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A B S T R A C T

In this study, we propose a methodological framework to identify and evaluate cost-effective pathways for
enhancing resilience in large-scale interdependent infrastructure systems, considering decision-makers’ risk
preferences. We focus on understanding how decision-makers with varying risk preferences perceive the
benefits from infrastructure resilience investments and compare them with upfront costs in the context of
high-impact low-probability (HILP) events. First, we compute the costs of interventions as the sum of their
capital costs and maintenance costs. The benefits of the interventions include the reduction in physical damage
costs and business disruption losses resulting from the improved resilience of the network. In the final stage,
we develop statistical models to predict the perceived net benefits of different network resilience configurations
in power, water, and transport networks. These models are employed in an optimization framework to
identify optimal resilience investment pathways. By incorporating Cumulative Prospect Theory (CPT) in
the optimization framework, we show that decision-makers who assign higher weights to low probability
events tend to allocate more resources towards post-disaster recovery strategies leading to increased resilience
against HILP events, like earthquakes. We illustrate the methodology using a case study of the interdependent
infrastructure network in Shelby County, Tennessee.
1. Introduction

Increasing extreme events and rapid expansion of urban regions
have triggered a strong interest in infrastructure resilience building. Of-
ten, the higher-order effects of infrastructure disruptions resulting from
localized events span across administrative and geographic boundaries,
leading to significant socio-economic repercussions (Rinaldi, Peeren-
boom, & Kelly, 2001). These trends emphasize the need for significant
investment to address physical and operational vulnerabilities and
minimize disruptions to urban infrastructure systems in the event of
large-scale exogenous shocks, such as natural disasters (Hallegatte,
Rentschler, & Rozenberg, 2019). According to a report by the Organiza-
tion for Economic Co-operation and Development (OECD) in 2018, an
annual investment of US$6.9 trillion until 2050 is needed to support in-
frastructure development, achieve sustainable development objectives,
and promote a low-carbon, climate-resilient future (OECD, The World
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Bank, & U.N. Environment, 2018). While prioritizing investment in
regions with infrastructure deficiency is crucial, transforming existing
infrastructure systems into more resilient ones is equally important.

Infrastructure resilience encompasses the ability of systems to an-
ticipate, resist, absorb, respond to, adapt to, and recover from dis-
turbances (Carlson et al., 2012). Given the increasing importance of
infrastructure resilience in recent decades, the strategic allocation of
resources to enhance resilience has become a critical component of
modern infrastructure planning (Esmalian et al., 2022). This allocation
of limited resources is pivotal in optimizing investments and ensuring
the most effective protection of critical infrastructure systems against
various potential disruptions. Historically, Cost–Benefit Analysis (CBA)
has played a central role in influencing decision-making regarding
infrastructure resilience (Pagliara & Zingone, 2023; Wise, Capon, Lin,
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Nomenclature

List of Notations

𝛼, 𝛽 Parameters in value function of Cumula-
tive Prospect Theory (CPT) to describe risk
attitudes

𝛽𝑛𝑖 Model coefficient corresponding to the
resilience intervention 𝑛𝑖

𝓁 Seismic source, 𝓁 ∈ 𝐿
𝜂𝑝 Resilience factor corresponding to power

services
𝜂𝑤 Resilience factor corresponding to water

service
𝛾 Parameter to specify the extent of over-

weighting in CPT
𝜆 Loss aversion coefficient in the CPT value

function
C Total budgetary outlay for resilience en-

hancement across all infrastructure systems
𝐆 Aggregate prospect of resilience

investments considering all potential
hazard events (earthquakes)

 (⋅) Normal distribution
𝓁 Percentage contribution of seismic source 𝓁

to the hazard
𝑀,𝓁 Percentage contribution of a seismic rupture

of magnitude 𝑀 originating from source 𝓁
to the hazard

𝑀|𝓁 Conditional percentage contribution of a
rupture of magnitude 𝑀 within the source
𝓁 to the hazard

𝜇𝑅 Mean time for component recovery in days
𝜈𝑑 Damage ratio corresponding to damage

state 𝑑
𝜔𝑛𝑖 ,𝑡 Percentage share of annual resilience bud-

get allocated to intervention 𝑛𝑖 in the year
𝑡

𝛷(⋅) Standard normal cumulative distribution
𝜋± Decision weights in CPT
𝜌 Reinforcement factor which indicates the

fraction of replacement cost to upgrade the
component to a certain level of resilience

𝜎𝑅 Standard deviation of time for component
recovery in days

𝜃𝑑 Median of the intensity measure corre-
sponding to damage state 𝑑

𝜑𝑑 Standard deviation of the natural logarithm
of the intensity measure 𝐼𝑀 corresponding
to damage state 𝑑

𝜉 Model exponent to capture the concave re-
lationship between resilience prospect and
budget allocation

𝑎 Service area dependent on a unique pair of
water and power demand nodes, 𝑎 ∈ 𝐴

& Stafford-Smith, 2022). This approach evaluates potential investments
by comparing upfront and maintenance costs with anticipated long-
term benefits. While it is effective for evaluating common and recurring
events, the limitations of this analysis become apparent when dealing
with high-impact low-probability (HILP) disaster events, which are of
2 
𝐵 Total benefit of a resilience investment
considering loss reduction to physical in-
frastructure and business operations

𝐶𝑠 Total cost of resilience investment for up-
grading from base resilience configuration
to the configuration 𝑠

𝐶𝑟𝑒𝑠 Total cost for post-disaster manpower and
equipment

𝐶𝑟𝑜𝑏 Total cost for reinforcing infrastructure
components

𝐶𝑡 Resilience budget for all infrastructure sys-
tems for the year 𝑡 of the investment
period

𝑑 Damage state of a component, 𝑑
𝐷𝐿 Damage loss of infrastructure components

or systems
𝐸𝐿 Economic loss due to business disruptions
𝐸𝑂𝐻𝑝 Equivalent outage hours corresponding to

power services
𝐸𝑂𝐻𝑤 Equivalent outage hours corresponding to

water services
𝐹𝑑 Fragility function corresponding to damage

state 𝑑
𝐺 Prospect of outcomes according to CPT
ℎ Hazard event, ℎ ∈ 𝐻
𝐼𝑠 Set of infrastructure components to be

upgraded to achieve a resilience level 𝑠
𝐼𝑀 Intensity measure
𝑘 Economic sector, 𝑘 ∈ 𝐾
𝑀 Magnitude of the earthquake
𝑛𝑖 Resilience intervention type, 0 ≤ 𝑖 ≤ 𝑁
𝑂 Annual economic output
𝑝𝑠 Ratio of cost for improving resourcefulness

to replacement cost of the network
𝑃𝑒 Probability of exceedance of an event
𝑃ℎ Annual probability of occurrence of an

seismic rupture event
𝑃𝑖 Probability of outcome 𝑖 in CPT
𝑟 Discount rate
𝑠 Network resilience configuration, 𝑠 ∈ 𝑆
𝑇 Time period for which a hazard is to be

characterized
𝑇𝐷 Design period for the resilience enhance-

ment project
𝑇𝐼 Investment period for the resilience en-

hancement project
𝑇𝑅𝑃 Return period of an event in years
𝑇𝑅 Recovery/restoration time of an infrastruc-

ture component
𝑣(𝑥) Value function in CPT
𝑤(ℎ) Weight assigned to an event ℎ; it depends

on the probability of hazard event ℎ
𝑤± Decision weighting functions in CPT

significant concern from a resilience perspective (Panteli & Mancarella,
2017).

The core issue lies in the rarity and catastrophic potential of HILP
events, such as earthquakes of immense magnitude or unprecedented
superstorms. The concept of expected annual loss, which involves
the cumulative sum of all potential disaster losses weighted by their
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annual occurrence probabilities, is frequently employed in CBA calcu-
lations (Mechler, 2016). An unintended consequence of this approach
is that relatively lower-impact higher-probability events tend to domi-
nate risk assessments, while the consequences of extreme events with
very low chances of occurrence make a small contribution to the
expected losses (Merz, Elmer, & Thieken, 2009). This can be especially
problematic when there are large uncertainties in the likelihood and
consequences of future HILP events. These parameters, when estimated
from past observational data, may fail to fully account for all possible
HILP events as well as the full extent of their consequences. As a result,
a risk-neutral decision-maker may fail to accurately consider the full
range of consequences posed by HILP events in traditional CBA.

At the same time, decision-makers are not always rational in their
behavior. A large and growing literature in behavioral economics and
prospect theory suggests that decision-makers often exhibit risk prefer-
ences that deviate from rationality (Altman, 2010). For example, people
tend to be loss averse; risk-seeking in the loss domain and risk-averse
when they see a chance of gains; and importantly, they tend to over-
weight low probabilities and underweight high probabilities (Barberis,
2013; Kahneman & Tversky, 1979). As a result, compared to risk-
neutral decision-makers, prospect theory decision-makers may assign
greater importance to HILP events when evaluating resilience invest-
ment alternatives. In the context of resource allocation for resilience, it
is of considerable interest to understand how different risk preferences
of the decision-maker can impact investment decisions, especially in
consideration of high-impact low-probability events.

In this study, we introduce a integrated framework to investigate
the effect of risks preferences of decision-makers on their resource
allocation pathways towards enhancing the collective resilience of
interdependent infrastructure networks in the context of HILP events.
Pathways represent the decisions about resource allocation to various
resilience interventions during the multi-year implementation phase.
The specific objectives of the study are as follows:

1. Develop an integrated infrastructure-industry simulation model
to capture the role of disaster-induced infrastructure disruptions
on economic sectors.

2. Develop target resilience levels for the infrastructure compo-
nents in the interdependent network by formulating incremental
changes to resilience capabilities (pre-disaster robustness and
post-disaster recovery).

3. Develop resilience investment pathways for the interdependent
network by formulating an optimization problem that maximizes
‘perceived’ net benefits of resilience investments over the design
horizon.

4. Incorporating Cumulative Prospect Theory in the methodology,
investigate how decision-makers with varying risk preferences
(probability weighting preferences) perceive the net benefits
from infrastructure resilience interventions and their role on
resource allocation pathways.

The subsequent sections of the paper are structured as follows:
ection 2 presents a concise overview of resource allocation decision-
aking approaches and methods for embedding risk preferences; Sec-

ion 3 discusses the methodological framework for developing path-
ays to enhance the resilience of interdependent infrastructure net-
orks; Section 4 presents an application of the proposed methodology
n a case study involving the interdependent power, water, and trans-
ort network in Shelby County, Tennessee (U.S.); and finally, Section 5
ummarizes the paper’s findings and conclusions.

. Background

.1. Disaster risks to infrastructure systems and the need for resilience

Critical infrastructure systems play a vital role in cities by sup-

orting economic activities, sustaining communities, and promoting r

3 
societal well-being. However, the increasing complexity and inter-
dependence of critical infrastructure systems have made them more
vulnerable to disaster events (Ouyang, 2014). The consequences of
disaster-induced infrastructure damages and disruptions extend beyond
physical damage, resulting in significant socioeconomic losses. Chang
(2016) classified these higher-order effects into four categories, namely,
health, social, economic, and environmental consequences (Chang,
2016).

