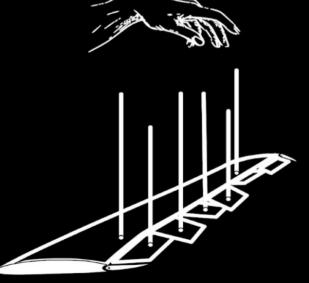
Yerevan, GIF FAST 2019 16 October 2019

Yerevan, GIF FAST 2019 16 October 2019

Adaptive state estimation and Real-Time tracking for aircraft control with ML and Al

Tigran Mkhoyan



Elegance and efficiency of birds

Elegance and efficiency of birds

Aeroelastic Structures

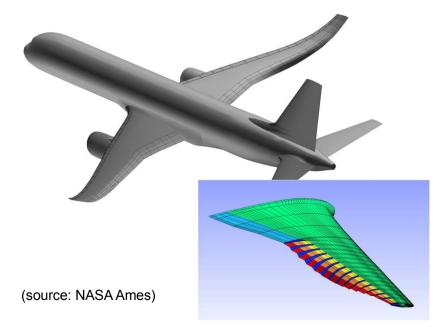
Introduction

Trend towards flexible configurations:

Adaptive Compliant Trailing Edge (ACTE)

Variable camber continuous trailing edge flap flap (VCCTF)

(source: NASA/FlexSys)



Applications: slender flexible (morphing) aircraft

Cellular morphing wing

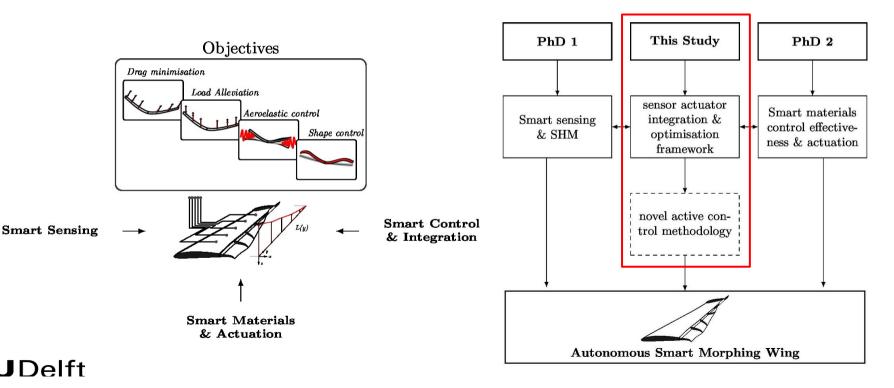
(source: NASA/MIT)

HALE solar power aircraft

(source: Facebook)

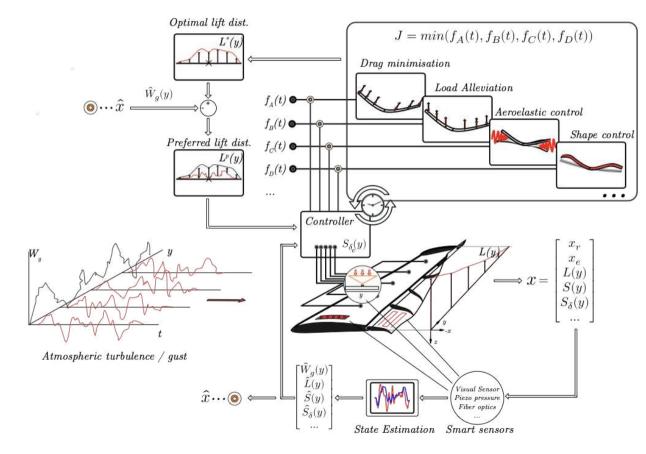
Goal: the Smart Morphing Wing

integration of <u>novel control laws</u>, <u>sensing methods</u>, <u>and actuation mechanism</u> for real-time, in-flight, multi-objective optimisation of actively morphing wing



