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Abstract. Textbook question answering is challenging as it aims to
automatically answer various questions on textbook lessons with long
text and complex diagrams, requiring reasoning across modalities. In
this work, we propose MRHF, a novel framework that incorporates
dense passage re-ranking and the mixture-of-experts architecture for
TQA. MRHF proposes a novel query augmentation method for diagram
questions and then adopts multi-stage dense passage re-ranking with
large pretrained retrievers for retrieving paragraph-level contexts. Then
it employs a unified question solver to process different types of text
questions. Considering the rich blobs and relation knowledge contained
in diagrams, we propose to perform multimodal feature fusion over the
retrieved context and the heterogeneous diagram features. Furthermore,
we introduce the mixture-of-experts architecture to solve the diagram
questions to learn from both the rich text context and the complex dia-
grams and mitigate the possible negative effects between features of the
two modalities. We test the framework on the CK12-TQA benchmark
dataset, and the results show that MRHF outperforms the state-of-the-
art results in all types of questions. The ablation and case study also
demonstrates the effectiveness of each component of the framework.

Keywords: Textbook Question Answering · Information Retrieval ·
Mixture-of-Experts

1 Introduction

The Textbook Question Answering (TQA) task [13] aims at automatically
answering questions designed for multimodal textbook lesson materials. Unlike
the text-based machine reading comprehension and visual question answering
(VQA) tasks, where the context is text or image only, TQA aims to answer
multiple types of multimodal scientific questions with scientific knowledge con-
tained in both the text context and scientific diagrams. The requirement to
answer multiple types of questions by understanding both the long context and
complex diagrams makes TQA a challenging task.
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Fig. 1. The pipeline of our proposed MRHF. If a question does not contain a dia-
gram, the upper textual question answering module will be activated to generate the
answer directly. In contrast, if the question is a diagram question, the lower hierarchical
multimodal fusion module will be activated.

The TQA task has attracted a lot of research efforts [3,4,14,16,17,19,20,29].
Despite previous progress, TQA remains a challenge. First, previous research
retrieves several sentences from the whole corpus using the questions as queries.
However, this approach overlooks two critical aspects. First, it fails to account
for the fact that many questions are often related to sentences within the same
paragraph, where a single sentence may not provide sufficient information for
deducing the correct answer. Second, the method is inadequate for retrieving
the correct context for diagram questions that tend to be vague and frequently
depend on information within the diagrams, e.g., which of the following labels
is correct?. Secondly, some diagram questions can be answered with the text
context or diagram knowledge only, and features of the other modality may be
negative for prediction [29]. However, previous research either ignores it or uses
manually defined hyper-parameters as a solution, which are not adjustable and
learnable for different instances.

In this work, we systematically address these challenges and propose MRHF,
a novel framework for TQA with multi-stage context retrieval and hierarchical
multimodal fusion (Fig. 1). To address the noisy context selection problem, we
first apply the pretrained neural passage retriever for paragraph-level multi-stage
context retrieval in the TQA task and show its effectiveness. We augment dia-
gram questions with keywords extracted from texts associated with the question
diagram and its related teaching diagrams. With the augmented queries, the
retrieved paragraphs are more related to the question. Moreover, since the dia-
gram questions can be related to certain specific regions of interest (RoI) or
related to knowledge represented by the whole diagram, we propose a hetero-
geneous feature fusion (HFF) module to learn from different forms of diagram
representation, including patch-level features extracted by visual-transformers
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(ViT) and blob-level features extracted by YOLO. Furthermore, given that a
question may relate exclusively to either the text context or the diagram, to sup-
press the negative effects from different modalities [29], we introduce the mixture-
of-experts aggregation (MoEA). The MoEA consists of three experts, namely the
context-only expert, the diagram-only expert, and the context-diagram expert;
each is an MLP neural network following different encoding and fusion results,
together with a trainable gating network which learns to give different weights
to each expert to compose final prediction. Thus, the model is able to rely more
on specific experts according to its features.