One of the key contributors to the propagation of infrastructure
failure effects to other systems is the increasing level of interdepen-
dencies. Urban infrastructure networks, consisting of transportation,
energy, water, telecommunications, and more, are tightly intertwined
through physical, logical, cyber, and geographic dependencies (Rinaldi
et al., 2001). While these interdependencies are inevitable for improv-
ing operational efficiency and coordination, they can become major
sources of higher-order vulnerability during exogenous shocks. The
interdependencies create a ‘domino effect’ during crises, where the
failure of one system triggers failures of other systems, and escalates
to larger geographical regions affecting significantly large populations
and economies (Wang, Hong, & Chen, 2012).

Critical infrastructure risks may not necessarily emanate from the
vulnerability of existing infrastructure systems alone; the changing
hazard profiles and spatial dynamics also contribute to the increasing
risks. Climate change intensifies the frequency and severity of extreme
weather events and thereby increases the exposure (Güneralp, Güner-
alp, & Liu, 2015). This is further exacerbated by land use changes and
population growth in these regions of high hazard exposure. A recent
study by Rentschler et al. (2023) revealed that human settlements in
hazardous flood zones have surpassed those in flood-safe zones by up
to 60% since 1985, particularly in regions like East Asia (Rentschler
et al., 2023).

While the importance of ensuring adequate resilience of infrastruc-
ture systems is indisputable, it is equally crucial to improve our un-
derstanding of how resilience can be achieved. Infrastructure resilience
can be broadly defined as the ability of an infrastructure system to with-
stand a change or a disruptive event and minimize further performance
deviations (Nan & Sansavini, 2017). Resilience frameworks, such as
the 4𝑅′𝑠 framework (in which resilience is characterized as robust-
ness, redundancy, resourcefulness, and rapidity capabilities) (Bruneau
et al., 2003), absorb-adapt-transform framework (Béné, Wood, New-
sham, & Davies, 2012) and the absorb-restore-adapt framework (Francis
& Bekera, 2014) classified infrastructure resilience interventions into
resilience characteristics and provided practical insights into infras-
tructure resilience enhancement. Recent studies also incorporate con-
cepts, such as, preventive, anticipative, and transformative capabilities
as essential qualities of a resilient infrastructure system (Manyena,
Machingura, & O’Keefe, 2019).

2.2. Cost–Benefit Analysis (CBA) for infrastructure (resilience) investments

Cost–Benefit Analysis (CBA) is a widely adopted framework to
evaluate infrastructure projects, policies, and decision alternatives (Chi
& Bunker, 2021; Jones, Moura, & Domingos, 2014). It primarily focuses
on assessing the costs and benefits associated with a particular course
of action. In CBA, the costs and benefits associated with a project or
decision are quantified and expressed in monetary terms. The analy-
sis aims to determine whether the benefits derived from the project
outweigh the costs incurred. To account for the time value of money,
future costs and benefits are discounted.

The central equation in CBA is the net present value (NPV) formula,
which calculates the present value of the net benefits. The NPV is ex-
pressed 𝑁𝑃𝑉 =

∑𝑇
𝑡=0(𝐵𝑡 − 𝐶𝑡)∕(1 + 𝑟)𝑡 where 𝐵𝑡 represents the benefits

in time period 𝑡, 𝐶𝑡 represents the costs in time period 𝑡, 𝑟 is the discount
ate, and 𝑇 is the time horizon of the analysis. The above relationship
akes into account the timing of costs and benefits, and the discount

ate reflects the opportunity cost of capital or the rate of return required
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to compensate for the delay in receiving benefits or incurring costs. A
positive NPV indicates that the benefits exceed the costs, suggesting
that the project or decision is economically viable. Conversely, a nega-
tive NPV suggests that the costs outweigh the benefits, indicating that
the project may not be economically justified. In addition to NPV, other
metrics are also commonly used in Cost–Benefit Analysis, such as the
benefit–cost ratio (BCR) and internal rate of return (IRR).

Chadburn et al. (2010) stated that cost–benefit analyses can be
used to develop economic arguments in favor of risk reduction in-
vestments rather than responding to future disaster events (Chadburn,
Jacobo, Kenst, & Venton, 2010). CBA is considered the most common
approach for prioritizing infrastructure resilience upgrades (Hallegatte,
Rozenberg, Rentschler, Nicolas, & Fox, 2019) and is capable of iden-
tifying risks and cost-effective risk reduction measures (Michel-Kerjan
et al., 2013). For instance, Croope and McNeil (2011) developed a
decision-support system based on CBA to compare societal, economic
and physical interventions that can reduce vulnerability and improve
recoverability of regions and critical infrastructure systems after dis-
asters (Croope & McNeil, 2011). Zhu and Leibowicz (2022) applied
CBA to determine the cost-effectiveness of power network hardening
interventions against floods and winds (Zhu & Leibowicz, 2022).

Despite its wide adoption, CBA has faced significant scrutiny due
to several practical limitations. Some of the criticisms of CBA as a
decision-making tool for evaluating disaster risk reduction alternatives
include its inability to represent HILP events in risks, the inability
to capture intangible and indirect effects, and the inability to resolve
conflicting objectives (Mechler, 2016). For instance, using a proba-
bilistic approach to estimate risk reduction due to interventions would
‘smooth’ the benefits of actions aimed at reducing risks from very-
low probability events, impacting the viability of such projects. In
addition, CBA is also not suitable for accounting for benefits that
are difficult to quantify in monetary terms and existing methods to
mitigate them are often affected by value judgements (The World Bank,
2010) With respect to resource allocation for infrastructure resilience,
McDonald et al. (2020) listed two distinct challenges for CBA, namely,
its inability to handle HILP nature of natural hazards and the complex
and interconnected nature of urban infrastructure networks that leads
to network-wide effects of resilience interventions (McDonald, Timar,
McDonald, & Murray, 2020). From a more practical perspective for
decision-making, Shreve and Kelman (2014) observed that most of
the risk reduction studies that adopt CBA framework do not report
the costs and benefits of the various strategies to enable an informed
understanding of their relative effectiveness in reducing the risks.

2.3. Accounting for risk preferences in infrastructure decision-making

While CBA offers a robust decision-making tool that assists decision-
makers, it is incapable of explaining how various psychological factors
that influence decision-makers’ perceptions and valuations of costs
and benefits. As far as resilience is concerned, how decision-makers
perceive extreme risks has a significant influence on how they allocate
resources to mitigate them. One of the key challenges with ascertaining
the benefits of infrastructure resilience upgrades is the need to quantify
the estimated reduction of risk in the form of an expected value. In a
risk-neutral setup, the expected loss (or gain) is the sum of all con-
sequences weighted by its probabilities. However, research has shown
that decision-makers perceive probabilities differently (Gayer, 2010),
and this can have an effect on the perceived loss (or) gain from an
action. This will have consequences in the way they allocate resources
for infrastructure resilience. Two major frameworks exist to capture the
risk preferences of individuals in decision-making, namely, Expected
Utility Theory (EUT) and Cumulative Prospect Theory (CPT).

EUT and CPT offer distinct perspectives on decision-making. EUT is
a normative framework that focuses on maximizing expected utility by
considering probabilities and subjective values (von Neumann & Mor-

genstern, 2007). In contrast, CPT is a descriptive model that accounts

4 
for psychological biases in risk preferences (Tversky & Kahneman,
1992). One key difference is how they handle decision-makers’ bias
towards low probabilities. Expected Utility Theory (EUT) assumes that
individuals assess the utility of each potential outcome of a decision
and make their choice based on the expected utility, which is calcu-
lated using the probabilities of these outcomes. These probabilities are
treated as the true, objective probabilities of the outcomes. In contrast,
CPT uses a weighting function that assigns higher weight to low prob-
abilities. This accounts for the tendency of individuals to overestimate
the likelihood of rare events and influences their decision-making
process. Both frameworks are widely utilized for resource allocation to
incorporate decision-makers’ risk preferences in infrastructure invest-
ment decision, namely, asset management (Gharaibeh, Chiu, & Gurian,
2006), infrastructure planning (Li et al., 2022; Scholten, Schuwirth,
Reichert, & Lienert, 2015), infrastructure maintenance (Cheng & Fran-
gopol, 2022; Porras-Alvarado, 2016), cyber-security of infrastructure
systems (Yang, Kiekintveld, Ordonez, Tambe, & John, 2011), and dis-
aster resilience (Cha & Ellingwood, 2012). A review of the above two
frameworks is presented in Appendix A.1.

2.4. Gaps in the literature and contribution

While risk-based assessments and cost–benefit analyses provide
valuable insights into resilience investments, they may not fully capture
the complexity of HILP events. HILP events can have far-reaching
consequences that ripple through interconnected infrastructure sys-
tems, causing systemic failures that exceed the scope of traditional
risk assessments (McDonald et al., 2020). Traditional risk-neutral ap-
proaches often underestimate the impacts of rare and catastrophic
events, leading to inadequate resource allocation for enhancing re-
silience against HILP events (Panteli & Mancarella, 2017). However,
it is important to recognize that decision-makers are not always risk-
neutral or rational in their decision-making processes. Their treatment
of HILP events can vary significantly, resulting in diverse resource
allocations. Given the flexibility of CPT in handling low-probability
events differently (Tversky & Kahneman, 1992), it can be used to model
the risk preferences of decision-makers towards HILP events better than
other behavioral models. By considering decision-makers’ attitudes
towards risks from low-probability events using CPT, we can better
understand how these preferences shape resource allocation strategies
and their implications for enhancing the collective resilience of urban
infrastructure systems in the face of HILP events.

