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Abstract

In this thesis, the diffusive limit of active particle motion in Rd is studied via a technique
based on homogenisation. Thereafter, this study is extended to active particle motion on
a Riemannian manifold.

Furthermore, as an application of active particle motion, a connection is made with
the Dirac equation. On the basis of this connection, a Monte Carlo method is developed
to find the ground state of a Dirac equation with static potential. The core idea of this
method is based on the Diffusion Monte Carlo method for the Schrödinger equation.
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1 Introduction

We, as humans, have a plethora of tendencies. One such tendency is thinking in terms of
sequences of events. Even when there does not seem to be a direct causal link within a
sequence, humans will still try to describe it in terms of what they think likely to happen
next. In mathematics, we call such a probabilistic sequence of events a stochastic process.
In this Bachelor thesis, we will focus on one specific stochastic process, namely the active
particle process.

In the simplest terms, this process consists of a particle, which on the one hand moves
around randomly, but on the other hand has internal state, which dictates a preferred
direction of motion. However, this internal state is subject to a random process itself.
One physical example of such particles are motor proteins, which on the one hand, are
subject to random collisions from surrounding molecules, but on the other hand, try to
move in a specific direction based on some internal chemical state. One of the main
questions of interest is what the long term behaviour of such a particle is. This can
be studied through a tool called the diffusive limit. Recently in 2021, this limit was
calculated for Rd-valued active particles in [1].

Now, another setting in which stochastic processes can be studied apart from Rd is
Riemannian manifolds; especially smooth surfaces are of interest. Some of the earlier
work, which explores stochastic processes in such a setting, would be [2]. However, more
recently the large deviations behaviour of process on manifolds was studied in [3] and
simulations for systems which resemble active particles on manifolds were done in [4,
5]. Stochastic processes on manifolds differ from Rd due to the effects of curvature in a
manifold. For a physical example of an active particle process on a manifold, we return
to biology, where we can consider active particles on a cell membrane. This membrane
can be viewed as 2-dimensional embedded submanifold of R3 and so, we see that the
diffusion of the active particles might depend on the curvature of the membrane.

With this interest in mind, this Bachelor thesis aims to introduce a new way of calcu-
lating the diffusive limit of active particles in Rd – specifically through homogenisation –
and to then extend this result to Riemannian manifolds. Apart from this type of limit,
another type is also considered, which converges to a telegrapher’s process. Furthermore,
an application of active particles in physics is highlighted by connecting an active particle
process to the Dirac equation – a quantum mechanical equation for electrons in the re-
lativistic regime – and then using this connection, a numerical method for solving the
1-dimensional Dirac equation is developed. Specifically, this is a Monte Carlo method,
which approximates the solution on the basis of simulating active particle trajectories.

This thesis starts out with two chapters introducing the theory of stochastic processes.
In the mathematical background chapter, we introduce some basic material about Markov
processes and their associated martingales. Roughly speaking, we say that a stochastic
process is Markov if the distribution of future states only depends on its present state
and not on the further past. This introductory chapter might be skipped by experienced
readers. However, on the other hand, if this chapter is too advanced, appendix A might
aid in covering some of the prerequisites. Thereafter, there is a chapter on random walks
and Brown motion in Rd, arguably the most important stochastic processes that exist.
In this chapter, diffusive scaling is also introduced.

Then, two chapters on active particles follow. Firstly, a chapter on Rd-valued active
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particles in which all the basic notions are introduced and the proof that is to be extended,
is given. Thereafter, the previous chapter is repeated, only now the active particle process
is manifold-valued.

Finally, three chapters on applications of stochastic process in physics follow. Firstly,
the Schrödinger equation and its link with Brownian motion is studied. This link can be
used to create the Diffusion Monte Carlo algorithm, which finds the ground state of the
Schrödinger equation. Thereafter, in the next chapter, the Dirac equation is introduced
and it is linked to active particles. The final chapter introduces a new algorithm, which
is based on the same ideas as the Diffusion Monte Carlo algorithm, to find the ground
state of the Dirac equation.
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2 Mathematical background

Active random walks are a type of stochastic process. Thus before we can properly
examine them, we first have to develop a more general framework for understanding
stochastic processes. We will start this chapter by giving a definition for a stochastic
process. We will then continue introducing time-homogeneous Markov processes and
a restricted variant thereof called Feller processes. Finally, Martingales – a tool used
extensively throughout probability theory – is introduced.

Definition 2.1. Let (Ω,A , µ) be a probability space, (E,E ) a measurable space and T
a totally ordered set. We then call a map X : T × Ω → E a stochastic process if it is
measurable in the product σ-algebra B(T )⊗A . We also write Xt = X(t, ·) : Ω→ E.

In the above definition, we will always take T to be either R≥0 or N; and call it con-
tinuous and discrete time respectively. Furthermore, if we can define an expectation E,
a stochastic process X can be viewed as a sequence of random variables Xt.

Before we start, some notation: we use Lp(E, E , µ) to denote the space of functions
f : E → R with E[|f |] <∞ and L(E, E) for the space of measurable functions f : E → R.
C(E) denotes the continuous functions f : E → R. The addition of a subscript b indicates
the functions are bounded. Furthermore,if E is a locally compact metric space, a subscript
0 indicates that the functions go to 0 at infinity. In all of the above cases, we might leave
out specifiers for the base space if there is only one clear candidate. So if we are talking
about some space E and then say f ∈ Cb, we mean that is a continuous bounded function
from E into R.

2.1 Markov Processes

Firstly, this section is based on [6, 7]. Informally speaking, a Markov process is a process
without memory. However, what does it entail for a process to be memoryless? Suppose
that we have some (E,E )-valued process (Xt)t∈T and that we are currently at s ∈ T .
We then say that the process is memoryless if some future state Xt′ only depends on the
current state Xs; in other words, conditioned on the present, the future does not depend
on the past.

To make this more precise, we will first introduce the natural filtration with respect
to X, which is defined as (FX

t )t∈T with FX
t = σ(

⋃
{X−1

s (E ) : s ≤ t}). We can now
define Markov processes.

Definition 2.2. Let X = (Xt)t∈T be a stochastic process in (E,E ). Then X is called a
Markov process if for all 0 < s ≤ t and for every measurable bounded function f : E → R,

E[f(Xt)|FX
s ] = E[f(Xt)|Xs].

The above definition, although pleasing, is not very tangible when it comes to defining
one’s own Markov processes. Firstly, we will assume that our Markov processes are time-
homogeneous. This means that transitions between states only depend on the state itself
and not on the time of transitioning. Then, the idea of a transition kernel naturally
arises.
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Definition 2.3. Let (E,E ) be a measurable space. Then, the map S : E × E → [0, 1] is
called a Markovian transition kernel on E if

(i) for all x ∈ E, the map A→ S(x,A) is a probability measure on (E,E );

(ii) for all A ∈ E , the map x→ S(x,A) is measurable.

Thus, the transition kernel is way of specifying how a process transitions when in a certain
state x ∈ E. Now, a typical way for a measure to act on a function is by means of an
integral or in the context of probability theory an expectation. So for f ∈ Lb(E,E ), we
might define Sf as the function:

Sf(x) :=

∫
E

f(y)S(x, dy),

which is the expectation of f after a transition form x according to S. Note that Sf is
measurable and in addition S is a bounded linear operator with ‖S‖ = 1.

Proof. Firstly, note that as integration is linear, S is a linear operator. Now, let f ∈
Lb(E,E ). Then suppose f = 1A with A ∈ E . Then Sf(x) =

∫
E

1A(y)S(x, dy) = S(x,A),
which is measurable by condition (ii) from definition 2.3. Now, suppose f =

∑
k ak1Ak is a

simple function. Then Sf =
∑

k akS(x,Ak) is measurable, since it is a linear combination
of measurable functions. Furthermore, if f is a positive function, we can find a sequence
of simple functions fn increasing to f . By the monotone convergence theorem, we have
limSfn = Sf pointwise. As the Sfn are simple, they are measurable. Then, since
Sf is a pointwise limit of measurable functions, Sf is measurable itself. For general
f ∈ Lb(E,E ), measurability follows from the linear decomposition f = f+ − f− with
f+, f− ≥ 0.

Finally, as f is bounded, |Sf(x)| ≤
∫
E
|f(y)|S(x, dy) ≤ ‖f‖

∫
E
S(x, dy) = ‖f‖ ≤ ∞.

Taking f = 1, we find S1 =
∫
E
S(x, dy) = 1. So S is a bounded linear operator with

‖S‖ = 1.

Now, we would like to associate transition kernels with certain times t ∈ T . This brings
us to the following definition.

Definition 2.4. A collection (St)t≥0 of transition kernels on E is called transition semig-
roup if

(i) for all x ∈ E, S0(x, dy) = δx(dy);

(ii) (Chapman-Kolmogorov equation) for all s, t ≥ 0 and A ∈ E ,

Ss+t(x,A) =

∫
E

Ss(y, A)St(x, dy);

(iii) for all A ∈ E , the map t, x 7→ St(x,A) is measurable with respect to the product
σ-algebra B(T )⊗ E .
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Now, suppose we have a time-homogeneous Markov process (Xt)t∈T . Then, St(x,A) =
µ(Xt ∈ A|X0 = x) defines a semigroup and Stf(x) = E[f(Xt)|X0 = x]. Moreover by
time-homogeneity, Stf(x) = E[f(Xs+t)|Xs = x] and thus we see that E[f(Xt)|FX

s ] =
E[f(Xs+t)|Xs] = Stf(Xs). Note that Stf(Xs) 6= E[f(Xs+t)|Xs = Xs] = E[f(Xs+t)].
Instead, we associate to each fibre X−1

s ({x}) the value E[f(Xs+t)|Xs = x] culminating in
E[f(Xs+t)|Xs].

To see St is a semigroup, firstly note that S0(x, dy) = µ(X0 ∈ dy |X0 = x) = δx(dy).
Furthermore,

St+s(x,A) = µ(Xs+t ∈ A|X0 = x)

=

∫
E

µ(Xs+t ∈ A|Xt = y,X0 = x)µ(Xt ∈ dy |X0 = x)

∗
=

∫
E

µ(Xs+t ∈ A|Xt = y)St(x, dy)

∗∗
=

∫
E

µ(Xs ∈ A|X0 = y)St(x, dy)

=

∫
E

Ss(y, A)St(x, dy) = StSs(x,A),

where at ∗, the Markov property was used and at ∗∗, the time-homogeneity of the process
and the identity Stf(x) = E[f(Xt)|X0 = x] were used. The final property follows from
the measurability of the process X with respect to B(T )⊗A .

But what is the point of these semigroups? The beauty of semigroups is that there
exists a unique association between them and time-homogeneous Markov processes. So
if we want to prove two processes are the same, it suffices to show they have the same
semigroups.

Theorem 2.5. Two Markov processes are the same if and only if they have the same
semigroups.

Example 1. As a first example, we will consider Markov processes with a countable state
space E in discrete time. In this case, we have a transition probability for transitioning
from state x to state y in one time step, denoted p(x, y). As a transition must always
occur, we find that

∑
y∈E p(x, y) = 1. We can then specify the potentially infinite matrix

Pxy = p(x, y). In addition, we can associate a distribution µ with the vector ~µx = µ(x).
Suppose we now have some initial distribution µ0. Then, the distribution at the next

time step is given by µ1(x) =
∑

y∈E µ
0(y)p(y, x) =

∑
y∈E ~µ

0
yPyx or simply ~µ1 = P T~µ 0.

Thus, we see that ~µn is given by (P n)T~µ 0.

By identifying a state x with the vector ~δx and a set A ⊆ E with the vector ~A,
where ~Ax = 1 if x ∈ A and ~Ax = 0 otherwise, we see that Pn(x,A) := ~δTx P

n ~A defines a

semigroup, where we essentially transport the distribution ~δx into the future using P n.
So, in the case of Markov processes with a countable state space in discrete time, we have
that the powers of the transition matrix P specify the semigroup in its entirety. Thus,
the matrix P characterises the Markov process.

Let us now have a look at the action of P on a function f . For a countable state
space, we can associate a function f : E → R with the column vector ~fx = f(x), so that
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f(x) = ~δTx
~f . We then have that Pnf(x) = E[f(Xn)|X0 = x] =

∑
y∈E P

n(x, {y})f(y) =∑
y∈E

~δTx P
n~δyf(y) = ~δTx P

n ~f . Thus with some abuse of notation, we can say Pnf = P n ~f .

To make this even more concrete, we can consider a discrete time random walk on Z.
In a random walk, we start out at n = 0 with a particle at the origin. Then, there is a
probability of 1

2
of transitioning to −1 or similarly to +1. From this new position, we

repeat the same procedure. Thus, for a particle in position x, there is a probability of 1
2

of transitioning to x−1 or similarly to x+ 1. Equivalently, we can say the particle jumps
one step to the right or to the left with equal probability. Based on this, we can specify
a transition matrix, namely Pxy = 1

2
δyx−1 + 1

2
δyx+1. 4

That we can characterise an entire Markov process by a single matrix – as above – is
an extremely useful property. For a Markov process with an uncountable state space in
discrete time, we can do something similar to the above procedure by chaining a single
time step transition function. However, in the continuous time scenario, this is not as
simple and we need some more considerations.

2.2 Feller Processes

Let the first remark be that this section is largely based on the same material as the pre-
vious section. In addition, the book foundations of probability theory by Olav Kallenberg
[8] is used.

Continuous time processes are significantly more difficult to study than their discrete
time counterparts. Firstly, are continuous time processes measurable with respect to
B(R≥0) ⊗ E ? For a discrete time process X, we simply require that Xn is measurable
for all n ∈ N. However, for continuous time processes, this is not sufficient. There exist
several classes of measurable continuous time processes. We will restrict ourselves to
focusing on the so called càdlàg processes. This is an acronym standing for “continue
à droite, limite à gauche”. This means realisations of a process, which are functions of
time, are continuous to the right of every point and have a left-handed limit at every
point. Or more colloquially, any discontinuities in the graph of a realisation occur at the
left side of the discontinuity point. An example of such a curve can be seen in figure 1.
This property guarantees that the process is measurable.

Secondly, we cannot simply characterise the entire process with a single transition
function for a fixed time interval anymore, as such a function could never cover the
entirety of R≥0. However, for a special class of processes called Feller processes, we
can find an object that characterises the semigroup and thereby the associated Markov
process.

Definition 2.6. We call a transition semigroup (St)t≥0 on a locally compact metric space
E a Feller semigroup if for all f ∈ C0,

(i) Stf ∈ C0

(ii) ‖Stf − f‖ → 0 as t→ 0,

where C0 denotes the continuous functions that vanish at infinity.
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Figure 1: An example of a càdlàg process, where an open dot denotes that no point is included
here in the curve and a closed dot denotes that a point is included here.

A Markov process with a Feller semigroup is called a Feller process. We would like to
note that the second condition is equivalent to Stf being càdlàg as a function of time.
Firstly, (ii) follows immediately from being Stf right continuous as function of time. On
the other hand, if (ii) holds, then limh↓0 ‖St+hf−Stf‖ = limh↓0 ‖St‖‖Shf−f‖ = 0, where
we used the Chapman-Kolmogorov equation in the second to last equality.

So, we then have that our semigroup has the following properties S0 = I, Ss+t = SsSt
and it is somewhat continuous as a function of time. These properties might remind one of
an exponential function f(t) = eat which is characterised by f(0) = 1, f(s+ t) = f(s)f(t)
and f being continuous [9]. This reminiscence can be made rigorous through the idea
of a strongly continuous semigroup. This is a generalisation of the exponential functions
to operators. And just as eat is characterised by a single value a, a strongly continuous
semigroup is characterised by a single operator.

Definition 2.7. Let (St)t≥0 be a semigroup. We call D(L) the domain of the generator
and define it as

D(L) =

{
f ∈ C0(E) : lim

t→0

Stf − f
t

exists

}
,

where the limit is with respect to the supremum norm. Moreover, we define the generator
of (St)t≥0 as the linear operator L : D(L)→ C0(E) with

Lf = lim
t→0

Stf − f
t

.
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Feller Process

Semigroup

Generator

(Xt)t≥0

L = d
dt
St
∣∣
t=0

St = etL

Figure 2: A diagram giving an overview of Feller processes. The left column contains the
names of the objects. The right column denotes the attached symbols and their relations.

The above definition is an exact parallel to a = d
dt
eat
∣∣
t=0

. However, this is not the only
way of characterising eat. In this spirit, we have the next theorem for Feller semigroups.

Theorem 2.8. Two Feller semigroups are the same if and only if their generators and
domains are identical. In addition, we have that

(i) St = etL =
∑∞

n=0
(tL)n

n!
;

(ii) Stf is the unique solution to differential equation d
dt
gt = Lgt with the initial condi-

tion g0 = f .