With MRHF, we perform extensive experiments on the CK12-TQA dataset
and compare its performance with previous state-of-the-art (SOTA) methods.
The experiment result shows that MRHF significantly surpasses previous meth-
ods in the TQA task on both text and diagram questions. We then conduct abla-
tion studies and demonstrate the effectiveness of different components in MRHF.
Our contributions in this paper can be summarized as follows: 1) we propose a
multi-stage context retrieval method integrated with query augmentation and
dense re-ranking, making the context we retrieved more relevant to questions; 2)
we propose a hierarchical fusion method that includes the heterogeneous mul-
timodal feature fusion and MoE, surpassing previous methods’ performance on
the diagram question; 3) detailed experiments and ablation studies prove the
efficiency of different components in our method.

2 Related Work

As a complex multimodal QA task, TQA has attracted considerable research
interest, particularly following the introduction of the (CK12-TQA) dataset [13].
Most efforts in TQA research can be categorized into three groups: context
retrieval, diagram understanding, and question reasoning. Context retrieval is
applied for gathering context knowledge related to the question. Most works
extract sentences with lexical retrieval methods like TF-IDF [17], Elastic-
Search [3], and Solr [4]. Some works like IGMN [16] propose to build essay-level
contradiction entity-relationship graphs for reasoning in the long context. In
addition to text lexical-based retrieval, ISAAQ [3], MoCA [29] further use differ-
ent independent semantic-based methods for context retrieval. However, these
retrieval methods suffer from noisy results because the sentence-level extrac-
tion cannot maintain enough information to answer the questions, and they lack
the information from the diagram for retrieval. In recent years, dense passage
retrieval methods based on pretrained models [11] and sentence transformers [22]
have achieved great progress and shown competent performance in zero-shot
retrieval scenarios. Our approach is the first to leverage the capabilities of dense
retrievers for TQA.

Diagrams contain complex objects, text, and relations. A lot of attention has
been put into effectively leveraging both text and diagram features for answering
diagram questions. Some works explore the fine-grained relations among diagram
components multimodal graphs for diagram QA, e.g., [13] translates the parsed
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diagram graphs to factual sentences, [20] builds graphs for reasoning. Some other
research leverages attention among the context text and the diagrams for dia-
gram QA, e.g., [3] pretrain the diagram QA model on VQA datasets and leverage
bottom-up and top-down attention for multimodal fusion, and [29] proposes to
use patch-level diagram features generated by large pretrained visual transform-
ers [1]. However, these methods cannot effectively leverage different-scale knowl-
edge in the diagram, and there are possible negative effects between different
modalities. Therefore, we introduce the Mixture-of-Experts (MoE) architecture
to the TQA task. MoE has been proposed over two decades ago [7], designed to
allow different sub-networks (experts) of a model to specialize for different sam-
ples with a learnable gating function. Different types of MoE have been proposed
and applied to a range of tasks, including NLP and visual applications [2,24].
This is the first research that adopts MoE for the TQA task.

3 Method

3.1 The TQA Problem

Given a textbook QA dataset that consists of paragraphs P = {P1, P2, . . . , PN},
a list of instructional diagrams D = {d1, d2, . . . , dM} and a list of questions
Q = {Q1, Q2, . . . , QK}, where di denotes the i-th diagram and Qi is the i-
th question. A text question contains one question sentence qi and its answer
options Ai, where Ai = {ai,j}O

j=1 is the list of options. If Qi is a multiple choice
question, Ai is a list of O options, whereas it contains True or False if Qi is a T/F
question. If Qi is a diagram question, then we represent it as Qi = {qi, Ai, δi}
where δi is its corresponding question diagram. Then the answer inference of Qi

using a QA model with trainable parameters θ can be formulated as follows:

âi = arg max
ai,j∈Ai

Pr(ai,j |qi, Ci, [dk, δi]; θ) (1)

where Ci ⊂ P is the retrieved text context from the text contents and dk ∈ D is
the retrieved instructional diagram if Qi is diagram question.

