*deg2rad(hingeangles -
ihingeangles)/(dxactuator(j)/1000);

%% Update values for new loop
prevrotpoint = rotpoint;
prevhingerotation = hingerotation;

starthingecoordinates = rotatedhingecoordinates;

end
rotationratio = outputrot./inputrot;

%% Plot rotated mechanism with parasitic motion
figure(3)
% plot(outputcoordinates(:,1),outputcoordinates(:,3),'g.')
plot(rotatedhingecoordinates(1,[5 2 1 3 5 6 8 7 9 10 11 10 8 7 4 12 4
3]),rotatedhingecoordinates(2,[5 2 1 3 5 6 8 7 9 10 11 10 8 7 4 12 4 3]),'.-','Color',c3)
end

D.8. f_RCMcalculator
function [rcmx, rcmy] = f_RCMcalculator(coordinates)
%Calculates the location of the RCM by using the data of the movement of
%two points on the final link.

coordinates = coordinates(1:round(length(coordinates)/30):end,:);

th = 90; %rotation angle
R = [cosd(th) -sind(th) ;sind(th) cosd(th)]; %rotation matrix
for i = 1:length(coordinates)-1
 dx1(i,1) = (coordinates(i+1,1)-coordinates(i,1)); %x movement
 dy1(i,1) = (coordinates(i+1,3)-coordinates(i,3)); %x movement
 slopevector1(i,1:2) = (R*[dx1(i,1); dy1(i,1)])'; %calculate slope vector
 slope1(i,1) = slopevector1(i,2)/slopevector1(i,1); %calculate slope
 center1(i,:) = [coordinates(i,1)+dx1(i,1)/2; coordinates(i,3)+dy1(i,1)/2]; %calculate
midpoint on displacement vector
 height1(i,1) = center1(i,2)-slope1(i,1)*center1(i,1); %calculate b value in ax+b line

 dx2(i,1) = (coordinates(i+1,2)-coordinates(i,2));
 dy2(i,1) = (coordinates(i+1,4)-coordinates(i,4));
 slopevector2(i,1:2) = (R*[dx2(i,1); dy2(i,1)])';
 slope2(i,1) = slopevector2(i,2)/slopevector2(i,1);
 center2(i,:) = [coordinates(i,2)+dx2(i,1)/2; coordinates(i,4)+dy2(i,1)/2];
 height2(i,1) = center2(i,2)-slope2(i,1)*center2(i,1);

 rcmx(i,1) = (height2(i,1)-height1(i,1))/(slope1(i,1)-slope2(i,1)); %x coordinate of RCM
 rcmy(i,1) = slope1(i,1)*rcmx(i,1)+height1(i,1); %y coordinate of RCM
end
end

D.9. f_fourbar
function [hingecoordinates, linkrotations] = f_fourbar(hingecoordinates,rotationangle)
%Calculation of coordinates of hinge points of four bar mechanism when the
%input link is rotated
h12 = hingecoordinates(:,1); %hinge coordinates
h13 = hingecoordinates(:,2);
h24 = hingecoordinates(:,3);
h34 = hingecoordinates(:,4);

th = rotationangle; %rotation angle

ilv1 = h13 - h12; %link vectors
ilv2 = h12 - h24;
ilv3 = h13 - h34;
ilv4 = h34 - h24;

ill1 = norm(ilv1); %link lengths
ill2 = norm(ilv2);
ill3 = norm(ilv3);
ill4 = norm(ilv4);

% Calculate h24
R = [cosd(th) -sind(th) ;sind(th) cosd(th)]; %rotation matrix
h24 = h12 - R*ilv2;

% Calculate h34
h34 = f_linkintersect(h24,h13,ill4,ill3,h34);

hingecoordinates = [h12 h13 h24 h34];

% Calculate link vectors
lv1 = h13 - h12; %link vectors
lv2 = h12 - h24;
lv3 = h13 - h34;
lv4 = h34 - h24;