The above shows that we can characterise a Feller process Xt solely through its associ-
ated generator, since the semigroup fully determines the stochastic process Xt and the
semigroup is fully characterised by its generator L. This web of relationships is presented
diagrammatically in figure 2.

Before we will list some useful properties of generators, we will first give a very quick
overview of invariant or stationary measures. Suppose we have a Feller process with
semigroup (St)t≥0 and generator L. We then call a measure µ invariant if

∫
Stf dµ =∫

f dµ for all f ∈ C0(E) and t ≥ 0. Moreover, a measure µ is invariant if and only if∫
Lf dµ = 0 for all f ∈ D(L).

Proposition 2.9. Let (St)t≥0 be a Feller semigroup with generator L, let f ∈ D(L), let
c ∈ R be a constant and define L−1f = −

∫∞
0
Stf dt, then it holds that

(i) L(c) = 0;

(ii) StLf = LStf ;

(iii) if there exists a unique stationary measure µ and K,C ∈ R>0 such that ‖Stf −∫
f dµ ‖L2(µ) ≤ Ke−Ct, then the linear operator L−1f = −

∫∞
0
Stf dt exists and

L−1Lf = LL−1f = f .

8



Proof. Firstly, note that St(c) =
∫
E
c St(x, dy) = c. Thus, L(c) = limt→0

Stc−c
t

=
limt→0

c−c
t

= 0.

Secondly, note that St is a bounded linear operator, so StLf = St lims→0
Ssf−f
s

=

lims→0
Ss+tf−Stf

s
= lims→0

Ssf−I
s

Stf = LStf .
Lastly, by theorem 2.8 (ii), L−1Lf = −

∫∞
0
StLf dt = −

∫∞
0
LStf dt = −

∫∞
0

d
dt
Stf dt =

limt→∞(S0f − Stf) = f − limt→∞ Stf = f . In addition, for a invariant measure µ and
f ∈ D(L), it holds that

∫
f dµ = 0, so ‖Stf‖L2(µ) = ‖Stf −

∫
f dµ ‖L2(µ) ≤ Ke−Ct.

So, Stf is integrable and thus, L−1 exists for all f ∈ D(L). Moreover, we find using
Fubini’s theorem at ∗ and the fact that Lf is integrable (all C0 functions are bounded),

LL−1f = −L
∫∞

0
Stf dt = − lims→0

Ss
∫∞
0 Stfdt−

∫∞
0 Stfdt

s

∗
= − lims→0

∫∞
0

Ss(Stf)−Stf
s

dt
DCT
=

−
∫∞

0
LStf dt = f .

In particular, any finite state irreducible aperiodic Markov chain satisfies the assump-
tions of proposition 2.9 (ii). Another way to check if an inverse exists, is to explicitly
check that

∫∞
0
Stf dt exists.

Example 2. Let us now extend the example of a discrete state space in discrete time to
the continuous time case. This is called a jump process. In a jump process, we wait for
an exponential time in some state s ∈ E, before jumping to a next state s′ ∈ E, where
this transition is dictated by the single time step transition from the original discrete
time process. The exponential distribution is in fact the only possibility here, as it is
the only distribution which satisfies the Markov property [9]. From the same source, we
know that the cumulatie number of jumps Nt then has a Poisson distribution with mean
λt and that P (Nt+τ = n + 1|Nt = n) = λτ + o(τ), P (Nt+τ = n|Nt = n) = 1− λτ + o(τ)
and P (Nt+τ = n + k|Nt = n) = o(τ) for k > 1. Here, o(f(x)) denotes that this part of
the expression goes to 0 as x→ 0 after dividing by f(x)

Suppose we have a discrete time process (Pn)n≥0 with the single time step trans-
ition kernel P1 = P . We will now make this process continuous by jumping to a new
state at rate κ. We say the continuous process has semigroup St. Now, we find that
Stf(x) =

∑∞
n=0 P(Nt = n)Pnf(x) = P0f(x)(1 − κt) + P1f(x)κt + o(t). So Lf(x) =

limt→0
Stf(x)−f(x)

t
= limt→0

λt(P1f(x)−P0f(x))+o(t)
t

= λ(Pf(x)−f(x)). Thus, Lf = λ(Pf−f).
To make this more concrete, we will now take the process (Pn) to be the symmetric

random walk on Z. Then Pxy = 1
2
δyx−1+ 1

2
δyx+1. So we see that Lf(x) = λ(Pf(x)−f(x)) =

λ
2
(
∑

y∈Z(δyx+1f + δyx−1f)(x)− 2f(x)) = λ
2
(f(x+ 1) + f(x− 1)− 2f(x)).

Finally, suppose we have a finite set of one time step transition kernels Pk on the state
space E with k ∈ {1, ..., K}. We can then construct a single continuous time process by
letting the process jump independently at rate κk according to the transition kernel Pk for
all k ∈ {1, ..., K}. This is in fact equivalent to a process which jumps with rate κ =

∑
κk

according to the one time step transition kernel P = 1
κ

∑
κkPk. We then find that the

generator is given by Lf = κ(Pf − f) =
∑
κkPkf − κf =

∑
κk(Pkf − f). 4

All this has brought us to the final theorem of this section. Since this bachelor thesis
focuses on scaling limits of processes, we would like to link the convergence of generators
to the convergence of processes. The next quite remarkable theorem from [8] does this.

Theorem 2.10. Let X, (Xn)n≥0 be Feller processes with semigroups St, (Sn,t)n≥0 and
generators L, (Ln)n≥0. Then the following are equivalent:
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(i) for every f ∈ D(L), there exists a sequence fn ∈ D(Ln) such that fn → f and
Lnfn → Lf with respect to ‖ · ‖;

(ii) Sn,t → St in the supremum norm ‖S‖ = sup‖f‖6=0
‖Sf‖
‖f‖ ;

(iii) Xn d→ X =⇒ convergence in the space of sample paths.

As a final note, in some cases, we might want to apply the generator to a function
which is not contained in its domain. In particular, we are interested in the first and
second moment of random variables. Even though these functions are not part of the
domain of the generator, since they do not vanish at infinity, there are no problems when
applying the generator to these functions, as long as we can evaluate the generator and
the moments are integrable. In this case, it is possible to extend the definition of the
generator through something called the full generator.

2.3 Martingales

Martingales are a tool used extensively throughout probability, because a wide variety of
useful results exist regarding the behaviour of martingales. This subsection will look at
an extremely narrow selection of all the existing material. For more information, see [8,
7], which also form the basis of this subsection.

In the first subsection of this chapter, we have already defined the natural filtration
of a stochastic process. This is actually just an example of a filtration.

Definition 2.11. Let (Ω,F , µ) be a probability space. A collection of sub-σ-algebras
(Ft)0≤t≤∞ is called a filtration if Fs ⊆ Ft for all 0 ≤ s ≤ t ≤ ∞. We call a stochastic
process (Xt)t≥0 Ft-adapted if Xt is Ft-measurable.

The idea that σ-algebras represent information, leads to the idea that a filtration is a
probabilistic way of information being revealed with time. For example, if you throw a
die every second, the filtration increasing through time represents the fact that we know
the outcome of more dice rolls as time progresses.

Definition 2.12. Let (Ft)t≥0 be a filtration and (Xt)t≥0 an Ft-adapted process. Then
we call Xt a martingale if for all t ≥ 0,

(i) Xt ∈ L1;

(ii) for all 0 ≤ s ≤ t, E[Xt|Fs] = Xs.

An important property of a martingale is its quadratic variation. This is a process
associated with a martingale that measures how variation accumulates throughout the
process. In addition, we might define an analogue to covariance for processes called the
cross variation. The following definition – and at the same time theorem – specifies what
is exactly meant by this.
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Definition 2.13. Let M,N be a continuous-time R-valued martingales. Then, there ex-
ists a unique quadratic variation process denoted 〈M〉 such that M2−〈M〉 is a martingale.
Moreover, for all t > 0 and any collection of increasing sequences 0 = tn0 < tn1 < ... <
tnpn = t such that supi 6=j |tni − tnj | → 0 as n→∞, we have that

〈M〉t = lim
n→∞

pn∑
k=1

(Mtnk
−Mtnk−1

)2.

Furthermore, we define the cross variation process 〈M,N〉 = 1
4
(〈M + N〉 − 〈M − N〉),

which is the unique process such that MN − 〈M,N〉 is a martingale.

Note that one can think of 〈M,N〉 as an inner product. In that sense, we also have
〈M〉 = 〈M,M〉 and the definition of cross variation is simply the usual polarisation
relation between the norm and inner product. The following two theorems show how to
construct a martingale from a Feller process and how to calculate the quadratic variation
of this martingale.

Theorem 2.14. Let (Xt)t≥0 be a Feller process with generator L and f ∈ D(L). Then,
we find that M f is a martingale for all f ∈ D(L) with respect to the natural filtration
(FX

t )t≥0, where

M f
t = f(Xt)− f(X0)−

∫ t

0

L(f)(Xs) ds .

Proof. Firstly, note M f is clearly FX
t -adapted and that E[|

∫ t
0
L(f)(Xs) ds |] ≤ ‖L(f)‖t <

∞. As we also have f ∈ C0(E), we find that M f
t ∈ L1 for all t ≥ 0.

Secondly, suppose we have 0 ≤ s < t, then

E[M f
t −M f

s |FX
s ] = E

[
f(Xt)− f(Xs)−

∫ t

s

L(f)(Xu) du |FX
s

]
∗
= E[f(Xt)|Xs]− f(Xs)−

∫ t

s

E[L(f)(Xu)|Xs] du

∗∗
= St−sf(Xs)− f(Xs)−

∫ t−s

0

SuL(f)(Xs) du

∗∗∗
= St−sf(Xs)− f(Xs)−

∫ t−s

0

d

du
Su(f)(Xs) du

= St−sf(Xs)− f(Xs)− St−sf(Xs)− S0f(Xs) = 0,

where at *, it is used that Xt is a Markov process; at **, Fubini’s theorem is applied and
it is used that St−s can be thought of as propagating Xs to Xt; and at ***, theorem 2.8
(ii) is used. So since E[M f

t −M f
s |FX

s ] = 0, we have E[M f
t |FX

s ] = E[M f
s |FX

s ] = M f
s .

Note that M f is linear in f , since integration and the generator are linear operators.
Thus, Mαf+βg = αM f + βM g.

Theorem 2.15. Let (Xt)t≥0 be a Feller process with generator L. We then find that

〈M f〉t =

∫ t

0

[
L(f 2)(Xs)− 2f(Xs)L(f)(Xs)

]
ds .

11



Proof. See section 8.1 of [10].

Then, we find for the covariance process

〈M f ,M g〉t =
1

4
(〈M f +M g〉 − 〈M f −M g〉)

=
1

4
(〈M f+g〉 − 〈M f−g〉)

=
1

4

∫ t

0

[
L(f 2 + 2fg + g2)(Xs)− 2(f + g)(Xs)L(f + g)(Xs)

− L(f 2 − 2fg + g2)(Xs) + 2(f − g)(Xs)L(f − g)(Xs)
]

ds

=
1

4

∫ t

0

[4L(fg)(Xs)− 4f(Xs)L(g)(Xs)− 4g(Xs)L(f)(Xs)] ds

=

∫ t

0

[L(fg)(Xs)− f(Xs)L(g)(Xs)− g(Xs)L(f)(Xs)] ds .

Example 3. We will continue with the continuous time random walk on Z with Lf(x) =
λ
2
(f(x + 1) + f(x − 1) − 2f(x)). We then see that when we take f(x) = x, M f

t =

Xt−X0− λ
2

∫ t
0
[Xs + 1 +Xs− 1− 2Xs] ds = Xt i.e. Xt is a martingale. This process then

has quadratic variation 〈M f〉t = 1
2

∫ t
0
[(Xs + 1)2 + (Xs − 1)2 − 2X2

s − 2Xs(Xs + 1 +Xs −
1− 2Xs)] ds = 1

2

∫ t
0
[2Xs + 1− 2Xs + 1] ds =

∫ t
0

ds = t i.e. X2
t − t is a martingale. 4

12



3 Random walks and Brownian motion

In this chapter, which is largely based on [6], we will explore Brownian motion, random
walks and the relation between these two types of processes. In addition, we will introduce
the diffusive scaling limit. As a motivation for why this is interesting, we start by recalling
the central limit theorem.

Theorem 3.1 (Central Limit Theorem). Let (Xn)n∈N be a sequence of i.i.d. L2 random
variables. Take µ = E[X1] and σ2 = Var(X1). Then,

1√
n

n∑
k=1

(Xk − µ)
d→ N (0, σ2) as n→∞,

where N (a, b2) denotes the normal distribution with mean a and variance b2.

The central limit theorem is an example of a scaling limit for random variables and one of
the most widely used theorems in statistics and probability. The idea behind the factor

1√
n

is to keep the variance of the sum of random variables constant and equal to σ2.

Moreover, notice that if Xi is a sequence of i.i.d. random variables and X0 ∼ N (0, σ2),

then 1√
n

∑n
k=1(Xk − µ)

d
= N (0, σ2) for all n ∈ N. So, we observe that the normal

distribution is invariant under diffusive scaling.
This scaling as done in the central limit theorem is in fact the simplest form of so

called diffusive scaling. For stochastic processes, we can also define such a diffusive scaling.
We then find that Brownian motion fulfils a role similar to the normal distribution, as
Brownian motion is invariant under this scaling.

3.1 Random Walks

As an example, we have already considered random walks on Z. We will now define
a general random walk in Rd. Firstly, we will consider a discrete time random walk.
Suppose we start out with some particle at the origin. Then, at each time step, the
particle will jump along a vector to a new position. We take this vector to be an Rd-
valued L2 random variable Z with mean 0. So essentially, if we have particle located at
x, the particle will transition to x+Z in the next time step. The path traced out by the
particle is the corresponding random walk process (Xn)n≥0. Then, the single time step
transition kernel of Xn is given by

P (x,A) =

∫
Rd

1A(x+ Z) dµ = µZ(A− x).

And so, we find the corresponding action for a function f ∈ C0(Rd), namely

Pf(x) =

∫
Rd
f(z)P (x, dz) =

∫
Rd
f(z)µZ(dz − x) =

∫
Rd
f(x+ z)µZ(dz).

Now, we want to make this a continuous time process. To do this, we follow the same
procedure as in example 2. We make our particle transition with a rate κ and call the
path traced out by this continuous process (Xt)t≥0. Now, as this process is in continuous
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time, it is not characterised by a single time step transition function, but rather by a
generator. Then, as shown in the same example, the generator of the process becomes

Lf(x) = κ(P − I)f(x) = κ

∫
Rd

[f(x+ z)− f(x)]µZ(dz).

Notice that in the discrete case we have Xn − X0 =
∑n

i=1 Zi, where (Zi)i∈N are i.i.d.
copies of Z. In the continuous time case, we can count the number of jumps that have
occurred using a rate κ Poisson process Nt and we find that Xt −X0 =

∑Nt
i=1 Zi.

3.2 Brownian Motion

Before taking a look at the scaling limit of a random walk, we must first specify what
Brownian motion is exactly.

Definition 3.2. Let B = (Bt)t≥0 be a continuous time stochastic process and D a sym-
metric, positive semi-definite matrix. Then, B is called Brownian motion with diffusion
matrix D if

(i) B0 = 0;

(ii) for all s < t, Bt −Bs ∼ N (0, (t− s)D) independently of all Bu with u ≤ s;

(iii) t 7→ Bt(ω) is continuous for almost all ω ∈ Ω;

where N (0, (t− s)D) denotes a multivariate normal distribution with covariance matrix
(t− s)D.

So, Brownian motion is a stochastic process which start at 0, has normally distributed
increments, which are independent if they do not overlap, and for each realisation the
path Bt(ω) is continuous as a function of time. Moreover, if D = I, then we speak of
standard Brownian motion.

Note that by the second property of the above definition, B is a Markov process. We
then might wonder what the generator of Brownian motion is. To do this, suppose we
start at some position x, so B0 = x. Then, since Bt = Bt−B0 ∼ N (0, (t−0)D), we have

St(x,A) = µ(x+Bt ∈ A) = µ(x+N (0, tD) ∈ A).

And so our semigroup action for f ∈ C∞0 (Rd) is given by

Stf(x) = E[f(x+Bt)] = E[f(x+N (0, tD))].

