
Lazy Clause Generation for Bin Packing
Explaining Bin Packing Propagation with Boolean Variables

Melvin de Kloe

Supervisor(s): Emir Demirović1, Maarten Flippo1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 26, 2025

Name of the student: Melvin de Kloe
Final project course: CSE3000 Research Project
Thesis committee: Emir Demirović, Maarten Flippo, Benedikt Ahrens

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
In this paper we embed a solution for bin pack-
ing problems in a constraint programming environ-
ment. Existing solutions for bin packing problems
are plentiful, but rigid. We have taken existing so-
lutions of bin packing in constraint programming,
and analysed the steps this algorithm takes. We
then developed explanations for these steps in the
form of boolean clauses. Using these explanations,
a constraint programming paradigm by the name
of lazy clause generation is able to generate new
rules, that prevent the solver from making the same
mistake twice. We have compared our implemen-
tation to two different solutions. Firstly we com-
pared it to a decomposition, where the bin packing
constraint was broken down into many smaller and
simpler constraints. Secondly, we compared our im-
plementation to a version with naive explanations.
In one benchmark, comparing our version to the
decomposition in a pure bin packing problem, our
implementation vastly outperformed the decompo-
sition. In other benchmarks, the results comparing
our version to the other two were much more incon-
clusive. While showing marginal improvements in
some cases, our version performed worse in other
cases. The research performed in this paper defi-
nitely shows promise, and there is merit in exploring
this approach in further research.

1 Introduction
The bin packing problem is a challenge that describes a wide
variety of real world problems, from storing items in an actual
bin, to packing items into containers for transportation. This
set of problems has been studied since the 1970s [1], but
also has recent applications in fields like cloud computing [2].
This paper focuses on the one-dimensional version of the bin
packing problem. That is, putting items with a given size into
bins with a given capacity, as shown in the example in Figure
1.

Figure 1: An instance of the bin packing problem with three possible
solutions

While algorithms have long existed that solve this NP Com-
plete problem and variations thereof (e.g. [3; 4; 5]), this paper
focuses on creating a solution using Constraint Programming
(CP), and more specifically, Lazy Clause Generation (LCG).
The reason for this adaptation is that the bin packing problem
is often part of a bigger problem, for example including allo-
cation of other resources, or needing the items to be sorted
in some way. This means that the previously mentioned al-
gorithms can quickly become unviable, while CP allows for
flexibility. CP uses a combination of domains and constraints
to solve problems. CP can be used to simply solve the bin
packing problem, but allows for flexibility with the ability
to add other constraints to the problem, such as item order-
ing or resource management. Algorithms for bin packing in
CP already exist, but not specifically for LCG, which shows
promise over other branches of CP [6].

LCG is a CP paradigm that uses boolean clauses to explain
the steps taken by the solver. When a conflict is encountered,
these explanations are used to lazily construct a new clause
called a nogood, which is used to avoid making the same
mistake in the future, reducing the search space of the problem.
The difficulty of implementing a new constraint in LCG comes
from generating these explanations.

In this research paper, we developed a constraint for bin
packing in LCG, using boolean statements to explain every
decision the algorithms makes. By running the developed im-
plementation on benchmarks simulating real life CP problems,
we found that, in problems with only a bin packing constraint,
our algorithm is superior to a decomposition of the problem
into smaller constraints. However, more nuanced results are
achieved in problems that also use other constraints, leading
to mixed success in reducing the runtime, but showing great
promise in effective clause generation. We also compared our
solution to a naive implementation of the explanations. That
is, describing the domains of every variable for each step taken
as an explanation. While the data was mostly inconclusive
about the effect of our explanations on the search steps taken,
there was once again a clear improvement in the quality of the
clauses generated by our method.

Firstly in Section 2, we cover information about CP, LCG
and explanations to build understanding for the rest of the
paper. Secondly, Section 3 goes more in depth into the bin
packing constraint and its existing implementations. Then
Section 4 lists existing work related to the problem we are
solving. Section 5 shows our contribution to the field, listing
the explanations we developed for each constraint. The results
of our work are shown in Section 6, with data comparing our
implementation to a decomposition and naive explanations on
several benchmarks. Section 7 concludes by reiterating the
most important aspects of the paper and proposing possible
directions for future work. Finally Section 8 addresses the
ethical aspects of the research done and the reproducibility of
the methods used.

2 Preliminaries
This section gives a basic description of Constraint Program-
ming and Lazy Clause Generation. In writing this Section we
have taken strong inspirations from the Basic Principles chap-

ter in [7], and we refer you to that thesis for a more in-depth
description of these subjects.

2.1 Constraint Programming
Constraint Programming (CP) [8] is a programming paradigm
used for solving combinatorial search problems. CP takes
approaches from artificial intelligence, computer science,
databases, programming languages, and operations research,
with applications in fields such as scheduling, planning, vehi-
cle routing, configuration, networks, and bioinformatics, and
more [8]. CP uses domains as possible values for variables,
and constraints as rules that restrict those domains. Think of
a Sudoku puzzle, where every empty square starts with the
domain one through nine, and the constraint is: every row,
column and box can only contain one of each number. Using
these two facts, the solution can then be found by deduction,
and trial and error.