% Calculate link rotations
rl1 = f_vrot(ilv1,lv1);
rl2 = f_vrot(ilv2,lv2);

rl3 = f_vrot(ilv3,lv3);
rl4 = f_vrot(ilv4,lv4);

linkrotations = [rl1 rl2 rl3 rl4]';
end

D.10. f_image_processing_webcam
function [input1,input2,input1scale,input2scale] = f_image_processing_webcam(RGB, shift,
scalefactor, k)
%Analyze RGB webcam image data and output the location of the dots.

global irangex3 irangey3 irangex4 irangey4 plots
% Search settings
filt1 = 0.3; %Value threshold of first filter
filt2 = 0.3; %saturation threshold of second filter
filt3 = 25/360; %saturation threshold of third filter
filt4 = 0.60; %saturation threshold of fourth filter
searcharea = 25; %size of search area for second filter
plotarea = 150; %size of additional area around searcharea to plot

HSV = rgb2hsv(RGB); %Convert to hsv
GRY = rgb2gray(RGB);%Convert to grayscale
GRY = im2double(GRY); %Convert to double

%% Analysis
H = HSV(:,:,1);
S = HSV(:,:,2);
V = HSV(:,:,3);

% Coordinate matrix
M = zeros(size(H));
M(400:end,150:650) = 1; %select area

%% Remove pixels with low value

M(V <= filt1) = 0;
[yf2, xf2] = find(M == 1);

%% Get pixels with high saturation
M(S <= filt2) = 0;
[yf3, xf3] = find(M == 1);

%% Get pixels that have a certain color
%remove pixels that are within 20/350 bounds of red hue (or 160/260 for blue, 80/160 for
green)

M(H >= filt3) = 0; %red
[yf4, xf4] = find(M == 1);

% M(H < (160/360)) = 0; %blue
% M(H > (260/360)) = 0;

% M(H < (60/360)) = 0; %green
% M(H > (180/360)) = 0;

%% Seperate input1 and input2 link pixels

% Average recognized point locations
meanx1 = mean(xf4);
meany1 = mean(yf4);

% Split point data between input and input link
xinput1 = xf4(yf4 <= meany1);
xinput2 = xf4(yf4 >= meany1);
yinput1 = yf4(yf4 <= meany1);
yinput2 = yf4(yf4 >= meany1);

%% Average of two point collections
% Combine x and y data
input1 = [xinput1 yinput1];
input2 = [xinput2 yinput2];

% Calculate center of points
input1 = mean(input1);
input2 = mean(input2);

%% Increase accuracy of input1

rangex3 = round(input1(1,1))-searcharea:round(input1(1,1))+searcharea;
rangey3 = round(input1(1,2))-searcharea:round(input1(1,2))+searcharea;

if k == 1
 irangex3 = rangex3;

 irangey3 = rangey3;
end

% New coordiantes matrix
N = zeros(size(H));
N(rangey3,rangex3) = 1;

% Find high saturation points
N(S <= filt4) = 0;
[yinput1, xinput1] = find(N == 1);
input1 = [xinput1 yinput1];
input1 = mean(input1);

%% Increase accuracy of input2

rangex4 = round(input2(1))-searcharea:round(input2(1))+searcharea;
rangey4 = round(input2(2))-searcharea:round(input2(2))+searcharea;

if k == 1
 irangex4 = rangex4;
 irangey4 = rangey4;
end

% New coordinates matrix
N = zeros(size(H));
N(rangey4,rangex4) = 1;

% Find high saturation points
N(S <= filt4) = 0;
[yinput2, xinput2] = find(N == 1);
input2 = [xinput2 yinput2];
input2 = mean(input2);