3. Methodology

Fig. 1 illustrates the methodological framework adopted in the
study. First, the seismic hazard in the study region is characterized,
and an earthquake event set is created. Later, the infrastructure net-
work failures and subsequent business disruptions due to each of the
earthquake scenarios of interest are simulated under various network
resilience configurations using an integrated simulation model. Subse-
quently, the decision-makers’ perceptions (behavioral aspects) on the
benefit from resilience interventions are statistically modeled using
the simulation dataset. Finally, the statistical models are embedded
in an optimization framework to derive and analyze the resilience
pathways adopted by decision-makers with divergent risk preferences.
The methodology is operationalized in five sequential stages, namely,
(a) modeling of hazard and infrastructure component vulnerability, (b)
simulation of interdependent effects of infrastructure disruptions (c)
quantification of indirect impacts on economic sectors due to business
disruptions, (d) development of statistical models to predict gains
from resilience investments including those from HILP events, and (e)
development of optimal resilience pathways. While the methodology
is developed for adapting infrastructure systems against earthquake

hazard, it can be applied to any type of hazard or multi-hazards.
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Fig. 1. Methodology for developing optimal infrastructure resilience pathways.
3.1. Hazard modeling and characterization

In this study, OpenQuake Engine (Pagani, Monelli, Weatherill, Dan-
ciu, et al., 2014), an open-source seismic risk analysis platform, is used
to simulate earthquake events. We adopted an event-based method
where we identified earthquake rupture scenarios that go beyond the
exceedance probability threshold predefined by the decision-maker.
The seismic intensities are characterized using the concept of return
periods. The process begins by choosing an investigation period (in
years) and a target ground motion parameter of interest (for exam-

ple, peak ground acceleration (𝑃𝐺𝐴), peak ground velocity (𝑃𝐺𝑉 )

5 
and peak ground displacement (𝑃𝐺𝐷)). A disaggregation analysis is
conducted to identify the seismic sources that exceed a probability
threshold and quantify their contribution to the overall hazard (Pa-
gani, Monelli, Weatherill, Danciu, et al., 2014). The disaggregation
is then performed for the selected sources to obtain the conditional
probability of exceedance by magnitude and the contribution of each
rupture scenario. Finally, the chosen rupture scenarios are simulated
using ground motion models to evaluate parameters like peak ground
acceleration, velocity, and displacement across the study region. The
detailed step-wise methodology to develop the earthquake event set

and corresponding ground motion fields are presented in Appendix A.2.
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3.2. Vulnerability and recovery modeling of infrastructure components

The direct damages incurred by different infrastructure components,
such as pipelines, power lines, and road links, as a result of earth-
quake events, are modeled using fragility functions (Federal Emergency
Management Agency, 2020). Discrete damage states are defined based
on the continuous extent of damage to the infrastructure components.
Each damage state is described by a fragility function 𝐹𝑑 (𝐼𝑀), which
represents the probability of surpassing the damage level 𝐷 = 𝑑 for a
given intensity measure 𝐼𝑀 = 𝑥 (Eq. (1)).

𝐹𝑑 (𝐼𝑀) = 𝑃 [𝐷 ≥ 𝑑|𝐼𝑀 = 𝑥] = 𝛷
[

1
𝜑𝑑

ln 𝑥
𝜃𝑑

]

(1)

here 𝛷[⋅] is the standard normal cumulative distribution, 𝜑𝑑 is the
tandard deviation of the natural logarithm of the intensity measure
orresponding to the damage state 𝑑 and 𝜃𝑑 is the median of the
ntensity measure corresponding to 𝑑.

At the same time, the recovery periods of infrastructure components
re modeled using a normal distribution of restoration periods (Eq. (2)).

𝑅 = 
(

𝜇𝑅, 𝜎
2
𝑅
)

(2)

here 𝑇𝑅 is the time of recovery of an infrastructure component, 𝜇𝑅 is
he mean time of recovery, and 𝜎𝑅 is its standard deviation.

The direct damage to infrastructure components and the subsequent
ecovery process due to other hazards can also be modeled in a sim-
lar fashion by using corresponding fragility functions and recovery
istributions specific to them.

.3. Interdependent infrastructure simulation

We used InfraRisk, an integrated power-water-transport simulation
odel, to simulate the network-wide effects of infrastructure disrup-

ions induced by the seismic events (Balakrishnan & Cassottana, 2022).
nfraRisk achieves interdependent infrastructure simulation by integrat-
ng infrastructure-specific models through an object-oriented interface.
his integration involves identifying and modeling the dependencies
mong different infrastructure components and ensuring time syn-
hronization among the infrastructure simulation models. The details
f various modules in the integrated simulation model is provided
n Appendix A.3. The temporal functional changes to infrastructure
omponents due to disaster impacts and recovery are captured using
esilience metrics derived from the concept of satisfied demand (ratio
f supply to demand). These resilience metrics can be designed by con-
idering a number of criteria, such as performance, equity, accessibility,
mong others. In this study, the water and power disruptions at the
emand nodes are quantified as Equivalent Outage Hours (𝐸𝑂𝐻𝑤 and
𝑂𝐻𝑝, respectively).

.4. Quantification of effects of infrastructure disruptions on regional eco-
omic sectors

Infrastructure service disruptions can have significant impacts on
he operational continuity of dependent businesses, as extensively doc-
mented in the literature. In this study, we incorporated business losses
esulting from infrastructure disruptions into the resilience decision-
aking framework.

To simulate business disruptions caused by infrastructure failures,
inks are established between the interdependent infrastructure model
nd the industrial sectors dependent on it. The interdependent infras-
ructure simulation model captures the spatio-temporal variations in
ater and power supply at the respective demand nodes. By delineating

he service areas for each demand node, the businesses dependent on
hese nodes are mapped in a sector-wise manner. Spatial datasets on
conomic activities at local, regional, and national levels are routinely
ollected by many countries, such as the United States, through peri-
dic censuses and surveys. Leveraging these datasets, which include
6 
nformation such as economic output, the economic activities can be
caled down to their respective service areas based on metrics such as
ector-wise employee size and the total number of business units.

In the literature, two approaches have been employed to establish
he link between infrastructure failures and business disruptions. The
irst approach utilizes technical coefficients derived from input–output
IO) tables to quantify the initial shock to economic sectors resulting
rom infrastructure disruptions (Haimes et al., 2005; Santos, 2006).
owever, this approach has limitations as the technical coefficients
rimarily capture economic relationships between sectors rather than
unctional dependencies. The second approach involves conducting
urveys to quantify the functional dependencies of businesses on infras-
ructure services. These surveys provide insights into the sector-specific
ercentages of operability (resilience factors) immediately after disrup-
ions to water and power services, among others (Chang, Seligson, &
guchi, 1996; Kajitani & Tatano, 2009). In this study, the resilience
actors reported by Kajitani and Tatano (2009) are adopted to establish
he link between water and power network disruptions and business
utput.

In particular, 𝜂𝑝, 𝜂𝑤 are the power and water resilience factors,
hich indicate the functional level of sector 𝑘 ∈ 𝐾 of the economy due

o power disruption and water disruption, respectively. If the annual
utput from sector 𝑘 within an area 𝑎 dependent on a pair of water and
ower demand nodes is 𝑂𝑘

𝑎 , then the total economic loss contributed by
in 𝑎 is given by Eq. (3).

𝐶𝑘
𝑎 = 1

365 × 24

[

(1 − 𝜂𝑝)𝐸𝑂𝐻𝑎
𝑝 + (1 − 𝜂𝑤)𝐸𝑂𝐻𝑎

𝑤

]

× 𝑂𝑘
𝑎 (3)

here 𝐸𝑂𝐻𝑎
𝑝 and 𝐸𝑂𝐻𝑎

𝑤 are the equivalent outage hours correspond-
ng to power and water disruptions resulting from a seismic event in
rea 𝑎. Then, the cumulative economic impact due to the event can be
alculated as in Eq. (4).

𝐶 =
∑

𝑎∈𝐴

∑

𝑘∈𝐾
𝐸𝐶𝑘

𝑎 (4)

here 𝐴 is the set of all service areas and 𝐾 is the set of all economic
ectors.

.5. Costs and benefits of resilience interventions

A wide range of resilience alternatives can be proposed for water,
ower, and transport systems. These alternatives may include rein-
orcing above-ground water tanks, strengthening power transmission
owers and transformers, and increasing the availability of repair crews,
mong others. In this study, the focus is on two specific categories of
esilience interventions, namely, those aimed at enhancing robustness
nd those meant to improve the resourcefulness of the systems. Ro-
ustness refers to the absorptive capacity of an infrastructure system
hereas resourcefulness is directly linked to post-disaster recoverabil-

ty and adaptability. Each intervention incurs a cost but effectively
educes the collective impact of disaster events on the interdependent
nfrastructure network and its dependent businesses.

To simplify computational complexity, we conducted cost–benefit
alculations for ‘network resilience configurations’ instead of individ-
al interventions. A network resilience configuration is defined as
combination of individual resilience interventions (upgrades) ap-

lied to different infrastructure components, collectively improving the
esilience of the interdependent infrastructure network to a certain
egree. The objective of the cost–benefit calculations is to determine
hether the perceived benefits of a network resilience configuration
utweigh the initial costs associated with it.

For the cost–benefit calculation, the following costs are taken into
onsideration:

1. The cost of implementing robustness interventions before a dis-
aster event. Robustness is improved by reinforcement, retrofitting
or replacement of existing infrastructure components.



S. Balakrishnan et al.

f

o
s

3

r
r

𝑠
r
r

b
g

𝐷

w
d
0

u

ct

l
d
C
o

𝜋

Sustainable Cities and Society 115 (2024) 105795 
2. The cost of enhancing resourcefulness ans rapidity during and
after a disaster event. Resourcefulness and rapidity are improved
through investments in post-disaster recovery crews and equip-
ment.

The benefits of resilience interventions can be of two types as
ollows:

1. Reduction in physical repair/replacement costs compared to a
do-nothing strategy for the given set of disaster events.

2. Reduction in economic losses incurred by businesses due to
infrastructure disruptions.

The rest of the section provides a detailed description of the meth-
ds employed to quantify the costs and benefits associated with re-
ilience configurations.

.5.1. Calculation of costs
Given that the interventions are determined prior to the occur-

ence of a disaster, the corresponding costs are calculated for network
esilience configurations.

Let us assume that the full replacement cost of component 𝑖 un-
der base configuration 𝑠0 is 𝑅𝐶𝑖. The base resilience configuration,
0, denotes the current resilience capabilities of the network before
esource allocation. We define a reinforcement factor corresponding to
esilience configuration 𝑠 as 𝜌𝑠𝑖 ∶ 𝜌𝑠𝑖 ≥ 0, which is the fraction of the

replacement cost that would be needed to reinforce 𝑖. If 𝐼𝑠 ∋ 𝑖 is the
set of components to be reinforced to attain a resilience configuration
𝑠, then the total cost of reinforcement is given by Eq. (5).

𝐶𝑠
𝑟𝑜𝑏 =

∑

𝑖∈𝐼𝑠
𝜌𝑠𝑖𝑅𝐶𝑖 (5)

The cost of resourcefulness and rapidity enhancement is calculated
as the sum of the additional investment in improving maintenance
and restoration capacity. The cost of interventions aimed at improving
resourcefulness and rapidity is primarily associated with manpower and
equipment. These costs can be quantified as a proportion (𝜚𝑠) of the
replacement cost of the network under the base resilience configuration
𝑠0 (Eq. (6)).

𝐶𝑠
𝑟𝑒𝑠 = 𝜚𝑠𝑅𝐶𝑛𝑒𝑡 (6)

where 𝜚𝑠 > 0 and 𝑅𝐶𝑛𝑒𝑡 =
∑

𝑖∈ 𝑛𝑒𝑡 𝑅𝐶𝑖 is the total replacement cost of
the network considering all components.

The total cost of resilience investment corresponding to the con-
figuration 𝑠 is therefore given by the following equation (Eq. (7)).

𝐶𝑠 = 𝐶𝑠
𝑟𝑜𝑏 + 𝐶𝑠

𝑟𝑒𝑠 (7)

3.5.2. Calculation of benefits
We consider several resilience configurations denoted by 𝑠 ∈ 𝑆. The

benefits should be calculated for all possible hazard events ℎ ∈ 𝐻 .
Each hazard event ℎ may inflict a certain level of damage on the
exposed infrastructure components. The damage of a component 𝑖 is
characterized using discrete damage states 𝑑 ∈ 𝐷 (Eq. (8)).