Constraint Satisfaction Problem
CP problems are often stated as a Constraint Satisfaction Prob-
lem (CSP). A CSP is defined as P = (C,X ,D) where X is
the sequence of variables, D is their domains and C is the
set of constraints that apply to the problem. To solve a CSP,
every variable xi ∈ X must be assigned a value, and every
constraint C(X) ∈ C where X ⊆ X has to be satisfied by that
assignment. The domain of a value D(xi) contains all the val-
ues that xi could potentially take. For example the domain of
a positive odd number would be D(odd) = {1, 3, 5, ...}. The
purpose of a constraint is to enforce rules on the variables, one
such rule might for example be: x1 has to be an odd number.

Some more notation that is used in the rest of this paper
follows. We will denote the initial domain of xi as D0(xi),
and the maximum and minimum element of D(xi) as xi and
xi respectively. The assignment of a value v to a variable x is
denoted as x← v, this sets the domain D(x) to {v}. Updating
the maximum value of a domain D(x) is shown as xi ← v.
This removes all values larger than v from D(x), if there are
any. The same notation is used for updating the minimum:
xi ← v. And finally, removing a value v from a domain is
denoted as x ↚ v

Solving
Solving a CSP is done by either finding a solution that satisfies
all constraints, or by proving that the problem is infeasible.
This is done by propagation and search steps. Propagation
attempts to shrink the domain space, reducing the amount of
possible assignments for each variable. The constraints are
used to remove the values that can not lead to a solution from
the domains. For example: take variables x1 and x2 with
domains D(x1) = {1, 2, 3} and D(x2) = {3, 4, 5} and the
constraint x1 + x2 = 5. In this case x1 could never be 3 and
x2 could never be 5. The propagation step would then remove
those values from the domains of x1 and x2. The propagation
step continues until no such deductions can be made. If at
any point during the propagation step a constraint leads to a
domain becoming empty, we’ve encountered a conflict.

The search step happens after the propagation. This step
assigns a value to a variable xi from its domain, and attempts
to solve the newly created CSP. If this assignment leads to a
valid assignment of variables, a solution to the CSP has been

found. In case of a conflict however, the search is pruned,
i.e. the search stops at this point and backtracking is used to
assign a different value to xi instead, and once again attempts
to solve the new CSP. This process continues until either a
solution is found, or the search space has been exhausted, in
which case the CSP is infeasible. In the previous example
the domains after propagation would be D(x1) = {1, 2} and
D(x2) = {3, 4}. The search step might assign x1 = 1, after
which the propagation step happens again. This time the
constraint can be used to determine x2 = 4, after which the
CSP is solved.

2.2 Lazy Clause Generation and Explanations
Lazy Clause Generation (LCG) is a combination of two con-
straint solving techniques: Boolean Satisfiability (SAT) and
Finite Domain (FD). It was originally developed by O. Ohri-
menko et al. in 2007 [9], and later improved upon to be able to
compete with the best FD solutions of the time [6]. LCG com-
bines the simplicity of an FD solver with the ability of SAT
to reduce search space by recording conflicts as new boolean
clauses to avoid running into the same mistake more than once.
To achieve this LCG uses explanations: every time a propaga-
tion is made, or a conflict is encountered, it is recorded as a
clause that explains what just happened using booleans.

LCG uses the boolean variables [[x = a]], [[x = a +
1]], ..., [[x = b]] and [[x ≤ a]], [[x ≤ a+ 1]], ..., [[x ≤ b− 1]]
where name is the name of the boolean variable [[name]].
Any domain D(x) ⊆ D0(x) = [a, b] can be described using
these boolean variables. LCG uses these variables to create
clauses in case of a conflict. Such a clause is called a nogood,
and is generated from the constraint that caused the conflict.
Nogoods are lazily added as a new pseudo-constraint to en-
sure this conflict doesn’t happen again. We will sometimes
write the following: [[x ̸= v]] instead of ¬[[x = v]], [[x > v]]
instead of ¬[[x ≤ v]] and [[x ≥ v]] instead of ¬[[x ≤ v − 1]].

Take for example the domains:

• D(a) = {1, 2, 3}
• D(b) = {3, 4, 5}
• D(c) = {1, 2, 3, 4}

And the constraints:

• a+ b+ c ≤ 7

• a+ b ≥ 5

• b+ c ≥ 5

The first search step arbitrarily takes b = 3. Propagation
then uses the second constraint to reduce D(a) = {2, 3} and
D(c) = {2, 3, 4}. The second search step arbitrarily takes a =
3. This leads to a conflict with the first constraint: D(c) = {}.
LCG uses the failing constraint to create a nogood that explains
why this went wrong: [[a = 3]] ∧ [[b = 3]] ∧ [[c ̸= 1]] → ⊥.
However, since [[c ̸= 1]] is only true because [[b = 3]] is true,
we can replace that variable with [[b = 3]], and in this case
remove it because it is a duplicate. This leads to the reason for
conflict: [[a = 3]] ∧ [[b = 3]]→ ⊥. LCG now backtracks to
before the assignment of a, and adds the lazily created clause
¬[[a = 3]] ∨ ¬[[b = 3]], to make sure this conflict does not
happen again.