Now, if we apply a Taylor expansion to f and note that E[o(N (0, tD)2)] = o(t), we find
in Einstein summation notation

Stf(x) = E
[
f(x) +N (0, tD)i∂if(x) +

1

2
N (0, tD)iN (0, tD)j∂i∂jf(x)]

]
+ o(t)

= f(x) +
1

2
Cov(N (0, tD))ij∂i∂jf(x) + o(t)

= f(x) +
1

2
tDij∂i∂jf(x) + o(t),
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where it is used that E[N (0, tD)] = 0 and E[N (0, tD)N (0, tD)T ] = Cov(N (0, tD)) = tD.
Using the above, we find that the generator is given by

Lf(x) = lim
t→0

St − I
t

f(x)

= lim
t→0

1
2
tDij∂i∂jf(x) + o(t)

t

=
1

2
Dij∂i∂jf(x).

Note, in particular, that if D = I that the generator is the the Laplace operator; L = ∇2.
This establishes a link between the diffusion equation and Brownian motion, since Stf(x)
is the unique solution to the differential equation d

dt
ψt = Lgt = ∇2ψt with ψ0 = f by

theorem 2.8 (ii). This is precisely the diffusion equation and thus solving the diffusion
equation corresponds to evolving the initial condition by the semigroup. In chapter 6, we
will use this relation in the development of Diffusion Monte Carlo.

Now, as a last point of interest, we note that we could also add a drift to our normal
distribution, so that we find Bt − Bs ∼ N ((t − s)m, (t − s)D), where m is the drift
velocity. As drift is a phenomenon that we will encounter multiple times later on, we will
simply find the generator for a particle experiencing an independent drift. Assume we
have a particle Xt, which experiences a constant drift m. Then, we find using a Taylor
expansion that

Lf(x) = lim
t→0

Stf(x)− f(x)

t

= lim
t→0

f(x+mt)− f(x)

t
= lim

t→0
mi∂if(x) + o(1)

= mi∂if(x).

Then, since for Brownian motion drift is indepedent of the diffusion, we find the generator

Lf(x) = mi∂if(x) +
1

2
Dij∂i∂jf(x).

3.3 Scaling

The main type of scaling that is of interest in this thesis is diffusive scaling. This scaling
closely resembles the central limit theorem and in particular we can show that under this
scaling a random walk converges to Brownian motion.

Definition 3.3. Let (Xt)t≥0 be an Rd-valued Feller process. Then the diffusive scaling
of this process is defined as limε→0 εXε−2t if it exists. Here, this limit is in the sense of
weak convergence in the path space.

Thus under diffusive scaling the position of the particle is scaled by ε i.e. x 7→ εx and the
time of the process is scaled by ε−2 i.e. t 7→ ε−2t. Thus on the one hand, our particles
trajectory shrinks, but on the other hand, it travels through its trajectory faster.
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Remark 1. As we have already mentioned, Brownian motion is special when it comes
to diffusive scaling, since it is invariant under this scaling. So for a Brownian motion

process Bt, εBε−2t → Bt as ε→ 0, in fact εBε−2t
d
= Bt for all ε > 0.

Furthermore, diffusive scaling also allows us to analyse the long term behaviour of our
process. If we zoom out, we expect it to behave similar to the Brownian motion process it
scales to. This is quite similar what to what the central limit theorem does, which states
that a rescaled sum of i.i.d. L2 random variables converges to a normal distribution. 4

Now, we want to show that the random walk from section 3.1 converges to Brownian
motion with respect to diffusive scaling.

Proposition 3.4. Let (Xt)t≥0 be a random walk jumping along the Rd-valued random
variable Z ∈ L2 at rate κ. Moreover, assume E[Z] = 0. Then, εXε−2t converges to
Brownian motion Bt with diffusion matrix κCov(Z).

Proof. By theorem 2.10, it suffices to show that the generator of εXε−2t converges to a
generator of Brownian motion. Thus, we first need to find the generator Lε of εXε−2t.

Note that the scaling of the position of the particle essentially corresponds to scaling
the jumps by ε. Thus we find that x+Z 7→ x+εZ and so Pεf(x) =

∫
Rd f(x+εz)µZ(dz).

Let us now denote the Poisson process counting the cumulative number of jumps by Nt.
Then in the same fashion as in example 2 only now scaling t by ε−2, the semigroup for
the scaled process becomes

Sε−2tf(x) =
∞∑
n=0

P(Nε−2t = n)P n
ε f(x)

= f(x)(1− κε−2t) + Pεf(x)κε−2t+ o(t).

Thus, the generator is of the scaled process is given by

Lεf(x) = lim
t→0

Sε−2tf(x)− f(x)

t
= lim

t→0
ε−2κ(Pε − I)f(x) + o(1)

= ε−2κ(Pε − I)f(x).

(1)

So, for the scaled random walk, we find Lεf(x) = ε−2κ
∫
Rd [f(x+ εz)− f(x)]µZ(dz).

To show that the scaled random walk converges to Brownian motion, we choose f ∈
C∞0 and compute the limit limε→0 Lεf . It then suffices for this limit to coincide with a
generator of Brownian motion by theorem 2.10. Now, by applying a Taylor expansion to
f , we find using E[Z] = 0 and E[ZZT ] = Cov(Z) that

Lεf(x) = ε−2κ

∫
Rd

[εzi∂if(x) +
1

2
ε2zizj∂i∂jf(x) + o(ε2)]µZ(dz)

= ε−1κE[Z]i∂if(x) +
1

2
κCov(Z)ij∂i∂jf(x) + o(1)

=
1

2
κCov(Z)ij∂i∂jf(x) + o(1)

−→ 1

2
κCov(Z)ij∂i∂jf(x) as ε→ 0.
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Thus, a random walk which jumps according to the random variable Z, converges in the
diffusive limit to a Brownian motion with diffusion matrix κCov(Z).

Apart from the definition of Brownian motion we have given, there exist various other
ways of characterising Brownian motion. One such way is through the Lévy character-
isation, which is proven in [7].

Theorem 3.5. A Rd-valued process B = (Bt)t≥0 with continuous sample paths corres-
ponds to Brownian motion with diffusion matrix D if and only if for all i, j ∈ {1, ..., d},

(i) Bi
t is a martingale for all t ≥ 0;

(ii) [Bi, Bj]t = Dijt,

where Bi denotes the ith component of the process.

17



4 Active particles in Rd

In this chapter, we start with the core matter of this thesis. Firstly, an introduction to
active particles is given, specifying what they actually entail. Thereafter, a proof is given
that the active particle process converges to Brownian motion in the diffusive limit. This
proof bares a strong resemblance with the proof from [1]. After that, a new proof of
the same convergence result is introduced, which generalises more easily to manifolds.
Finally, some examples of active particle motion are worked out.

4.1 Model

We will start of with a simple example of an active particle process. Then, we will
formally specify what exactly the active particles are by defining their state space and
dynamics. Thereafter, we use the resulting ideas to derive a generator for these particles.
Moreover, for all of this and the following sections, it is assumed that there is some joint
underlying probability space (Ω,A , µ).

Example 4. We will explore a simple active particle process in Z. This process consists
of a location process (Xt)t≥0 in Z and an internal state process in (σt)t≥0 in {−1, 1}.
Firstly, the internal state switches between states at rate γ. Now, the location process is
subject to two independent transitions. With a rate λ, the particle jumps in the direction
of the internal state σt. Furthermore, with rate κ, we have a random walk with a particle
that jumps 1 space to the left or the right with equal probability. The generator of this
process is given by

Lf(x, σ) =
κ

2
[f(x− 1, σ) + f(x+ 1, σ)− 2f(x, σ)]

+ λ[f(x+ σ, σ)− f(x, σ)]

+ γ[f(x,−σ)− f(x, σ)].

We can view this process as a random walk with a drift +λ, when σ = +1 and as a
random walk with a drift −λ, when σ = −1. 4

For the general active particle process, we consider the location X = (Xt)t≥0 of a particle
in Rd with an internal state process σ = (σt)t≥0 in the state space Σ equipped with the
σ-algebra S . Thus, the active particle process corresponds to the process (Xt, σt)t≥0 in
Rd ×Σ. Furthermore, we have a measurable map v : Σ→ Rd, which we call the velocity
map.

Now, the internal state process (σt)t≥0 is assumed to be a Feller process with semigroup
(St)t≥0 and generator A. Now, we also assume this process starts from a unique stationary
measure ν and is ergodic. From this, it follows that

lim
T→∞

1

T

∫ T

0

f(σt) dt→
∫

Σ

f(ς)ν(dς).

Furthermore, we assume that for all f ∈ D(A), we have ‖Stf −
∫
f(ς) ν(dς)‖L2(ν) ≤

Ke−Ct, where K,C ∈ R. Then, A satisfies the conditions from proposition 2.9 (iii), so
A−1 exists for all f ∈ D(A).
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With the internal state process defined, we move on to the location process. This
process starts at the origin, so X0 = 0. Thereafter, the process evolves according to
two independent jump processes, which are independent from the internal state process.
Firstly, a random walk part at rate κ according to the jump vector Z, which has – as per
section 3.1 – the generator

κ

∫
Rd

[f(x+ z, σ)− f(x, σ)]µZ(dz).

Secondly, we jump along the velocity vector v(σ) at rate λ depending on the current
internal state σ ∈ Σ. From this, it immediately follows that the generator is given by

λ[f(x+ v(σ), σ)− f(x, σ)].

In addition, we will assume that v is L2(ν) and Eν [v(σ)] =
∫

Σ
v(ς)ν(dς) = 0, which can

be interpreted as the absent of drift. If we relax this condition, we will observe that the
velocity map could induce a drift – an constant velocity component in the movement of
the particle. Furthermore, this assumption ensures v ∈ D(A) and thus, A−1v exists.

Thus to summarise, we have the following three independent jump processes:

(i) A random walk jump at rate κ

(ii) An active motion jump along the velocity vector v(σt) at rate λ

(iii) An internal state transition according to its own independent Markov process with
generator A

So, an active particle process is a random walk with an additional drift component, which
is dictated by the internal state of the particle. This actually has a physical interpretation.
On a microscopic scale, we can say that the random walk part can be associated with
random collision between the active particle and neighbouring molecules and that the
active motion is the result of some internal chemical state, which the active particle has.

Now, the generator L for the complete active particle process is quite simply the
sum of the generators of the individual processes as per example 2, since the above three
processes are independent. Furthermore, we will make a slight modification to the internal
state process by adding a rate γ. Thus, we take (σγt)t≥0 as the internal state process and
from now on out just call it σt again, in the knowledge that the process depends on γ.
This rate can be used to adjust the speed of the internal process allowing us to take the
relative speed of the internal process into account. Then, it follows that the generator of
the active particle process is the following:

Lf(x, σ) = κ

∫
Rd

[f(x+ z, σ)− f(x, σ)]µZ(dz)

+ λ[f(x+ v(σ), σ)− f(x, σ)]

+ γAf(x, σ).

(2)

Later on, we will also need the generator Lε of the diffusively scaled process (εXε−2t, σε−2t)t≥0,
which follows analogously to equation 1 and is given by

Lεf(x, σ) = ε−2κ

∫
Rd

[f(x+ εz, σ)− f(x, σ)]µZ(dz)

+ ε−2λ[f(x+ εv(σ), σ)− f(x, σ)]

+ ε−2γAf(x, σ).

(3)
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4.2 Martingale Scaling

Having established the active particle process Xt in the previous section, we would now
like to find the diffusive limit of this process εXε−2t. One way to find this limit is by
using martingales.

Theorem 4.1. Let (Xt, σt)t≥0 be an active particle process in Rd with a generator as in
equation 2. Then the diffusive limit of X converges to Brownian motion with diffusion
matrix Dij = κCov(Z)ij + λCov(v)ij + λ2

γ

∫
Σ
viς(−A−1)(vjς ) + vjς (−A−1)(viς)ν(dς).

The following proof is based on the proof given in [1].

Proof. We will, firstly, show that the diffusive limit of (Xt, σt)t≥0 is Brownian motion.
Thereafter, we will compute the diffusion matrix. To show the convergence to Brownian
motion, we will write Xt as a martingale and something negligible. Then, we can use a
theorem on the diffusive limit of martingales with stationary ergodic increments to show
that the diffusive limit of Xt is Brownian motion.

In what follows, we will use i, j to denote arbitrary indices from {1, ..., d}. We start
out by using πi : Rd × Σ → R to denote the projection of the ith component. Then, we
know from theorem 2.14, that Mπi is a martingale. Now, firstly note that

Lε(πi) = ε−2κ

∫
Rd
πi(x+ εz, σ)− πi(x, σ)µZ(dz)

+ ε−2λ(πi(x+ εv(σ), σ)− πi(x, σ))

+ ε−2γAπi(x, σ)

= ε−2

[
κ

∫
Rd
εziµZ(dz) + λεvi(σ) + γAxi

]
= ε−1λvi(σ),

where in the final equality, it has been used that E[Z] = 0 and A only acts on σ, so per
proposition 2.9, Axi = 0. Then, it follows that

Mπi
ε,t = πi(εXε−2t)− πi(εX0)−

∫ t

0

Lε(πi)(εXε−2s, σε−2s) ds

= εX i
ε−2t − 0− ε−1λ

∫ t

0

vi(σε−2s) ds

= εX i
ε−2t − ελ

∫ ε−2t

0

vi(σu) du ,

where the substitution u = ε−2s has been used and the fact that X0 = 0. So, we see that

εX i
ε−2t = Mπi

ε,t + ελ

∫ ε−2t

0

vi(σu) du .

Now, since σε−2t is a Markov process, we can apply theorem 2.14 once again, this time
with gi(σ) = ελA−1vi(σ), where we recall that A−1v(σ) exists since Eν [v(σ)] = 0 and
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σt goes quickly to its stationary distribution. So then we find that the following is a
martingale:

M gi
ε,t = ελA−1vi(σε−2s)− ελA−1vi(σ0)− ελ

∫ t

0

AA−1vi(σε−2s) ds

= ελA−1(vi(σε−2t)− vi(σ0))− ελ
∫ ε−2t

0

vi(σu) du .

And so, we have that

ελ

∫ ε−2t

0

vi(σu) du = −M gi
ε,t + ελA−1(vi(σε−2t)− vi(σ0))

Thus, we find that

εX i
ε−2t = Mπi

ε,t −M
gi
ε,t + ελA−1(vi(σε−2t)− vi(σ0)). (4)

By assumption, we have that the internal state process is in the stationary distribution
ν, so σε−2t ∼ ν and ‖A−1vi(σε−2t)‖2

L2(ν) =
∫

Σ
(A−1vi(ς))2 ν(dς) < ∞. Thus, we have that

the term ελA−1(vi(σε−2t)− vi(σ0)) from equation 4 vanishes in L2(ν) as ε→ 0.
Then, if we let M i

t and M̃ i
t be the diffusive limits of the martingales Mπi

ε,t and M gi
ε,t

respectively, we find that as ε→ 0,

εX i
ε−2t → Zt = M i

t + M̃ i
t .

The diffusive limit of these martingales converges to Brownian motion by [11]. Moreover,
as shown in [1], the covariance of the above two martingales is 0. Then, it follows that Zt
is once again Brownian motion and the diffusion matrix of Zt is the sum of the diffusion
matrices of Mt and M̃t.

So, to compute the diffusion matrix of Zt, we just have to compute the diffusion of
Mt and M̃t. Firstly, observe that

Lε(πiπj) = ε−2κ

∫
Rd
πi(x+ εz, σ)πj(x+ εz, σ)− πi(x, σ)πj(x, σ)µZ(dz)

+ ε−2λ(πi(x+ εv(σ), σ)πj(x+ εv(σ), σ)− πi(x, σ)πj(x, σ))

+ ε−2γAπi(x, σ)πj(x, σ)

= ε−2κ

∫
Rd
εz(xi + xj) + ε2zizjµZ(dz) + ε−2λ(εxivj(σ) + εxjvi(σ) + ε2vivj)

+ ε−2γAxixj

= κ

∫
Rd
zizjµZ(dz) + λvivj + ε−1λ(xivj(σ) + xjvi(σ))

= κCov(Z)ij + λvivj + ε−1λ(xivj(σ) + xjvi(σ)),

were we have used that E[Z] = 0 and A only acts on σ. Then using theorem 2.15 and
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recalling that πiLεπj = ε−1xiλvi(σ), we find that

[Mπi
ε ,M

πj
ε ]t =

∫ t

0

[Lε(πiπj)− πiLεπj − πjLεπi] (εXε−2s, σε−2s) ds

=

∫ t

0

[κCov(Z)ij + λvivj + ε−1λ(xivj(σ) + xjvi(σ))

− ε−1xiλvj(σ)− ε−1xjλvi(σ)](εXε−2s, σε−2s) ds

= kCov(Z)ijt+ ε2λ

∫ ε−2t

0

(vivj)(σu) du ,

where the substitution u = ε−2s was used. So, if we now let ε → 0, we know using the
ergodicity of σt that

ε2

∫ ε−2t

0

(vivj)(σu) du→ t

∫
Σ

vi(ς)vj(ς) ν(dς).

So, we find that

[M,M ]t = kCov(Z)ijt+ tλ

∫
Σ

vi(ς)vj(ς) ν(dς)

= [kCov(Z)ij + λCov(v)ij]t.