Smart-X

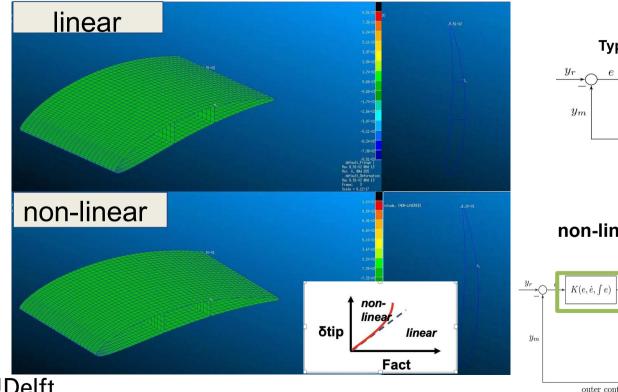
Real-time multi-objective performance optimisation

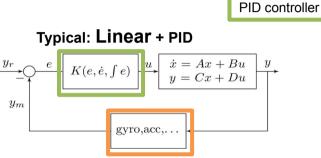


Smart-X design approach Patented Translation Induced Camber (TRIC) concept **FEM Model CFD Model** F actuator Fact **ÍU**Delft cut

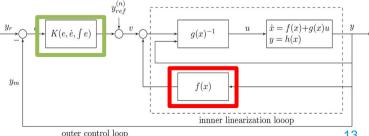
Challenges Morphing Structures

Challenges control design morphing: non-linearity actuator force non-linear control effectiveness mapping: sensor





non-linear dynamics (act + model)



Gaps in Literature

Current

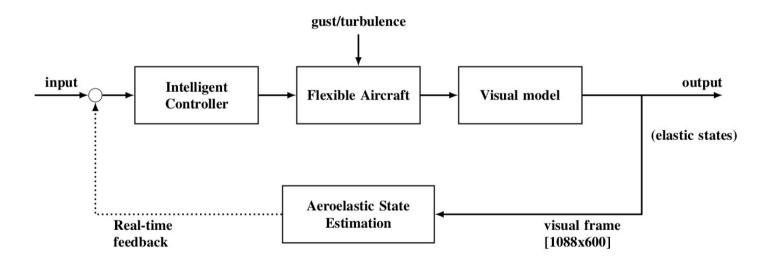
Needed

Current

Largely lin- ear and slow	Fast, accurate non-linear models	Non-linear CA method for IBS \rightarrow IBSCA	Non-Linear CA methods active research area
Large $N_{states} \rightarrow$ Empiric ROM	Justified ROM for control	Justified model reduction (control)	Large N_{states} slow for RT control models
Design methodology passive (tayloring)	Design methodology active (control)	Lyapunov stabil- ity distributed coupled systems	Stability of dis- tributed coupled systems unsolved
Quasi steady aerodynamics (2D models)	Unsteady aero- dynamics (2D and 3D models)	Model free adaptive sensing techniques	Novel control methods sen- sors dependent
Aeroelastic Modelling			Control & Sensors

Figure 2: Gaps in Literature of Smart morphing wings

A Simplified Control diagram Visual Tracking



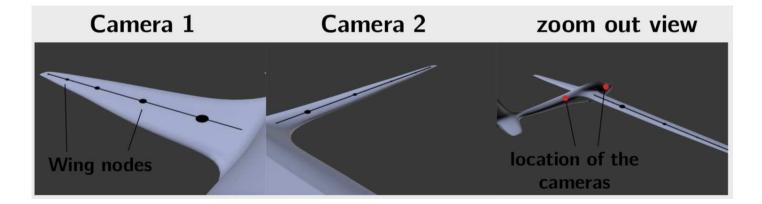
Question: Can we provide aeroelastic feedback with alternative sensors for Real-time control?