3 Bin Packing
The one-dimensional version of the bin packing problem that
this paper focuses on is described as follows: Given n amount
of indivisible items with non-negative integer sizes si, is it
possible to pack them into a set of m bins, each with capacity
C? A possible instance of such a problem including three
possible solutions is shown in Figure 2.

Figure 2: An instance of the bin packing problem, where n = 6
items need to be packed in m = 4 bins of capacity C = 10 with
three possible solutions

3.1 Notation
The bin packing constraint takes three vector parameters con-
taining the bin loads l, the bin assignment for each item b and
the sizes of each item s. The load vector l contains m con-
strained variables li, one for each bin, usually1 ranging from 0
to the maximum capacity C: li ∈ [0, C]. The bin assignment
vector b contains n constrained variables bi, one for each item,
indicating in which bin the item is stored by taking their index
as a value: bi ∈ [1,m]. The size vector s contains n integers
si, one for each item, for which si ∈ N. For simplicity in
propagations that depend on ordering, we assume for the rest
of this paper that the sizes are in non-increasing order, i.e.
si ≥ si+1.

We use some notation that is not included in the constraint
itself, but are still important to the propagations. Every item
has its own index, denoted by the set I = {1...n}. The bins
have a similar set for indices B = {1...m}. The total sum of
all items is represented as S =

∑n
i=1 si. P. Shaw introduces

some more notation to describe partial assignments [10] which
we will use in describing propagations. The set of items that
are already packed in bin j are denoted as the required set
Rj = {i | i ∈ I∧D(bi) = {j}}, i.e. the set of items that have
only j in their bin assignment domain. The set of items that
are or could potentially be packed in bin j is defined as the
possible set Pj = {i | i ∈ I ∧ j ∈ D(bi)}, i.e. the set of items
that contain j in their bin assignment domain. The candidate
set is then defined as the set of items that could still be packed
in bin j, but have not yet been assigned to it: Cj = Pj −Rj .

1These values might differ, for example in problems where bins
have individual capacities instead of identical ones.

The set of unpacked items contains all items that have not
been assigned to any bin yet: U = {i | i ∈ I ∧ |D(bi)| > 1}.
The total size of the items packed in bin j is referred to as
pj =

∑
i∈Rj

si.

3.2 Typical Constraints
To maintain consistency in the bin packing constraint, some
constraints have to be set up. The following constraints are
described by P. Shaw as the ”basic” constraints of the typical
bin packing model [10].

Pack All. Every item i ∈ I has to be packed in a bin j ∈ B.

bi ← 1 bi ← m

Load Maintenance. Naive minimum and maximum load for
each bin is maintained by using the required set and potential
set to calculate them. For each bin j ∈ B:

lj ←
∑
i∈Rj

si lj ←
∑
i∈Pj

si

Load and Size Coherence. These propagations allow for
more refinement of the upper and lower bounds. It uses the
total sum of all item sizes, and the maxima or minima of
the other bins to calculate the minimum or maximum of the
current bin. for every bin j ∈ B:

lj ← S −
∑

k∈B\j

lk lj ← S −
∑

k∈B\j

lk

For example: if the sum of sizes is S = 10, and the sum of
upper bounds of all other bins is 6, then the current bin has to
have a lower bound of 4 to be able to pack all items.

Single Item Eliminations and Commitment. The upper and
lower bounds on bin loads can be used to determine if an item
can or cannot be packed into a bin. If adding an item to a bin
would exceed the upper bound of that bin, it is eliminated:

if ∃i(i ∈ Cj ∧ pj + si > lj) then bi ↚ j

A similar case occurs with the lower bound, if packing all
candidates Cj except for i into the bin does not exceed the
lower bound, then i has to be added to the bin.

if ∃i(i ∈ Cj ∧ SUM(Pj)− si < lj) then bi ← j

3.3 Neighbouring Subsets
In addition to these basic constraints, P. Shaw introduces an-
other concept that allows for more propagations: Neighbour-
ing subsets [10]. The goal of using neighbouring subsets is
to verify that not a single subset of candidates Cj falls within
the load bounds lj and lj of bin j. If this is indeed the case,
the search can be pruned since there is no valid solution that
fills bin j correctly. To prove this fact we can use neighbour-
ing subsets of the candidate set Cj . A pair of subsets are
considered neighbouring subsets if there is no other subset of
items whose sum of sizes is strictly between the other pair. By
using neighbouring subsets, it is possible to prove infeasibility
by finding two neighbouring subsets where one of them falls

below the lower bound, and the other above the upper bound
of the bin load lj . Figure 3 shows an example of this. It can
be proven that the sets {x1, x4} and {x2, x3} are neighbours.
Since the first set falls below the lower bound of the bin, and
the second set falls above the upper bound, with the knowl-
edge that these two sets are neighbouring, it is clearly visible
that this problem is infeasible.