Thus, by the lévy characterisation, the diffusion matrix associated with Mt is kCov(Z)ij+
λCov(v)ij.

Now, we also want to calculate the diffusion matrix associated with M̃t. As shown be-
fore M̃t is Brownian motion, we will exploit this knowledge here to compute the diffusion
matrix of M̃t. Since Brownian motion with diffusion matrix D at time t has distribution
N (0, tD), we know that under diffusive scaling Cij(t) = Cov(λ

∫ t
0
vi(σs) ds , λ

∫ t
0
vj(σr) dr)

converges to tDij. So, using time homogeneity, we see

Cij(t) = λ2Eν
[∫ t

0

vi(σs) ds

∫ t

0

vj(σr) dr

]
= λ2

∫ t

0

∫ t

0

Eν [vi(σs)vj(σr)] ds dr

= λ2

∫ t

0

[∫ r

0

Eν [vi(σs)vj(σr)] ds +

∫ t

r

Eν [vi(σs)vj(σr)] ds

]
dr

= λ2

∫ t

0

[∫ r

0

Eν [vi(σ0)vj(σr−s)] ds+

∫ t

r

Eν [vi(σs−r)vj(σ0)] ds

]
dr

= λ2

∫ t

0

[
−
∫ 0

r

Eν [vi(σ0)vj(σu)] du+

∫ t−r

0

Eν [vi(σu)vj(σ0)] du

]
dr

= λ2

∫ t

0

∫ r

0

Eν [vi(σ0)vj(σu)] du dr −
∫ 0

t

∫ r

0

Eν [vi(σu)vj(σ0)] du dr

= λ2

∫ t

0

∫ r

0

Eν [vi(σ0)vj(σu) + vi(σu)v
j(σ0)] du dr .
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Applying diffusive scaling to the above equation, we find that

Cij
ε (t) = λ2ε2

∫ ε−2t

0

∫ r

0

Eν [vi(σ0)vj(σu) + vi(σu)v
j(σ0)] du dr

= λ2ε2

∫ ε−2t

0

∫ ε−2t

u

Eν [vi(σ0)vj(σu) + vi(σu)v
j(σ0)] dr du

= λ2ε2

∫ ε−2t

0

Eν [vi(σ0)vj(σu) + vi(σu)v
j(σ0)]

∫ ε−2t

u

dr du

= λ2

∫ ∞
0

Eν [vi(σ0)vj(σu) + vi(σu)v
j(σ0)]1[0,ε−2t](u)(t− ε2u) du ,

where 1A denotes the indicator function of the set A. Note that |Eν [vi(σ0)vj(σu) +
vi(σu)v

j(σ0)]1[0,ε−2t](u)|t ≤ |Eν [vi(σ0)vj(σu) + vi(σu)v
j(σ0)]|t, which is integrable since

‖
∫∞

0
Stv(ς) ν(dς)‖L2(ν) ≤

∫∞
0
‖Stv(ς)‖L2(ν) ν(dς) ≤ K

∫∞
0
e−Ct dt < ∞. Furthermore,

note that |1[0,ε−2t](u)ε2u| ≤ t. Thus, |Eν [vi(σ0)vj(σu) + vi(σu)v
j(σ0)]1[0,ε−2t](u)ε2u| ≤

|Eν [vi(σ0)vj(σu)+vi(σu)v
j(σ0)]|t, which is integrable. Thus, we can apply the dominated

convergence theorem to find that as ε→ 0,

Cij
ε (t)→ λ2

[∫ ∞
0

Eν [vi(σ0)vj(σu) + vi(σu)v
j(σ0)] du

]
t.

Then, applying Fubini’s theorem and further simplifying the expressions using the defin-
ition of the inverse generator A−1, we see that

Cij
ε (t)→ λ2

(
Eν
[
vi(σ0)

∫ ∞
0

vj(σu) du

]
+ Eν

[
vj(σ0)

∫ ∞
0

vi(σu) du

])
t

= λ2
(
Eν
[
vi(σ)(−γA)−1vj(σ)

]
+ Eν

[
vj(σ)(−γA)−1vi(σ)

])
t

=
λ2

γ

(
Eν
[
vi(σ)(−A−1)vj(σ)

]
+ Eν

[
vj(σ)(−A−1)vi(σ)

])
t

=
λ2

γ

∫
Σ

[
vi(ς)(−A−1)vj(ς) + vj(ς)(−A−1)vi(ς)

]
ν(dς) t.

Thus, we find that M̃t has the diffusion matrix λ2

γ

∫
Σ

[viς(−A−1)(vjς )+vjς (−A−1)(viς)] ν(dς).
All in all, we see that εXε−2t converges to Brownian motion with diffusion matrix

Dij = κCov(Z)ij + λCov(v)ij + λ2

γ

∫
Σ

[viς(−A−1)(vjς ) + vjς (−A−1)(viς)] ν(dς).

Thus, we see that the active particle process leads to a modified diffusion coefficient.
Firstly, we have the usual random walk part; κCov(Z). However, in addition we have
diffusion due to the variance of the velocity field in the stationary distribution ν, namely
λCov(v).

Furthermore, we have the term λ2
∫

Σ
viς(−A−1)(vjς )+vjς (−A−1)(viς)ν(dς). This term is

slightly more difficult to interpret, but it is the variance introduced by the autocovariance
of the active motion. So the diffusion matrix is not solely dictated by the stationary
distribution of the internal state, but the actual process associated with A also has some
influence.

We can observe that as γ → ∞, this term vanishes. This vanishing is caused by the
fact that if the internal state process runs very quickly, the covariance between states
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separated in time quickly vanishes. However, if γ → 0, then this term blows up. Since
the internal state process runs relatively slowly, it will take a long time for the process to
become uncorrelated from its past states. So then, the variance introduced by this term
will be large.

4.3 Homogenisation

The proof of theorem 4.1 given in the previous section relies on the Lévy characterisa-
tion. Now, if want to extend this proof to manifolds, we cannot directly use the Lévy
characterisation, since we are using the vector space structure of Rd, which a manifold
does not have. And although there does exists an analogue of the Lévy characterisation
and quadratic variation on manifolds for semimartingales, these notions are not very
workable. Therefore, we will introduce a novel homogenisation technique for proving the
convergence of the diffusive limit of active particle motion to Brownian motion through
theorem 2.10. This technique turns out to be powerful enough to extend to the manifold
setting.

Recall that in section 3.3, we showed that the diffusive limit of a random walk is
Brownian motion by using generator convergence. In this case, we could simply consider
the generator of the process Lε applied to an arbitrary f and see that Lεf goes to a
generator of Brownian motion. However, for active particles, this is not the case.

Let us take d = 1 for now. So, we consider an active particle in R. Then in par-
ticular, we see that Taylor expanding the term ε−2λ(f(x + εv(σ), σ) − f(x, σ)) yields
ε−1λv(σ)f ′(x) + O(1). Note that this term blows up, so the limit ε → 0 does not exist
in this case. However, looking at theorem 2.10, we have an additional degree of freedom,
namely we can choose a sequence fε → f and then it suffices to show that Lεfε converges
to a generator of Brownian motion 1

2
Df ′′ to show that the diffusive limit of our process

is a form of Brownian motion.
This brings us to what is meant by homogenisation. By homogenisation, we mean

constructing a sequence of functions fε which converges to f and for which furthermore,
Lεfε does converge. Thus, homogenisation is a technique for removing singularities. So
in general, we will fix a function f ∈ D( d2

dx2
), the domain of Brownian motion. Note

that in particular, we then have that f is independent of the internal state of the process
and only depends on the location of the process. Thereafter, we construct a sequence of
functions fε ∈ D(Lε) such that fε → f and Lεfε → 1

2
Df ′′(x).

Before tackling the most general case, we start with two simpler examples.

Example 5 (Two-state system on R). Let us start out by considering the active particle
process in R × {1,−1} with generator Lf(x, σ) = λσ d

dx
f(x, σ) + γ(f(x,−σ) − f(x, σ)).

This is a particle that moves in direction σ with velocity λ and switches between the
states {1,−1} at rate γ. Then the generator of the diffusively scaled process becomes

Lεf(x, σ) = ε−1λσ
d

dx
f(x, σ) + ε−2γ(f(x,−σ)− f(x, σ)).

Now, fix f ∈ D( d2

dx2
) and let fε(x, σ) = f(x) + εg(x, σ), where g is to be determined. If
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we fill this into the above equation, we find that

Lεfε(x, σ) = ε−1λσ
d

dx
fε(x, σ) + ε−2γ(fε(x,−σ)− fε(x, σ))

= ε−1λσ
d

dx
f(x) + λσ

d

dx
g(x, σ) + ε−1γ(g(x,−σ)− g(x, σ)).

In order for this to converge as ε→ 0, we find the following condition

λσf ′(x) + γ(g(x,−σ)− g(x, σ)) = 0,

where f ′(x) denotes the derivative with respect to x. If we now associate the generator A
with g(x,−σ)−g(x, σ), then we see that Aσ = −2σ, so Anσ = (−2)nσ. Thus, we observe

that −A−1σ =
∫∞

0
Stσ dt =

∫∞
0
etAσ dt =

∫∞
0

∑∞
n=0

tnAn

n!
σ dt =

∫∞
0

∑∞
n=0

(−2t)n

n!
σ dt =∫∞

0
e−2t dt σ = 1

2
σ, we find that

g(x, σ) =
λ

γ
(−A−1)σf ′(x) =

λ

2γ
σf ′(x).

So, in that case, we find that since σ ∈ {−1, 1}, Lεfε(x, σ) = 1
2
λ2

γ
σ2f ′′(x) = 1

2
λ2

γ
f ′′(x)

and so it follows that

Lεfε(x, σ)→ 1

2

λ2

γ
f ′′(x),

where f ′′(x) denotes the second order derivative of f . And thus the active particle
processes converges to Brownian motion with diffusion coefficient λ2

γ
. Importantly, note

that this diffusion constant does not depend on the internal state of the process, which
is a requirement for convergence as the limit 1

2
Df ′′(x) does not depend on σ. 4

Example 6 (General system on R). We will now consider the same process as in the
previous example, only now with a general state space Σ and internal state process
with generator A and stationary measure ν. Moreover, we take a velocity map v :
Σ × R → R such that for each σ ∈ Σ, the section vσ(·) := v(σ, ·) is a smooth vector
field and

∫
Σ
vς(x)ν(dς) = 0 for all x ∈ R. In this case, we take the generator Lf(x, σ) =

λvσ(x) d
dx
f(x, σ)+γAf(x, σ). We can view this as a particle moving along the vector field

vσ for some σ ∈ Σ and jumps to a new state in Σ at a rate γ. Then, the generator of the
diffusively scaled process is given by

Lεf(x, σ) = ε−1λvσ(x)
d

dx
f(x, σ) + ε−2γAf(x, σ).

Now, fix f ∈ D( d2

dx2
), which does not depend on σ, and let fε(x, σ) = f(x) + εg(x, σ) +

ε2h(x, σ), where g, h are to be determined. So we see that for a general internal state
process, we need an additional term to homogenise our function f . If we fill this into the
above equation, we find that

Lεfε(x, σ) = ε−1λvσ(x)
d

dx
fε(x, σ) + ε−2γAfε(x, σ)

= ε−1λvσ(x)
d

dx
f(x) + λvσ(x)

d

dx
g(x, σ) + ελvσ(x)

d

dx
h(x, σ)

+ ε−2γAf(x) + ε−1γAg(x, σ) + γAh(x, σ)

= ε−1[λvσ(x)f ′(x) + γAg(x, σ)] + λvσ(x)
d

dx
g(x, σ) + γAh(x, σ) + o(1),
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where o(1) represents all that terms that go to 0 as ε → 0 and in the final equality, it
was used that f(x) is constant with respect to A. Since the velocity vector field is not
constant, it might induce a drift. Thus, this time we might have convergence to Brownian
motion with drift, which has a generator cf ′(x) + 1

2
Df ′′(x) with drift velocity c ∈ R and

diffusion coefficient D ≥ 0.
Now, in order for Lεfε not to blow up in the limit, we must require that terms

associated with ε−1 vanish. Thus, we find that

λvσ(x)f ′(x) + γAg(x, σ) = 0.

Now, with the assumption that A−1vσ exists, we find that

g(x, σ) =
λ

γ
[−A−1vσ(x)]f ′(x).

From this, it follows that

Lεfε(x, σ) = λvσ(x)
d

dx

[
λ

γ
[−A−1vσ(x)]f ′(x)

]
+ γAh(x, σ) + o(1)

= λvσ(x)

[
d

dx

(
−A−1

)
vσ(x)

]
f ′(x) +

λ2

γ
vσ(x)(−A−1)vσ(x)f ′′(x)

+ γAh(x, σ) + o(1).

Clearly, the above still depends on σ. However, we want this limit to converge to cf ′(x)+
1
2
Df ′′(x), which does not depend on sigma. So this suggest that we should pick h such

that

γAh(x, σ) =

(
c− λvσ

[
d

dx

(
−A−1

)
vσ

])
f ′(x) +

1

2

(
D − 2λ2

γ
vσ(−A−1)vσ

)
f ′′(x).

However, for this h to exist, we need to have that h ∈ D(A). So then we must also have
that

∫
Σ
Ah(x, ς)ν(dς) = 0, where ν is the stationary measure of our internal process.

Then by taking f(x) = x, it follows that

c = λ

∫
Σ

vς

[
d

dx

(
−A−1

)
vς

]
ν(dς).

And furthermore, by taking f(x) = 1
2
x2, we find that

D =
2λ2

γ

∫
Σ

vς(−A−1)vςν(dς).

So overall, we find that

Lεfε(x, σ)→ cf ′(x) +
1

2
Df ′′(x),

which is a limit independent of σ. So the diffusive limit of the original process is Brownian
motion with drift c and diffusion D, where c,D are given above. Firstly, observe that c
and D are x dependent. This, however, is not unusual for diffusion processes. In physical
reality, location dependent diffusion occurs quite often for example when temperature is
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not constant throughout a medium. In addition note that if v(σ, ·) is a constant vector
field, we actually have c = 0 – thus no drift – and D is independent of location. So that
would conform to what was seen in the previous example.

Furthermore, as a more concrete example, consider the internal state space Σ =
{−1, 1} with an internal state process which switches between these two states at rate
γ. Moreover, we have a location dependent smooth vector field v(x) dictating vσ = σv.
Recalling from the previous example −A−1σ = 1

2σ
, we find that

c = λ

∫
Σ

v(x)σ

[
d

dx

(
−A−1

)
v(x)σ

]
ν(dς) =

1

2
λv(x)v′(x).

Now, let us fix the internal state process of the original active walk to be in the stationary
measure. Then, even though in every point the movement of our particle is perfectly
symmetric, we still on a global level see a drift induced by the gradient of the vector field
v. We note that by simply checking the 4 possible combinations of v, v′, we see that the
particle will move towards locations, where it tends to move faster in the sense that |v|
is greater. 4

Having gone through the above two examples, we will now consider the general active
particle process as in section 4.1 with one major modification, namely the velocity function
becomes a collection of smooth vector fields as in example 6. So we say v : Σ×Rd → Rd

and write vσ for the section v(σ, ·). We then assume that every vσ is a smooth vector
field.

Theorem 4.2. Let (Xt, σt)t≥0 be an active particle process with a collection of smooth
vector fields as velocity function. Then, the diffusive limit of this process converges to the
process with generator cj∂jf(x) + 1

2
Dij∂i∂jf(x) on C2

0(Rd), where

cj =

∫
Σ

viς∂i(−A−1)(vjς ) ν(dς)

and

Dij = κCov(Z)ij + λ

∫
Σ

viςv
j
ς ν(dς) +

λ2

γ

∫
Σ

viς(−A−1)(vjς ) + vjς (−A−1)(viς) ν(dς),

are smoothly varying coefficients.

In case, the matrix D is constant and c = 0, we have the exact same result as in theorem
4.1. And the active particle process converges to Brownian motion. Otherwise, we
still have that process converges to something akin to Brownian motion. However, the
diffusion matrix of this Brownian motion varies smoothly as a function of position and a
drift, which also varies smoothly a function of position, has been introduced.

Although this is not the exact problem we were looking at, it is a well studied problem
[12, 13]. Indeed in many real world applications, diffusion coefficients depend on location,
as the diffusive medium or temperature with the medium varies with position.