Purpose: Investigate how to eliminate dependency on both model (f(x)) as control effectiveness (g(x))

ML / Traditional CV

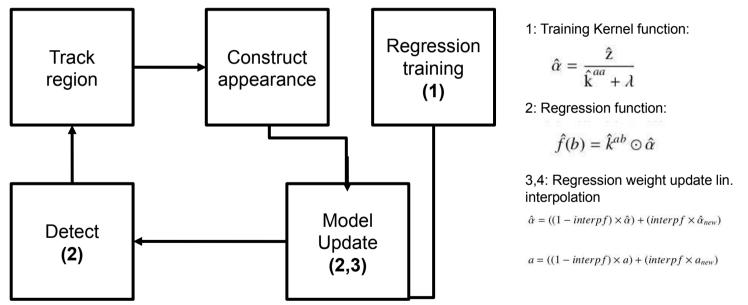
Visual tracking KCF-Kalman couple

- Novel method for monitoring wing displacements and loads real-time with simple camera feed (e.g. mounted in the fuselage)
- Combines speed of KCF (Kernelized Correlation filter) with robustness and prediction of the KF (Kalman Filter)



KCF: purely visual filter

Correlation filter with linear ridge regression based on circulant matrix properties and kernel functions



[1] J. F. Henriques et. al. (2015) "High-Speed Tracking with Kernelized Correlation Filters." IEEE Transactions on Pattern Analysis and Machine Intelligence 37(3): 583-596.

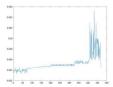
Kalman Filter: Adding Dynamics to visual motion: x(t+h) = x(t) + f'(x(t))h

Kalman Filter (KF): Predicting linear motion

 $x_k = x_{k-1} + \dot{x}_{k-1}h$ $y_k = y_{k-1} + \dot{x}_{k-1}h$ $\dot{y}_k = \dot{y}_{k-1} + \ddot{y}_{k-1}h$

Extended KF (EKF): Non-linear motion, non-uniform timestep

Augmented (AEKF): Non-linear motion, time-



varying, learn unknown dynamics

The general differential equation is given as:

$$\ddot{y}(t) = -\frac{c}{m}\dot{y}(t) - \frac{k}{m}y(t)$$

In state space form we have:

$$\frac{d}{dt} \begin{bmatrix} y_k \\ \dot{y}_k \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k/m & -c/m \end{bmatrix} \begin{bmatrix} y_k \\ \dot{y}_k \end{bmatrix}$$

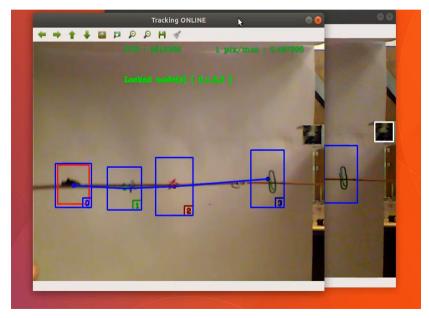
$$\ddot{y}(t) = -\frac{c(t)}{m(t)}\dot{y}(t) - \frac{k(t)}{m(t)}y(t)$$

$$\bar{x}_{k} = \begin{bmatrix} y_{k} \\ \dot{y}_{k} \\ K_{k} \\ c_{k} \\ m_{k} \end{bmatrix} = \begin{bmatrix} y_{k-1} + \dot{x}_{k-1}h \\ -K_{k-1}/m_{k-1} \cdot y_{k-1} - (1 - c_{k-1}/m_{k-1}h) \cdot \dot{y}_{k-1} \\ K_{k-1} + 0 \cdot h \\ c_{k-1} + 0 \cdot h \\ m_{k-1} + 0 \cdot h \\ m_{k-1} + 0 \cdot h \end{bmatrix} \longrightarrow J(\bar{x}_{k}) = \begin{bmatrix} 1 & h & 0 & 0 & 0 \\ -K_{k-1}m_{k-1}^{-1} \cdot h & m_{k-1}^{-1}y_{k-1} \cdot h & m_{k-1}^{-1}y_{k-1} \cdot h & m_{k-1}^{-1}y_{k-1} \cdot h & m_{k-1}^{-2} \cdot c_{k-1}y_{k-1} \cdot h & m_{k-1}^{-2} \cdot c_{k-1}$$

Smart State Estimation What can you do with it?