3.2 Multi-stage Context Retrieval

Although TQA lessons are extremely long (over 75% of them have at least 50
sentences), most (about 80%) questions require only several sentences from the
same paragraph, and only some questions require information spread across the
entire lesson. Instead of retrieving sentences like in previous work, we perform
paragraph-level retrieval. We split paragraphs longer than a certain number (128,
since most paragraphs are shorter than 128 words) of words into separate shorter
paragraphs. In this way, the proposed method can gather cross-paragraph con-
text and keep syntactic and semantic properties in each paragraph. Diagram
questions pose distinct challenges for context retrieval that are neglected by pre-
vious research. Therefore we develop an extra query augmentation method for
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Fig. 2. Our multi-stage context retrieval pipeline includes query augmentation, sparse
retrieval, and dense re-ranking.

diagram questions. We would introduce context retrieval pipelines for both dia-
gram and text questions.

➢ Query Augmentation for DQ. The context knowledge of diagram ques-
tions includes both text and diagrams. As shown in Fig. 2, some diagram ques-
tions do not contain enough information to retrieve the text context that can
answer it. The texts in the question diagram are replaced with option letters,
which makes it difficult to leverage diagram annotations as extra vocabulary for
retrieval. Therefore, instead of directly performing context retrieval with ques-
tions, we propose performing query augment first by using question diagrams
as a bridge and retrieving related teaching diagrams as well as texts associated
with them, and then performing context extraction using the same pipeline as
text questions with the augmented query.

In detail, we first parse the diagrams that contain complex components like
images, arrows, and text that convey critical information for understanding. To
extract these components, we fine-tune YOLO(V5) [9] on AI2d [12] to recog-
nize the positions and types of all these components. The AI2D dataset contains
diagrams in the same style and annotations for diagrams, including each com-
ponent’s type and position information. Then we use OCR to recognize the text
in each text block. Besides text contained in diagrams, we also extract extra
text associated with them, including diagram captions, textbook sentences that
reference them, and detailed introductions for teaching diagrams.

We then perform instructional diagram retrieval to find related diagrams in
textbooks. As components representing the same concepts often have different
colors in various diagrams, we first convert the diagram to grayscale to mitigate
distractions introduced by colors. We then encode each diagram with the visual
transformers model (ViT) and use the embedding of [CLS] token as its repre-
sentation and rank the instructional diagrams according to the cosine similarity
to the question diagram.

sim(dj , δi) = cos(ViT[CLS](dj), ViT[CLS](δi)) (2)
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We choose top-3 instructional diagrams and combine all texts associated with
them as associated text. Then we augment ri with extracted keywords from the
associated text. Then we apply the same context knowledge retrieval pipeline
introduced in Sect. 3.2 with the augmented query.

➢ Sparse Retrieval. With the original QA pairs for text questions or aug-
mented queries for diagram QA, we construct queries (ri) for context retrieval
by combining the questions and all answer options (except the true, false, none,
and all options) with white spaces [W]:

ri = qi[W]ai,1[W]ai,2[W] . . . ai,|Ai|

and then perform multi-stage retrieval to obtain the QA context, as shown in
Fig. 2. We apply sparse retrieval with BM25 [25], a well-adopted space vector-
based probabilistic text retrieval method. In this step, we choose top-K1 para-
graphs (CBM25

i ) that have the most lexical similarity with the queries.

➢ Dense Re-ranking. Different from previous research that uses sparse mod-
els such as TF-IDF only, we use two-stage dense re-ranking to refine the
context based on both lexical and semantic similarity to the question-answer
pairs, as large pretrained language model-based dense passage retrieval has
demonstrated substantial improvements in retrieval performance. In our dense
re-ranker, we first employ a standard pretrained neural IR architecture [11] for
a semantic bi-encoder re-ranking (BI). It uses the pretrained transformer
encoder EC which encodes the context paragraphs and EQ on the queries into
separate m-dimensional real-valued vectors and retrieves top−K2 paragraphs
CBI

i in terms of cosine similarity:

sim(Pi,j , ri) = cos(EC(Pi,j), EQ(ri)). (3)

where Pi,j ∈ CBM25
i . Then, we further leverage cross-encoder re-ranking

(CE), which is used for matching text pairs by concatenating the query and tar-
get paragraph together, treating it as a sequence classification task, and perform-
ing full self-attention over the entire sequence. As reported in some research [23],
the cross-encoder could have better performance than the bi-encoders with the
sacrifice of efficiency. Therefore, we re-rank the semantic retrieval results CBI

i
with a pretrained cross-encoder.