Proof. Assume we have an arbitrary function f in the domain of Brownian motion C2
0(Rd),

which thusly does not depend on σ. Then, we consider the sequence of functions fε(x, σ) =
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f(x)+εg(x, σ)+ε2h(x, σ), where g, h are to be determined. Now, we once again consider
the generator Lε as in equation 3, which does not change when vσ depends on location.
Then applying Lε to fε, Taylor expanding in the first component of fε(x, σ) and leaving
out the x dependence of vσ for readability, we find

Lεfε(x, σ) = ε−2κ

∫
Rd
fε(x+ εz, σ)− fε(x, σ)µZ(dz)

+ ε−2λ(fε(x+ εvσ, σ)− fε(x, σ))

+ ε−2γAfε(x, σ)

= ε−2κ

∫
Rd
εzi∂ifε(x, σ) +

1

2
ε2zizj∂i∂jfε(x, σ) + o(ε2)µZ(dz)

+ ε−2λ(εviσ∂ifε(x, σ) +
1

2
ε2viσv

j
σ∂i∂jfε(x, σ) + o(ε2))

+ ε−2Afε(x, σ)

= ε−1κ

∫
Rd
ziµZ(dz)∂ifε(x, σ) +

1

2
κ

∫
Rd
zizjµZ(dz)∂i∂jfε(x, σ)

+ ε−1λviσ∂ifε(x, σ) +
1

2
λviσv

j
σ∂i∂jfε(x, σ)

+ ε−2γAfε(x, σ) + o(1)

=
1

2

[
κCov(Z)ij + λviσv

j
σ

]
∂i∂jfε(x, σ) + ε−1λviσ∂ifε(x, σ)

+ ε−2γAfε(x, σ) + o(1).

If we now substitute fε(x, σ) = f(x) + εg(x, σ) + ε2h(x, σ), recollect all vanishing terms
in o(1) and note that Af(x) = 0, we find that

Lεfε(x, σ) =
1

2

[
κCov(Z)ij + λviσv

j
σ

]
∂i∂jf(x) + ε−1λviσ∂if(x)

+ λviσ∂ig(x, σ) + ε−1γAg(x, σ) + γAh(x, σ) + o(1).

Firstly, if the above expression is to converge to the generator of Brownian motion for all
f as ε→ 0, we need that the terms associated with ε−1 vanish. Thus,

λviσ∂if(x) + γAg(x, σ) = 0 =⇒ g(x, σ) = −λ
γ
A−1(viσ)∂if(x),

where A−1 only acts on viσ by linearity. Secondly, we know that in general the generator
of Brownian motion with drift is given by ci∂if + 1

2
Dij∂i∂jf . Then, since Lεfε has to

converge to Brownian motion, the terms associated with ε0 have to converge to a diffusion
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process with possible drift, so we require that

(ci∂i +
1

2
Dij∂i∂j)f(x) =

1

2

[
κCov(Z)ij + λviσv

j
σ

]
∂i∂jf(x) + λviσ∂ig(x, σ) + γAh(x, σ)

=
1

2

[
κCov(Z)ij + λviσv

j
σ

]
∂i∂jf(x)− λ2

γ
viσ∂i(A

−1(vjσ)∂jf(x))

+ γAh(x, σ)

=
1

2

[
κCov(Z)ij + λviσv

j
σ −

2λ2

γ
viσA

−1(vjσ)

]
∂i∂jf(x)

− λ2

γ
viσ∂iA

−1(vjσ)∂jf(x) + γAh(x, σ),

where it is important to recall that the vector field vσ has an x dependence and thus the
product rule is applied in the last equality. Also note that we still have one degree of
freedom, namely h. However, for h to exist, we need to have h ∈ D(A). And so we have
that with respect to the stationary measure ν, it must hold that

∫
Σ
Ah(x, ς)ν(dς) = 0.

Thus, we find that for h to exist we require the following conditions

γAh(x, σ) =
1

2

[
Dij − κCov(Z)ij − λviσvjσ +

2λ2

γ
viσA

−1(vjσ)

]
∂i∂jf(x)

+

[
cj +

λ2

γ
viσ∂iA

−1(vjσ)

]
∂jf(x)

⇓∫
Σ

1

2

[
Dij − κCov(Z)ij − λviςvjς +

2λ2

γ
viςA

−1(vjς )

]
∂i∂jf(x)

+

[
cj +

λ2

γ
viς∂iA

−1(vjς )

]
∂jf(x)ν(dς) = 0.

Since f is arbitrary, we can select specific components of the equation by taking f = πi

or f = πiπj. Thus, we find that the above condition can only be fulfilled if the following
two conditions hold

∀j ∈ {1, ..., d} :

∫
Σ

cj − viς∂i(−A−1)(vjς ) ν(dς) = 0; (5)

∀i, j ∈ {1, ..., d} :

∫
Σ

Dij − κCov(Z)ij − λviςvjς −
2λ2

γ
viς(−A−1)(vjς )+

Dji − κCov(Z)ji − λvjς viς −
2λ2

γ
vjς (−A−1)(viς) ν(dς) = 0.

(6)

Let us first consider equation 5. This equation is associated with the derivative ∂jf(x),
which is the drift term. And so we find that

cj =

∫
Σ

viς∂i(−A−1)(vjς ) ν(dς).

Equation 6 fixes the diffusion coefficient. If we recall that the diffusion matrix must
be symmetric and that terms Cov(Z)ij and viςv

j
ς are symmetric, it follows from equation
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6 that for all i, j ∈ {1, ..., d},

Dji = Dij = κCov(Z)ij + λ

∫
Σ

viςv
j
ςν(dς) +

λ2

γ

∫
Σ

viς(−A−1)(vjς ) + vjς (−A−1)(viς)ν(dς).

So overall, we find that Lεfε(x, σ)→ cj∂jf(x) + 1
2
Dij∂i∂jf(x).

Note that every constant vector field, which is what is used in the previous section, yields
∂i(−A−1)(vjς ) = 0. So, the drift disappears. Furthermore, for a constant vector field, the
diffusion matrix is constant. Thus, in this case, we find that the diffusive limit of the
active particle process is Brownian motion with diffusion matrix as in section 4.1.

4.4 Telegrapher Process Scaling

Apart from the diffusive limit, we can also consider another scaling, which does not
remove the σ dependence of the process. In this case, we scale time with ε−2 and position
with ε, but in addition, we also scale the rates λ by ε and γ by ε2.

Proposition 4.3. Let (Xt, σt)t≥0 be the active particle process. Then, under the above
scaling, this process converges to the process with generator

κCov(Z)ij∂i∂jf(x, σ) + λviσ∂if(x, σ) + γAf(x, σ)

Proof. We then get the following generator for the scaled process

Lεf(x, σ) = ε−2κ

∫
Rd
f(x+ εz, σ)− f(x, σ)µZ(dz)

+ ε−1λ(f(x+ εvσ, σ)− f(x, σ))

+ γAf(x, σ).

If we now Taylor expand f in its first parameter, we find

Lεf(x, σ) = κCov(Z)ij∂i∂jf(x, σ)

+ λviσ∂if(x, σ)

+ γAf(x, σ),

which converges as ε→ 0.

Looking at the generator, we see that the process consists of Brownian motion with σ-
dependent drift. This can be viewed as Brownian motion on a collection of copies of Rd

indexed by Σ, where the drift of the Brownian motion depends on which copy of Rd the
particle resides in. This process is actually quite relevant, since – as we will see later on
– it is closely tied to the Dirac equation.
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4.5 Examples

We will now consider two more specific examples of active particle processes to make
some of the above notions more concrete.

Example 7. We begin by considering a run and tumble motion in R3. We, then, have
the unit ball S2 as internal state. Then with a rate γ, we tumble by selecting an entirely
new random vector from S2 with uniform probability. Note that we then take the process
acceleration γ, which introduced in our model to be 1. Our velocity function will be
v(σ) = σ. Thus, our particle will walk in the direction of its internal state. Since the
random walk part is completely independent of the active movement, we can leave it out
without loss of generality. We will now compute the diffusion matrix of this particle in
the diffusive limit. Firstly, let us consider

λ

∫
S2
viςv

j
ςν(dς) = λ

∫
S2
ς iςjν(dς).

Now, observe that unless i = j, there is no correlation between the two components of
ς. In fact, if we fix ς i, we immediately note that there is a perfectly symmetric circle of
values for ςj. So if i 6= j, we find that the above integral is zero.

λ

∫
S2
viςv

j
ςν(dς) = λ

∫
S2

(ς i)2ν(dς)δij

= λ

∫ 2π

0

∫ π
2

−π
2

(sin θ)2 cos θ dθ dφ δij

= 2πλ

∫ 1

−1

x2 dx δij

=
4

3
πλδij,

where the integral was switched to spherical coordinates and the substitution x = sinθ
was used. Now, for the next part of the diffusion coefficient, we need to evaluate −A−1.
To do so, we will use the simple observation that after one jump E[σ] = 0, as we choose
a new vector uniformly from S2. Now, observe that the probability of jumping before a
time t is 1− e−γt, so the probability of not jumping is e−γt. Therefore, we find that

−A−1ς i =

∫ ∞
0

Stς
i dt

=

∫ ∞
0

ς i · e−γt + 0 · (1− eγt) dt

= ς i
∫ ∞

0

e−γt dt

=
ς i

γ
.

Then,using our previous calculation, we see that

λ2

∫
Σ

viς(−A−1)(vjς ) + vjς (−A−1)(viς)ν(dς) =
2λ2

γ

∫
Σ

ς iςjν(dς)

=
8π

3

λ2

γ
δij
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So our diffusion matrix is then given by Dij = (4
3
πλ+ 8π

3
λ2

γ
)δij. 4

Example 8. The following example comes from [1]. In this case, we consider an R valued
active particle process with as an internal state an Ornstein-Uhlenbeck process. Namely,
the process satisfying

dσt = −aσt dt+ b dBt ,

with Bt is independent standard Brownian motion. We can view this as the process σt
satisfying the differential equation y′ = −ay with a noise component introduced by Bt.
Furthermore, we take the velocity function v : R→ R defined by σ 7→ σ.

We now want to find the diffusive limit of the above process. The internal state
process has stationary distribution ν ∼ N(0, b

2

2a
). Moreover, we then have the generator

A = −aσ d

dσ
+
b2

2

d2

dσ2
.

Now, the function w(σ) = σ
a

is contained in D(A), since
∫
w(ς)ν(dς) = 0. Moreover,

−Aw(σ) = σ = v(σ). Thus, w = −A−1v. Thus we find that

λ

∫
R
ς2 ν(dς) =

λb2

2a

2λ2

γ

∫
R

ς2

a
ν(dς) =

λ2

γ

b2

a2
.

So overall, we find that diffusion coefficient of the diffusive limit of this process would be

D =
λb2

2a
+
λ2

γ

b2

a2
.

4
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5 Active Particles on Riemannian Manifolds

We would now like to extend the active particle process to a Riemannian manifold. How-
ever, this first raises the question what is Brownian motion on a Riemannian manifold,
since we can no longer exploit the vector space structure of Rn to define Brownian motion.
This question was solved in a paper by Jørgensen [2], where he defines Brownian motion
as the diffusive limit of a geodesic random walk. Jørgensen’s paper and the introductory
chapters of [3] form the basis of the first two sections of the chapter.

We will start of by exploring what exactly a geodesic random walk is and then continue
on to the diffusive limit of this process. This limit is then used to define Brownian motion.
Furthermore, some more considerations about the nature of this Brownian motion will be
given. With these ideas explored, we will move onto defining the active particle motion
on Riemannian manifolds and thereafter, show that analogously to chapter 4, this process
can converge to Brownian motion in the diffusive limit. In addition, we will show that a
limit that conforms with the telegrapher process also exists.

Throughout this chapter, we will work in a compact manifold M with metric g.
For a point p ∈ M , we denote its tangent space by TpM . Furthermore, we use df to
denote the exterior derivative of f and d2f to denote the Laplace-Beltrami operator.
In local coordinates around some point p ∈ M with orthonormal basis ∂i of TpM , the
exterior derivative df is given by df (X) = ξi∂if with X = ξi∂i. And in these same local
coordinates, the Laplace-Beltrami operator is given by d2f (X⊗Y ) = (∂i∂jf−Γkij∂kf)ξiηj,
where X = ξi∂i, Y = ηj∂j ∈ TpM and Γkij denotes the Christoffel symbols of the manifold.
Moreover, for all of the following sections, it is assumed that there is some joint underlying
probability space (Ω,A , µ).

5.1 Geodesic Random Walk

In Rn, we can view a random walk as a sum of random independent increments. So,
we could say that if we start out at some point x ∈ Rd and have a sequence of random
vectors Zi, X0 = x and Xn = X0 +

∑n
i=1 Zi together define our random walk.

In the case of manifolds, we cannot simply add a tangent vector to a point. This
operation is not well defined. However, we do know that for every p ∈ M and v ∈ TpM ,
there exists a geodesic γ : R ⊇ (a, b)→ M such that 0 ∈ [a, b], γ(0) = p and v = γ̇(0) =
d
dt

∣∣
t=0

γ(t). Recall that a geodesic is the equivalent of a straight line inside our manifold.
Now, we will assume that [0, 1] ⊆ [a, b]. This is not the case in general, but also not
a too restrictive constriction as many import examples of submanifold in Rd have this
property, primarily the sphere and torus.

The idea is to now define an increment associated with v by following a geodesic for
one unit of time. This leads us to the Riemannian exponential map exp : TM → M
defined as (p, v) 7→ expp(v) = γ(1). One especially useful result for the Riemannian
exponential map is a special version of Taylor’s theorem on manifolds.

Theorem 5.1. Let f ∈ C2(M), p ∈M and v ∈ TpM . Then,

f(expp(v)) = f(p) + dfp (v) +
1

2
d2fp (v ⊗ v) + o(‖v‖2),

where ‖v‖ denotes
√
g(v, v).
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Now, we can define a geodesic random walk as a concatenation of Riemannian exponential
maps, which essentially comes down to following a path of random geodesics.

Definition 5.2. Let p0 ∈ M . Then, we call the collection (Xn)n≥0 of M-valued random
variables a geodesic random walk with increments (Zn)n≥0 starting at p0 if

(i) X0 = p0;

(ii) for all n ≥ 0, Zn ∈ TXnM ;

(iii) for all n ≥ 0, Xn+1 = expXn(Zn).

Remark 2. Since in Rd the Riemannian exponential map reduces to expp(v) = p + v,
we have that the above definition in Rd reduces exactly to the random walk as defined in
section 3.1. 4

Now, in order for a geodesic random walk to be a Markov process, we need that the dis-
tribution of an increment Zn only depends on the location Xn. We do this by associating
to each point p ∈ M a random variable Zp with measure µp on TpM . So, then, the one
time step transition kernel P acts on f ∈ C(M) as

Pf(p) =

∫
TpM

f(expp(z))µp(dz).

Now, to transform the above process into a continuous time process (Xt)t≥0, we transform
it into a jump process, which jumps at a rate κ. So, then using example 2, we find that
the process has generator

Lf(p) = κ(P − I)f(p) = κ

∫
TpM

[f(expp(z))− f(p)] νp(dz).

5.2 Scaling and Brownian Motion

In Rd, when we have collection of random increments (Zn)n≥0 and we scale space by ε, we
consider ε

∑m
0 Zn. However, in manifolds, we have replaced these sums with exponential

maps, so we cannot scale the entire trajectory. Now, note that we can also write the
scaled sum of the trajectory as

∑m
0 (εZn). Similarly, in order to scale space in a manifold,

we scale all the individual tangent vectors of our path, which is possible as TpM is a
vector space over R.

Furthermore, we want to make a special consideration for the case that our random
variables Zn have a drift, which was ignored in section 3.3. We know that 1√

n

∑n
k=0 Zk

diverges as n → ∞ if Zk exhibits a drift. To compensate for this, we switch to scaling
m+ 1√

n

∑n
k=0(Zk −m), where m = E[Z0]. In a similar, way we can compensate for drift

in a scaled random walk.

Definition 5.3. Let ε > 0 and p0 ∈M . And let (Xn)n≥0 be a geodesic random walk with
increments (Zn)n≥0 starting at p0. Then, we call (Xε

n)n≥0 a ε-rescaled random walk with
increments (Zn)n≥0 starting at p0 if

(i) Xε
0 = p0;
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(ii) for all n ≥ 0, Zn ∈ TXε
n
M ;

(iii) for all n ≥ 0, Xε
n+1 = expXε

n
(ε2E[Zn] + ε(Zn − E[Zn])).

Then, we can define diffusive scaling exactly as in section 3.3.

Definition 5.4. Let (Xt)t≥0 be a geodesic random walk. Then, the diffusive scaling of
this process is defined as limε→0X

ε
ε−2t if it exists. Here, this limit is in the sense of weak

convergence in the path space.

Consider the continuous random walk (Xt)t≥0 from the previous section. Let mp denote
E[Zp], m

2
p = E[Zp ⊗ Zp] and σ2

p = m2
p −mp ⊗mp. Then, under diffusive scaling, we get

the process (Xε
ε−2t)t≥0 with the generator

Lεf(p) = ε−2κ(Pε − I)f(p) = ε−2κ

∫
TpM

[f(expp(ε
2mp + ε(z −mp)))− f(p)]µp(dz).