Figure 3: Example of an infeasible bin packing problem using neigh-
bouring subsets {x1, x4} and {x2, x3}.

To use neighbouring subsets for propagation, we first need
to find neighbouring subsets. P. Shaw describes a way to gener-
ate neighbouring subsets of a particular structure using Figure
4 [10]. We start with a set of candidate items X . As stated
before, we assume that the items are sorted in non-increasing
item size. Three subsets of X are marked in the figure: A,
B and C. Subset A consists of the k largest elements in X ,
while subset C consists of the k′ smallest elements. Subset B
consists of the k + 1 smallest elements not already included
in C. Overlap between A and B is allowed, but C is disjunct
from the others. By then combining A and C into a low-set
Lk, and taking B as the high-set Hk, the following holds: if∑

i∈Lk
si ≤

∑
i∈Hk

si then Lk and Hk are neighbouring. For
the proof of this statement, see the original paper [10].

Figure 4: Structure of neighbouring subsets, taken from [10]

The procedure for finding neighbouring subsets is then used
in an algorithm to detect if there is a pair of neighbouring
subsets where Lk falls under the lower bound α, and Hk falls
above the upper bound β. This procedure is shown in Algo-
rithm 1 as presented by P. Shaw [10]. The NoSum algorithm
returns true if it detects that the bin with lower bound α and
upper bound β cannot be filled with the candidate items in

set X . Using this algorithm, it is possible to construct more
constraints.

Algorithm 1 NoSum(X,α, β) by P. Shaw [10]

if α ≤ 0 ∨ β ≥ Sum(X) then
return false

end if∑
A,

∑
B ,

∑
C := 0

k, k′ := 0
while

∑
C +s|X|−k′ < α do∑

C :=
∑

C +s|X|−k′

k′ := k′ + 1
end while∑

B := s|X|−k′

while
∑

A < α ∧
∑

B ≤ β do
k := k + 1∑

A :=
∑

A +sk
if
∑

A < α then
k′ := k′ − 1∑

B :=
∑

B +s|X|−k′∑
C :=

∑
C −s|X|−k′

while
∑

A +
∑

C ≥ α do
k′ := k′ − 1∑

C :=
∑

C −s|X|−k′∑
B :=

∑
B +s|X|−k′ − s|X|−k′−k−1

end while
end if

end while
return

∑
A < α

NoSum Pruning. The simplest propagation we can make with
NoSum is checking if the bin is packable. To do this, input the
candidate set Cj and remove the size of the already packed
items from the upper and lower bounds. Then for every bin j:

if NoSum(Cj , lj − pj , lj − pj) then prune

NoSum Load Bound Tightening. It is also possible to tighten
the bounds using NoSum. By altering the algorithm to also
return α′ =

∑
A +

∑
C and β′ =

∑
B , we can update the

current bounds by using the following propagations. (Note the
change in input variables.)

if NoSum(Cj , lj − pj , lj − pj) then lj ← pj + β′

if NoSum(Cj , lj − pj , lj − pj) then lj ← pj + α′

NoSum Item Elimination and Commitment. Finally, by
trying the NoSum algorithm in cases where an element from
the candidate set Cj would be packed in the bin or removed
from the set, we can use the pruning rule to check for feasibility
in these cases. We check for example the case where, if we
were to add i to the bin, that the problem would still be feasible.
The same tests happen for the case where an item is removed
from Cj .

if NoSum(Cj\i, lj − pj − si, lj − pj − si) then bi ↚ j

if NoSum(Cj\i, lj − pj , lj − pj) then bi ← j

4 Related Work
All of the constraints described in Section 3 are taken from
P. Shaw [10]. There is one more constraint in that paper that
we were not able to include due to time restrictions. This
constraint calculates, given the current partial solution, a lower
bound on the amount of bins necessary to solve the packing.
If this lower bound is larger than the amount of available bins,
we have run into a conflict. While P. Shaw showed only minor
improvements in most cases by including this, some cases
benefitted greatly from including the lower bound constraint
[10]. Besides P. Shaw’s implementation of a lower bound
constraint, several other lower bound calculations exist [11;
12], and a comparison between these in future research could
provide valuable information.

This paper by P. Schaus [13] adds two constraints to the bin
packing model and tests their constraints. A third constraint
is also described but it requires a modified global cardinality
constraint (gcc), which is out of the scope of this paper, and is
also not tested to show an improvement over Shaw’s model.
Due to these factors we will not cover this constraint, but it
might be interesting to explore in future work.

The first constraint relies on relaxing the bin packing prob-
lem such that items could be split amongst several bins. This
relaxation is then used to test for inconsistencies using a maxi-
mum flow algorithm. While leading to stronger pruning, this
method had too much overhead in time which caused poor
performance.

The second constraint improves upon the calculation of the
lower bound on the bin count described by P. Shaw. Specif-
ically, it improves the adaptation used in partial solutions.
While in most cases this lead to a negligible improvement
in runtime, some cases experienced a large benefit from this
improved algorithm, one such case going from a timeout of
300 seconds with Shaw’s algorithm, to a successful run in 26
seconds. The time restriction of this paper did not allow us
to include this improved algorithm for LCG solving, but we
highly recommend future work be carried out to do so.