sim(Pi,j , ri) = MLP(E([CLS]Pi,j[SEP]ri[SEP])) (4)

where MLP(hi) = W2(W1hi + b1) + b2 is a multilayer perceptron network that
takes the encoder E’s output hi as the input for calculating the final matching
score, and W1,W2, b1, b2 are trainable parameters. We choose the top-3 para-
graphs as the context passage.

3.3 Textual Question Answering

The process of choosing the correct answer to Text-MC questions is similar to
answering the T/F questions, which can be interpreted as verifying whether
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the context can support the claim of the question and the option pair. Inspired
by [8], we transfer multiple-choice questions as a single-choice decision problem
and treat T/F questions and Text-MC questions as a sequence bi-classification
problem.

Ii,j = [CLS]Ci[SEP]âi,j[SEP]

f t
i,j = MLP(E[CLS](Ii,j))

(5)

where ft = Pr(âi,j |qi, Ci) represents the predicted probability of the correctness
of the j-th answer option âi,j in Ai, and we use softmax to normalize the MLP’s
output of True/False probability to [0−1]. For Text-T/F questions and the option
like none or none of the above, âi,j is an empty string. For answer options such
as all or all of the above, we concatenate all other options as the option text. To
train the model, we label the sequence with the correct answer option as True,
and others as False. We label all answer options as True when the correct answer
is all. We use Cross-Entropy loss to train the model. For prediction, we chose
the option of highest probability on True as the correct answer. To the questions
with option none, we predict the correct answer is none when 1) the none option
has the highest probability, or 2) all other options’ probabilities are below 0.5.
For the questions with option all, we predict the correct answer is all when 1) the
all option has the highest probability, or 2) the probabilities of all other options
are greater than 0.5. Similar to previous TQA researches [3,4,29], we perform
pretraining with some extra datasets such as RACE [15] and SQuAD [21].

3.4 Hierarchical Multimodal Fusion

To answer the diagram questions, the solver should be able to reason over both
the text (context, questions, and answer options) and the diagrams (question
diagram and instructional diagrams). Many (40%) diagram questions require
complex diagram parsing [3] and are relevant to certain regions of interest (RoI)
or the relation and knowledge represented by the whole diagram. As pointed
out in previous work, text contexts of a considerable proportion of diagram
questions are rich enough to answer them, and features of the other modality may
have negative effects. Therefore, we first propose a heterogeneous feature fusion
module to learn from different contextualized diagram representations. Then we
adopt the mixture-of-experts architecture to learn from different modality and
their interaction.

➢ Heterogeneous Feature Fusion (HFF). To better leverage the features
from the diagram, here we propose the HFF module. As mentioned above, we
first parse the question diagram δi and get a list of blobs Bi. Then, we create
the patch-level features V p

i , and the blob-level features V b
i of Bi using the ViT

encoder, where V b
i = [ViT[CLS](B

j
i )]

|Bi|
0 . We concatenate them to generate a

heterogeneous representation V d
i of the diagram. For the j-th option ai,j of

the question, we create the text features V t
ai,j

for the QA pair, and the text
features V t

ci,j for QA pair and the context with the trained text model. Instead
of using all the features for further processing, here we use gated attention [30]
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to find the most important features. The dual fusion of the text feature and the
heterogeneous diagram features is calculated as follows:

Ui,j = V t
ci,jWuV d

i

Si,j = softmax(Ui,j/
√

dV d
i

)