Now, applying Taylor’s theorem for exponential maps, we find that

Lεf(p) = ε−2κ

∫
TpM

[df (ε2mp + ε[z −mp])

+
1

2
d2f ((ε2mp + ε[z −mp])⊗ (ε2mp + ε[z −mp])) + o(ε2)]µp(dz)

∗
= κ df (mp) + κε−1 df

(∫
TpM

z µp(dz)−mp

)

+
κ

2
d2f

(∫
TpM

(z −mp)⊗ (z −mp)µp(dz)

)
+ o(1)

∗∗
= κ df (mp) + 0 +

κ

2
d2f

(∫
TpM

z ⊗ z µp(dz)−mp ⊗mp

)
+ o(1)

= κ df (mp) +
κ

2
d2f (σ2

p) + o(1),

(7)

where at ∗, the linearity of df and bilinearity of d2f was used and at ∗∗, it was used that∫
TpM

z ⊗ mp µp(dz) = mp ⊗ mp. Then, we find that as ε → 0, εXε−2t converges to the

process with the generator

κ df (mp) +
κ

2
d2f (σ2

p).

This will actually be our definition for Brownian motion on manifolds. However, before
we actually define this, we have one more consideration. In Rd, we have that Brownian
motion has a constant diffusion matrix and drift. This is in fact associated with the fact
all the increments are identically distributed in Rd.

To extend the notion of a constant tensor field to manifolds, we need something called
parallel transport. The idea is that we will move a vector along a curve without changing
its direction relative to the curve. More specifically, we will transport our distributions
along geodesics.

Assume we have two point p, q ∈ M and an arbitrary path of geodesics between
them. Now, let τpq denote the parallel transport along this path p to q. Then, we
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require that µq = τpqµp. We say that our measures are invariant under parallel transport.
Furthermore, we have that a measure µp in one point p ∈ M defines the measure µq for
all q ∈M . In addition, it holds that mq = τpqmp and σ2

q = τpqσ
2
p.

Definition 5.5. We call a manifold valued process (Xt)t≥0 Brownian motion, if it has
the generator

Lf(p) = df (ap) +
1

2
d2f (bp),

where ap ∈ TpM and bp ∈ TpM ⊗ TpM . Furthermore, we require that bp is a symmetric,
positive semi-definite tensor field and that both tensor fields are invariant under parallel
transport along geodesics.

Remark 3. In Rd, we have that being invariant under parallel transport corresponds
to being constant. And thus, we see that the above definition reduces to the definition
Rd-value Brownian motion with drift. 4

Now, as a relaxation of the condition that mp and σ2
p are invariant under parallel transport

along geodesics, we could take the condition that mp and σ2
p are smoothly varying tensor

fields. Then, we see that we obtain a manifold equivalent for Rd-valued Brownian motion
with varying diffusion matrix as encountered in section 4.3.

5.3 Active Particles

We will now consider a manifold-valued active particle process. In fact not a lot has
changed from section 4.1, we add an internal state space (Σ,S) to the compact manifold
M . So that we consider a process (Xt, σt)t≥0 in M ×Σ. Furthermore, we have a velocity
map v : Σ×M → TM , which specifies for each σ ∈ Σ, a smooth vector field vσ.

The internal state process (σt)t≥0 is exactly identical to the internal state process
defined in section 4.1. So, it has a generator A and stationary measure ν. Furthermore,
we again assume A−1 exists.

Now, the location process (Xt)t≥0 changes in a natural way from Rd to M . We still
have that (Xt)t≥0 evolves in accordance with two independent jump processes. Firstly, a
random walk as in section 5.1, which has the generator

κ

∫
TpM

[f(expp(z))− f(p)] νp(dz).

Moreover, we assume that the measure νp is invariant under parallel transport, so that
this part of the process converges to Brownian motion with a constant diffusion matrix.

Secondly, we jump along the velocity vector field vσ at rate λ depending on the current
internal state σ ∈ Σ. From this, it immediately follows that the generator is given by

λ[f(expp(vσ(p)), σ)− f(p, σ)].

In addition, for every p ∈ M , we will assume that Eν [v(σ)] =
∫

Σ
v(ς, p) ν(dς) = 0,

v(·, p) ∈ L2(ν) and A−1v(·, p) exists.
So once again, an active particle process is a random walk with an additional drift

component, which is dictated by the internal state of the particle. Now, the generator L
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for the complete active particle process is quite simply the sum of the generators of the
individual processes as per example 2. So, we find

Lf(p, σ) = κ

∫
TpM

[f(expp(z))− f(p)] νp(dz)

+ λ[f(expp(vσ(p)), σ)− f(p, σ)]

+ γAf(p, σ)

We will also need the generator Lε of the process (εXε−2t, σε−2t)t≥0, which is the diffusive
scaling of the above process and is given by

Lεf(p, σ) = ε−2κ

∫
TpM

[f(expp(ε
2mp + ε(z −mp)), σ)− f(p, σ)] νp(dz)

+ ε−2λ[f(expp{Eν [vσ(p)] + ε(vσ(p)− Eν [vσ(p)])}, σ)− f(p, σ)]

+ ε−2γAf(p, σ)

= ε−2κ

∫
TpM

[f(expp(ε
2mp + ε(z −mp)), σ)− f(p, σ)] νp(dz)

+ ε−2λ[f(εvσ(p), σ)− f(p, σ)]

+ ε−2γAf(p, σ)

(8)

We will now proof that the above process converges to Brownian motion in the same way
as was done in section 4.3.

Theorem 5.6. Let (Xt, σt)t≥0 be an manifold-valued active particle process with a collec-
tion of smooth vector fields as velocity function. Then, the diffusive limit of this process
converges to the process with generator df (ap) + 1

2
d2f (bp) on C2(M), where

ap = κmp +

∫
Σ

∇vς (−A−1vς) ν(dς)

with ∇ denoting the Levi-Civita connection and

bp = κσ2
p + λ

∫
Σ

v2
ς ν(dς) +

λ2

γ

∫
Σ

[vς ⊗ (−A−1vς) + (−A−1vς)⊗ vς ] ν(dς)

are smoothly varying coefficients.

In the following, proof we will assume there exists a chart around p ∈ M such that
TM has an local smooth orthonormal vector field (∂i)1≤i≤d around p with dual basis
(dxi)1≤i≤d, where d is the dimension of the manifold M .

Proof. Assume we have an arbitrary function f in the domain of Brownian motion C2(M).
Then, we consider the sequence of function fε(p, σ) = f(p) + εg(x, σ) + ε2h(p, σ), where
g, h are to be determined. Now, consider the generator Lε from equation 8 and apply it
to fε. Then, using the manifold Taylor expansion for exponential functions and leaving
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out the location dependence of vσ for readability, we see that

Lεfε(p, σ) = ε−2κ

∫
TpM

[fε(expp(ε
2mp + ε(z −mp)))− fε(p, σ)] νp(dz)

+ ε−2λ[fε(expp(εvσ), σ)− fε(p, σ)]

+ ε−2γAf(p, σ)

= κ dfε (mp, σ) +
κ

2
dfε (σ2

p, σ)

+ ε−1λ dfε (vσ, σ) +
λ

2
d2fε (vσ ⊗ vσ, σ)

+ ε−2γAf(p, σ) + o(1),

where in the last equality, we used that the random walk generator becomes equation 7
and that dfε and d2fε are linear and bilinear respectively. Furthermore, we have collected
all vanishing terms in o(1). From now on, we will denote vσ ⊗ vσ by v2

σ.
If we now substitute in fε(p, σ) = f(p) + εg(x, σ) + ε2h(p, σ), immediately recollect

all vanishing terms in o(1) and note that Af(p) = 0, we find that

Lεfε(p, σ) = κ df (mp) +
1

2
df (κσ2

p + λv2
σ) + ε−1λ df (vσ)

+ λ dg (vσ, σ) + ε−1γAg(p, σ) + γAh(p, σ) + o(1),

If we want the above expression to converge to a generator of Brownian motion for all f
as ε→ 0, we need that terms associated with ε−1 vanish. Thus,

λ df (vσ) + γAg(p, σ) = 0 =⇒ g(p, σ) =
λ

γ
(−A−1)(df (vσ)).

In fact, we can pull A−1 inside df , which follows directly from changing to local coordin-
ates:

g(p, σ) =
λ

γ
(−A−1)(df (vσ))

=
λ

γ
(−A−1)(∂ifv

j
σ dxi (∂j))

=
λ

γ
(−A−1)(∂ifv

i
σ)

=
λ

γ
∂if(−A−1)viσ

=
λ

γ
∂if dxi (−A−1(vjσ∂j))

=
λ

γ
df (−A−1vσ).

Now, we know that a generator of Brownian motion with drift is of the form df (ap) +
1
2

d2f (bp), where ap ∈ TpM and bp ∈ TpM ⊗ TpM . Then, since we want Lεfε to converge
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to Brownian motion, the terms associated with ε0 have to converge to something of this
form, so we require that

df (ap) +
1

2
d2f (bp) = κ df (mp) +

1

2
df (κσ2

p + λv2
σ) + λ dg (vσ, σ) + γAh(p, σ)

= κ df (mp) +
1

2
df (κσ2

p + λv2
σ) +

λ2

γ
d(df (−A−1vσ)) (vσ)

+ γAh(p, σ).

Now, the term λ2

γ
d(df (−A−1vσ)) (vσ) warrants further inspection. Firstly, note that this

term is not the exterior derivative of the 1-form df , but rather the exterior derivative
of the 0-form df (−A−1vσ). By going to local coordinates, we see using the Leibniz rule
that

d(df (−A−1vσ)) (vσ) = d(∂if(−A−1viσ)) (vσ)

= (−A−1viσ) d(∂if) (vσ) + ∂if d(−A−1viσ) (vσ)

= vjσ(−A−1viσ)∂j∂if + vjσ∂j(−A−1viσ)∂if

= (∂j∂if − Γkij∂kf)vjσ(−A−1viσ)

+ vjσ(−A−1viσ)Γkij∂kf + vjσ∂j(−A−1viσ)∂if.

This first term is an expression for the Laplace-Beltrami operator in local coordinates.
Regarding the second term, recall that for two vector field u = ui∂i, v = vj∂j, we have

∇vu = vj∇∂j(u
i∂i)

= vjui∇∂j∂i + vj∇∂j(u
i)∂i

= vjuiΓkij∂k + vj∂j(u
i)∂i,

where ∇ denotes the Levi-Civita connection. Using this result, we then find that

d(df (−A−1vσ)) (vσ) = d2f (vσ ⊗ (−A−1vσ)) +∇vσ(−A−1vσ)f

= d2f (vσ ⊗ (−A−1vσ)) + df (∇vσ(−A−1vσ)),

So overall, we have

df (ap) +
1

2
d2f (bp) = κ df (mp) +

1

2
df (κσ2

p + λv2
σ +

2λ2

γ
vσ ⊗ (−A−1vσ))

+ df (∇vσ(−A−1vσ)) + γAh(p, σ).

Now, we once again have one degree of freedom left, namely h, with the requirement
that h ∈ D(A). And thus with respect to the stationary measure ν, it must hold that∫

Σ
Ah(p, ς) ν(ς) = 0. Thus, for h to exists, we require that∫

Σ

df (ap − κmp −∇vς (−A−1vς)) ν(dς)

+

∫
Σ

1

2
d2f (bp − κσ2

p − λv2
ς −

2λ2

γ
vς ⊗ (−A−1vς)) ν(dς) = 0.
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As f is arbitrary, we can choose it such that d2f vanishes, namely taking f = xi locally,
so we find

ap = κmp +

∫
Σ

∇vς (−A−1vς) ν(dς)

Now, for the part associated with d2f , observe that this operator is symmetric. So,
even though we can select parts of the equation by choosing f = xixj locally, we cannot
distinguish the left and the right side of a tensor product. Note that σ2

p and v2
ς are

symmetric anyways, so we find that

bp = κσ2
p + λ

∫
Σ

v2
ς ν(dς) +

λ2

γ

∫
Σ

[vς ⊗ (−A−1vς) + (−A−1vς)⊗ vς ] ν(dς).

And so overall, we find that Lεfε(p, σ)→ df (ap) + 1
2

d2f (bp).

Now, it is apriori not clear if taking the vector field vσ invariant under parallel trans-
port along geodesics for every σ ∈ Σ will ensure that ap and bp are invariant themselves.
Nonetheless, as vσ is a collection of smooth vector fields, we have that ap and bp are
smooth tensor fields. So, we can certainly view the limit of the active particle process as
Brownian motion with smoothly varying drift and diffusion.

Furthermore, we see that the actual result from the above theorem is completely
analogous to the results from section 4.3. If we consider the above generator on Rd, we
get back exactly our results from this section. So the diffusive limit of the manifold-
valued active particle process is consistent with the diffusive limit of the Rd-valued active
particle process.

5.4 Telegrapher Process Scaling

Apart from the diffusive limit, we can once again consider the telegrapher scaling as in
section 4.4. Recall that this scaling does not remove the σ dependence of the process,

Proposition 5.7. Let (Xt, σt)t≥0 be the manifold-valued active particle process. Then,
under the above scaling, this process converges to the process with generator

df (κmp + λvσ, σ) + κ d2f (σ2
p, σ) + γAf(x, σ).

Proof. We then get the following generator for the scaled process

Lεf(p, σ) = ε−2κ

∫
TpM

f(expp(ε
2mp + ε(z −mp)), σ)− f(p, σ)µZ(dz)

+ ε−1λ(f(expp(εvσ), σ)− f(p, σ))

+ γAf(p, σ).

If we now apply the Taylor expansion of the exponential map in manifolds to f , we find

Lεf(x, σ) = κ df (mp, σ) + κ d2f (σ2
p, σ)

+ λ df (vσ, σ)

+ γAf(x, σ) + o(1),

which converges as ε→ 0.

Looking at the generator, we see that the process consists of Brownian motion with drift,
where the exact drift depends on the current internal state.
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6 Quantum Diffusion Monte Carlo

Up to now, we have mainly considered stochastic processes in a pure mathematical sense.
However, they are widely used throughout science in a plethora of applications. One such
field of applications is in quantum mechanics. Here there exists a link between Brownian
motion and the Schrödinger equation. Moreover, this link can be exploited to create a
numerical method for finding ground-states of quantum systems. This numerical method
is called diffusion Monte Carlo. The main advantage of this method over traditional nu-
merical integration schemes is that the error is independent of the number of dimensions,
namely the error is o( 1√

N
), where N is the number of sample points. Whilst for a d

dimensional problem, the error of a typical grid based solution is o( 1
N1/d ) [14], where N is

the number of sample points. Thus, we notice that if d > 2, Monte Carlo starts getting
advantageous. The current section is largely based on chapter 12 of [15].

6.1 Solving the Schrödinger equation in imaginary time

The Schrödinger equation is one of the most famous equations in physics. Generally,
when it is considered with some time independent potential, it has the following form:

i~
∂

∂t
ψ(r, t) = − ~2

2m
∇2ψ(r, t) + V (r)ψ(r, t).

We would like to solve this equation in general, at least formally. In order to do so, we
will transform the above equation into the form d

dτ
ρ = Lρ, where L is the generator of a

semigroup.
Firstly, set τ = it, then ∂

∂t
= ∂τ

∂t
∂
∂τ

= i ∂
∂τ

and say that ρ(r, τ) = ψ(r,−iτ). Thus, if
we then take our units such that m = ~ = 1; take K = −1

2
∇2; and hide the position

dependence of V , we find

∂

∂τ
ρ(r, τ) = −(K + V )ρ(r, τ).

To solve our original equation, it now suffices to solve for ρ. Now, note that −(K+V ) is a
linear operator. In fact, K is a generator of Brownian motion and we can view −(K+V )
as the generator of some unknown process. Then, by theorem 2.8, this process forms a
unique solution to the above differential equation. More specifically, the unique solution
to the above differential equation follows from the semigroup e−τ(K+V ) corresponding to
generator −(K + V ) and the initial condition ρ(r, 0) = ψ(r, 0), yielding

ρ(r, t) = e−τ(K+V )ρ(r, 0); (9)

and thus we have solved the Schrödinger equation. Specifically, we have a formal solution
to the Schrödinger equation in terms of the semigroup e−τ(K+V ) with generator −(K+V ).

6.2 Finding the ground-state

In order to find the ground-state, we will first consider the behaviour of eigenstates of
equation 9. For an eigenstate ρE, we know that (K + V )ρE = EρE and so it follows that

e−τ(K+V )ρE = e−τEρE. (10)

41



Now, note that the ground-state energy Eg is the smallest eigenvalue. Thus e−τEg is
the largest factor by which an eigenstate is multiplied. Thus by repeatedly applying
e−τ(K+V )ρE = e−τEρE and renormalising, we eventually find the ground-state ρEg .