%% Plots
if plots == 1
figure(6)
hold off
imshow(RGB);
hold on
set(gcf,'Position',[0 500 780 500])
axis xy
axis on
axis([150,650,400,900])
rectangle('Position',[rangex3(1) rangey3(1) searcharea*2 searcharea*2])
rectangle('Position',[rangex4(1) rangey4(1) searcharea*2 searcharea*2])

plot(xf4,yf4,'c.')

plot(input1(1), input1(2),'w.')
plot(input2(1), input2(2),'w.')
plot([meanx1 meanx1+500],[meany1 meany1], 'r.-')

figure(7)
hold off
imshow(RGB)
hold on
set(gcf,'Position',[960 50 480 400])
axis xy
axis on
axis([irangex3(1)-plotarea irangex3(end)+plotarea irangey3(1)-plotarea
irangey3(end)+plotarea])

h1 = plot(xinput1, yinput1,'c.');
h2 = plot(input1(1), input1(2),'k.');

figure(8)
hold off
imshow(RGB);
hold on
set(gcf,'Position',[1440 50 480 400])
axis xy
axis on
axis([irangex4(1)-plotarea irangex4(end)+plotarea irangey4(1)-plotarea
irangey4(end)+plotarea])

h3 = plot(xinput2, yinput2,'c.');
h4 = plot(input2(1), input2(2),'k.');
end

%% Adjust coordinates for correct axis
input1scale = input1.*scalefactor + shift;
input2scale = input2.*scalefactor + shift;
end

D.11. f_image_processing_micro
function [output1,output2,output1scale,output2scale] = f_image_processing_micro(RGB, shift,
centershift, scalefactor, color, k)
%Analyze RGB microsope image data and output the location of the dots.

global irangex3 irangey3 irangex4 irangey4 dataset plots
% Search settings
filt1 = 0.35; %Value threshold of first filter
filt2 = 0.7; %saturation threshold of second filter
filt4 = 0.70; %saturation threshold of fourth filter

if dataset == '4'
 searcharea = 100; %size of search area for second filter
 plotarea = 150; %size of additional area around searcharea to plot
elseif dataset == '5'
 searcharea = 100; %size of search area for second filter
 plotarea = 150; %size of additional area around searcharea to plot
elseif dataset == '6'
 searcharea = 100; %size of search area for second filter
 plotarea = 150; %size of additional area around searcharea to plot
elseif dataset == '7'
 searcharea = 100; %size of search area for second filter
 plotarea = 150; %size of additional area around searcharea to plot
elseif dataset == '10'
 searcharea = 110; %size of search area for second filter
 plotarea = 150; %size of additional area around searcharea to plot
elseif dataset == '11'
 searcharea = 110; %size of search area for second filter
 plotarea = 150; %size of additional area around searcharea to plot
else
 searcharea = 200; %size of search area for second filter
 plotarea = 150; %size of additional area around searcharea to plot
end

HSV = rgb2hsv(RGB); %Convert to hsv
GRY = rgb2gray(RGB);%Convert to grayscale
GRY = im2double(GRY); %Convert to double

%% Analysis
H = HSV(:,:,1);
S = HSV(:,:,2);
V = HSV(:,:,3);

% Coordinate matrix
M = ones(size(H));

%% Remove pixels with low value
% Remove blue line at bottom
M(1,:) = 0;

M(V <= filt1) = 0;
[yf2, xf2] = find(M == 1);

%% Get pixels with high saturation
M(S <= filt2) = 0;
[yf3, xf3] = find(M == 1);

%% Get pixels that have a certain color
%remove pixels that are within 20/350 bounds of red hue (or 160/260 for blue, 80/160 for
green)

if color == 'r'

 M(H >= 10/360) = 0; %red
else
 M(H <= (160/360)) = 0; %blue
 M(H >= (260/360)) = 0;
end

[yf4, xf4] = find(M == 1);

% M(H < (60/360)) = 0; %green
% M(H > (180/360)) = 0;

%% Seperate output1 and output2 link pixels

% Average recognized point locations
meanx1 = mean(xf4);
meany1 = mean(yf4);