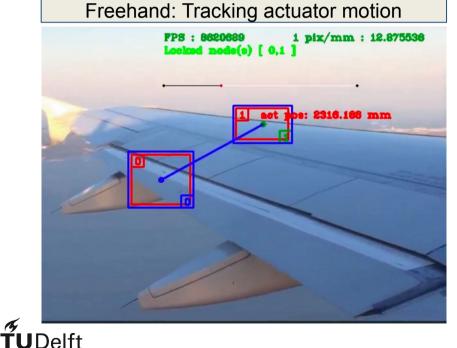
Visual tracking KCF-Kalman couple

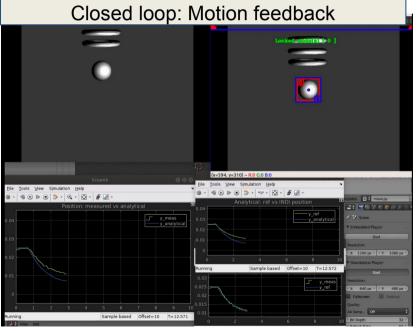
Examples: Clamped beam (right) and real wing (left)



Visual tracking KCF-Kalman couple

Examples: actuator position feedback (left) and INDI with visual sensor feedback (right)

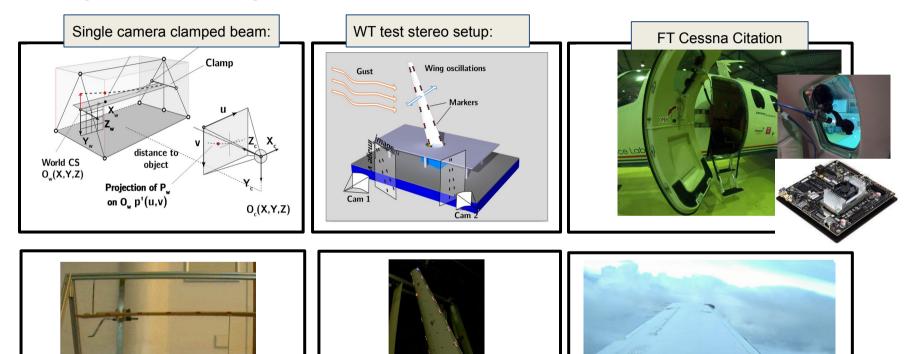




Experiments performed

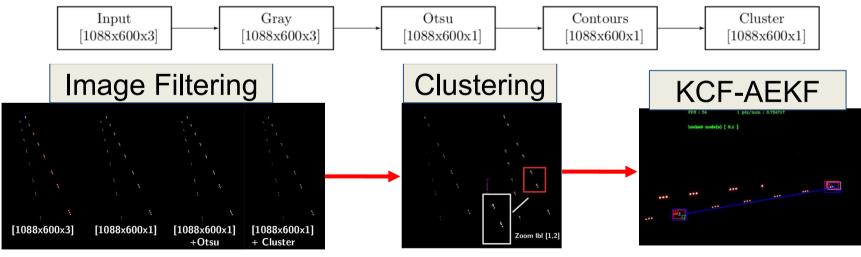
Ø

TUDelft



ML methodology: multistep filtering

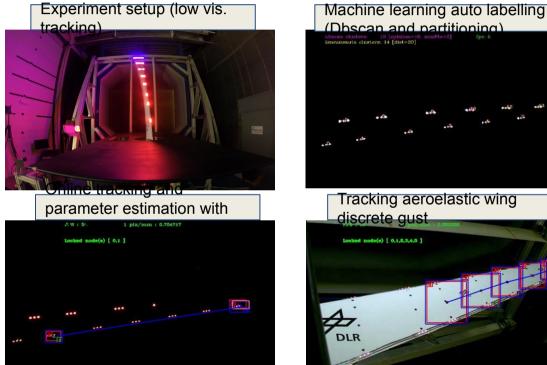
- Adaptive Image filtering (Otsu, Parallel color-filter)
- Clustering with DBSCAN (Density Based Clustering)
- Approximate geometry FLANN (Fast Lib Approximate Nearest Neighbors)
- KCF+AEKF for tracking and learning system parameters

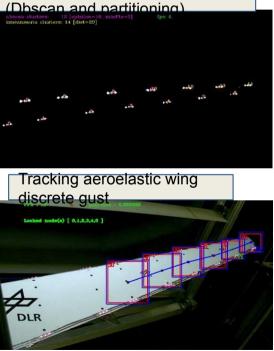