Zi,j = Ws[V
t

ci,j : ST
i,jV

d
i ]

zi,j = MaxPooling(Zi,j)

vi = MaxPooling(V t
ci,j )

gi,j = sigmoid(Wgzi,j)

hi,j = gi,j · tanh(zi,j) + (1 − gi,j) · vi

(6)

where Wu,Ws,Wg are trainable weights.
We then obtain the full-text ([question & answer options & context]) guided

representation hc
i,j by using the equation. Similarly, we calculate the qa-text

([question & answer options]) guided representation ha
i,j . To calculate the dia-

gram guided representation, we substitute V d
i and V t

ci,j in the equation obtain
jd
i,j , and then obtain ja

i,j in the similar way.

➢ Mixture-of-Experts Aggregation (MoEA). Since diagram questions
can be answered by using only context, or only diagram, or must leverage both
diagram and context, we design different experts to handle different situations
and use the mixture-of-experts to aggregate the results of those experts.

We first combine hc
i,j and jd

i,j to form uc
i,j representing the fusion of diagram

and text with context, and also combine ha
i,j and ja

i,j to form ua
i,j representing

the fusion of diagram and text without context, to input different experts in
the next step. Based on the text features and the dual fusion representations,
we design three question solvers, namely the text question solver f t

i,j which
is MLP for V t

ci,j , the diagram-only solver fa
i,j which is MLP for ua

i,j , and the
context-diagram solver fc

i,j which is MLP for uc
i,j . We utilize the MoEA with a

learnable gating function G to automatically learn to put different weights on
these different solvers (experts). We adopt the simple yet widely used gating
function [10] to calculate the weights by multiplying a trainable matrix Wγ with
the input and then normalize the weights by softmax. We concatenate ua

i,j and
uc

i,j as input to the gating function.

μi,j = G(ua
i,j , u

c
i,j)

G = softmax(Wγ [ua
i,j : uc

i,j ])

fMoE
i,j = μi,j · [f t

i,j , f
a
i,j , f

c
i,j ]

(7)

where the output of the gating function μ is a 3-dimension vector [μ0, μ1, μ2]
which represents weights for the two experts. The weighted sum of the outputs
of the three experts (fMoE

i,j ) is the final prediction for the j−th answer option
of diagram multiple-choice question i.
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4 Experiment

4.1 Experimental Settings

➢ Datasets. We conduct the model evaluation on the CK12-TQA dataset,
which contains textbook lessons, different types of questions, and rich textbook
diagrams and has become the benchmark dataset for TQA research. Data sam-
ples in CK12-TQA can be categorized by the type of questions into three groups:
true/false (T/F), text multiple choice (T-MC), and diagram multiple choice (D-
MC) questions. The details of the datasets we use are shown in Table 1.

Table 1. Statistics of TQA dataset.

Dataset Train Dev Test Total Options

CK12-TQA 15,154 5,309 5,797 26.260 –

–T/F 3,490 998 912 5,400 2

–T-MC 5,163 1,530 1,600 8,293 4–7

–D-MC 6,501 2,781 3,285 12,567 4

➢ Implementation Details. To create the dataset for pretraining, we per-
form named entity recognition and POS tagging using SpaCy [6]. For text
context retrieval, we use the pretrained bi-encoders (MPNet [27]) and cross-
encoders (MiniLM [28]) provided by Sentence-Transformers library [22]. We
extract keywords from texts associated with retrieved instructional diagrams
with RAKE [26] and use the top-5 extracted keywords for query augmenta-
tion. We use RoBERTa-large [18] for the sequence classification model. We train
YOLO [9] on the AI2D dataset for 50 epochs for diagram parsing. For diagram
retrieval and encoding, we use the visual transformers pretrained via masked
autoencoders [5]. We finetune the model on the CK12-TQA dataset for 10 epochs
on one NVIDIA A40 GPU with an initial learning rate at 1e−6, and the batch
size is 4.