𝑑 = 𝑓 (ℎ, 𝑠) (8)

where 𝑓 (⋅) is the functional form of the component fragility curve.
The damage cost corresponding to each damage state is assumed to

e proportional to the replacement cost of the component 𝑅𝐶𝑖 and is
iven by Eq. (9).

𝐿ℎ,𝑠
𝑖 = 𝜈𝑑(ℎ,𝑠)𝑖 𝑅𝐶𝑖 (9)

here 𝜈𝑑(ℎ,𝑠)𝑖 is the damage ratio of component 𝑖 corresponding to
amage state 𝑑 resulting from a hazard ℎ under configuration 𝑠 and
≤ 𝜈 ≤ 1.
𝑖

7 
The total cost of replacement/repair of the whole network if config-
ration 𝑠 is implemented corresponding to hazard event ℎ is (Eq. (10)):

𝐷𝐿ℎ,𝑠
𝑛𝑒𝑡 =

𝑛
∑

𝑖=1
𝐷𝐿𝑑(ℎ,𝑠)

𝑖 (10)

The total damage loss to the entire network for the base resilience
configuration 𝑠0, i.e. under the do-nothing strategy, is denoted as
𝐷𝐿ℎ,𝑠0

𝑛𝑒𝑡 . Therefore, the effective reduction in damage loss resulting
from the implementation of replacement and repair measures can be
expressed as shown in Eq. (11).

𝛥𝐷𝐿𝑠
𝑛𝑒𝑡 = 𝐷𝐿ℎ,𝑠

𝑛𝑒𝑡 −𝐷𝐿ℎ,𝑠0
𝑛𝑒𝑡 (11)

The other benefit of resilience interventions stems from the reduc-
tion in economic losses from business disruptions, owing to upgrading
to network resilience configuration 𝑠. The total direct economic loss
due to an event ℎ incurred by each sector 𝑘 of the economy under
resilience configuration 𝑠 is denoted as 𝐸𝐿ℎ,𝑠

𝑘 . The total direct economic
loss caused by the network interruptions is given by Eq. (12).

𝐸𝐿ℎ,𝑠 =
∑

𝑘
𝐸𝐿ℎ,𝑠

𝑘 (12)

The total economic disruption due to hazard event ℎ under a do-
nothing strategy is 𝐸𝐿ℎ,𝑠0 , and the effective reduction in costs resulting
from replacement and repair measures can be calculated as shown
in Eq. (13).

𝛥𝐸𝐿ℎ,𝑠 = 𝐸𝐿ℎ,𝑠 − 𝐸𝐿ℎ,𝑠0 (13)

Consequently, the total benefits corresponding to event ℎ due to the
implementation of configuration 𝑠 are calculated as follows (Eq. (14)):

𝐵ℎ,𝑠 = 𝛥𝐷𝐿ℎ,𝑠
𝑛𝑒𝑡 + 𝛥𝐸𝐿ℎ,𝑠 (14)

3.6. Incorporating risk attitudes of decision-makers using Cumulative Prospe
Theory

CPT is employed to gain insight into how decision-makers over-
weight or underweight HILP events in the resource allocation process.
To apply CPT, the assumption is made that each seismic event occurs
independently of others. In other words, in a given year, there can
be ruptures of different magnitudes originating from the same source.
Since each seismic event has only two possible outcomes (either the
earthquake event occurs in a year or it does not), the estimation of
potential gains from investing in a resilience intervention needs to take
into account these two possible outcomes.

Consider an earthquake event ℎ with annual probability of occur-
rence 𝑃ℎ. Let us also assume that the current base resilience configura-
tion 𝑠0 entails the lowest resilience. We can improve the resilience to
the resilience target configuration 𝑠 by investing 𝐶𝑠 resources. This will
ead to a loss reduction of 𝐵ℎ,𝑠 if the event ℎ occurs. If the earthquake
oes not occur (denoted by ℎ′), the loss reduction is zero. According to
PT (Tversky & Kahneman, 1992), the decision weights of the above
utcomes are (Eqs. (15) and (16):

+
ℎ =

𝑃 𝛾
ℎ

(

𝑃 𝛾
ℎ + (1 − 𝑃ℎ)𝛾

)
1
𝛾

(15)

𝜋+
ℎ′ =

[

(1 − 𝑃ℎ) + 𝑃ℎ
]𝛾

([

(1 − 𝑃ℎ) + 𝑃ℎ
]𝛾 + (1 − [(1 − 𝑃ℎ) + 𝑃ℎ])𝛾

)

1
𝛾

−
(1 − 𝑃ℎ)𝛾

(

(1 − 𝑃ℎ)𝛾 + (1 − (1 − 𝑃ℎ))𝛾
)
1
𝛾

= 1 −
(1 − 𝑃ℎ)𝛾

[

𝛾 𝛾 ] 1
𝛾

(16)
(1 − 𝑃ℎ) + 𝑃ℎ
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where 𝛾 ∈ [0, 1] is the amount of over- or underweighting by the
ecision-maker. 𝜋+

ℎ′ represents the non-occurrence of the earthquake
vent in one year resulting in zero loss reduction from the resilience
ntervention and, therefore, the annual prospect (gain) share of the
esilience investment due to event ℎ can be calculated as in Eq. (17).
ℎ,𝑠 = 𝜋+

ℎ × 𝐵ℎ,𝑠 + 𝜋+
ℎ′ × 0

= 𝜋+
ℎ𝐵

ℎ,𝑠 (17)

The cumulative annual prospect 𝐺𝑠 of a resilience investment is the
um of the prospect contribution from all possible earthquakes in the
vent set 𝐻 (Eq. (18)).
𝑠 =

∑

ℎ∈𝐻
𝜋+
ℎ𝐵

ℎ,𝑠 (18)

The gains from each resilience intervention are different for decision-
akers with varied risk preferences, and this can be easily investigated
sing CPT. In particular, when 𝛾 = 1, 𝜋+

ℎ = 𝑃ℎ, then 𝐺𝑠 is the expected
nnual loss reduction due to the resilience investment, representing a
isk-neutral and rational decision-maker as in EUT.

.7. Development of optimal resilience pathways

In the subsequent phase, the costs and benefits linked to various
etwork resilience configurations are leveraged to formulate budget
llocation pathways aimed at achieving optimal resilience against seis-
ic events. Each resilience configuration 𝑠 represents a combination

f resilience strategies implemented to specific degrees. By employing
n integrated infrastructure-industry simulation model, the physical
nd economic repercussions resulting from each earthquake event ℎ
ithin the event set 𝐻 are simulated, considering the various network

esilience configurations 𝑆 ∋ 𝑠. With the simulated dataset, statis-
ical models are constructed to predict the prospects for the design
orizon 𝑇𝐷 perceived by different types of decision-makers, based on
he amounts invested in various resilience interventions. Linear regres-
ion models are used to develop these prediction models. The model
pecification used for the prediction models is presented in Eq. (19).

= 𝛽1
(

𝐶1
)
1
𝜉 + 𝛽2

(

𝐶2
)
1
𝜉 +⋯ + 𝛽𝑁

(

𝐶𝑁
)
1
𝜉 (19)

here 𝐺 is the annual prospect (gain) from investing 𝐶1, 𝐶2,… , 𝐶𝑁
amounts to 𝑛1, 𝑛2,… , 𝑛𝑁 interventions. 𝑛1, 𝑛2,… , 𝑛𝑁 represent subcat-
egories of interventions that are aimed at improving robustness, re-
sourcefulness, or rapidity capacities of the network. The model coeffi-
cients 𝛽𝑖 are computed for decision-makers with different risk attitudes.
Several studies have reported that resilience investments have dimin-
ishing marginal returns (Zhu & Leibowicz, 2022). This implies that
the marginal gains for initial investments in all types of interven-
tions are higher. The model exponent 𝜉 (where 𝜉 ≥ 1) allows for a
concave relationship between prospect gains and budget allocations.
The regression models can predict the perceived gains from resilience
investment combinations that vary in the budget allocated to different
interventions.

While Eq. (19) captures the prospects resulting from resilience
investments within a single year, it cannot be directly applied to
resilience planning problems that involve budget allocations spanning
multiple years. In such cases, where the total budget is fixed and dis-
tributed across the duration of the resilience project, i.e. the investment
horizon 𝑇𝐼 , optimizing the allocations across various types of resilience
interventions becomes paramount. Thus, the subsequent phase of this
study is aimed to address multi-year resilience enhancement projects as
a resource allocation optimization problem. The underlying principle
of this optimization approach is that there can exist different spending
pathways to achieve a specific level of resilience; however, optimizing
these pathways would ensure maximum perceived gain throughout the
design period of the resilience project.

Let us consider a planned total budget C, which is to be allocated

uniformly over an investment horizon of 𝑇𝐼 years, resulting in an i

8 
annual investment of 𝐶𝑡 = C∕𝑇𝐼 for each year 𝑡 within 𝑇𝐼 . It is assumed
that these investments contribute to the resilience of the infrastructure
networks during the design horizon 𝑇𝐷, where 𝑇𝐷 ≥ 𝑇𝐼 .

If we let 𝑛𝑖 denote the set of resilience interventions in which 𝐶𝑡
can be distributed, the investment proportions can be represented as
𝜔𝑛𝑖 ,𝑡 ∈ 𝐖. Consequently, the annual investment in intervention 𝑛𝑖
is given by 𝑐𝑛𝑖 ,𝑡 = 𝜔𝑛𝑖 ,𝑡𝐶𝑡. Eq. (20) presents the resource allocation
optimization problem.

max 𝐆 =
𝑇𝐼
∑

𝑡′=1

𝑁
∑

𝑖=1
𝛽𝑖
⎡

⎢

⎢

⎣

𝑡′
∑

𝑡=1

𝜔𝑛𝑖 ,𝑡𝐶𝑡

(1 + 𝑟)𝑡
⎤

⎥

⎥

⎦

1
𝜉

+ (𝑇𝐷 − 𝑇𝐼 )
𝑁
∑

𝑖=1
𝛽𝑖

[ 𝑇𝐼
∑

𝑡=1

𝜔𝑛𝑖 ,𝑡𝐶𝑡

(1 + 𝑟)𝑡

]

1
𝜉

s.t.
𝑇𝐼
∑

𝑡=1

𝑁
∑

𝑖=1
𝜔𝑛𝑖 ,𝑡𝐶𝑡 ≤ C

∀𝑡 ∈ {1,… , 𝑇𝐼}
𝑁
∑

𝑖=1
𝜔𝑛𝑖 ,𝑡 = 1

∀𝑖 ∈ {1,… , 𝑁}
𝑇𝐼
∑

𝑡=1
𝜔𝑛𝑖 ,𝑡𝐶𝑡 ≤ 𝐶𝑚𝑎𝑥

𝑛𝑖

∀𝑖 ∈ {1,… , 𝑁}, ∀𝑡 ∈ {1,… , 𝑇𝐼} 0 ≤ 𝜔𝑛𝑖 ,𝑡 ≤ 1

∀𝑡 ∈ {1,… , 𝑇𝐼} 𝐶𝑡 =
C
𝑇𝐼

(20)

where 𝐶𝑚𝑎𝑥
𝑛𝑖

is the maximum allowable budget for intervention 𝑛𝑖; 𝑟 is
he discount rate.