% Split point data between input and output link (xsplit)
xoutput1 = xf4(xf4 <= meanx1);
xoutput2 = xf4(xf4 >= meanx1);
youtput1 = yf4(xf4 <= meanx1);
youtput2 = yf4(xf4 >= meanx1);

%% Average of two point collections
% Combine x and y data
output1 = [xoutput1 youtput1];
output2 = [xoutput2 youtput2];

% Calculate center of points
output1 = mean(output1);
output2 = mean(output2);

%% Increase accuracy of output1

rangex3 = round(output1(1))-searcharea:round(output1(1))+searcharea;
rangey3 = round(output1(2))-searcharea:round(output1(2))+searcharea;

if k == 1
 irangex3 = rangex3;
 irangey3 = rangey3;
end

% New coordiantes matrix
N = zeros(size(H));
N(rangey3,rangex3) = 1;

% Find high saturation points
N(S <= filt4) = 0;
[youtput1, xoutput1] = find(N == 1);
output1 = [xoutput1 youtput1];
output1 = mean(output1);

%% Increase accuracy of output2

rangex4 = round(output2(1))-searcharea:round(output2(1))+searcharea;
rangey4 = round(output2(2))-searcharea:round(output2(2))+searcharea;

if k == 1
 irangex4 = rangex4;
 irangey4 = rangey4;
end

% New coordinates matrix
N = zeros(size(H));
N(rangey4,rangex4) = 1;

% Find high saturation points
N(S <= filt4) = 0;
[youtput2, xoutput2] = find(N == 1);
output2 = [xoutput2 youtput2];
output2 = mean(output2);

%% Plots
if plots == 1
figure(6)
hold off
imshow(RGB);
hold on
set(gcf,'Position',[0 500 780 500])
axis xy
axis on

plot(xf3,yf3,'g.')
plot(xf4,yf4,'c.')

rectangle('Position',[rangex3(1) rangey3(1) searcharea*2 searcharea*2])
rectangle('Position',[rangex4(1) rangey4(1) searcharea*2 searcharea*2])

plot(output1(1), output1(2),'w.')
plot(output2(1), output2(2),'w.')
plot([meanx1 meanx1],[meany1 meany1+500], 'r.-')

figure(7)
hold off
imshow(RGB)
hold on
set(gcf,'Position',[960 50 480 400])
axis xy
axis on
axis([irangex3(1)-plotarea irangex3(end)+plotarea irangey3(1)-plotarea
irangey3(end)+plotarea])

h1 = plot(xoutput1, youtput1,'c.');
h2 = plot(output1(1), output1(2),'k.');

figure(8)
hold off
imshow(RGB);
hold on

set(gcf,'Position',[1440 50 480 400])
axis xy
axis on
axis([irangex4(1)-plotarea irangex4(end)+plotarea irangey4(1)-plotarea
irangey4(end)+plotarea])

h3 = plot(xoutput2, youtput2,'c.');
h4 = plot(output2(1), output2(2),'k.');
end

%% Adjust coordinates for correct axis
output1scale = output1.*scalefactor + shift + centershift;
output2scale = output2.*scalefactor + shift + centershift;
end

D.12. f_RCMcalculatorgrid
function [xpoints, ypoints, gridrcm] = f_RCMcalculatorgrid(saveddata)
%Calculates the location of the RCM by using the data of the movement of
%four points on the final link.