ŤUDelft

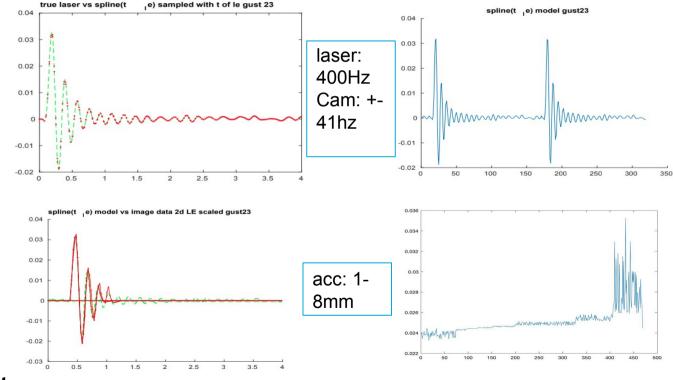
Adaptive Visual Tracking

adding dynamics (EKF) and adaptation (Parameter estimation)





Adaptive Visual Tracking Laser data sampled at non-uniform time step of camera:



″UDelft

Research Vision: Visual tracking

Advantages:

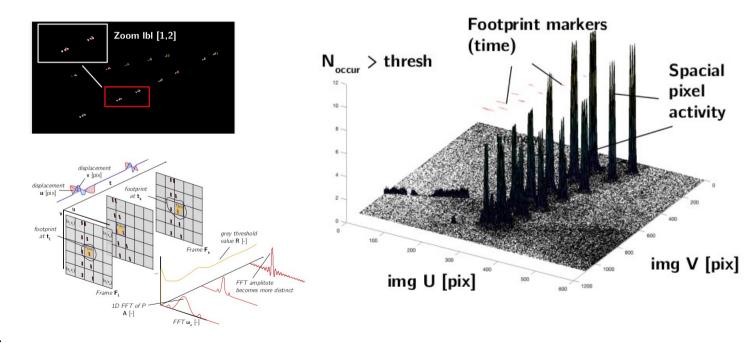
- No need for accelerometers (certification) just a camera
- Robust against lightning conditions and signal loss
- Tracker parameter interpreted as system state → suitable for distributed systems

Limitations

- Camera dependency (update rate)
- more camera views to get x,y,z coords

Establishing marker footprint across a sequence

 active pixel areas can be determined by SDFT (Sliding Discrete Fourier Transform)