Moreover, if we multiply our semigroup by the operator eτEg , we essentially shift the
potential such that for ρEg , it holds that

e−τ(K+V−Eg)ρEg = e−τ(Eg−Eg)ρEg = ρEg .

So, we might view ρEg as an invariant distribution of the operator e−τ(K+V−Eg). Now
we can use this fact to find Eg. Note that we are talking about ρ as a distribution, not
the quantum mechanical wave function |ψ|2. To do so, we do need to assume that ρ is
positive. However, for the ground-state of bosons, this is not a problem. For fermions,
the ground-state wave function can be negative and the assumption of positivity is not
valid. Although there are ways to work around this, we will not detail them here.

Let us start out with some trial energy ET . Then, we find that

e−τ(K+V−ET )ρEg = e−τ(Eg−ET )ρEg .

Thus, if we start out with a normalised ρEg , applying our modified operator destroys this
normalisation with a factor g(ET ) = e−τ(Eg−ET ). So in case ET > Eg, g(ET ) > 1 and if
ET < Eg, g(Et) < 1. So if we end up with ρEg being too large after applying e−τ(K+V−ET ),
we have to decrease ET . On the other hand if we end up with ρEg being too small after
applying e−τ(K+V−ET ), we have to increase ET .

This indicates a general procedure for finding the ground-state and the appropriate
ground-state energy. We start out with a random target energy ET and an initial distri-
bution ρ. We then repeatedly apply the operator e−τ(K+V−ET ) boosting the dominance
of the ground-state ρEg in ρ as shown above, so that ρ goes towards ρEg . Simultaneously,
we update ET in such a way that the operator e−τ(K+V−ET ) preserves the normalisation
of ρ, so that as ρ goes to ρEg , ET follows to Eg.

6.3 Evolving the Schrödinger equation

The above section underlines the fundamental idea behind diffusion Monte Carlo. How-
ever, for a practical implementation of the algorithm, we need to compute e−τ(K+V ). And
although the solution given in equation 9 is a formal solution, it cannot be evaluated
directly. Nevertheless, we do know that the operator e−τK is the semigroup of standard
Brownian motion, which we can compute quite easily. Thus, we would like to factor the
exponential e−τ(K+V ), so we can apply the operators e−τK and e−τV individually. Now,
an operator exponential can only be factored if they operators commute, but K and V
do not commute. To circumvent this problem, we will use an approximation. By the
Baker-Campbell-Haussdorff formula, we have that

e−τ(K+V ) = e−τ(V+K) = e−τV e−τK +O(τ 2).

Thus if we use small enough time steps, we can neglect the terms associated with O(τ 2).
The operator e−τV e−τK is something we can compute numerically using random walkers.
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6.4 Implementation of the algorithm

In diffusion Monte Carlo, we will estimate the distribution ρ by means of random walkers.
Suppose we start out with M walkers. The idea is then that the density of walkers
corresponds to the density of ρ. Then for small time steps ∆τ , we can evolve this
distribution by e−∆τ(K+V−ET ) ≈ e−∆τ(V−ET )e−∆τK with ET the trial energy.

Firstly, we evolve a walker according to e−∆τK , which corresponds to simulating ∆τ
time of standard Brownian motion. So since B∆τ ∼ N (0,∆τ), we have to move the
walker by a random vector distributed according to N (0,∆τ).

Thereafter, we could try to account for the operator e−∆τ(V−ET ) by assigning the ith
walker a weight of wi = 1 and updating it on each iteration as wi := e−∆τ(V−ET ) ·wi, where
we recall that V depends on the location of the walker. Then the weight signifies how
important the walker is in calculating the distribution ρ. So overall the normalisation of
ρ becomes

∑
wi/M and based on this normalisation we could update ET .

However, this approach contains a problem, a lot of walkers will quickly walk away to
regions with a very small weight e−∆τ(V−ET ) and so their contribution would vanish. In
order to combat this, we replace the weights of the walkers by a branching process. In
this process, poor walkers die and good walkers replicate. By doing this with the right
probabilities, we will see that the density of poor walkers and good walkers will give a
similar density as was done by the weighted walkers, but notably, a lot less walkers will
be needed to get an accurate density.

For every walker, we will calculate q = e−∆τ(V−ET ). Then if q < 1, the walker survive
with probability q. If q > 1, the walker will give birth to bqc walkers with probability q or
bq − 1c walkers otherwise. By giving birth, we specifically mean that the original walker
is duplicated. So as an example, suppose we have q = 1.4, then there is 40% chance
of 1 additional walker and otherwise there are 0 additional walkers. We can actually
encapsulate this process in one procedure. Let r be a sample drawn from the uniform
distribution on [0, 1] denoted U(0, 1). Then we place s = bq + rc walkers at the location
of the original walker. Note that it is possible that s = 0. This corresponds to the walker
not surviving.

The last thing to do is to update ET . The following is a rule that works good in
practice. Let E0 denote the initial guess for the energy, α an adjustable parameter, M
the current number of walkers and M̃ the initial number of walkers. Then we, take

ET = E0 + α ln

(
M̃

M

)
.

In practice, E0 might be very far off to start. In that case, we might want to run the
algorithm several times updating E0 after each time.

For an overview of the entire diffusion Monte Carlo procedure in pseudo code, see
algorithm 1.

6.5 Harmonic oscillator

As an example, we apply diffusion Monte Carlo to the 3D harmonic oscillator with the
potential V (r) = 1

2
r2. Then the exact ground-state wave function is given by ψ(r) =

1
(2π)3/2

e−r
2/2 with Eg = 3

2
.
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Algorithm 1 Diffusion Monte Carlo

Put walkers in random postions;
while Not finished do

for all walkers do
Let x be the location of the walker;
Update x according to N (0,∆τ);
Let q := exp(−∆τ(V (x)− ET ));
Let r be a sample from U(0, 1);
Replace the walker by bq + rc walkers;

end for
end while

To test diffusion Monte Carlo, a simulation was done with 500 walkers and 50000 time
steps, where we have taken E0 = 1.5, ∆τ = 0.01 and α = 1. The diffusion Monte Carlo
finds that Eg = 1.502 ± 0.005. In addition, figure 3 gives the probability distribution of
finding a walker a distance r from the origin according to diffusion Monte Carlo. The
density of the exact ground-state wave function has also been included in this plot as
a dashed line. This is given by ψ(r) · 2πr2, which is the radial density of the harmonic
oscillator. The extra factor 2πr2 comes from the fact that the spherical shells further
from the origin represent a large part of the wave function in correspondence with the
volume of a thin spherical shell 2πr2 dr.
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Figure 3: A plot of the density of the ground-state wave function for the potential V (r) = 1
2r

2

as a function of the distance from the origin according to diffusion Monte Carlo in blue. The
dashed orange line respresents the exact solution.
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7 The Dirac Equation

During the 20th century, the Schrödinger equation proved to successfully predict a pleth-
ora of behaviours. However, apart from quantum mechanics there exists another very
successful physical theory, namely special relativity. Now, the Schrödinger equation is
not conform with special relativity. Thus, some alternative equation which does conform
with special relativity was needed. The background of this chapter is based on [16]. Fur-
thermore, the connection between stochastic processes and the Dirac equation was first
shown in [17].

7.1 Relativistic Quantum Mechanics

One of the principle observation from special relativity is the energy momentum relation,
namely

E2 = p2c2 +m2c4, (11)

where E is the particle’s energy, p the particle’s momentum, m the particle’s mass and c
the light speed. In quantum mechanics, we associate E with i~ ∂

∂t
and p with −i~∇. Thus,

if we substitute the just mentioned operators into equation 11, we find the Klein-Gordon
equation

−~2∂
2ψ

∂t2
= −~2c2∇2ψ +m2c4ψ.

Note that the above equation is not based on a first order time derivative, as the
Schrödinger equation. It turns out that this leads to problems when describing particles
with spin such as electrons. To solve this problem, another equation was introduced by
Dirac. This equation starts from the principle that it should be based on a first order
time derivative. From this, it follows that this equation should have the following form

i~
∂ψ

∂t
= (−i~α ·∇+mβ)ψ,

where αi and β are to be determined and · denotes an inner product. Now, we still
want that the above equation satisfies equation 11 and moreover, we want the equation
to satisfy conservation of probability current. By this last statement, we mean that if
we start out with a normalised wave function, it should stay normalised as we evolve the
wave function according to the above equation.

It turns out these requirements cannot be satisfied if we take ψ to be R valued.
However, if we consider it to be a 4-dimensional vector, we can satisfy these conditions.
There are actually several options for α and β. Here, we choose to use the so called Weyl
representation. Then the Dirac equations becomes as follows

i~
∂ψ

∂t
= mc2

(
0 1
1 0

)
+ c

(
σ 0
0 −σ

)
· ~
i
∇ψ, (12)

where σ represents a vector consisting of the Pauli matrices, so that σ · ∇ = σx
∂
∂x

+
σy

∂
∂y

+ σz
∂
∂z

. Recall that the Pauli matrices are given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.
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The interpretation of the 4-components of the Dirac equation is a nuanced question.
Generally, the Dirac equation is interpreted to represent a particle in superposition of
two states. If we view the upper two components of the 4-dimensional vector ψ as a
single particle, then the lower two components represent its anti-particle or a particle with
opposite chirality. Now for both the upper and the lower particle, the two components
associated with that particle represent the spin of the particle. In this sense, the Dirac
equation is a very natural representation of an electron as it automatically results in the
necessity of spin.

Now, the above equation represents the Dirac equation in 3-spatial dimensions. How-
ever, a generally easier case is to consider the one dimensional variant. This exists for the
Dirac equation. However, in this case, we do not observe a spin, but only a chirality. So,
we just have a 2-dimensional vector ψ. The 1-dimensional Dirac equation is as follows

i~
∂ψ

∂t
= mc2σxψ − ic~σz

∂ψ

∂x
. (13)

7.2 Telegrapher process

Now, as with the Schrödinger equation, we want to connect the above equation to a
stochastic process. This time, we will consider the stochastic process first and then work
our way to the 1-dimensional Dirac equation.

Let us consider a free particle in 1-spatial dimension. This particle is subject to
a stochastic process, where it propagates at a speed v and then at some rate a has a
complete reversal of direction. Note that this exactly corresponds to the active particle
discussed in example 5. Now, let P+(x, t) be the probability density of finding the particle
moving to the right at location x and time t and P−(x, t) the probability density of finding
the particle moving to the left at location x and time t. Then, for some infinitesimal time
step ∆t, we have

P±(x, t+ ∆t) = P±(x∓∆x, t)(1− a∆t) + P∓(x±∆x, t)a∆t.

So, we find that

P±(x, t+ ∆t)− P±(x, t)

∆t
= ∓∆x

∆t

P±(x∓∆x, t)− P±(x, t)

∓∆x
+a(P∓(x±∆x, t)−P±(x∓∆x, t)).

Then, taking ∆t and ∆x to 0, we find

∂P±
∂t

= −a(P± − P∓)∓ v∂P±
∂x

. (14)

Remark 4. Another way to find the above equation is by letting L from example 5 act
on distributions through its adjoint, which is similar to what happens in example 1. 4

If we now write out the components of equation 13 explicitly, we find that

i~
∂ψ±
∂t

= mc2ψ∓ ∓ ic~
∂ψ±
∂x

.
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Now, to connect the above equation with equation 14, we introduce the substitution

u(x, t) = e
imc2

~ tψ(x, t). Using this substitution, differentiation with ∂
∂t

and immediately

dividing out the phase factor e
imc2

~ t, we find

mc2u± + i~
∂u±
∂t

= mc2u∓ ∓ ic~
∂u±
∂x

.

From this, it directly follows that the u± satisfies

i
∂u±
∂t

= −mc
2

~
(u± − u∓)∓ ic∂u±

∂x
.

If we now transition, our equation to imaginary time τ = it and note that c = dx
dt

, we
find using ∂

∂t
= ∂τ

∂t
∂
∂τ

= i ∂
∂τ

and multiplying the above equation by −1 that

∂u±
∂τ

= −mc
2

~
(u± − u∓)∓ c∂u±

∂x
, (15)

which is exactly equation 14 with v = c and a = mc2

~ . So just like the Schrödinger
equation is tied to Brownian motion, the Dirac equation is tied to an active particle
process, where the reversal rates are determined by the mass of the particle. We will call
A defined by Au± = ∓c∂u±

∂x
to be the propagator of the 1-dimensional Dirac equation.

We might even consider this idea, where we have a particle switching between two
states and a propagator A, which dictates how a particles moves in each state, more
generally. If we take Au± = ∓cσ · ∇u± with σ the vector of Pauli matrices as before,
we have the propagator for the three dimensional Dirac equation. Note u± are both
2-dimensional vectors which represent spinors of a left-handed and right-handed version
of the particle. The switching still occurs at the rate mc2

~ . However, directly interpreting
the propagation of the particle has been severely complicated as it is spatial movement
have become tied to spin of the particle. In fact, it was an open question for quite a
long time how exactly to interpret the 3-dimensional propagator, which was only entirely
solved in 1999 [18].

Although interpretation of this equation may have been difficult, actually writing it
down is not a challenge. So for the sake of completeness, the 3-dimensional imaginary
time analogue of the Dirac equation is given by

∂u±
∂τ

= −mc
2

~
(u± − u∓)∓ cσ · ∇ψ.

7.3 The Dirac equation with potential

One noteworthy thing is that up to now, we have only considered a free particle. One
of the most interesting type of particles is a bound particle. So to study this we will
introduce a potential V (x, t). Let K̂ denote mc2σx − ic~σz ∂

∂x
, which is the operator

associated with free energy in the Dirac equation. We see that including a potential into
Dirac equation comes down to Êψ = (K̂ + V̂ )ψ, which leads to

i~
∂ψ±
∂t

= mc2ψ∓ ∓ ic~
∂ψ±
∂x

+ V (x, t)ψ±.
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Then using the substitution u(x, t) = e
imc2

~ tψ(x, t), transitioning to imaginary time and
just repeating all the other steps to go from equation 13 to 15, we find that

∂u±
∂τ

= −mc
2

~
(u± − u∓)∓ c∂u±

∂x
− V (x, τ)

~
u±.

Now, use φ to denote V
~ . Then replacing mc2

~ by a, we find the following for the imaginary
time analogue of the Dirac equation with potential:

∂u±
∂τ

= −a(u± − u∓)∓ c∂u±
∂x
− φ(x, τ)u±. (16)

In the next chapter, we will use techniques similar to those used in chapter 6 to construct
a quantum Monte Carlo method for finding the ground state of the above equation.

49



8 A Monte Carlo Method for the Dirac Equation

In this chapter, we will combine the developed theory from the previous chapter with the
idea of diffusion Monte Carlo from chapter 6 to find the ground-state of a 1-dimensional
Dirac equation. For this, we will use equation 16 and quickly repeat the steps of the first
three sections of chapter 6.

Firstly, we will assume that the potential φ(x, t) does not depend on time and write
Φ for this operator. Moreover, we will write Pu± = a(u± − u∓) for the state switching
operator and Ku± = ±c∂u±

∂x
for the linear propagator. Then, equation 16 becomes

∂u±
∂τ

= −(P +K + Φ)u±.

Now, just as in chapter 6, solving the above equation corresponds to solving our original
equation, the Dirac equation in this case. Moreover, we can view the operator P +K−V
as the generator of transition semigroup and thus by theorem 2.10, we can solve our
differential equation using the semigroup e−τ(P+K+Φ) and the initial condition u±(x, 0),
yielding

u±(x, τ) = eτ(P+K+Φ)u±(x, 0), (17)

where we note that our semigroup is essentially a time dependent matrix acting on a
vector containing the u+ and u− components.

Now, for an eigenstate uE± with eigenvalue E , we find that (P + K + Φ)uE± = EuE±
and so we have (P + K + (Φ − E))uE± = 0. From this, it immediately follows that the
eigenvalue E is also an eigenvalue for the original Dirac equation, since we then have that

i~
∂ψ±
∂t

= mc2ψ∓ ∓ ic~
∂ψ±
∂x

+ (V (x, t)− ~E)ψ±.

So, we see that the eigenvalue of the original Dirac equation is E = ~E . From now on
out, we will take ~ = 1, so that E = E . Now, similarly to chapter 6, we see that

e−τ(P+K+Φ)uE± = e−τEuE±.

This is exactly what we observed in equation 10. From this, it follows that we again
observe that repeatedly applying the above operator amplifies the ground-state with
eigenvalue Eg relative to the other eigenstates. If we now once again introduce the trial
eigenenergy ET , we find that

e−τ(P+K+Φ−ET )u
Eg
± = e−τ(Eg−ET )u

Eg
± ;

and that the failure of the above equation to stay normalised indicates how close the trail
energy is to the ground state energy, in exactly the same manner as was seen in chapter
6.