5 Explanations for Bin Packing
In this Section we describe the explanations we developed for
every propagator described in Section 3. First, we derive a gen-
eral explanation for the candidate set Cj , since the candidate
set is used in many of the propagators. Then, using this expla-
nation, we provide explanations for the typical constraints and
the NoSum constraints.

5.1 Explaining the Candidate Set
The candidate set is used by several propagators, and is there-
fore part of the explanations of those propagations. For
that reason we developed a generalized explanation that de-
scribes the elements of the candidate set. The difficulty in
describing this set using the boolean variables used by LCG,
comes from the lack of a contains variable. We can only
use the variables [[bi = j]], [[bi ≤ j]] and their negations
[[bi ̸= j]] and [[bi > j]], where the latter two are simply
¬[[bi = j]] and ¬[[bi ≤ j]]. Using only these variables,
the candidate set can only be described by listing both the
items whose domains does not contain bin j, as well as the

items that are already assigned to bin j. That is, we are de-
scribing set Cj with its complement CC

j relative to I: where
CC

j = {i | i ∈ I ∧ (j /∈ D(bi) ∨D(bi) = {j})}. Candidate
set Cj is then equal to I \ CC

j . Every item i that is already
packed into bin j then results in the variable [[bi = j]], and ev-
ery item whose domain does not contain j results in [[bi ̸= j]].
The candidate set can then be described by a conjunction of
all of these variables, and we will refer to this conjunction as
[[Cj]] in the future.

As an example of this explanation, Figure 5 shows an in-
stance of a bin packing problem with a partial assignments of
items. To describe the candidate set of the leftmost bin, we
need to collect all of the items in its complement. Firstly,
the set of items already packed in the bin is in this case
{x1}. Secondly, the items that do not have j in their do-
main is in this case {x2, x3, x4}, since x2 and x3 are already
packed in a different bin, and x4 is too large to fit into the
bin. The explanation describing this candidate set is then:
[[x1 = 1]] ∧ [[x2 ̸= 1]] ∧ [[x3 ̸= 1]] ∧ [[x4 ̸= 1]].

Figure 5: An instance of a bin packing problem with a partial assign-
ment of items.

5.2 Explaining the Propagators
Here we show the explanations we developed for each
propagator listed in Section 3, and give some intuition to our
choice of these clauses.

Load Maintenance. For the lower bound on the load main-
tenance, only the items in the required set Rj are mapped to
boolean variables for every bin j ∈ B:∧

i∈Rj

[[bi = j]]

For the upper bound on the load maintenance, every item in
the possible set Pj needs to be mapped. However, this is every
item in either Rj or Cj . Since the explanation for Cj already
includes all items in Rj , we do not need to map the set Rj

again separately. The explanation for the upper bound on the
load maintenance is then simply for every bin j ∈ B:

[[Cj]]

Load and Size Coherence. Both propagations here use the
total size of all items, which remains constant throughout
the problem, and therefore does not need an explanation.
The lower bound propagation uses the upper bounds of all

other bins, where the upper bound propagation uses the lower
bounds of all other bins. The explanations for the lower bound
and upper bound coherence for every bin j ∈ B are then
respectively:∧

k∈B\j

[[lk ≤ lk]]
∧

k∈B\j

[[lk ≥ lk]]

Single Item Eliminations and Commitment. For single item
elimination, although every item in the candidate set Cj is
evaluated, we do not need to include [[Cj]] in the explanation,
since it is simply the set we iterate over, and not a part of the
reasoning for the elimination. The only variables that need
to be used in the explanation are the items in the required
set Rj and the upper bound on the load of bin j lj . This
explanation can be improved by increasing the value of lj
in the explanation if possible. For example: pj = 2; si =

4; lj = 4. We can see that pj + si > lj , leading to the
explanation [[lj ≤ 4]] ∧

∧
i∈Rj

[[bi = j]]. However, we can
increase the strength of the explanation by increasing the value
of lj to pj + si − 1 = 5, since the item would have still been
eliminated in the case where lj = 5. The explanation for
single item eliminations for every item i ∈ I eliminated from
bin j ∈ B then becomes:

[[lj ≤ pj + si − 1]] ∧
∧
i∈Rj

[[bi = j]]

A similar case occurs with the lower bound, where we can
decrease the value of the lower bound to SUM(Pj)− si + 1.
Since this propagation uses the possible set Pj , as before we
explain that set as [[Cj]]. Combining these two facts we get
the following explanation for every item i ∈ I committed to
bin j ∈ B:

[[lj ≥ SUM(Pj)− si + 1]] ∧ [[Cj]]

NoSum Pruning. Since the NoSum algorithm only takes the
lower bounds, upper bounds and candidate set of the bin as
inputs, and doesn’t allow for strengthening these values, the
explanations for the following propagations are quite simple:

[[Cj]] ∧ [[lj ≥ lj]] ∧ [[lj ≤ lj]]

NoSum Load Bound Tightening. For lower bound load
tightening:

[[Cj]] ∧ [[lj ≥ lj]]

For upper bound load tightening:
[[Cj]] ∧ [[lj ≤ lj]]

NoSum Item Elimination and Commitment. For both item
elimination and item commitment, since the inputs are essen-
tially the same:

[[Cj]] ∧ [[lj ≥ lj]] ∧ [[lj ≤ lj]]

6 Experimental Results

The goal of this section is to compare the constraints from
Section 3 and their explanations from Section 5 to both a
decomposition of the bin packing global constraint, and an
implementation of our code with naive explanations for prop-
agation. A decomposition of a global constraint breaks the
constraint down into smaller, simpler constraints. The meth-
ods described in this paper are implemented in the Pumpkin2

solver, developed at TU Delft, and the developed code can be
found on GitHub3. The solver, and therefore the implementa-
tion, are written in Rust. Pumpkin can be used as a back-end
solver for the MiniZinc4 constraint modelling language. The
decomposition experiments in this Section specifically regard
the default decomposition done by MiniZinc.

MiniZinc also provides a yearly competition called The
MiniZinc Challenge5 containing a variety of benchmarks to
be used on CP solvers. We used the 2019 steelmillslab and
the 2022 team-assignment benchmarks. The steelmillslab
benchmark only uses bin packing constraints, and will be
used to analyse the performance of the constraint on its own.
The team-assignment benchmark uses bin packing constraints
as well as the all different6 constraint. This will allow us
to analyse the implemented constraint in a problem where it
works in conjunction with other constraints. On top of that,
we have also made a version of the constraint that uses naive
explanations. These naive explanations simply describe the
domains of each variable at the time of the propagations, and
the experiments will allow us to measure the effectiveness of
our explanations.

We have selected the following subset of statistics we
deemed most interesting:

• Objective. In steelmillslab, a minimization problem,
a lower value indicates a better performance. In team-
assignment, a maximization problem, a higher value indi-
cates a better performance. In case the solver did not time
out, the objective value will be listed as ”completed”, this
is the best possible outcome.

• Decisions. The amount of decisions is a counter that
keeps track of the amount of value assignments made in
the search step of the solver.

• Time. A time limit of five minutes, or 300 seconds was
set for every execution. If the solver timed out, we display
the statistics of the last solution it found, if any.

• Avg. Clause Length. This indicates the average length
of the clauses learned during execution. For example:
[[a ≥ 1]] ∨ [[b ̸= 2]] has a clause length of two.

• Avg. LBD. This keeps track of the average literal-block
distance (LBD) of the nogoods learned during execution.

2https://github.com/consol-lab/pumpkin
3https://github.com/MelvinDK/PumpkinBP
4https://www.minizinc.org/
5https://www.minizinc.org/challenge/
6https://docs.minizinc.dev/en/stable/lib-globals-alldifferent.

html#all-different

https://github.com/consol-lab/pumpkin
https://github.com/MelvinDK/PumpkinBP
https://www.minizinc.org/
https://www.minizinc.org/challenge/
https://docs.minizinc.dev/en/stable/lib-globals-alldifferent.html#all-different
https://docs.minizinc.dev/en/stable/lib-globals-alldifferent.html#all-different

Table 1: Statistics of the steelmillslab and team-assignment MiniZinc challenges. The statistics are given for both our implementation and the
default MiniZinc decomposition for every benchmark data file.

steelmillslab Version Objective Decisions Time (s) AvgClauseLen AvgLbd
bench 2 19 our 70 17299 18,9 2,08 1,06

decomp N/A 11952 300 6585,15 88,00
bench 17 7 our 19 46597 208,6 325,98 77,68

decomp N/A 11483 300 6665,42 88,04
bench 19 6 our 14 33223 125,9 358,97 72,89

decomp N/A 11270 300 6676,00 88,03
bench 20 8 our completed 37178 167,8 301,67 75,88

decomp N/A 11465 300 6659,41 88,04
bench 20 15 our 31 38975 169,7 356,19 77,78

decomp N/A 11337 300 6654,80 88,04
team-assignment
data1 4 6 our completed 100140 39,2 8,66 5,54

decomp completed 163662 58,1 55,29 7,00
data1 6 6 our completed 338109 172,1 15,14 7,30

decomp completed 191271 80,9 63,97 8,51
data2 6 15 our 9654 29020 24,2 109,41 51,95

decomp 8646 81987 115,2 554,78 51,81
data3 4 31 our 6357 67607 103,9 195,15 68,41

decomp 8363 35556 69,7 729,16 79,94
data3 5 31 our 6271 64365 154,2 188,40 77,64

decomp 8300 91983 267,2 754,90 108,72

6.1 steelmillslab
The top half of Table 1 shows the results of running our im-
plementation and the decomposition on the steelmillslab mini-
mization challenge on five benchmarks. Most notable is the
observation that the decomposition was not able to find a sin-
gle solution for any benchmark. Our implementation was able
to find solutions for every benchmark, and even find and con-
firm the best solution in benchmark 20 8 in just under three
minutes. In benchmark 2 19, our implementation was able to
find a solution in 20 seconds, but it could not find an improve-
ment or prove it was the optimal solution in the remainder of
the time.