The objective is to maximize the perceived gains (prospect) through-
ut the design period of the project. The decision variables are the
nvestment proportions 𝜔𝑛𝑖 ,𝑡. The first term in the objective function

represents the prospects of the annual investment in each intervention
𝑛𝑖 over the investment horizon 𝑇𝐼 . The second term in the objective
function represents the prospects of the investment beyond the invest-
ment horizon 𝑇𝐼 , i.e., during the remaining design horizon 𝑇𝐷 − 𝑇𝐼 .
There are five constraints associated with the problem as follows:

1. Budget constraint: The total investment allocated over the in-
vestment horizon should not exceed the planned total budget
C.

2. Investment proportion constraint: For each year 𝑡 within the
investment horizon, the sum of investment proportions 𝜔𝑛𝑖 ,𝑡
across all interventions 𝑛𝑖 should be equal to 1. This ensures that
the entire annual investment is allocated among the available
interventions.

3. Maximum budget constraint: The sum of investments in each
intervention 𝑛𝑖 over the investment horizon should not exceed
the maximum allowable budget 𝐶𝑚𝑎𝑥

𝑛𝑖
for that intervention.

4. Investment proportion bounds: The investment proportions 𝜔𝑛𝑖 ,𝑡
for each intervention 𝑛𝑖 and year 𝑡 should be within the range
of 0 to 1, indicating the proportion of the annual investment
allocated to that intervention.

5. Annual investment constraint: The annual investment 𝐶𝑡 for each
year 𝑡 within the investment horizon is computed as the total
budget C divided by the investment horizon 𝑇𝐼 . This ensures an
even distribution of investment over the years.

The above formulation is a nonlinear constrained optimization prob-
lem. As the above nonlinear optimization problem is convex1 (a con-
cave function is maximized), the optimal solutions can be found using
a nonlinear solver like IPOPT (Wächter & Biegler, 2006). When 𝜉 = 1,
the problem is linear and the solver CPLEX (IBM ILOG, 2015) can be
used.

1 The relationship between prospects and investment is monotonously
ncreasing.
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The above optimization problem does not consider the feasibility
of the investments at any year even though it maximizes for the
corresponding perceived gains. We are also interested to know the year
beyond which the cumulative investment costs for resilience interven-
tions exceed the perceived gain. We identify the threshold year using
Eq. (21).

arg min
𝑇

𝑇
∑

𝑡=1

𝑁
∑

𝑖=1
𝜔𝑛𝑖 ,𝑡𝐶𝑡 ≥

𝑇
∑

𝑡′=1

𝑁
∑

𝑖=1
𝛽𝑖
⎡

⎢

⎢

⎣

𝑡′
∑

𝑡=1

𝜔𝑛𝑖 ,𝑡𝐶𝑡

(1 + 𝑟)𝑡
⎤

⎥

⎥

⎦

1
𝜉

(21)

where 𝑇 ∶ 𝑇 ≤ 𝑇𝐼 is the threshold year within the investment horizon.
The identification of the threshold year is performed separately because
we are also interested in investigating the influence of risk preferences
on the resource allocation by various decision-makers even if the
solutions beyond the threshold year are infeasible.

4. Model application on Shelby County, Tennessee, United States

This section demonstrates the application of the proposed method-
ology on the well-known Shelby County interdependent infrastructure
network. The case study investigated how decision-makers would allo-
cate resources to different resilience interventions over the investment
horizon of the project to improve the resilience of the interdependent
network and thus reduce the overall physical and economic risks from
seismic hazards in the region. In the process, we also explored how
decision-makers with divergent risk preferences perceive the chances
of occurrence of HILP events and its consequence on optimal resource
allocation.

4.1. Shelby interdependent infrastructure network

The power and water networks, along with their corresponding
service areas, are constructed using data obtained from Talebiyan and
Duenas-Osorio (2020). The road transport network and transportation
analysis zone datasets are collected from the TIGER/Line database of
the U.S. Census Bureau and subsequently processed. The infrastructure
network topologies are presented in Fig. 2.

The power network (Fig. 2(a)) comprises seventeen 23 kV sub-
stations, twenty 12 kV substations, 14 intersections, eight external
grid connections, and 73 transmission lines connecting them. The
total length of the network is approximately 369 km. The substations
are considered as demand nodes from which power is distributed to
businesses and households. Each substation has a unique service area.
The water network (Fig. 2(b)) consists of the following components:
six water tanks, nine pumping stations, 34 intersections, and 71 main
pipelines, with a total length of 495 km. In the case of the water
network, the intersections serve as demand junctions that provide water
to their respective service areas. Due to a lack of micro-level data on
the distribution networks of power and water networks, we assumed
that all consumers within a service area are equally affected by a
hazard event. For the transportation network (Fig. 2(c)), freeways,
US highways, and urban and rural arterial roads are considered. The
origin–destination flows are assigned using population estimates at the
nodes.

Two types of interdependencies are taken into account during the
construction of the interdependent infrastructure network. Firstly, the
water pumps rely on the nearest substations for their power supply. If
the substation is unable to provide sufficient power, the water pump
becomes inoperable. Secondly, the accessibility to transport services
plays a crucial role in recovery activities. The recovery sequencing
algorithm incorporates the availability of the nearest transport node as
a necessary condition for scheduling the recovery process.

The industry layer of Shelby County is constructed from the eco-
nomic census data and the various annual economic surveys conducted
by the U.S. Census Bureau. Since the sectoral economic outputs at
small geographic levels are not readily available, the following steps
are performed to develop the industry layer for the analysis:
9 
1. The county-level data related to total revenue/receipts corre-
sponding to two-digit North American Industry Classification
System (NAICS) industry sectors are obtained from the 2017
Annual Business Survey estimates.

2. Zip code-level data on employment size in various two-digit
NAICS industries are derived from 2017 County Business Pat-
terns estimates.

3. Assuming that the spatial distribution of annual revenue/receipts
follows that of the employment size in different zip code tabu-
lation areas, the zip code-level revenue/receipts are estimated
using the proportion of employees in each sector in the corre-
sponding zip code.

Fig. 2(d) shows the total receipts/revenue generated by all indus-
trial sectors in various zip codes in Shelby County.

4.2. Seismic event set and network simulation

The subsequent step to generate ground motion fields for the earth-
quake scenarios of interest and conduct network simulations to quantify
operational and economic losses. Shelby County, situated near the
highly active New Madrid Seismic Zone, experiences significant seis-
mic activity, including various point seismic sources in its vicinity.
To determine earthquake scenarios suitable for network simulation,
a disaggregation analysis is conducted using the 2008 United States
National Seismic Hazard Model (Petersen et al., 2008). This analysis
focused on assessing seismic hazard at the center of Shelby County,
employing a peak ground acceleration (PGA) threshold of 0.5𝑔, where
𝑔 = 9.8 m∕s2. As the present study also emphasizes HILP events, all
major seismic rupture scenarios in the region with a probability of
exceedance of at least 0.0001 within a return period of 2475 years
are considered. The resulting earthquake rupture dataset comprised
approximately 250 distinct scenarios, each with an annual occurrence
rate ranging from 1E-08 to 1E-02 events per year. Subsequently, event-
based simulations are conducted to acquire the ground motion fields.
Fig. 3(a) illustrates the peak ground acceleration field of one of the
earthquakes in the event set simulated by OpenQuake.

The failure of infrastructure components is modeled using available
fragility functions. For this study, the fragility models for determining
infrastructure component failures and restoration time distributions
based on their robustness are taken from the HAZUS earthquake model
technical manual (Federal Emergency Management Agency, 2020).
Table A.4 presents the fragility functions and recovery distributions of
the various infrastructure components with low level of robustness (see
Appendix A.4).

The ground motion fields are mapped to individual infrastructure
network components and then applied the relevant fragility curves to
derive the damage state probabilities. Since the failure of infrastructure
components is modeled probabilistically, three network failure realiza-
tions are created for each earthquake scenario under every resilience
configuration listed in Table 1. It must be noted that the number of
realizations are fixed considering the computational complexity of the
simulation model, and a higher number of realizations would provide
a more reliable estimate for the network-wide impacts of the seismic
events.. Fig. 3(b) illustrates a realization of infrastructure failure re-
sulting from an earthquake of magnitude 7.3 originating in the New
Madrid Seismic Zone, located in the northwest of Shelby County.

The infrastructure disruptions and their effects are linked to the
industrial layer following a two-step process. First, the magnitude of
water and power outages in terms of Equivalent Outage Hours (𝐸𝑂𝐻)
n different service areas within Shelby County are computed using
nfraRisk. For recovery sequencing, a maximum flow-based component
rioritization approach is employed (methodology explained in Balakr-
shnan and Cassottana (2022)). Fig. 3(c) shows the simulated network
erformance in terms of satisfied demand percentage resulting from
he direct disruptions shown in Fig. 3(b) (see Appendix). Second, the
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Fig. 2. Shelby county interdependent infrastructure network and industry layer.
𝐸𝑂𝐻 values corresponding to the service areas are translated to sector-
wise disruptions to economic activities and quantified using resilience
factors presented by Kajitani and Tatano (2009) using Eq. (3). The
resilience factors used in the study are tabulated in Table A.5 (see
Appendix A.5). Fig. 3(d) shows the aggregate economic losses incurred
by various regions in Shelby County due to the earthquake-induced
infrastructure disruptions.

For the present study, a total of 24,000 network simulations are
attempted for developing the training dataset (250 earthquake scenar-
ios × 3 infrastructure failure realizations × 8 robustness levels × 4
resourcefulness levels).

4.3. Comparing investment alternatives using Cumulative Prospect Theory

Two types of resilience strategies are considered, aimed at en-
hancing system robustness (seismic retrofitting or strengthening of
components) and resourcefulness (additional post-disaster repair crews
and equipment). Table 1 lists the various levels of the two resilience
strategies considered.