4.2 Experiment Results

We evaluate the proposed framework’s performance in terms of its accuracy
( #correct
#questions ) on T/F, text, and diagram MC questions in both validation and

test splits. We compare its performance with the previous state-of-the-art
(SOTA) models, including single model approaches IGMN [16], XTQA [19] and
MHTQA [4], as well as the ensemble approaches: ISAAQ [3] and MoCA [29].
The main results are shown in Table 2.
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Table 2. Experimental results on the CK12-TQA validation and test splits in terms of
accuracy. � means we choose the best single model from the ensemble solutions for com-
parison. We train these models with the context extracted using methods introduced
in this paper.

Model Val Set Test Set

T/F T-MC T-All D-MC All T/F T-MC T-All D-MC All

Random 50.86 23.66 34.40 25.83 29.91 50.37 22.93 32.89 24.80 28.31

Single Model

IGMN 57.41 40.00 46.88 36.35 41.36 – – – – –

XTQA 58.24 30.33 41.32 32.05 36.46 56.22 33.40 41.67 33.34 36.95

ISAAQ-IR� 78.26 67.52 71.76 53.83 62.37 77.74 68.94 72.13 50.50 59.87

MHTQA 82.87 69.22 74.61 54.87 64.27 – – – – –

MoCA-IR� – 73.33 – 54.15 – – – – 52.12 –

MRHF 87.48 76.80 81.01 56.27 67.90 86.51 79.19 81.85 53.97 66.05

w/o CE 84.37 75.36 78.92 55.09 66.29 82.90 77.44 79.42 52.15 63.97

w/o BI&CE 85.47 74.84 79.04 50.38 63.88 82.24 78.25 79.70 51.08 63.48

Ensemble Model

ISAAQ 81.36 71.11 75.16 55.12 64.66 78.83 72.06 74.52 51.81 61.65

MoCA 81.56 76.14 78.28 56.49 66.87 81.36 76.31 78.14 53.33 64.08

MRHF 87.88 78.95 82.48 56.67 68.80 86.62 80.00 82.40 54.55 66.62

We first compare our method with previous methods in a single-model set-
ting. After further fine-tuning on the CK12-TQA dataset, MRHF achieves
81.01% in overall accuracy on the text questions of the validation set, and 81.
85% in the test set, which outperforms the previous best single-model MoCA by
a margin of about 6.4% and 9.7% on validation and test sets separately in all text
questions according to available data. MRHF also outperforms the SOTA sin-
gle method on diagram multi-choice questions by a margin of 2.12% and 1.85%
on the validation set and test set, respectively. Since previous SOTA methods
ISAAQ and MoCA are both ensemble models which ensemble multiple mod-
els trained on different retrieved results, we also compare MRHF’s performance
in the ensemble-model setting. It can be found that the accuracy of ensemble
MRHF is further improved and achieves new SOTA performance. Moreover,
even the single model MRHF exceeds the ensemble MoCA model. These results
demonstrate the effectiveness of our proposed MRHF framework.

5 Ablation Studies

5.1 Quantitative Analysis

➢ Query Augmentation. We first investigate the impact of query augmen-
tation. Results are shown in Table 3. For the setting without text context, we
replace the Ii,j with answer option text. As the result shows, the performance
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on the validation set deteriorates to 46.46% with about 9.8% decline and 3.04%
decline on the test set, which first demonstrates the importance of context fea-
tures. Then we remove the query augmentation, the performance of MRHF
declines 1.6% and 1.46% on the validation and test set, respectively, which
can demonstrate the effectiveness of query augmentation in context retrieval
in Sect. 3.2.

Table 3. Ablations study on the impact of context text, query augment (AGM), and
mixture-of-experts on the performance of answering diagram MC questions in CK12-
TQA validation and test splits.