The average clause length is much smaller in our implemen-
tation, showing that our explanations are performing much
better than the decomposition in this set of benchmarks. The
large clause length in the decomposition could also explain
why it was able to make less decisions in more time than
our implementation, since the solver was spending more time
evaluating the large learned clauses. This difference in clause
length is then likely also why the decomposition was not able
to find any solutions in the allotted amount of time. Finally,
the average LBD was also slightly smaller in our implementa-
tion for all benchmarks except 2 19, where the difference was
much more significant. Overall, in this problem with only a
bin packing constraint, our version works a lot better than the
decomposition.

6.2 team-assignment
The results from the team-assignment benchmark as seen in
the bottom half of Table 1 are much more mixed than those
from steelmillslab. Since this is a maximization problem,
a higher objective value means better overall performance.

Since our version completed data1 4 6 in less time than the
decomposition, and finished data2 6 15 with a larger objective
value, the overall performance based on those two metrics
was better in those two benchmarks. However, in the other
three, decomposition beat our implementation. Similarly, the
amount of decisions is smaller for the version that performs
better in each benchmark, directly correlating higher objective
value and less time. Although our version had less decisions
in data3 5 31, it also achieved a lower objective score, and
according to the rest of the data, it is likely that given enough
time, our version would reach the objective 8300 with a larger
amount of decisions than the decomposition.

Where our version is consistently better however, is the
average clause length. This number is significantly smaller
in every benchmark. The average LBD is also smaller in
every benchmark but data2 6 15. These statistics show that
the clauses generated by the explanations in our implementa-
tion are marginally to significantly better, depending on the
benchmark used.

In the steelmillslab benchmark, where there is only a bin
packing constraint, our implementation outperformed the
decomposition in essentially every statistic. For the team-
assignment benchmark, which also contains an all different
constraint, it is unclear why the decomposition made less de-
cisions than our implementation in some of the benchmarks.
The average clause length and LBD however are a good indi-
cator that our explanations work well, and show that the work
done in this paper is worth improving upon in the future.

6.3 Naive Explanations
On top of our explanations, we have made a version that uses
naive explanations to test the efficacy of our explanations.

Table 2: Statistics of the steelmillslab MiniZinc challenge. The statistics are given for both our implementation and a version of our
implementation with naive explanations.

steelmillslab Version Objective Decisions Time (s) AvgClauseLen AvgLbd
2 19 our 70 17299 18,9 2,08 1,06

naive 70 17235 152,8 7,25 6,25
17 7 our 36 16157 20,2 16,84 8,41

naive 36 16996 170,7 49,56 48,56
19 6 our 26 17811 20,6 7,94 4,36

naive 26 12613 250,4 51,57 50,57
20 8 our 17 11281 16,6 15,43 7,42

naive 17 11873 147,5 56,79 55,79
20 15 our 44 14630 20,3 13,39 5,34

naive 44 14853 165,6 44,95 43,95

Specifically, for every propagation we provide the lower and
upper bounds of every bin load, the lower and upper bounds
of every bin allocation, and every bin allocation in that range
that is not in the domain of the variable. Because this requires
iterating over the domain of every variable each time a propa-
gation is made, this process intrinsically requires more time to
run. Since this means that the naive implementation will not
achieve the same objective value as our implementation in the
allocated five minutes, we display the statistics of our version
for the highest objective value that the naive implementation
was able to achieve. See Table 2.

While in three out of five cases, our implementation leads
to a smaller amount of decisions than the naive version, for
two benchmarks this is not the case. The first benchmark
has a small amount of extra decisions, but the third one has a
significant 5.200 added decision points. While unexpected, we
believe this is likely due to the different explanations causing
a different value assignment in the search step, which lead to
the exploration of a large infeasible search space. For example,
think of performing a depth-first search and going the wrong
way at the root, after which you will only find the solution
after having fully explored the wrong path.

The average clause length and literal block distance are both
consistently significantly smaller in our version than in the
naive implementation. This shows that our explanations are
much smaller and more effective at creating nogoods than the
naive implementation. While the quality of the explanations
is clearly better, any positive effects they might have on the
search are not completely evident.

7 Conclusion
In this paper we developed intuitive and effective explanations
for existing bin packing constraints. These constraints and
explanations were implemented in Pumpkin, and compared
against a decomposition of the bin packing constraint. Us-
ing MiniZinc benchmarks, we learned that there is an overall
performance increase in the steelmillslab problem, a pure bin
packing problem. In the team-assignment benchmark however,
where another global constraint is involved, the results are
mixed. While the amount of decisions and the time spent on
finding a solution vary from benchmark to benchmark, some-
times leading to worse performance for our version, there is an
improvement in average clause length and LBD. These statis-

tics indicate the usefulness of the clauses generated during
execution. Both clause length and LBD were smaller for our
implementation in almost all benchmarks, indicating better
explanations than those of the decomposition.