% saveddata = saveddata(1:round(length(saveddata)/20):end,:);
gridsize = 500;

out1 = saveddata(:,1:2);
out2 = saveddata(:,3:4);
out3 = saveddata(:,5:6);
out4 = saveddata(:,7:8);

vec12 = out2-out1;
vec34 = out4-out3;
vec13 = out3-out1;
vec24 = out4-out2;

%% Calculate grid for every step
for i = 1:length(saveddata)
 %Create next grid
 for j = 1:gridsize-1
 point12(j,:) = out1(i,:) + j*vec12(i,:)/gridsize;
 point34(j,:) = out3(i,:) + j*vec34(i,:)/gridsize;
 point13(j,:) = out1(i,:) + j*vec13(i,:)/gridsize;
 point24(j,:) = out2(i,:) + j*vec24(i,:)/gridsize;
 end

 for k = 1:length(point12)
 for l = 1:length(point13)
 [xpoints(l,k,i),ypoints(l,k,i)] = f_lineintersect(point12(k,:), point34(k,:),
point13(l,:), point24(l,:));
 end
 end
end

%% Find RCM
for m = 1:size(saveddata,1)-1
 xdisp = xpoints(:,:,m+1)-xpoints(:,:,m);
 ydisp = ypoints(:,:,m+1)-ypoints(:,:,m);
 xdisp = reshape(xdisp,1,[]); %reshape to 1 row
 ydisp = reshape(ydisp,1,[]); %reshape to 1 row
 disp = [xdisp; ydisp];
 normdisp = vecnorm(disp);
 normdisp = reshape(normdisp, gridsize-1, gridsize-1);
 normdisp(:,:,m) = normdisp;
 minvalue = min(min(normdisp(:,:,m)));
 [row, col] = find(normdisp(:,:,m)==minvalue);
 gridrcm(m,:) = [xpoints(row,col,m) ypoints(row,col,m)];
end

D.13. f_vrot2
function [angled] = f_vrot2(a,b)
%Calculates the angle between two vectors.
x1 = a(1);
y1 = a(2);
x2 = b(1);
y2 = b(2);
angled = atan2d(x1*y2-y1*x2,x1*x2+y1*y2);
end

D.14. f_mechanismkinematics
function [hingecoordinates, hingeangles, ilinkvectors, linkvectors] =
f_mechanismkinematics(hingecoordinates,rotationangle)
%This is the kinematic model of the RCM mechanism. It calculates the new hinge
%coordinates as a function of the rotation angle.

ih12 = hingecoordinates(:,1); %hinge coordinates
ih13 = hingecoordinates(:,2);
ih24 = hingecoordinates(:,3);
ih26 = hingecoordinates(:,4);
ih34 = hingecoordinates(:,5);
ih45 = hingecoordinates(:,6);
ih56 = hingecoordinates(:,7);
ih57 = hingecoordinates(:,8);
ih68 = hingecoordinates(:,9);
ih78 = hingecoordinates(:,10);
ih88 = hingecoordinates(:,11);
ih66 = hingecoordinates(:,12);

th = rotationangle;
%rotation angle

%% Initial conditions
ilv1 = ih13 - ih12; %link vectors
ilv21 = ih12 - ih24;
ilv22 = ih24 - ih26;
ilv3 = ih13 - ih34;
ilv41 = ih34 - ih24;
ilv42 = ih45 - ih34;
ilv5 = ih45 - ih56;
ilv51 = ih45 - ih57;
ilv52 = ih57 - ih56;
ilv61 = ih56 - ih26;
ilv62 = ih68 - ih56;
ilv7 = ih78 - ih57;
ilv81 = ih78 - ih68;
ilv82 = ih88 - ih78;
ilv63 = ih66 - ih26;

ilinkvectors = [ilv1 ilv21 ilv22 ilv3 ilv41 ilv42 ilv5 ilv51 ilv52 ilv61 ilv62 ilv7 ilv81
ilv82 ilv63];

ill3 = norm(ilv3); %link lengths
ill41 = norm(ilv41);
ill5 = norm(ilv5);
ill61 = norm(ilv61);
ill7 = norm(ilv7);
ill81 = norm(ilv81);

%% Calculate h12 and h13
h12 = ih12;
h13 = ih13;