Split MRHF w/o Text w/o AGM w/o HFF w/o MoEA

Val 56.27 46.46 54.67 55.34 54.95

Test 53.97 49.99 51.57 51.18 51.96

➢ Dense Re-ranking. We then finetune MRHF on CK12-TQA data with
context extracted using different retrieval methods, and report MRHF-BM25,
MRHF-BI, and MRHF-CE results in Table 2. First, we observe that with BM25
only, it outperforms previous SOTA models that utilize similar lexical retrieval
methods, revealing the effectiveness of paragraph-level retrieval. Second, apply-
ing Bi-Encoder and Cross-Encoder Re-ranking can further improve the perfor-
mance, demonstrating that applying the neural ranking models in a zero-shot
setting on the TQA task is effective. Third, we observe that the model achieves
over 53% accuracy on diagram questions with a text context only, showing the
importance of text context in answering diagram questions.

➢ Hierarchical Multimodal Fusion. We examine the HFF and MoEA
employed in our hierarchical multimodal fusion module, as demonstrated in
Table 3. When we remove the HFF, the overall performance drops to 55.34%
and 51.18% on the validation and test sets, which demonstrates the usefulness
of HFF. We then eliminate the MoEA, and the performance decreases by 1.32%
on the validation set and 2.01% on the test set, indicating the effectiveness of
MoEA.

5.2 Case Studies

Fig. 3 illustrates the impacts of multi-stage context retrieval with query augmen-
tation for diagram questions. We show the question diagrams with the bounding
box of all blobs detected by the diagram parsing step. The example in the first
row shows that without AGM, the retrieved context is about food topic, which
totally drifts off the actual topic on rain. By contrast, with AGM, the multi-stage
context retrieval method can retrieve the exact context paragraph. Examples in
other rows show that AGM can still help improve the retrieval results even for
diagram questions where there is rich text information. The last column reports
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Fig. 3. Case study of AGM and MoEA from test set. Under “Option Probs”, “Ans”
means answer candidates, and red is the correct answer, “Tex” means context-only
expert, “Dia” means diagram-only expert, “T&D” means context-diagram expert, “W”
means the weight of different experts.

the prediction by each expert as well as the learned weights for them. The
results first suggest that the context-diagram expert has the largest weight. Sec-
ond, through the mixture, although the single context-diagram expert makes a
wrong prediction, the overall results adjusted by text and diagram-only experts
successfully choose the correct answer.

6 Conclusion

In this paper, we propose a concise framework MRHF to address the challenges
in the textbook question answering task, especially for diagram-related QA pairs.
Experiment on CK12-TQA shows that our proposed framework can effectively
solve the TQA problem, outperforming previous SOTA results on all types of
questions. Even single-model MRHF can achieve considerable performance com-
pared to previous ensemble models, which can significantly simplify the train-
ing, maintenance, and deployment of the TQA systems. Ablation studies further
demonstrate the effectiveness of its components, including multi-stage context
retrieval with query augmentation for diagram questions, multimodal conditional
fusion, and the mixture-of-experts architecture. In the future, we will further
study and unravel the challenges in multimodal question answering.
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Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.) ICANN 2021. LNCS, vol. 12894,
pp. 86–98. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86380-7 8

5. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 16000–16009 (2022)

6. Honnibal, M., Montani, I.: spaCy 2: natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing (2017). to
appear

7. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local
experts. Neural Comput. 3(1), 79–87 (1991)

8. Jiang, Y., et al.: Improving machine reading comprehension with single-choice deci-
sion and transfer learning. arXiv preprint arXiv:2011.03292 (2020)

9. Jocher, G., et al.: ultralytics/yolov5: v4.0 - nn.SiLU() activations, Weights & Biases
logging, PyTorch Hub integration. Zenodo, January 2021. https://doi.org/10.5281/
zenodo.4418161

10. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm.
Neural Comput. 6(2), 181–214 (1994)

11. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering.
arXiv preprint arXiv:2004.04906 (2020)

12. Kembhavi, A., Salvato, M., Kolve, E., Seo, M., Hajishirzi, H., Farhadi, A.: A
diagram is worth a dozen images. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9908, pp. 235–251. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46493-0 15

13. Kembhavi, A., Seo, M., Schwenk, D., Choi, J., Farhadi, A., Hajishirzi, H.: Are you
smarter than a sixth grader? Textbook question answering for multimodal machine
comprehension. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4999–5007 (2017)