Thus, we can apply exactly the same algorithm as before except that the propagators
of our walkers are different now. Using the Baker-Campbell-Haussdorff formula, we see
that our propagator becomes

e−τ(P+K+Φ) = e−τP e−τKe−τΦ +O(τ 2)

So once again if we use small time steps, we see that we can factor our propagation
operator and apply the steps individually. We quickly recall that e−τP signifies a transition
from the + to the − state at rate a, e−τK is a linear displacement in the states direction
and e−τΦ is just multiplication by a number.
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8.1 Implementation of the algorithm

Again the idea is to estimate the distribution u± using random walkers. Assume we
let the program start out with M walkers which are distributed randomly across both
states and position. These walkers represent the density of u±, where we recall that the
individual components u± are not normalised, but the overall two component vector is.
Then for small time steps ∆τ , we will evolve the walker distribution by e−τ(P+K+Φ−ET ) ≈
e−τ(Φ−ET )e−τKe−τP with trial energy ET .

Firstly, we consider the state transition according to P . Now, note that first order
state transitions are O(τ) and second order state transitions are O(τ 2). Since we are neg-
lecting, second order propagation anyways, it will not hurt to neglect second and higher
order state transitions. Moreover, note that when considering a single state transition,
we have a transition at rate a according to the exponential distribution during some small
time step ∆τ . Thus, we can approximate this transition probability by a∆τ .

Furthermore, to simulate the linear propagation, we simply displace in accordance
with the operator ±c ∂

∂x
; so we move a walker by c∆t if it is in the right moving state and

by −c∆t if it is in the left moving state.
For the multiplicative operator q = e−τ(Φ−ET ), we once again introduce a branching

process. So that we replace a walker by s = bq + rc walkers, where r is a sample from
U(0, 1).

Moreover, if we denote the current number of walkers by M̃ and start out at some
energy E0, we find that we take the target energy ET to be

ET = E0 + α ln

(
M̃

M

)
,

where α is an adjustable parameter.
Now, to simplify the procedure significantly, we will fix our units such that ~ = 1 and

c = 1. Thus, then the displacement operator reduces to moving by ∆τ and the transition
rate is equivalent to the mass m.

For an overview of the entire algorithm in pseudo code, see algorithm 2.

Algorithm 2 Dirac Monte Carlo

Put walkers in random positions and states;
while Not finished do

for all walkers do
Let x be the location of the walker and s its state;
With probability m∆τ , s := −s;
Update x := x+ s∆τ ;
Let q := exp(−∆τ(V (x)− ET ));
Let r be a sample from U(0, 1);
Replace the walker by bq + rc walkers;

end for
end while
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8.2 Harmonic Oscillator

Consider the potential φ(x) = 1
2
ωmx2. Now, we use our last degree of freedom in units

to fix ωm = 1, so that the potential of the system is given by

φ(x) =
1

2
x2.

Now, we observe that the only degree of freedom left in the system is the mass m, which
is equivalent to state transition rate. We will consider two possibilities for m, namely
m = 1 and m = 0.1. When m = 1, the particle will transition very often and thus be
more diffusive, which is the classical limit. In addition, it is exactly the 1-dimensional
case of the classical simulation from chapter 6 and we know it is the ground state energy
1
2

in that case. On the other hand, when m = 0.1, the particle will travel a lot further
before transitioning. This is the high energy behaviour and here we expect deviations
from our typical ground-state function of the harmonic oscillator.

Now, in both simulation of 50000 time steps, the parameters α = 1, ∆τ = 0.001
and M = 5000 were used. For m = 1, E0 = 0.5 was used and it was found that
Eg = 0.48 ± 0.007 was found. Furthermore, figure 4 gives the probability density of
finding a walker at location x. This conforms nicely to the classical solution, which has
been plotted in a dashed orange line.

For m = 0.1, E0 = 1.1 was used and it was found that Eg = 1.09 ± 0.02. Moreover,
figure 5 gives the probability density of finding a walker at location x. This distribution
deviates strongly from the classical result plotted as a dashed orange line. It seems like
the electrons are pushed more to side of the harmonic oscillator.

Further research might compare the above solutions to exact solutions of the Dirac
equation or to the solutions from other numerical methods. Moreover, extending the
considered numerical scheme to higher dimensions, especially 3-dimensions with propag-
ator e±σ∇, is of interest since Monte Carlo methods become more efficient compared to
traditional numerical integration schemes for higher dimensions.
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Figure 4: A plot of the density of the ground-state wave function of the Dirac equation for
the potential V (x) = 1

2x
2 and m = 1; produced by the Dirac Monte Carlo method in blue.

The ground-state energy is given as Eg = 0.48± 0.007. The dashed orange line represents the
classical solution.
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Figure 5: A plot of the density of the ground-state wave function of the Dirac equation for
the potential V (x) = 1

2x
2 and m = 0.1; produced by the Dirac Monte Carlo method in blue.

The ground-state energy is given as Eg = 1.09 ± 0.02. The dashed orange line represents the
classical solution.
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9 Conclusion

In this thesis, we developed a new technique based on homogenisation for calculating the
diffusive limit of an active particle process. Firstly, this technique was used to find the
diffusive limit of an Rd-valued active particle process. The obtained result is in agreement
with prior research, which found the same diffusive limit process. Thereafter, the on
homogenisation based technique was used to obtain the diffusive limit of a manifold-
valued active particle process. In this case, it is not clear, apriori, when the drift and
diffusion of the obtained limit process are invariant under parallel transport i.e. constant.
This matter requires further research.

In addition, a new numerical method for solving for the ground state of the 1-
dimensional Dirac equation is demonstrated. This is a Monte Carlo method based on
a link between the 1-dimensional Dirac equation and the telegrapher’s process. It is a
subject of further research to verify the results of this method by comparing the Monte
Carlo method to an exact solution or other numerical methods. Furthermore, since Monte
Carlo algorithms become relatively more efficient for problems of a high dimensionality,
extending this algorithm to a higher dimensional Dirac equation is of interest.
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A Measure Theoretic Probability

In order to fully grasp the contents of this thesis, some notions from probability theory are
needed, which may not have been introduced to every mathematics bachelor’s student. In
this appendix, we will state some basic notions from measure theoretic probability without
proof. The details can be found in the lecture notes for Real Analysis by Mark Veraar
[19] and the first dozen chapters of Jacod’s and Protter’s book Probability Essentials [20].

In the following section, we will use Ω to denote an abstract space and 2Ω to denote
its powerset.

Definition A.1. Then a collection A ⊆ 2Ω is called a σ-algebra if

(i) ∅,Ω ∈ A

(ii) A ∈ A =⇒ Ac ∈ A

(iii) (An)n∈N ⊆ A =⇒
⋃∞
n=0 An

And for collection F ⊆ 2Ω, we define the σ-algebra generated by F as

σ(F ) :=
⋂
{A : A is a σ-algebra and F ⊆ A }

From now on, we will consider A to be a σ-algebra on the space Ω; and for a topological
space (Ω,O), we use the Borel σ-algebra denoted by B(Ω) = σ(O) unless stated otherwise.

Definition A.2. A function µ : A → [0, 1] is a probability measure if

(i) µ(Ω) = 1

(ii) µ(
⋃
n∈NAn) =

∑
n∈N µ(An)

A tuple (Ω,A , µ) is called a probability space.

In probability theory, the collection A is also called the event space. We then call A ∈ A
an event or measurable set, as these are the sets from Ω for which µ defines a probability.
In this light, we might also identify a σ-algebra with information, as we can only find a
probability for its members. Furthermore, for an event A ∈ A , we say it happens almost
surely if µ(A) = 1.

Definition A.3. Suppose (Ω,A , µ) is a probability space and (F,F a measure spaces.
Then a map X : Ω→ F is called a F -valued random variable if X−1(F ) = {X−1(A) :
A ∈ F} ⊆ A .

Thus random variables are functions on our space of outcomes Ω, which transfer the
outcome from Ω to F . We then say that σ(X) := X−1(F ) is the σ-algebra generated
by the random variable X. That this is indeed a σ-algebra follows directly from the
behaviour of unions and intersections under preimages. Intuitively, σ(X) can be viewed
as the information on the events in Ω through the outcomes of X.

It is now possible to transfer the probabilities from (Ω,A , µ) to (F,F ) through the
law of X. This is the measure µX : F → [0, 1] defined by the map A 7→ µ(X−1(A)). With
the definition of a random variable out of the way, we can now define the expectation of
a random variable using the lebesque integral.
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Definition A.4. The expectation of a random variable X : Ω→ Rd is defined as

E[X] =

∫
Ω

X(ω)µ(dω)

for a R-valued random variable, we say it is integrable if E[|X|] <∞.

We say two measurable functions f, g are almost surely equal, if µ({ω : f(ω) 6= g(ω)}) =
0. This is the probabilistic variant of almost everywhere equivalency. If Lp(Ω,A , µ)
with p ≥ 1 is the space of measurable functions such that E[|X|p] < ∞ and ∼ denotes
equivalence up to almost surety, we define Lp(Ω,A , P ) = Lp(Ω,A , P )/ ∼.

We will now list some properties of expectations, which will be used throughout this
thesis without further mention.

Proposition A.5. Let X, Y : Ω→ Rd be a random variables and α, β ∈ R.

(i) X ≥ 0 a.s. =⇒ E[X] ≥ 0

(ii) X ≥ 0 a.s. and E[X] = 0 =⇒ X = 0 a.s.

(iii) E[αX + βY ] = αE[X] + βE[Y ]

(iv) if f is a measurable function, then

E[f(X)] =

∫
Rd
f(x)µX(dx)

(v) if – in addition – X has a density pX : Rd → R, then

E[f(X)] =

∫
Rd
f(x)pX(x)λ(dx)

where λ denotes the Lebesque measure.

We can now introduce the concept of conditional expectation, which is used extens-
ively in the theory of martingales and Markov processes.

Suppose we have thrown two dice under a table and our friend tells us that the total
number of pips is 7. Then even though we do not know the exact configuration of our
dice, we did obtain information about the outcome of our dice roll. Thus, we want to
condition our random variable associated with the roll of two dice on the new information.
To make this idea, rigorous, we define the conditional expectation.

Definition A.6. Let X : Ω → Rd be an L1(Ω,A , µ) random variable. Then for the
sub-σ-algebra F , we define the conditional expectation of X with respect to F as the
unique L1(Ω,F , µ|F ) random variable E[X|F ] such that

E[E[X|F ]1F ] = E[X1F ] ∀F ∈ F

where 1F is used to denote the indicator function of the set F .
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Note that this definition is in actuality also a theorem, since we claim the conditional
expectation exists and it is unique. Whereby unique, we mean unique in the µ-a.s. sense.

Proving the existence is beyond the scope of this thesis. However, it is possible either
by using an object called the Radon-Nikodym derivative or by means of projections in
L2. For more information on this and conditional expectation in general, see the final
chapters of Jacod’s and Protter’s Probability Essentials [20], which also form the basis
of this section, or Kallenberg’s Foundations of Modern Probability [8, pp. 163–184]. On
the other hand, the uniqueness follows easily from the definition.

Proof of uniqueness. Suppose we have a L1(A ) random variable X and two L1(F ) ran-
dom variables Y, Z satisfying definition A.6. Let A be the event {Y ≤ Z} ∈ F ⊆ A . By
definition, E[Y 1A] = E[X1A] = E[Z1A]. And thus we have that E[(Z−Y )1A] = 0. Then
as (Z − Y )1A ≥ 0, we find (Z − Y )1A = 0 almost surely. Thus, we have Y ≤ Z almost
surely. Similarly, we find Y ≥ Z almost surely. And thus Y = Z almost surely.

Although the conditional expectation is a random variable, its behaves in a sense like an
expectation operator. The following proposition demonstrates this notion and aims to
make the conditional expectation more intuitive.

Proposition A.7. Let X, Y ∈ L1(Ω,A , µ), α, β ∈ R and G ⊆ F ⊆ A be a sub-σ-
algebras. Then

(i) X ≥ 0 a.s. =⇒ E[X|F ] ≥ 0 a.s.

(ii) E[αX + βY |F ] = αE[X|F ] + βE[Y |F ]

(iii) F ⊥⊥ σ(X) =⇒ E[X|F ] = E[X]

(iv) E[X|{∅,Ω}] = E[X]

(v) E[X|G ] = E[E[X|F ]|G ]

(vi) E[E[X|F ]] = E[X]

(vii) if Z is a F measurable random variable such that XZ ∈ L1, then E[XZ|F ] =
ZE[X|F ]

Proof.

(i) Suppose X ≥ 0 a.s. and consider A = {E[X|F ] < 0} ∈ F and suppose P (A) > 0.
Then E[1A] > 0, so 0 > E[1AE[X|F ]] = E[1AX]. This is a contradiction, since
1AX ≥ 0 a.s. =⇒ E[1AX] ≥ 0 . Thus P (A) = 0.

(ii) Let Z = αE[X|F ] + βE[Y |F ]. Then for every A ∈ F , we have E[1AZ] =
αE[1AE[X|F ]] + βE[1AE[Y |F ]] = αE[1AX] + βE[1AY ] = E[1A(αX + βY )]. So
Z = E[αX + βY |F ].

(iii) Suppose σ(X) ⊥⊥ Y and let A ∈ F . Then E[1AE[X|F ]] = E[1AX]
⊥⊥
= E[1A]E[X]] =

E[1AE[X]]. Thus E[X|F ] = E[X].
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(iv) The σ-algebra {∅,Ω} is independent from every sigma algebra. Thus by (iii), we
have E[X|{∅,Ω}] = E[X].

(v) Note that for allA ∈ G ⊆ F , it holds that E[1AE[X|G ]] = E[1AX] = E[1AE[X|F ]] =
E[1AE[E[X|F ]|G ]]]. Thus E[X|G ] = E[E[X|F ]|G ].

(vi) Using (iv) twice and (v) for {∅,Ω} ⊆ F , we find that E[X] = E[X|{∅,Ω}] =
E[E[X|F ]|{∅,Ω}] = E[E[X|F ]].

(vii) Suppose Z = 1B is F measurable. Then for every A ∈ F , E[1AE[1BX|F ]] =
E[1A1BX] = E[1A∩BE[X|F ]] = E[1A1BE[X|F ]], since B ∈ F . Thus also, by
linearity, E[ZX|F ] = ZE[X|F ] for all simple random variables Z.

Now, suppose Z ≥ 0 is a random variable. Then there exists an increasing sequence
Zn of simple random variables such that Zn ↑ Z. In addition, assume ZX ∈ L1.

Then, we find that for all A ∈ F , E[1AE[ZX|F ]] = E[1AZX]
MCT
= limE[1AZnX] =

limE[1AZnE[X|F ]]
MCT
= E[1AZE[X|F ]], where we used that we already know the

identity holds for simple random variables. And thus E[ZX|F ] = ZE[X|F ] for
positive random variables Z.

Now, for Z an R-valued random variable, the identity clearly holds by linearity
after noting that Z = Z+ − Z−, where Z+, Z− ≥ 0.

Example 9. Let Ω = {1, 2, 3, 4, 5, 6} be the outcome of a die throw and X be the random
variable corresponding to this outcome. Now, let F = σ({{1, 2}, {3, 4}, {5, 6}}) ⊆ 2Ω.
Then we must have that for Y = E[X|F ],

E[1{1,2}Y ] = E[1{1,2}X]

E[1{3,4}Y ] = E[1{3,4}X]

E[1{5,6}Y ] = E[1{5,6}X]

Since Y is F measurable, this uniquely defines Y . E[X|F ] is X averaged over the
smallest sets of the sub-σ-algebra. We can see this illustrated in figure 6. 4
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Figure 6: A plot showing the random variable X : {1, 2, 3, 4, 5, 6} → N in grey and the random
variable E[X|F ] : {1, 2, 3, 4, 5, 6} → N with F = σ({{1, 2}, {3, 4}, {5, 6}}) in red. The dashed
grey lines delineate elements of the outcome space, the bold black lines delineate elements of F .

62


	Abstract
	Introduction
	Mathematical background
	Markov Processes
	Feller Processes
	Martingales

	Random walks and Brownian motion
	Random Walks
	Brownian Motion
	Scaling

	Active particles in Rd
	Model
	Martingale Scaling
	Homogenisation
	Telegrapher Process Scaling
	Examples

	Active Particles on Riemannian Manifolds
	Geodesic Random Walk
	Scaling and Brownian Motion
	Active Particles
	Telegrapher Process Scaling

	Quantum Diffusion Monte Carlo
	Solving the Schrödinger equation in imaginary time
	Finding the ground-state
	Evolving the Schrödinger equation
	Implementation of the algorithm
	Harmonic oscillator

	The Dirac Equation
	Relativistic Quantum Mechanics
	Telegrapher process
	The Dirac equation with potential

	A Monte Carlo Method for the Dirac Equation
	Implementation of the algorithm
	Harmonic Oscillator

	Conclusion
	References
	Measure Theoretic Probability