%% Calculate h24 and h26

R = [cosd(th) -sind(th) ;sind(th) cosd(th)]; %rotation matrix
h24 = h12 - R*ilv21;

h26 = h24 - R*ilv22;

%% Calculate h34 and h45

h34 = f_linkintersect(h13,h24,ill3,ill41,ih34);

lv41 = h34 - h24; %new link vector
th = f_vrot2(ilv41,lv41);
R = [cosd(th) -sind(th) ;sind(th) cosd(th)]; %rotation matrix
lv42 = R*ilv42; %new link vector
h45 = h34 + lv42;

%% Calculate h56 and h57

h56 = f_linkintersect(h26,h45,ill61,ill5,ih56);

lv5 = h45 - h56; %new link vector
th = f_vrot2(ilv5,lv5);
R = [cosd(th) -sind(th) ;sind(th) cosd(th)]; %rotation matrix
lv51 = R*ilv51; %new link vector
h57 = h45 - lv51;

%% Calculate h68

lv61 = h56 - h26; %new link vector
th = f_vrot2(ilv61,lv61);
R = [cosd(th) -sind(th) ;sind(th) cosd(th)]; %rotation matrix

lv62 = R*ilv62; %new link vector
h68 = h56 + lv62;

%% Calculate h78 and h88

h78 = f_linkintersect(h57,h68,ill7,ill81,ih78);

lv81 = h78 - h68; %new link vector
th = f_vrot2(ilv81,lv81);
R = [cosd(th) -sind(th) ;sind(th) cosd(th)]; %rotation matrix
lv82 = R*ilv82; %new link vector
h88 = h78 + lv82;

%% Calculate h66

lv61 = h56 - h26; %new link vector
th = f_vrot2(ilv61,lv61);
R = [cosd(th) -sind(th) ;sind(th) cosd(th)]; %rotation matrix
lv63 = R*ilv63; %new link vector
h66 = h26 + lv63;

%% Calculate new link vectors
lv1 = h13 - h12; %link vectors
lv21 = h12 - h24;
lv22 = h24 - h26;
lv3 = h13 - h34;
lv41 = h34 - h24;
lv42 = h45 - h34;
lv5 = h45 - h56;
lv51 = h45 - h57;
lv52 = h57 - h56;
lv61 = h56 - h26;
lv62 = h68 - h56;
lv7 = h78 - h57;
lv81 = h78 - h68;
lv82 = h88 - h78;
lv63 = h66 - h26;

linkvectors = [lv1 lv21 lv22 lv3 lv41 lv42 lv5 lv51 lv52 lv61 lv62 lv7 lv81 lv82 lv63];

ll1 = norm(lv1); %link lengths
ll21 = norm(lv21);
ll22 = norm(lv22);
ll3 = norm(lv3);
ll41 = norm(lv41);
ll42 = norm(lv42);
ll5 = norm(lv5);
ll51 = norm(lv51);
ll52 = norm(lv52);
ll61 = norm(lv61);
ll62 = norm(lv62);
ll7 = norm(lv7);
ll81 = norm(lv81);
ll82 = norm(lv82);
ll63 = norm(lv63);

%% Calculate hinge angles

ah12 = f_vrot2(lv1, lv21);
ah13 = f_vrot2(lv1, lv3);
ah24 = f_vrot2(lv21, lv41);
ah26 = f_vrot2(lv21, lv61);
ah34 = f_vrot2(lv3, lv41);
ah45 = f_vrot2(lv41, lv5);
ah56 = f_vrot2(lv5, lv61);
ah57 = f_vrot2(lv5, lv7);
ah68 = f_vrot2(lv61, lv81);
ah78 = f_vrot2(lv7, lv81);

%% Outputs
hingecoordinates = [h12 h13 h24 h26 h34 h45 h56 h57 h68 h78 h88 h66];
hingeangles = [ah12 ah13 ah24 ah26 ah34 ah45 ah56 ah57 ah68 ah78]; %save hinge angles
end