Seismic retrofitting options (prefixed with ‘R’) for the integrated
power, water, and transport network include converting brittle pipelines
to ductile, unanchored tanks and pumping stations to anchored ones,
seismic anchoring of substations, gate stations, and towers, and up-
grading seismic resistance of roads by better construction. On the
other hand, ‘C’ represents different levels of crew and equipment
available for post-disaster recovery. The increased investment in crew
10 
and equipment would improve the speed of recovery due to the simul-
taneous repair and restoration of infrastructure system components. In
this study, a ‘resilience configuration’ is any combination of the two
strategies (for example, R1-C1), with R1 and C1 representing the least
resilient configurations and R8 and C4 the most resilient ones. The
configuration R1-C1 is fixed as the base configuration and analyzed
how decision-makers with divergent risk preferences perceive upgrad-
ing the infrastructure network to higher resilience configurations. The
combination of intermediate resilience configurations represents the
pathways through which the highest network resilience level can be
achieved. For the unit costs of the infrastructure components, the
HAZUS inventory technical manual (Federal Emergency Management
Agency, 2021) is largely relied upon (Table 2), and other sources
whenever needed. For the post-disaster recovery, we assumed that
the annual cost of maintaining a team of repair crew and equipment
is equal to 0.25% of the total network replacement value because
actual maintenance costs are not available. The crew-level maintenance
cost estimates are an approximation based on available network-level
maintenance costs and therefore must be treated as assumptions. For
each robustness level, a set of fragility curves and recovery functions
are defined based on HAZUS-MH guidelines to reflect the improved
component robustness.

4.4. Development of optimal pathways for resilience enhancement

Once the network simulations and economic loss analyses are com-
pleted, the next step is to calculate the costs and benefits associated
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Fig. 3. Simulated infrastructure and business disruptions due to one of the earthquakes from the event set (𝑀 = 7.3)
Table 1
Summary of resilience configurations and relevant interventions considered for implementation.

Resilience intervention Level Water Power Transportation

Robustness R1 Brittle pipelines, unanchored
tanks and pumping stations

Unanchored substations, gate
stations and towers

Roads with no seismic resistant
design

R2 Brittle pipelines, unanchored
tanks and pumping stations

Anchored substations, gate
stations, and towers

Roads with no seismic resistant
design

R3 Ductile pipelines, anchored tanks
and pumping stations

Unanchored substations, gate
stations and towers

Roads with no seismic resistant
design

R4 Brittle pipelines, unanchored
tanks and pumping stations

Unanchored substations, gate
stations and towers

Roads with seismic resistant
design

R5 Ductile pipelines, anchored tanks
and pumping stations

Anchored substations, gate
stations, and towers

Roads with no seismic resistant
design

R6 Brittle pipelines, unanchored
tanks and pumping stations

Anchored substations, gate
stations, and towers

Roads with seismic resistant
design

R7 Ductile pipelines, anchored tanks
and pumping stations

Unanchored substations, gate
stations and towers

Roads with seismic resistant
design

R8 Ductile pipelines, anchored tanks
and pumping stations

Anchored substations, gate
stations, and towers

Roads with seismic resistant
design

Resourceful- C1 Low level of resourcefulness (10 simultaneous repairs)
ness C2 Moderate level of resourcefulness (20 simultaneous repairs)

C3 High level of resourcefulness (30 simultaneous repairs)
C4 Very high level of resourcefulness (40 simultaneous repairs)
with the network resilience configurations as detailed in Section 3.5.
For each of the resilience configurations, we calculated the benefits as
11 
the annual reduction in physical and economic losses compared to that
of the base configuration (R1-C1).
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Table 2
Unit costs of infrastructure components.

Component Unit Robustness Replacement cost (US$)

Water tank each unanchored 800,000
anchored 840,000

Water pipeline meter brittle 177
ductile 177

Water pump each unanchored 525,000
anchored 551,250

Power lines and towers km unanchored 1,345,514
anchored 1,364,800

Substation each unanchored 10,000,000
anchored 10,056,000

External grid connection each unanchored 100,000,000
anchored 100,056,000

Road link km low seismic resistance 3,334,000
high seismic resistance 6,668,000

Since the focus is on understanding how decision-makers with vary-
ng risk preferences perceive the aforementioned benefits and compare
hem with upfront costs in the context of high-impact low-probability
HILP) events, four hypothetical decision-makers (DM-A, DM-B, DM-
, and DM-D) are considered. These decision-makers differ in their
eighting of low-probability events. To model the risk preferences of

he decision-makers, Cumulative Prospect Theory (CPT) is employed,
nd distinct values are assigned to the 𝛾 parameter in the decision

weighting function (Eq. (A.7) in Appendix A.1). Specifically, the follow-
ing four values for 𝛾 are examined: 0.2, 0.4, 0.6, and 1.0. These values
are selected based on the range of CPT parameter values identified
by Reiger et al. (2017) (Rieger, Wang, & Hens, 2017) through an
international survey. 𝛾 = 0.2 represents a decision-maker who assigns
very high weights to low-probability events (DM-A), while 𝛾 = 1.0
represents a neutral and rational decision-maker (DM-D). The weighting
parameter values 𝛾 = 0.4 and 𝛾 = 0.6 correspond to decision-makers
with high and moderate preferences towards low-probability events,
respectively (DM-B and DM-C). For simplicity, 𝛼 = 1 is assumed for
transforming benefits using the value function of CPT (Eq. (A.3) in
Appendix A.1).

Major resilience projects are typically implemented over several
years. Given a certain amount of investment, there are an infinite
number of ways to allocate resources to various resilience strategies.
To identify optimal resilience pathways within the Shelby County
infrastructure network, the resource allocation optimization problem
presented in Eq. (20) is solved. Throughout the study, we assumed the
following values for the model parameters, unless otherwise specified:
an investment horizon (𝑇𝐼 ) of 15 years, a design horizon (𝑇𝐷) of
50 years, a planned aggregate budget (C) of $100 million, and a
discount rate (𝑟) of 2%. Linear regression models are developed to
predict the prospects of infrastructure resilience upgrades, as perceived
by the four decision-makers based on the allocation amounts for each
intervention. Table 3 summarizes a subset of the regression models
developed for the four decision-makers (corresponding to a total budget
of $100 million, a model exponent of 1.0, and a discount rate of
2.0%). The model coefficients (𝛽𝑛𝑖 ) indicate the change in prospects
for every dollar spent on the respective resilience intervention, with
other variables held constant. For instance, DM-A (who assigns a very
high degree of overweighting for low probability events) perceives a
return of $4.237 for every dollar invested in improving water network
robustness when using a model exponent value of one. Conversely, DM-
D (who assigns neutral weights to probabilities) estimates the return
on one dollar invested in improving water network robustness to be
only $0.0016. Similar models are also built for the decision-makers
under different model exponents, cumulative budgets and discount

rates considered in the study.
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The regression models are applied to the resource allocation opti-
mization problem, which computes the percentage of annual invest-
ment allocated to the four interventions throughout the investment
horizon. Fig. 4 illustrates the optimal resilience pathway according to
the risk preferences of DM-B (who has a high degree of overweighting
for the low-probability events, 𝛾 = 0.4), assuming a total budget of
$100 million, a model exponent value of 1.1, and a discount rate of
2%. Fig. 4(a) shows the annual budget share during the investment
horizon and Fig. 4(b) shows the percentage of each network for which
the specific intervention is implemented. The dotted vertical line rep-
resents the threshold year (calculated using Eq. (21)) beyond which
the decision-maker perceives further investments as infeasible due to
the total upgrade costs exceeding the perceived gains (hatched region).
The annual budget share values within the hatched region in Fig. 4(a)
indicate the resource allocation scheme if feasibility of investments
are not taken into consideration. The results reveal that within the
feasible region, the largest share of the investment is allocated to
adding more crew and equipment, followed by investments in water
network robustness and power network robustness.

Fig. 4(b) reveals that investments in power network robustness are
the most preferred in terms of cost-effectiveness, followed by crew
and equipment and water network robustness. No significant funds are
allocated, both in the feasible and infeasible regions, for improving
transportation robustness, primarily due to its high upfront costs. More-
over, the highly interconnected nature of the Shelby transportation
network may mitigate the need for reinforcing existing road links,
as the accessibility to different nodes may not be significantly af-
fected even in the event of multiple road link disruptions caused by
earthquakes.

4.5. Effect of risk preferences of decision-makers and budget on the re-
silience pathways

Fig. 5 shows the combined sensitivity of the resource allocation
scheme against the risk preference of the decision-makers and the total
budget allocated over the investment horizon. Each row of Fig. 5 repre-
sents how decision-makers with varied risk preferences, i.e. weighting,
for low-probability events perceive the loss reduction from investing
in resilience interventions and decide on them. Each column illustrates
how decision-makers with a certain risk preference allocate resources to
different interventions based on different aggregate budgets. Significant
differences in resource allocation schemes appear among decision-
makers with different risk perceptions. Namely, with a fixed budget
of $100 million, DM-D (who assigns neutral weights to low-probability
events) allocates the majority of the initial years to water network
robustness, followed by power robustness. Conversely, DM-A (who
attributes very high weights to low-probability events) prioritizes crew
and equipment and power robustness. There is a clear shift from a
preference for investing in water robustness to investing in crew and
equipment as decision-makers increase their weights on low-probability
events. This trend suggests that investing in post-disaster recovery is
preferred by decision-makers as an effective way to address resilience
against HILP events compared to investing in reinforcing the infras-
tructure components to strengthen them against large seismic shocks.
Remarkably, improving power robustness is highly preferred by all
decision-makers owing to its low upfront costs and high prospects.
Regarding feasibility, it is evident that decision-makers with neutral
or near-neutral risk preferences (DM-C and DM-D) do not consider the
resilience interventions feasible, even during the initial years of the
investment horizon. However, those who assign higher weights to low-
probability events (DM-A and DM-B) perceive that even large invest-
ments in resilience are worthwhile when considering their capability
to reduce losses against HILP events.

In addition to the analysis mentioned above, we developed char-
acteristic curves for each decision-maker. These curves illustrate the
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Table 3
Summary of regression models to predict prospects of resilience investments (budget = $200Mn, model exponent = 1.0, and discount rate =
2%).
Decision maker 𝛾 𝜉 𝛽𝑤 (𝑡-stat) 𝛽𝑝 (𝑡-stat) 𝛽𝑡 (𝑡-stat) 𝛽𝑟 (𝑡-stat) 𝐹 -statistic Adj. 𝑅2

DM-A 0.2 1 4.27 (3.570) 69.33 (7.789) 0.39 (9.502) 6.39 (8.458) 247.85 0.97
DM-B 0.4 1 0.41 (5.130) 3.25 (5.521) 0.02 (10.626) 0.40 (8.165) 249.002 0.97
DM-C 0.6 1 0.05 (6.512) 0.19 (3.226) 0.003 (9.524) 0.04 (7.895) 213.616 0.965
DM-D 1.0 1 0.002 (7.451) 0.003 (1.662) 0.001 (6.407) 0.001 (7.714) 159.785 0.953
Fig. 4. Optimal budget allocation over the investment horizon for Shelby County infrastructure network (Decision-maker: DM-B (𝛾 = 0.4), budget: $200 Mn, model exponent: 1.1,
and discount rate: 2%). The hatched region represents the infeasible region as perceived by the decision-maker.
relationship between the total investment in resilience and the corre-
sponding perceived gains based on the optimization results. Fig. A.8
(refer to Appendix A.6) demonstrates how the perceived gains vary for
different decision-makers as resilience investments increase. The figure
also indicates the thresholds at which decision-makers consider further
investments to be infeasible.