When comparing our solution to a version with naive ex-
planations for the propagations, we notice a mixed result in
the amount of decisions made. While in a small majority of
the cases, the number decreases, in one benchmark the naive
implementation starkly outperforms our version. Similarly to
with the decomposition, our version vastly outperforms the
naive implementation in regards to average clause length and
LBD, showing the generation of shorter explanations and more
effective nogoods.

While we used P. Shaw’s model [10], other papers on bin
packing constraints exist such as the one by P. Schaus [13].
There is merit in trying to implement their model in the future,
and trying to create explanations for it. On top of that, several
options for calculating lower bounds on the bin count exist,
and creating propagators based on those as described by P.
Shaw [10] are worth adding to the implemented constraint.
Finally, many propagations use the candidate set in their expla-
nation, which is the largest part of those explanations. There
is potential for improving these explanations by introducing
so called contains variables, showing whether a bins candidate
set contains a specific item. Their usefulness is unknown, and
is worth analysing in future work.

8 Responsible Research
This paper attempts only to further the state of the art of
solving problems that can at least partially be described by the
bin packing problem. The responsibility of using our methods
for ethical applications lies entirely with the user.

The data we have presented shows only the subset of statis-
tics available we deemed most interesting. Other statistics
such as number of restarts, average backtrack amount and
number of conflicts were available to us, but we chose not to
present these statistics to keep the data concise.

The code implemented for this paper is entirely open source,
and recreating the results or measuring the other statistics can
be done by running the code found on our GitHub repository7.

7https://github.com/MelvinDK/PumpkinBP

https://github.com/MelvinDK/PumpkinBP

The README file gives full instructions for the execution of
the code.

We chose to use the benchmarks steelmillslab and team-
assignment for this paper for several reasons. Firstly, all prob-
lems in these benchmark families had other solvers that either
solved or found a solution for them. Secondly, we thought
it would be interesting to pick one benchmark with only a
bin packing constraint, and one benchmark with other con-
straints as well to show the difference between the two. While
it would have been beneficial to run more benchmarks, we
decided on only using these two so it would allow us to clearly
present the data obtained without exceeding the page limit.
For other MiniZinc benchmarks not included in our reposi-
tory, visit the MiniZinc Challenges page8. Any problem with
either bin packing or bin packing load are applicable for our
implementation.

References
[1] M. R. Garey and D. S. Johnson. Approximation Al-

gorithms for Bin Packing Problems: A Survey, pages
147–172. Springer Vienna, Vienna, 1981.

[2] K. S and M. Nair. Bin packing algorithms for virtual ma-
chine placement in cloud computing: A review. Interna-
tional Journal of Electrical and Computer Engineering
(IJECE), 9:512, 02 2019.

[3] K. L. Krause, V. Y. Shen, and H. D. Schwetman. Analy-
sis of several task-scheduling algorithms for a model
of multiprogramming computer systems. J. ACM,
22(4):522–550, October 1975.

[4] E. G. Coffman, J. Y.-T. Leung, and D. W. Ting. Bin
packing: Maximizing the number of pieces packed. Acta
Informatica, 9(3):263–271, Sep 1978.

[5] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson.
Dynamic bin packing. SIAM Journal on Computing,
12(2):227–258, 1983.

[6] T. Feydy and P. J. Stuckey. Lazy clause generation reengi-
neered. In I. P. Gent, editor, Principles and Practice of
Constraint Programming - CP 2009, pages 352–366,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[7] A. Schutt. Improving scheduling by learning. University
of Melbourne, Department of Computer Science and
Software Engineering, 2011.

[8] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook
of Constraint Programming, volume 2 of Foundations of
Artificial Intelligence. Elsevier, 2006.

[9] O. Ohrimenko, P. J. Stuckey, and M. Codish. Propagation
= lazy clause generation. In Christian Bessière, editor,
Principles and Practice of Constraint Programming – CP
2007, pages 544–558, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[10] P. Shaw. A constraint for bin packing. In M. Wallace,
editor, Principles and Practice of Constraint Program-
ming – CP 2004, pages 648–662, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

8https://www.minizinc.org/challenge/

[11] S. Martello and P. Toth. Lower bounds and reduction
procedures for the bin packing problem. Discrete Applied
Mathematics, 28(1):59–70, 1990.

[12] H. Cambazard and B. O’Sullivan. Propagating the bin
packing constraint using linear programming. In Inter-
national Conference on Principles and Practice of Con-
straint Programming, pages 129–136. Springer, 2010.

[13] P. Schaus. Solving balancing and bin-packing problems
with constraint programming. These de doctorat, Uni-
versité catholique de Louvain, 2009.

https://www.minizinc.org/challenge/

	Introduction
	Preliminaries
	Constraint Programming
	Constraint Satisfaction Problem
	Solving

	Lazy Clause Generation and Explanations

	Bin Packing
	Notation
	Typical Constraints
	Neighbouring Subsets

	Related Work
	Explanations for Bin Packing
	Explaining the Candidate Set
	Explaining the Propagators

	Experimental Results
	steelmillslab
	team-assignment
	Naive Explanations

	Conclusion
	Responsible Research