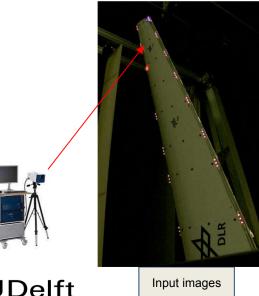


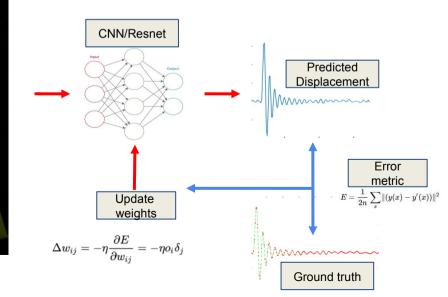
ŤUDelft

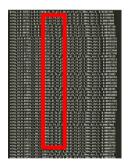
AI / Deep Learning

Al approach: Learning from raw data

- Loose markers use raw images
- Use DCNN (Deep Convolutional neural network) and learn to predict from data
- utional to predict from data (source: towardsdatascience)
- Large spline dataset with laser measurement as annotations

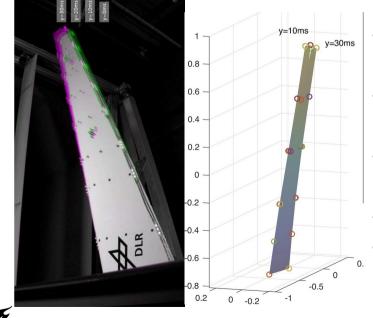






AI with DCNN approach: pretrained ResNet

- Dataset 15000+ images, 12 experimental conditions
- laser measurement (400 Hz) sampled non-uniform step +-41Hz, + geo-laser (static baseline) from 12 experimental

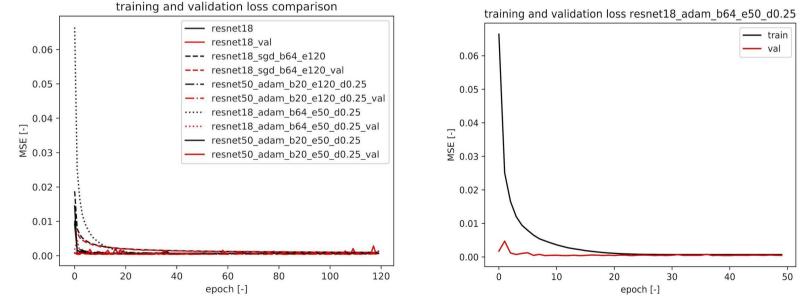


Ω

- Resnet (depth) 18/34/50/101 pretrained model (11.174M-48.513M) parameters
- Replaced last fully connected layer (512,1)
- Regression problem displacement dy normalized [-1,1]
- Adam/SGD + momentum optimizer
- 120 epoch 1e-4 learning rate

Training results with Resnet 18,34,50,101

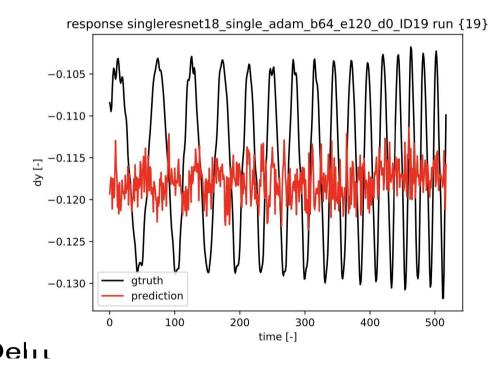
- Resnet18 adam optimiser (Ir=1e-4) good lightweight solution for real-time tracking
- Training time +-2hrs Nvidia 1050ti (Resnet18) 120 epochs



TUDelft

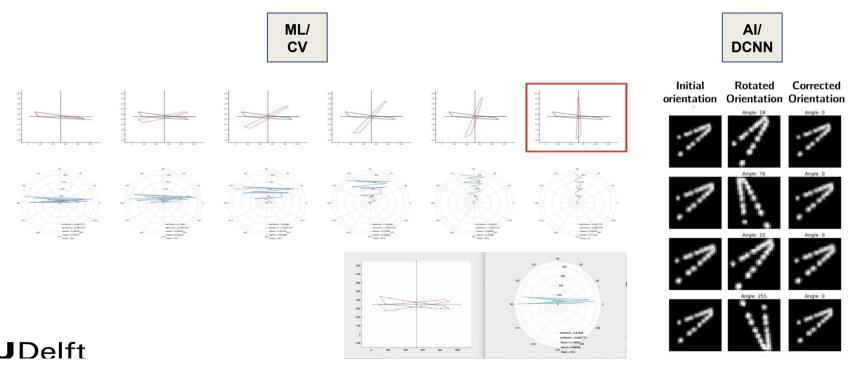
However inference not very successful

- Fails to predict response
- Possibly due classification-regression approach is better