4.6. Effect of discount rates and model exponent on resource allocation

Similar to the influence of budget and decision-maker risk prefer-
ences on resource allocation, the effect of discount rates and model
exponents are also investigated. Discount rates 𝑟 determine the net
present value (NPV) of annual allocations during the investment period,
while the model exponent determines the rate of change in marginal
returns from investments. Four discount rates for the analysis are
considered (0%, 2%, 5%, and 10%). As expected, higher discount rates
reduce the NPV of resilience investments and, consequently, decrease
the marginal returns. Therefore, the feasible investment region is re-
duced, and the threshold year shifts to the left when a higher discount
rate is considered (Fig. 6). For example, when a total budget of $100
million is allocated by DM-B, the threshold for feasible investment
corresponding to a discount rate of 2% is 11 years (equivalent to an
investment of (100 million/15) × 5 = $73.33 million). In contrast,
the corresponding threshold is 8 years when the discount rate is 10%
(equivalent to $53.33 million). However, it is important to note that
the annual budget allocation schemes are not significantly affected by
the discount rates.

The selection of the model exponent 𝜉 also has a considerable
effect on the resource allocation schemes. We considered four values
for model exponent: 1.0, 1.1, 1.5, and 2.0. The results show that, for
a fixed budget and discount rate, the variation in the budget share
for various interventions is reduced. Fig. 7 illustrates the resource
allocation schemes by DM-B when the budget is fixed at $100 million
and the discount rate is 2%. When a model exponent of 1 is used,
the standard deviation in the annual budget share for the first year
is 50%, whereas when a model exponent of 1.5 is used, the standard
deviation for the same is 21%. These trends hold true throughout
the investment period. One possible reason is that having a higher
13 
model exponent (which implies diminishing marginal returns for the
resilience interventions) makes all interventions relatively attractive to
decision-makers, regardless of their risk preferences.

It is also worthwhile to note the effect of the model exponent
on the length of feasibility regions. Mathematically, a higher model
exponent value denotes higher marginal returns per dollar spent for the
initial investments, resulting in a higher investment threshold for costs
to exceed the perceived gains. Higher exponent values in the model
can be a result of highly optimized and targeted resource allocation
schemes within a specific infrastructure network. The feasibility regions
under various values of mode exponents suggest that identifying the
components within infrastructure systems that can have considerable
effect on reducing annual losses may help in convincing even neutral
decision-makers to invest in resilience.

5. Conclusions

In this study, we presented a methodology for developing opti-
mal resilience pathways for interdependent infrastructure networks.
Instead of the traditional ‘silo’ approach commonly used by infrastruc-
ture agencies, a system-of-systems perspective is adopted, considering
power, water, and transport systems as interconnected entities. The
study analyzed how these systems collectively respond to catastrophic
earthquakes and incorporated the resulting business disruptions into a
resilience decision-making framework. By combining an infrastructure-
industry simulation framework with Cumulative Prospect Theory, the
study also explored the influence of decision-makers’ risk preferences
on infrastructure resilience resource allocation.

Based on experimental simulations on the Shelby County infras-
tructure network, the study demonstrated that certain decision-makers
(specifically those who overweight low probabilities) perceive resilience
interventions aimed at mitigating HILP events as more cost-effective
and appealing compared to risk-neutral decision-makers. The resilience
investment problem is formulated in a manner analogous to lotteries,
where individuals make a payment with the expectation of a much
larger return, even if the probability of achieving that outcome is very
low. Upgrading the resilience of infrastructure systems also involves
significant resource expenditure in anticipation of reduced cumulative
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Fig. 5. Sensitivity analysis for budget and probability weighting (discount rate: 2%, model exponent: 1.1). The hatched region represents the infeasible region as perceived by the
decision-maker.
losses when HILP events occur. The variations in risk perceptions
among decision-makers towards low probabilities lead to different
budget allocations and, consequently, divergent resilience upgrade
pathways. As expected, the decision-makers who assign higher weights
to low-probability events (even if agnostic to the consequences of those
events) tend to allocate more resources for resilience enhancement
compared to risk-neutral decision-makers. More interestingly, it was
also revealed that resource allocation by such decision-makers often
prioritizes post-disaster recovery measures over pre-disaster robustness
alternatives, resulting in a trade-off when investing in resilience for
HILP events compared to risk-neutral cost–benefit analysis (CBA) ap-
proaches. In addition, the analysis of the resource allocation schemes
revealed that efforts to maximize the marginal returns from resilience
investments in individual infrastructure systems can lead to higher in-
vestment thresholds by decision-makers. This can be achieved through
prioritized and targeted resource allocation to critical components
14 
within the infrastructure systems. On the other hand, the sensitivity
analysis also showed that the identified resource allocation schemes
are less sensitive to discount rates across all decision-makers.

The study made two distinct contributions to the literature. Firstly,
it considered infrastructure systems as a system-of-systems with socioe-
conomic obligations to evaluate resilience upgrade alternatives. Sec-
ondly, it investigated the influence of decision-maker risk preferences
(specifically their perception of low-probability events) in infrastruc-
ture resilience planning outcomes, providing useful insights on how
certain decision-makers may allocate more resources towards resilience
enhancement compared to risk-neutral decision-makers. While the pro-
posed methodology is developed in the context of seismic risks, it can
also be extended to other hazards and multi-hazards to develop cost-
effective resilience pathways for interdependent infrastructure systems.
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Fig. 6. Sensitivity analysis for discount rates (Decision-maker: DM-B (𝛾 = 0.4), budget: $200 Mn, model exponent = 1.1). The hatched region represents the infeasible region as
perceived by the decision-maker.

Fig. 7. Sensitivity analysis for model exponents (Decision-maker: DM-B (𝛾 = 0.4), budget: $200 Mn, discount rate: 2%). The hatched region represents the infeasible region as
perceived by the decision-maker.
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Appendix. Supporting descriptions and data

A.1. Frameworks to incorporate risk preferences in decision-making

This subsection provides a brief overview of Expected Utility Theory
(EUT) and Cumulative Prospect Theory (CPT).

A.1.1. Expected Utility Theory
Expected Utility Theory (EUT) is a fundamental theory in deci-

sion theory and economics that provides a framework for decision-
making under uncertainty. EUT assumes that decision-makers evalu-
ate outcomes based on their expected utilities, which are calculated
by weighting the utilities of different outcomes by their respective
probabilities.

In EUT, decision-makers are assumed to be rational and make
choices that maximize their expected utility. The utility function rep-
resents the decision-maker’s preferences, indicating how they value
different outcomes. The utility function is typically assumed to be
increasing and concave, reflecting diminishing marginal utility of gains.
A commonly used form of the utility function is the power utility
function, given by Eq. (A.1).

𝑢(𝑥) = 𝑥(1−𝜌)

1 − 𝜌
(A.1)

2 https://github.com/srijithbalakrishnan/dreaminsg-integrated-model.
3 Balakrishnan, S. (2023), Cost–benefit analysis of infrastructure resilience

nvestments: Shelby County, 4TU.ResearchData.
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where 𝑢 represents the utility function, 𝑥 represents the outcome, and 𝜌
represents the coefficient of risk-aversion. A higher value of 𝜌 indicates
higher risk-aversion.

To evaluate decision alternatives under uncertainty using EUT,
decision-makers calculate the expected utility of each alternative. The
expected utility is determined by taking a weighted average of the
utilities of the possible outcomes, where the weights are given by the
probabilities of those outcomes. Mathematically, the expected utility
denoted as 𝐸𝑈 , is calculated as shown in Eq. (A.2):

𝐸𝑈 =
𝑛
∑

𝑖=1
𝑝𝑖𝑢(𝑥𝑖) (A.2)

where 𝑝𝑖 represents the probability of outcome 𝑖, 𝑥𝑖 represents the value
of outcome 𝑖, and 𝑛 represents the total number of possible outcomes.

Expected Utility Theory provides a normative framework for decision
making under uncertainty, assuming that decision-makers are rational
and consistent in their preferences.

A.1.2. Cumulative Prospect Theory
Cumulative Prospect Theory (CPT) is an extension of the EUT

proposed by Tversky and Kahneman (1992) to describe how decision-
makers perceive and evaluate consequences and make decisions under
uncertainty. The subjective factors influencing the irrational behavior
of decision-makers who evaluate outcomes of events are captured
using two components, namely a value function and the probability
weighting function.

The value function defines how individuals perceive gains and
losses. The value function is concave for gains, indicating that decision-
makers have decreasing sensitivity to higher gains, whereas it is con-
vex for losses, suggesting increasing sensitivity to losses. Therefore,
decision-makers tend to be risk-averse over gains, whereas they are
risk-seeking about losses. The commonly adopted utility function in
CPT is presented in Eq. (A.3):

𝑣(𝑥) =

{

𝑥𝑎 𝑥 ≥ 0
−𝜆(−𝑥)𝛽 𝑥 < 0

(A.3)

where 𝑣 is the value function, 𝑥 is the gain (or loss), 𝜆 is the loss-
aversion coefficient, and 𝛼 and 𝛽 describe the risk attitudes for gains
and losses. In the current study, we are evaluating the reduction in
potential losses due to physical and economic disruptions by investing
in resilience alternatives. Therefore, we focus solely on gains in the
decision-making process.

The second part is the probability weighting function, which ex-
plains how individuals distort probabilities when assessing risks. CPT
suggests that decision-makers tend to assign larger weights to low prob-
abilities, while higher probabilities are underweighted. This feature
makes CPT an attractive framework for studying how decision-makers
perceive HILP events and the resulting divergence in decisions re-
garding resource allocation. According to CPT, if the outcomes of an
experiment, along with their corresponding probabilities, are repre-
sented as (𝑥1, 𝑃1; 𝑥2, 𝑃2;… ; 𝑥𝑛, 𝑃𝑛) and if 𝑥1 ≤ ⋯ ≤ 0 ≤ 𝑥𝑘+1 ≤ ⋯ ≤ 𝑥𝑛,
then the CPT values of prospect are given by Eq. (A.4).

𝐺 =
𝑘
∑

𝑖=1
𝜋−
𝑖 𝑣(𝑥𝑖) +

𝑛
∑

𝑖=𝑘+1
𝜋+
𝑖 𝑣(𝑥𝑖) (A.4)

where the decision weights 𝜋−
𝑖 and 𝜋+

𝑖 are defined as:

𝜋−
1 = 𝑤−(𝑃1); 𝜋𝑖 = 𝑤−(𝑃1 +𝑃2⋯+𝑃𝑖) −𝑤−(𝑃1 +𝑃2⋯+𝑃𝑖−1) 1 < 𝑖 ≤ 𝑘

(A.5)

𝜋+
𝑛 = 𝑤+(𝑃𝑛); 𝜋𝑖 = 𝑤+(𝑃𝑖 +⋯+ 𝑃𝑛) −𝑤+(𝑃𝑖+1 +⋯+ 𝑃𝑛) 𝑘+ 1 ≤ 𝑖 < 𝑛

(A.6)

The decision weighing function is given by Eq. (A.7).