14. Kim, D., Kim, S., Kwak, N.: Textbook question answering with multi-modal con-
text graph understanding and self-supervised open-set comprehension. In: Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 3568–3584 (2019)

15. Lai, G., Xie, Q., Liu, H., Yang, Y., Hovy, E.: RACE: large-scale reading com-
prehension dataset from examinations. In: Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pp. 785–794 (2017)

16. Li, J., Su, H., Zhu, J., Wang, S., Zhang, B.: Textbook question answering under
instructor guidance with memory networks. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 3655–3663 (2018)

http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2209.01667
https://doi.org/10.1007/978-3-030-86380-7_8
http://arxiv.org/abs/2011.03292
https://doi.org/10.5281/zenodo.4418161
https://doi.org/10.5281/zenodo.4418161
http://arxiv.org/abs/2004.04906
https://doi.org/10.1007/978-3-319-46493-0_15
https://doi.org/10.1007/978-3-319-46493-0_15


MRHF: Multi-stage Retrieval and Hierarchical Fusion for TQA 111

17. Li, J., Su, H., Zhu, J., Zhang, B.: Essay-anchor attentive multi-modal bilinear
pooling for textbook question answering. In: 2018 IEEE International Conference
on Multimedia and Expo (ICME), pp. 1–6. IEEE (2018)

18. Liu, Y., et al.: Roberta: a robustly optimized Bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

19. Ma, J., Chai, Q., Liu, J., Yin, Q., Wang, P., Zheng, Q.: XTQA: span-level expla-
nations for textbook question answering (2023)

20. Ma, J., Liu, J., Wang, Y., Li, J., Liu, T.: Relation-aware fine-grained reasoning
network for textbook question answering. IEEE Transactions on Neural Networks
and Learning Systems (2021)

21. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

22. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese
BERT-Networks. In: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, Novem-
ber 2019

23. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese
BERT-Networks. arXiv preprint arXiv:1908.10084 (2019)

24. Riquelme, C., et al.: Scaling vision with sparse mixture of experts. Adv. Neural
Inf. Process. Syst. 34, 8583–8595 (2021)

25. Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-Poisson
model for probabilistic weighted retrieval. In: Croft, B.W., van Rijsbergen, C.J.
(eds.) SIGIR ’94, pp. 232–241. Springer, London (1994). https://doi.org/10.1007/
978-1-4471-2099-5 24

26. Rose, S., Engel, D., Cramer, N., Cowley, W.: Automatic keyword extraction from
individual documents. Text Min. Appl. Theory 1(1–20), 10–1002 (2010)

27. Song, K., Tan, X., Qin, T., Lu, J., Liu, T.Y.: MPNet: masked and permuted pre-
training for language understanding. Adv. Neural Inf. Process. Syst. 33, 16857–
16867 (2020)

28. Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: MINILM: deep self-
attention distillation for task-agnostic compression of pre-trained transformers.
Adv. Neural Inf. Process. Syst. 33, 5776–5788 (2020)

29. Xu, F., et al.: MoCA: incorporating domain pretraining and cross attention for
textbook question answering. Pattern Recognit. 140, 109588 (2023)

30. Zhao, Y., Ni, X., Ding, Y., Ke, Q.: Paragraph-level neural question generation
with maxout pointer and gated self-attention networks. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 3901–3910
(2018)

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1908.10084
https://doi.org/10.1007/978-1-4471-2099-5_24
https://doi.org/10.1007/978-1-4471-2099-5_24

	MRHF: Multi-stage Retrieval and Hierarchical Fusion for Textbook Question Answering 
	1 Introduction
	2 Related Work
	3 Method
	3.1 The TQA Problem
	3.2 Multi-stage Context Retrieval
	3.3 Textual Question Answering
	3.4 Hierarchical Multimodal Fusion

	4 Experiment
	4.1 Experimental Settings
	4.2 Experiment Results

	5 Ablation Studies
	5.1 Quantitative Analysis
	5.2 Case Studies

	6 Conclusion
	References