More successful symmetry detection

- Classification problem, detect angle rotation [0,360]
- MNIST network structure (d4nst/RotNet), input 28x28x1
- Also solvable with ML + geometric convolution



Experiments Wind Tunnel and Flight Test

Images flight and wind tunnel test

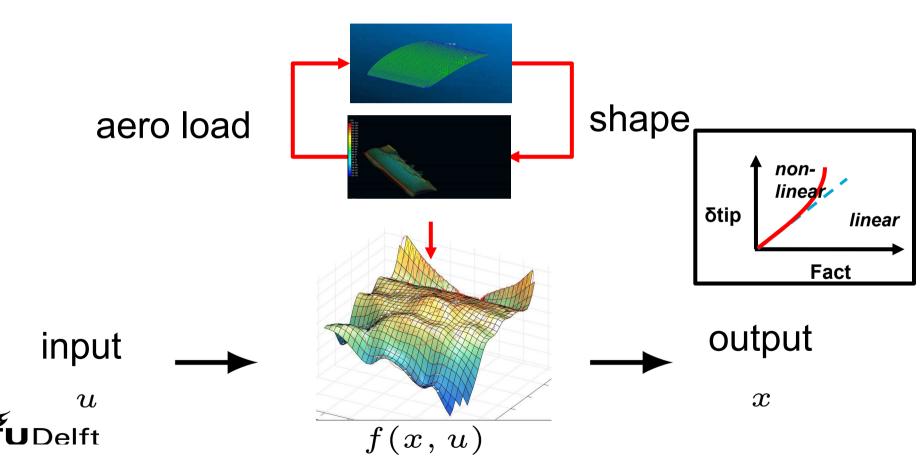
ŤUDelft

Flight test footage: during experiment

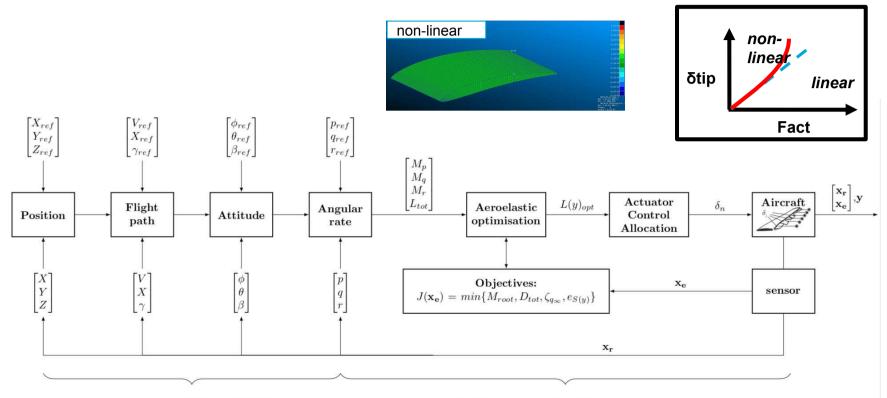
Flight test footage: landing

Future work / AI Applications Aeroservoelasticity

Multidimensional complex function approximation



Investigate RL to take care of non-linearity



rigid states \mathbf{x}_r : (PID) + IND/IBS

Real-Time optimisation/Distributed control

3

To Al or not to Al?

Grounding of 737-MAX



Picture: Stephen Brashear/Getty Images/AFPSource:AFP

ŤUDelft

Thank you