𝑤±(𝑃 ) = 𝑃 𝛾

1
(A.7)
(𝑃 𝛾 + (1 − 𝑃 )𝛾 ) 𝛾

https://github.com/srijithbalakrishnan/dreaminsg-integrated-model
https://github.com/srijithbalakrishnan/dreaminsg-integrated-model
https://data.4tu.nl/private_datasets/Q4QYRaAgtndWrNXLqTCw45tugvGudBlMoW5SCSLARvo
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where 𝑃 is the probability value and 𝛾 ∈ [0, 1] is the amount of over or
nder weighting.

.2. Steps to develop the seismic event set and corresponding ground motion
ields

The following steps outline the process for selecting the final earth-
uake scenarios for infrastructure simulations.

1. To select the earthquake rupture events based on probability of
exceedance (𝑃𝑒), an investigation period 𝑇 is chosen.

2. A ground motion parameter value of interest is selected, and a
disaggregation analysis of the seismic hazard within the region
is conducted. In OpenQuake, direct disaggregation of the seismic
hazard by source and magnitude is not possible. Therefore,
the hazard is initially disaggregated at the center of the study
region by source to determine the probability of exceedance for
each source (𝑃 (𝑋 ≥ 𝑥|𝑇 ,𝓁), where 𝑋 represents the ground
motion value, 𝑥 denotes the threshold for the ground motion
parameter, 𝑇 represents the investigation period, and 𝓁 is the
seismic source). The sources that surpass the above predefined
threshold for the probability of exceedance are identified. The
percentage contribution of each source to the seismic hazard
is then calculated according to Eq. (A.8) as in Pagani, Monelli,
Weatherill, and Garcia (2014).

𝓁 =
− ln(1 − 𝑃 (𝑋 ≥ 𝑥|𝑇 ,𝓁))

− ln
(

1 −
∏

𝓁∈𝐿 𝑃 (𝑋 ≥ 𝑥|𝑇 ,𝓁)
) × 100 (A.8)

Next, each source is selected and disaggregation analysis of its
hazard contribution by magnitude is performed. This allowed
us to obtain the conditional probability of exceedance for each
source by magnitude (𝑃 (𝑋 ≥ 𝑥|𝑇 ,𝓁,𝑀), where 𝑀 represents
the magnitude). Similar to Eq. (A.8), the conditional percentage
of contribution 𝑀|𝓁 is calculated based on the probability of
exceedance values. Subsequently, the contribution of a seismic
rupture originating from seismic source 𝓁 with magnitude 𝑀 is
also calculated using Eq. (A.9).

𝑀,𝓁 =
𝓁

100
× 𝑀|𝓁 (A.9)

3. Having identified the seismic ruptures, the subsequent step in-
volved simulating the ground motion fields associated with each
of the selected rupture scenarios. To accomplish this, the bound-
aries of the study region are defined, and equidistant points are
established at which various ground motion parameters, such as
peak ground acceleration (𝑃𝐺𝐴), peak ground velocity (𝑃𝐺𝑉 ),
and peak ground displacement (𝑃𝐺𝐷), are to be evaluated.
Subsequently, event-based seismic simulations are performed in
OpenQuake for the chosen geographical points.

A.3. Interdependent infrastructure simulation: Main modules of InfraRisk
model

In this section, the various modules within the InfraRisk simulation
model is briefly detailed. For a more elaborate reading, readers are
suggested to refer to the original paper (Balakrishnan & Cassottana,
2022). InfraRisk comprises of five distinct modules as follows:

1. Integrated infrastructure network simulation: This module fo-
cuses on simulating the behavior and interactions of the in-
terconnected infrastructure components within the network. In-
fraRisk can simulate the interdependent effects of water-, power-
, and transport networks. It uses Python packages, namely wntr
for water networks (Klise et al., 2020), pandapower for power
networks (Thurner et al., 2018), and a Python implementa-
tion of the static traffic assignment model f or transport net-
works (Boyles, Lownes, & Unnikrishnan, 2020). The module also
considers major dependencies among these three infrastructure
systems to allow for cascading failures.
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2. Hazard initiation and vulnerability modeling: This module han-
dles the modeling of hazards and the vulnerability of infrastruc-
ture components to these hazards. It can also be coupled with
hazard models, such as OpenQuake, to induce infrastructure
component failures prior to network simulation.

3. Recovery modeling: The recovery modeling module simulates
the post-disruption recovery process of the infrastructure com-
ponents, considering factors such as repair time and resource
availability. Topological characteristics, such as centrality mea-
sures, and operational characteristics, such as maximum daily
flow rate, are used to derive recovery sequences and schedules
in the model.

4. Simulation of direct and indirect effects: This module captures
both direct and indirect effects of infrastructure disruptions,
considering the interdependencies within the infrastructure net-
work. The integrated infrastructure simulation is carried out
in two steps: event table generation and interdependent infras-
tructure simulation. The event table serves as a reference for
scheduling disruptions and repair actions required for the inter-
dependent network simulation. Once the event table is created,
the interdependent effects resulting from component disruptions
and subsequent restoration efforts are simulated.

5. Resilience quantification: The resilience quantification module
assesses the overall resilience of the integrated infrastructure
network by analyzing various indicators and metrics. The met-
rics capture the satisfied demand (ratio of supply to demand)
of different infrastructure services at the respective demand
nodes. The water and power disruptions at the demand nodes
are quantified in terms of the Equivalent Outage Hours (hours)
and are denoted by 𝐸𝑂𝐻𝑤 and 𝐸𝑂𝐻𝑝, respectively.

.4. HAZUS fragility- and recovery model parameters of infrastructure
omponents considered in the study

See Table A.4.

.5. Inoperability factors for linking infrastructure service disruptions with
conomic losses

See Table A.5.

.6. Characterizing the resilience investment thresholds for different decision
akers

Fig. A.8 characterizes the relationship between resilience invest-
ent costs and perceived gains in reducing physical and economic costs

rom disasters for decision-makers with varying risk preferences. The
olor-coded lines represent the decision-makers with different levels of
robability weighting. The dashed line represents the break-even line
n which the total resilience costs equal perceived gains. The hatched
egion on the graph indicates that decision-makers, based on their risk
references, may find that the costs of additional resilience measures
utweigh the perceived gains in reducing physical and economic costs
rom disasters.

The characteristic lines representing the four decision-makers on are
lotted based on the resource allocation solutions obtained from the
ptimization problem discussed in Eq. (20). It can be observed that
ecision-makers with higher weights for low-probability events (DM-A
ollowed by DM-B) are willing to spend higher amounts on resilience.
owever, for the Shelby County case study, decision-makers DM-C and
M-D, who have relatively lower weights for low probabilities, do not
erceive any feasible gains from resilience investments.
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Table A.4
Fragility functions and recovery time distributions of infrastructure components with low level of robustness.
Source: HAZUS manuals.
System Component Fragility model Recovery model

𝑑 𝐼𝑀a 𝜃𝑑 𝛷𝑑 𝜇𝑅 (days) 𝜎𝑅 (days) 𝜈𝑑

Water

Water pump
(unanchored)

Slight

𝑃𝐺𝐴

0.13 0.6 0.9 0.3 0.05
Moderate 0.28 0.5 3.1 2.7 0.38
Extensive 0.77 0.65 5 3 0.8
Complete 1.5 0.8 10 3 1

Water tank
(unanchored)

Slight
𝑃𝐺𝐴

0.15 0.6 1.2 0.4 0.2
Moderate 0.4 0.6 3.1 2.7 0.4
Extensive 0.7 0.7 93 85 0.8

Water pipeline
(brittle)

Moderate
𝑅𝑅

0.1 1.5 0.3 0 0.3
Extensive 0.5 1.5 0.3 0 0.8

Power

Substation
(unanchored)

Slight

𝑃𝐺𝐴

0.1 0.6 1 0.5 0.05
Moderate 0.2 0.5 3 1.5 0.11
Extensive 0.3 0.4 7 3.5 0.55
Complete 0.5 0.4 30 15 1

External grid
connection
(unanchored)

Slight

𝑃𝐺𝐴

0.09 0.5 1 0.5 0.05
Moderate 0.13 0.4 3 1.5 0.11
Extensive 0.17 0.35 7 3.5 0.55
Complete 0.38 0.35 30 15 1

Power line
(unanchored)

Slight

𝑃𝐺𝐴

0.24 0.25 0.3 0.2 0.05
Moderate 0.33 0.2 1 0.5 0.15
Extensive 0.58 0.15 3 1.5 0.6
Complete 0.89 0.15 7 3 1

Switch
(unanchored)

Slight

𝑃𝐺𝐴

0.24 0.25 0.3 0.2 0.05
Moderate 0.33 0.2 1 0.5 0.15
Extensive 0.58 0.15 3 1.5 0.6
Complete 0.89 0.15 7 3 1

Transport
Road link (low
seismic
resistance)

Slight
𝑃𝐺𝐷

6 0.7 0.4 0 0.05
Moderate 12 0.7 1.1 0.45 0.2
Extensive 24 0.7 10.5 4 0.7

a The intensity measures (𝐼𝑀) include peak ground acceleration (𝑃𝐺𝐴 in 𝑔), peak ground velocity (𝑃𝐺𝑉 in 𝑐𝑚∕𝑠), peak ground displacement
(𝑃𝐺𝐷 in 𝑖𝑛𝑐ℎ𝑒𝑠), and recovery rate (𝑅𝑅 in repairs per 𝑘𝑚) .
Table A.5
Inoperability values of economic sectors calculated from resilience factors presented by Kajitani and Tatano (2009).

Industry NAICS 𝜂𝑝 𝜂𝑤 𝜂𝑝𝑤
Agriculture, Forestry, Fishing and Hunting 11 0.75 0.29 0.75
Mining, Quarrying, and Oil and Gas Extraction 21 0.25 1 1
Utilities 22 0.95 0.45 0.97
Construction 23 0.71 0.31 0.77
Manufacturing 31–33 0.95 0.45 0.97
Wholesale Trade 42 0.79 0.42 0.8
Retail Trade 44–45 0.79 0.42 0.8
Transportation and Warehousing 48–49 0.73 0.23 0.79
Information 51 0.75 0.16 0.81
Finance and Insurance 52 0.59 0.2 0.69
Real Estate and Rental and Leasing 53 0.56 0.4 0.6
Professional, Scientific, and Technical Services 54 0.74 0.22 0.82
Management of Companies and Enterprises 55 0.74 0.22 0.82
Administrative and Support and Waste Management and Remediation Services 56 0.74 0.22 0.82
Educational Services 61 0.74 0.22 0.82
Health Care and Social Assistance 62 0.68 0.48 0.81
Arts, Entertainment, and Recreation 71 0.75 0.25 0.75
Accommodation and Food Services 72 0.8 0.5 0.85
Other Services (except Public Administration) 81 0.74 0.22 0.82
Public Administration 92 0.75 0.25 0.75
18 
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Fig. A.8. Characteristic curves showing the relationship between total resilience investments and perceived gain by different stakeholders (discount rate: 2%, model exponent: 1.1;
dashed line represent break-even line; hatched region represent infeasible investment).
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