D.15. f_ICRflexure
function [motion, rotpoint] =
f_ICRflexure(prevrotpoint,prevhingerotation,hingerotation,hingelength)
%This function gives the parasitic motion along the symmetry line of the initial
%step. Inputs are the location of the rotation point of the previous step,
%the start rotation of the step and the end rotation, and the hinge length.

if prevhingerotation == 0
 arcradius = hingelength/(hingerotation/360*2*pi);
 arccenter = [arcradius hingelength/2];

 arcmiddlex = arcradius - arcradius*cosd(hingerotation/2); % middle of leaf spring is (0,0)
 arcmiddley = hingelength/2 - arcradius*sind(hingerotation/2);

 slope = (arccenter(2)-arcmiddley)/(arccenter(1)-arcmiddlex);
 height = arcmiddley-slope*arcmiddlex;

 rotax = -height/slope;
 rotay = slope*rotax+height;

 rotpoint = [rotax; rotay];
 %distance from previous rotation point to this one
 motion = norm(rotpoint - prevrotpoint);
else
 %initial rotation symmetry line
 arcradius = hingelength/(prevhingerotation/360*2*pi);
 arccenter = [arcradius hingelength/2];

 arcmiddlex = arcradius - arcradius*cosd(prevhingerotation/2);
 arcmiddley = hingelength/2 - arcradius*sind(prevhingerotation/2);

 islope = (arccenter(2)-arcmiddley)/(arccenter(1)-arcmiddlex);
 iheight = arcmiddley-islope*arcmiddlex;

 %new rotation symmetry line
 arcradius = hingelength/(hingerotation/360*2*pi);
 arccenter = [arcradius hingelength/2];

 arcmiddlex = arcradius - arcradius*cosd(hingerotation/2);
 arcmiddley = hingelength/2 - arcradius*sind(hingerotation/2);

 slope = (arccenter(2)-arcmiddley)/(arccenter(1)-arcmiddlex);
 height = arcmiddley-slope*arcmiddlex;

 %intersection of two symmetry lines
 rotax = (height - iheight)/(islope - slope);
 rotay = slope*rotax+height;

 rotpoint = [rotax; rotay];

 %distance from previous rotation point to this one
 motion = norm(rotpoint - prevrotpoint);

 %% Plot
 % figure
 % plot([0 0],[-hingelength/2 hingelength/2],'-o')
 % hold on
 % plot(arccenter(1),arccenter(2),'o')
 %
 % plot(arcmiddlex,arcmiddley,'o')
 % fplot(@(x) islope*x+iheight)
 % fplot(@(x) slope*x+height)
 % plot(rotpoint(1),rotpoint(2),'o')
 % plot(rotpoint(1),rotpoint(2),'o')

end
end

D.16. f_lineintersect
function [xintersect,yintersect] = f_lineintersect(point1, point2, point3, point4)
%Calculates the intersection point of two lines that are defined by
%point1-point4

% Line 1
line1 = point2-point1;
slope1 = line1(:,2)/line1(:,1);
height1 = point1(:,2)-slope1*point1(:,1);

% Line 2
line2 = point4-point3;
slope2 = line2(:,2)/line2(:,1);
height2 = point3(:,2)-slope2*point3(:,1);

% Intersect
xintersect = (height2-height1)/(slope1-slope2);
yintersect = slope1*xintersect+height1;
end

D.17. f_linkintersect
function [intersect] = f_linkintersect(loc1,loc2,link1,link2,prevloc)
%Finds the intersection point of two links which is closest to its previous

%location. input x; y
x1 = loc1(1);
y1 = loc1(2);
x2 = loc2(1);
y2 = loc2(2);

[xout,yout] = circcirc(x1,y1,link1,x2,y2,link2);
options = [xout; yout];
size = vecnorm(abs(options - [prevloc prevloc]))'; %find closest option
intersect = options(:,find(size == min(size)));
end

References

